Semantics of Reactive Probabilistic Programming

Faro meeting, 26-27 November 2024

Guillaume Baudart - Louis Mandel - Christine Tasson

mailto:guillaume.baudart@inria.fr
mailto:l.mandel@us.ibm.com
mailto:christine.tasson@isae-supaero.fr

Introduction

Model a flight

Flight Tracker
@ Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

Model evolution of the system

xt’:yt e Cruising speed and altitude

) e Straight movement

Xei 1, Vil e Radar tracks the plane

Bayesian inference
e Environment randomly influences the position
e Radar measures are noisy

e What are the conditional distributions of speed
and position given radar observations?

€,

Goal
Study and apply semantics of probabilistic reactive programming language
Prove soundness of program transformations.

Reactive Programming

Example from PPL at MPRI
Reactive PPL - Course 8 by G. Baudart

https://github.com/mpri-probprog/probprog-24-25/

https://github.com/mpri-probprog/probprog-24-25/blob/main/cours/8-semi-symbolic.pdf

Synchronous Programming

Reactive Probabilistic Programming

36

Example: tracker

latent O

observed

Model
Linear motion: Xy ~ N (FXj_1,Q)
Observation: Yy, ~ N (H Xy, R) m

E.g., with @ and R constant noise matrices

X, = <i"> (position, velocity)
!

F= <(1] dlt) (discrete integration)
1 -
H = (0> (projection)

37

pred
X k

est
X k
Sk
Ppred

est
F, k

&

= F ng—t1
_ X]Ered + Kk(Yk _ HX];:red)
= (R+HPI™HT)™!
_ PlfredHTSk
= Q+FpPEFT
Pkpred _ KkHP]?red

Solution: Kalman filter

Reactive synchronous programming

Dataflow synchronous programming
Set of stream equations
Discrete logical time steps
At each step, compute the current value given inputs and previous values

let node kalman(y) = x_est where

rec x_pred = f * (x0 — pre x_est) X]Fc’red = FX,

and x_est = x_pred + k * (y - h * x_pred) Xt = X}gfed +Kk(Yk—HX,‘j’ed)
and s =r + h % p_pred * (transpose h) S _ RJFHPISredHT

and k = p_pred * (transpose h) * (inv s) K, _ PlgredHTsk—l

and p_pred = q + f * (p0 - pre p_est) * (transpose f) p}fred _ QJFFPkeitlFT

and p_est = p_pred - k *x h * p_pred Psst _ P’SrediKkHPI?red

Solution: Kalman filter

38 Bourke, Pouzet 2013

Reactive synchronous programming

let node kalman(y) = x_est where
rec x_pred = f x (x0 — pre x_est)

and x_est = x_pred + k * (y - h * x_pred) What if the assumptions change?
and s =r + h * p_pred * (transpose h) What if the model is not linear?
and k = p_pred * (transpose h) % (inv s)

and p_pred = q + f x (p0 - pre p_est) x (transpose f)
and p_est = p_pred - k *x h * p_pred

y =7 y = 4 y =2
| | |
kalman kalman kalman
l l l
1.5 0.1 2.3

t=0 t=1 t=2

39

Reactive Flight Tracker

X1, Yit1

Straight movement
e Cruising altitude
e Constant speed 6
® pos,,; = pos, +

Radar measures: angle and delay

rade = (ar,d:) = f(pos,) with

Qe atan(v/x)

51’ — 2 Vv Xt2+yt2 Ceight

Synchronous Flight Tracker

Xl Vw1

Block diagrams (a la Simulink or Scade)

u
controller i

lane position
plane p s

d
radar tracker
rafar,

Synchronous program (a la Lustre or Zelus)

1 node tracker(rad_ obs) = (pos, dif) where
> rec init pos = pos_ init

3 and pos = last pos + theta

1+ and rad = f(pos)

5 and dif = abs(rad - rad__obs)

¢ node main(rad__obs) = u where

7 rec (pos, dif) = tracker(rad__obs)

s and u = controller(pos, dif)

