
Autom
ated Testing of

D
istributed System

s Against
Functional Specifications

C
onstantin Enea

Ecole P
olytechnique, LIX

requests

requests

requests

requests

D
istributed System

s

N
odes that collaborate to ensure a service to a large num

ber of
w

idely spread users

(tolerates faults and asynchrony)

C
om

m
unication

infrastructure

D
istributed System

s
requests

requests

requests

requests

M
essage P

assing C
om

m
unication

requests

requests

requests

requests

D
istributed System

s

C
om

m
unicating using a (distributed) shared state/m

em
ory

database

(U
nit) Testing D

istributed System
s

Effectiveness: high probability of exposing bugs

Interpretability: ability to find the root-cause of a bug in an execution

Effectiveness: high probability of exposing bugs

Interpretability: ability to find the root-cause of a bug in an execution

S
eem

ingly opposing requirem
ents:

•
effectiveness needs m

any faults, a lot of asynchrony, big
w

orkloads if w
e are using the runtim

e

•
interpretability needs “sim

ple” executions, sm
all w

orkloads, less
faults and asynchrony

(U
nit) Testing D

istributed System
s

Effectiveness: high probability of exposing bugs

Interpretability: ability to find the root-cause of a bug in an execution

S
eem

ingly opposing requirem
ents:

•
effectiveness needs m

any faults, a lot of asynchrony, big
w

orkloads if w
e are using the runtim

e

•
interpretability needs “sim

ple” executions, sm
all w

orkloads, less
faults and asynchrony

Ensuring effectiveness and interpretability: introducing
faults and asynchrony in a system

atic m
anner

(U
nit) Testing D

istributed System
s

Plan

1.Testing consensus protocol im
plem

entations
 [D

răgoi, E, O
zkan, M

ajum
dar, N

iksic, O
O

P
S

LA’20]

2.Testing database-backed applications
 [B

isw
as, K

akw
ani, Vedurada, E, Lal, O

O
P

S
LA’21]

Plan

1.Testing consensus protocol im
plem

entations
 [D

răgoi, E, O
zkan, M

ajum
dar, N

iksic, O
O

P
S

LA’20]

2.Testing database-backed applications
 [B

isw
as, K

akw
ani, Vedurada, E, Lal, O

O
P

S
LA’21]

C
onsensus Protocols

A
t the heart of m

any distributed system
s

P
rovides agreem

ent am
ong of set of nodes

•
m

essage-passing com
m

unication

•
netw

ork/node faults

Exam
ples: P

axos, View
S

tam
ped, R

aft, etc.

T1: write(X, a)

T2: write(X, b)

T1; T2

T2; T1
❓

An Exam
ple of C

onsensus Algorithm

P1P2P3

0, 0, ε
0, 1, ε

0, 1, ε

0, 1, ε

0, 1, a
0, 1, a

0, 1, a

0, 1, a
0, 1, a

0, 1, a

1, 2, a

1, 2, a

1, 2, a

1, 2, ab
1, 2, ab

1, 2, ab

1, 2, ab
1, 2, ab

0, 1, a

0, 1, a

1, 2, ab

1, 2, ab

prepare(ballot, id)

ack(last_b, ballot, log) propose(ballot, log)
prom

ise(ballot, log)

(last ballot, current ballot, log)

A
 sequence of rounds

•
in a round: send m

essages + receive m
essages and update state

S
hould behave correctly in the presence of asynchrony, netw

ork link failures,
node failures

M
any possible executions

A
n execution w

ith no m
essage delays, drops, netw

ork partitions, etc.

P1P2P3

M
any possible executions

A
n execution w

ith no m
essage delays, drops, netw

ork partitions, etc.

P1P2P3

A
n execution w

ith m
essage delays, drops, netw

ork partitions, etc.

P1P2P3

M
any possible executions

A
n execution w

ith no m
essage delays, drops, netw

ork partitions, etc.

P1P2P3

A
n execution w

ith m
essage delays, drops, netw

ork partitions, etc.

P1P2P3

Incorrect im
plem

entations m
ay cause bugs in subtle executions

C
ontribution

R
andom

ized testing algorithm
 that exploits sem

antic properties of
consensus protocols to reduce the space of executions it enum

erates

C
ontribution

R
andom

ized testing algorithm
 that exploits sem

antic properties of
consensus protocols to reduce the space of executions it enum

erates

Exploits com
m

unication closure of consensus protocols

S
am

ples from
 synchronous executions

•
sem

antic reduction of the execution space (effectiveness)

•
provides executions that are easier to debug (interpretability)

C
om

m
unication C

losure

Lossy synchronous executions: a num
ber of com

m
unication-closed rounds

•
in a round: send m

essages + receive m
essages and update the state

•
rounds are executed in a lockstep m

anner

•
m

essages are delivered in the round they are sent or otherw
ise, discarded

P1P2P3

C
om

m
unication C

losure

Lossy synchronous executions: a num
ber of com

m
unication-closed rounds

•
in a round: send m

essages + receive m
essages and update the state

•
rounds are executed in a lockstep m

anner

•
m

essages are delivered in the round they are sent or otherw
ise, discarded

S
tandard consensus protocols are com

m
unication-closed: every execution

is equivalent to a lossy synchronous one

P1P2P3

C
om

m
unication C

losure H
ypothesis for Testing

B
ugs already m

anifest in uniform
 lossy synchronous executions

P1P2P3

isolating a set of processes (instead of
dropping individual m

essages)