Reactive Programming

Synchronous Paradigm

Synchronous Programming
@ Paul Caspi & al. Lustre, 1987

A language with restricted expressivity, yet strong safety and well-defined semantics

e Synchronous hypothesis e Productive Recursive Equations e where rec E
e simultaneous inputs under fixpoint convergence criteria
e instantaneous o Causality: n-th element of the output stream depends on the
computation n first elements of the input stream
e Simply typed 'Fe: A o Deterministic: [e] : Stream ' — Stream A
Example
1 node tracker(rad_ obs) = (pos, dif) [tracker] (G)n = (pn,dn)

> where rec init pos = pos_ init ..
po = pos_init
s and pos = last pos + theta

1+ and rad = f(pos) Pn = Pn_1+0=py+nb,
5 and dif = abs(rad - rad__obs) d, = |f(po+ nf)— G,(rad_obs)|

Synchronous Programming — Operational Semantics

@ Caspi & Pouzet, A Co-iterative Characterization of Synchronous Stream Functions, CMCS98

Labelled Transition System e A
States: Sta (History) Projection: [e]”™ : Sta — A
Inputs: v € ' (Labels) Allocation: [e]™" : Sta

Outputs: A (Observables) SLEE

Transition: [e]***P : Sta x [— Sta denoted S 25 S

Example

1 node tracker(rad_obs) = (pos, dif)

S = [tracker]™ = (L, po, L)
> where rec init pos = pos_ init

4 =
s and pos = last pos + theta [tracker]™ : (p-1, p, d) = (p, p+ 6, |f(p+0) — g))
+ and rad = g(pos) . with g = y(rad_obs)
TO
5 and dif = abs(rad - rad_ obs) [trackex]”™™ (p-1, p, d) = (p, d)
Remark

Memory is bounded as only the last g steps in history are needed with g related to the number
- oflast

Synchronous Programming — Soundness and Adequacy

Denotational semantics: Stream function associated to [- e : A.

[€] : Stream ' — Stream A

Operational semantics: Labeled Transition System associated to [- e : A.

He]]step . [[e]]init _ 50 7 51 72 52 73 o Yn Sn Yn+1
]| 1
Vi Vo 000 Vn

Denote Vn > 1, [e]:™ (71,- - -, 7n) = [e]>” ([[e]]“ep (S,,,l,ryn)) =,

Theorem (Equivalence between denotational and operational semantics).

If all recursive equations have a unique solution for every inputs and the program is causal, then

VG Vn>1, [e] (G), = [e],™" (G<n)

Probabilistic Reactive
Programming

Bayesian Inference

Bayesian Reactive Flight Tracker
@ Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

Random environment (prior)

X Yt zz = 10km
poS; 1~ JV(pOSt-i-@,Sp)

TN K 1 Yial

Bayesian Reactive Flight Tracker
@ Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

Random environment (prior)

xpyt Zy = 10km
pos,.; ~ A (pos,+0,sp)

X Vot Radar: noisy measures (likelihood)

rad; = f(pos;)
apy = atan(%/x) (angle)
8 = 2VxXt¥/ag. (delay)
rad_obs; ~ .#(rady,s;)

Bayesian Reactive Flight Tracker
@ Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

Random environment (prior)

xpyt Zy = 10km
pos,.; ~ A (pos,+0,sp)

X Vot Radar: noisy measures (likelihood)

rad; = f(pos;)
apy = atan(%/x) (angle)
8 = 2VxXt¥/ag. (delay)
rad_obs; ~ .#(rady,s;)

At each time step, what is the (posterior) conditional distribution of the position given the
observed radar measures ? Vn € N, P(pos|rad obs),

Probabilistic Synchronous Language
y guag
@ Baudart & al. Reactive Probabilistic Programming, PLDI20 : g

last pos = x,,),
ProbZelus (syntax a la Zelus, Pyro or Stan) p !

1 proba tracker(rad_ obs) = pos where
08 = X415 Vw1

2 rec init pos = pos_ init :

3 (* prior *) % / -

4 and pos = sample(gaussian(last pos+theta, s_p)) e

_ _ _ d = f(pos)

5 and rad = f(pos) o,

6 (* likelihood / conditionning *) A ad_obs =(a,, §,)

7 and () = observe(gaussian(rad, s_r), rad_ obs)) jli
w=pdfigaussian(a,s_r))(a,,,)
8

o node main(rad_obs) = u where

10 (* posterior *)
11 rec pos_ dist = infer (tracker (rad_obs))
12 and u = controller(pos_ dist)

Probabilistic Synchronous Language

@ Baudart & al. Reactive Probabilistic Programming, PLDI20 : g

last pos = X;,Y,
ProbZelus (syntax a la Zelus, Pyro or Stan) z o

i proba tracker(rad_obs) = pos where oN\e \°
.. . O eI\ POS =X 1, Yig1
2 rec init pos = pos_ init 5 ®o0
o o
3 (* prior *) (” e
4 and pos = sample(gaussian(last pos+theta, s_p)) 0
/ ® e rad = f(pos)

5 and rad = f(pos) Ja.

/O .
6 (* likelihood / conditionning *) /X () @ rad_obs =(a, §,)

7 and () = observe(gaussian(rad, s_r), rad_ obs)
w=pdfigaussiar

o mnode main(rad_obs) = u where

* posterior * .
. (*p) Sequential Monte-Carlo Inference

11 rec pos_dist = infer (tracker (rad_obs)) sample: [(pos®, 1) (pos”, 1)]

12 and u = controller(pos_ dist) S [(pOSO WO) (pos”, w™]
N))

categorical distribution 3

Probabilistic Reactive
Programming

Semantics

Probabilistic Synchronous Programming — Denotational Semantics

Stream of probabilistic measures

[l + infer e : Prob A] : Stream [— Stream (Prob A)

Solving recursive equations towards a schedule-agnostic semantics

e inherited from block diagrams that are standard in the industry,
e manually scheduling is not modular.

Problem to compute fixpoints in the measure semantics:

e = (x,y) where Wanted semantics:
rec x = sample(gaussian(42, 1)) [e] = fR 5()(9 N (42,1)(x)dx
and y =x 7

Yet, in the measure semantics, the least element (and least fixpoint) is the null measure.
W Jones & Plotkin. A Probabilistic Powerdomain of Evaluations. 1998

Solution: externalize random seeds and compute fixpoint in the value domain
\ Vakar & al. A domain Theory for Statistical Probabilistic Programming. POPL2019

Probabilistic Synchronous Programming — Denotational Semantics

Stream of probabilistic measures
[- infer e: Proba A] : Stream I — Stream (Proba A)

Externalize randomness in order to solve recursive equations:
If probability distributions have density wrt the counting or the Lebesgue measures, then

p(U) = / Sicdf ,(neudr
[0,1]
with r € [0, 1] a random seed and jcdf ,(r) its inverse cumulative distribution function.

Sampling semantics: if k is the number of samples, then

(e) : Stream T x Stream [0,1]% — Stream A x Stream R

Stochastic semantics: if (v,, w,) = (€) (G, R),, then

v, Vn, [e] (G), = / Oy, Wp dR = / Oy, Wn dR<p
([0,1]%)"

([0, 1])"
10

Probabilistic Synchronous Programming — Operational Semantics

Sampling Labelled Transition System

States: Sta x Rt Projection: (€)™ : Sta x Rt — A x R+

(History and score) Allocation: ((e])init : Sta x Rt
Inputs: v € ' (Labels) Sampling Transition: (€)™ : (S, w) 25 (S, w')
Outputs: A (Observables) with v €T, r € [0,1]% and w, w’ € R+

Stochastic Labelled Transition System: if (S§',w’) = (€)*® (S, w,~, r), then

[e]*P: S e Sta s ds' w' dr € Prob Sta
[0,1]*

11

Probabilistic Synchronous Programming — Example

Syntax

1 node tracker(rad_obs) = pos

0

where rec init pos = pos_init
s and pos = sample(gaussian(last pos + theta, s_p))
1 and rad = f(pos)

5 and () = observe(gaussian(rad, s_r), rad_ obs)

Operational semantics: with states (pos_last, pos) € Sta
[tracker]™ : (p_1,p) — p
[[tracker]]init © (L, po), 1

tracker]* : (p_1,p), w =5
ekt (o) W' =wx N (F(p+06),5,)(g)

"= (p,p/ +6) with p' = icdf y(p,s,)(r) in

with g = v(rad_obs)