Random
ized Testing

P
rioritizes the search space of executions based on:

•
The num

ber of process isolations: d

•
The rate at w

hich the failures are recovered: k

S
am

ples from
 uniform

 lossy synchronous executions

 A
n exam

ple 2-bounded 4-periodic execution

4 rounds, 1 phase
(P

3 is isolated)

P1P2P3

4 rounds, 1 phase
(P

1 is isolated)

Random
ized Testing

P
rioritizes the search space of executions based on:

•
The num

ber of process isolations: d

•
The rate at w

hich the failures are recovered: k

 A
n exam

ple 2-bounded 4-periodic execution

4 rounds, 1 phase
(P

3 is isolated)

P1P2P3

4 rounds, 1 phase
(P

1 is isolated)

S
am

ples from
 d-bounded k-periodic uniform

 lossy synchronous executions

Experim
ents on Large-Scale System

s

C
assandra v2.0.0 – heavy instrum

entation to enforce synchronized rounds

•
R

eproduced a know
n difficult bug: violation to serializability

•
n=3 processes, p=4 phases (r=24 rounds, period k=6), #faults d in [5, 10]

R
atis v0.0.6 – lightw

eight instrum
entation to identify rounds of m

essages

•
D

etected three new
 bugs: failure to respond to client, failure to elect a leader, failure

to synchronize replicas

•
n=3 processes, p=4 phases (r=8 rounds, period k=2), #faults d in [1, 7]

Zookeeper v3.5.8 – no instrum
entation: abstract phases and rounds

•
D

etected tw
o new

 bugs along w
ith a know

n bug: violation to sequential consistency,
dropped client, and divergence

•
n=3 processes, p=3 phases, #faults d in [3, 9]

Im
proving Interpretability

Trace sam
pled w

ith “asynchronous” random
ized sam

pling (for C
assandra)

Trace sam
pled w

ith our algorithm

Plan

1.Testing consensus protocol im
plem

entations
 [D

răgoi, E, O
zkan, M

ajum
dar, N

iksic, O
O

P
S

LA’20]

2.Testing database-backed applications
 [B

isw
as, K

akw
ani, Vedurada, E, Lal, O

O
P

S
LA’21]

Bank Paym
ent App

P
ossible double spending

Avoid interference ⇒
 Transaction Isolation

Serializability

W
eakening Serializability

S
erializability vs S

napshot Isolation

Isolation Levels

P
erform

ance vs G
uarantees ⇒

 m
ultiple isolation levels

C
hecking correctness under a certain isolation level

•
B

ank P
aym

ent is correct under S
erializability, S

napshot
Isolation, but fails under R

ead C
om

m
itted

Testing C
overage: Production D

atabases

Forcing “w
eak” behaviors (non serializable) requires big

w
orkloads and ad-hoc m

anipulation of the setup (inject
netw

ork faults)

S
ensitive to a particular im

plem
entation of an isolation level

C
hallenge

Ensuring coverage w
ith sm

all w
orkloads

B
eing agnostic to different setups and im

plem
entations of

sam
e isolation levels

C
ontribution

•
Effective testing w

ith sm
all w

orkloads

•
K

ey-Value and S
Q

L interface (S
Q

L com
piler to K

ey-Value)

•
In m

em
ory database, no netw

ork m
anipulation

M
onkeyD

B

A
 m

ock database, reference im
plem

entation of isolation levels

Im
plem

entation

•
A

 log of reads and w
rites as storage

•
R

eads can return “old” values

•
Logs are checked to satisfy the considered isolation level, using
a form

al axiom
atic sem

antics [B
isw

as, E, O
O

P
S

LA’19]

Im
plem

entation: W
rites

W
rites are sim

ply appended to the log

Im
plem

entation: Reads

C
om

pute possible logs for a read

Im
plem

entation: Reads

C
om

pute possible logs for a read

C
heck validity based on an axiom

atic m
odel

Filter out the valid ones and select one random
ly

Experim
ental Evaluation

B
enchm

ark: a subset of O
LTP

B
ench

TPC
-C

: testing for 12 invariants extracted from
 its specification (that hold under S

ER
)

Effective in breaking assertions (%
 out of 100 iterations) - running w

ith M
yS

Q
L did not violate

any assertion except A
10 and A

12 (even w
ith 10 sessions).

R
andom

ized testing techniques that are effective and sim
plify debugging

•
m

essage passing com
m

unication or storage-backed com
m

unication

•
based on form

al m
odels of executions (sem

antics)

•
system

atizing fault introduction and asynchrony

Future w
ork:

•
dom

ain specific languages to specify restrictions to subsets of executions

•
reinforcem

ent learning for exploring the execution space

C
onclusions