12

Probabilistic Reactive Semantics — Soundness and Adequacy

Denotational semantics: Stream function associated to [- e : Prob A

(e) : Stream [— Stream A x Stream R™

Operational semantics: Labeled Transition System associated to I' F e : Prob A

ste init 7,R V2,R2 73,Rs YnyRn Yn+1:Rnt1
([E‘)) 12 ¢ ((e)) :50,]. 51,W1 52,W2 —_— ... > 5,,7Wn —_— ...
(e)ri] L L
Vi, W1 V2, W2 Vn, Wn

Set Vn > 1, (e)," (V- + s ¥y R1,. s Ro) = ([e))pmj ((e)Step (Sn—15 Wn—1,7n, Rn)) = Va, Wiy
Theorem (Equivalence between denotational and operational semantics)

If all recursive equations have a unique solution for every inputs and the program is causal, then
for any input stream G, and for any random seeds stream R,

Vn>1, (e)(G,R)n = (e)," (G<n, R<n) and lel (G)n = [e]™ (G<n)

Thus, the denotational and operational output probability measures coincide at each time step.

13

Program Equivalence

Observational Equivalence

Observational equivalence (operational)

sample(e;) + sample(e) %X+ y where rec x = sample(e;) and y = sample(e)

o

Definition: e; ™ e, if for all input stream G, [a] (G) = [e2] (G).

Stochastic bisimulation: e; ~ e, if there is ¥ C Sta x Sta such that for all ~, for all 5;€’s;,
if 5 —— (1, then there is ¢, with s, SAN o such that

(e1) (e2)

e there is a coupling C € Proba (Sta x Sta) with marginals 7 and ¢»
e there is a measurable relation on pair of states 4’ C % such that

C(@)=1 Vs%'s), obs,)(s1) = obs(e,)($))
et vice versa.
obs
Theorem: If e; ~ e, then ¢ =~ 6.

Proof: consequence of adequacy.

14

Observational Equivalence (Denotational)

obs
sample(e;) + sample(ey) ~ x + y where rec x = sample(e;) and y = sample(e;)

Sam
~

Sampling bisimulation: e; ~ e, if there is ¥ : [0,1]% — [0,1]%

e preserving uniform distribution v, (\<) = Ak
e VG, R € Stream (I x [0,1]%), (&1) (G, R) = (&) (G, (R)) with ¥(R) = (¥(Ry))nen

b
Theorem: If e; = e, then e; ~ e.

Proof: We apply the change of variable formula along v, set s;(G, R), w;(G, R) = (&) (G, R)

el ()= [(6 Rcmd(R) = [wa(G (R uicuimydN(R)
([0,1]1)" ([0,1])"

_ / w(G. R')dsyc.rdN2(R')
(012"
= [e] (G)

15

Stream Sampling Semantics
adapted from @y Bourke et al. Velus, 2017

Inference system (selected rules): G,RF el s,w

F,GFels F.GFels, F.GFelw

F,G,[I+el (s,1) F,G,[R] - sample(e) | (icdfs, (R),1) F.G,[] + factor(e) J ((), w)

F,G,Re el (se, we) F(f) = proba f x = ef F,[x < se], Re = er 4 (s, w)
F,G,[Re: Re] - f(e) U (s, w = we)

F,.G+ Gg,Re - E : wg F,G+ Gg,Re Fe J (s,w) F,G,RF el (G(x),w)
F,G,[Re : RE] F e where rec E | (s, w * wg) F,G,REx=e:w
F,G,REel (i-s,w-w) G(x.last) =i- G(x) F,G,RiFE :wm F,G,Ry F Ex:wy
F,G,RFinitx=¢e:w -1 F,G,[R1: R]F Ei and E> : wy * wy

p = RV(e) [F,G,RE el (s,w) w =T Wlge(o,9)p
F, G I~ infer(e) | integ, W s

Soundness: G,RFels,w ifandonlyif (s,w)=[e](G,R)

16

Program Equivalence — Commutativity

sample(e;) + sample(e;) =X+ y where rec x = sample(e;) and y = sample(e)

17

Program Equivalence — Commutativity

sample(e;) + sample(e;) =X+ y where rec x = sample(e;) and y = sample(e)

G, Ry + sample(er) | (s1,w1) G, Ry - sample(ez) | (s2, w2)

G,[R1 : Ro] | sample(e;) + sample(e) | (s1 + s2, wiwn)

17

Program Equivalence — Commutativity

obs
sample(e;) + sample(ey) ~ x + y where rec x = sample(ey) and y = sample(e;)

G, Ry + sample(er) | (s1,w1) G, Ry - sample(ez) | (s2, w2)

G,[R1 : Ro] | sample(e;) + sample(e) | (s1 + s2, wiwn)

G + G, Ry - sample(e2) | (s2, w2) G + Gg, Ry - sample(er) | (s1,w1)

G+ Gg, Ry x = sample(e) : w» G+ Gg,R1 + y = sample(er) : wy

G+ Gg,] Fx+yd(s2+s1,1) G + Gg,[R2 : Ri] - x = sample(ez) and y = sample(er) : wiws

G,[R2 : Ri] F x + y where rec x = sample(ez) and y = sample(er) | (s2 + s1, wiws)

where Gg = [x + s,y < s1].

17

Program Equivalence

Application — Assumed Parameter Filter

Assumed Parameter Filter (APF) Inference

\ Erol & al. A nearly-black-box online algorithm for joint parameter and state estimation in temporal models, 2017

At each time step, different methods for

proba f(pre_x) = pre_x + theta where

rec init theta = sample(gaussian(zeros, st)) e state parameters

and theta = last theta)

sequential Monte-Carlo inference

proba tracker(rad_obs) = pos where

rec init pos = pos_init e constant parameters

and pos = sample(gaussian(f(last pos), sp))

and rad = g(pos)

and () = observe(gaussian(rad, sr), rad_obs)

symbolic inference and optimization

APF necessitates a program transformation
node main(rad_obs) = u where to extract constant parameters.

rec pos_dist = infer (tracker (rad_obs))
and msg = controller(pos_dist)

Program Transformation for APF — Soundness

proba f(pre_x) = pre_x + theta where
rec init theta = sample(gaussian(zeros, st))
and theta = last theta

proba tracker(rad_obs) = pos where
rec init pos = pos_init
and pos = sample(gaussian(f(last pos), sp))
and rad = g(pos)
and () = observe(gaussian(rad, sr), rad_obs)

node main(rad_obs) = u where

rec pos_dist = infer (tracker (rad_obs))
and msg = controller(pos_dist)

APF Inference definition

let f_prior = gaussian(zeros, st)
proba f_model(theta, pre_pos) = pre_pos + theta

let tracker_prior = f_prior

proba tracker_model(theta, rad_obs) = pos where
rec init pos = pos_init
and pos = sample(gaussian(f_prior(theta, last pos), sp))
and rad = g(pos)
and () = observe(gaussian(rad, sr), rad_obs)

node main(rad_obs) = msg where
rec pos_dist = APF.infer(tracker_model, tracker_prior, rad_obs)
and msg = controller(pos_dist)

APF.infer(f.model, f.prior, e) = infer(f.model(f, e) where rec init § = sample(f.prior))

Soundness:

F,GF infer(f(e)) | d

iff F',GF APF.infer(f.model, f.prior, e) | d

Proofs: By sampling bisimulation (using stream functions) or stochastic bisimulation (using

states and labeled transition systems).

19

Probabilistic Reactive Programming

arXiv Baudart, Mandel, Tasson, Density-Based Semantics for Reactive Probabilistic Programming, 2023

Equivalent Semantics for Probabilistic Reactive Programming,
with observational equivalence characterization

e Operational semantics (sLTS), with stochastic bisimulation
e Sampling semantics (stream functions), with sampling bisimulation

Proofs of Equivalence of Probabilistic Reactive Programs

e Basic equations
e Transformation of programs

\ G. Kahn, The Semantics of a Simple Language for Parallel Programming, 1974
Future works

e Probabilistic distance between inference algorithms

e Design an inference algorithm based on Poisson basis for online learning/planning of trajectories
with error control (AID Project IS.BAYES.APT)

20

	Introduction
	Model a flight

	Reactive Programming
	Example from PPL at MPRI Reactive PPL - Course 8 by G. Baudart https://github.com/mpri-probprog/probprog-24-25/
	Synchronous Paradigm

	Probabilistic Reactive Programming
	Bayesian Inference
	Semantics

	Program Equivalence
	Observational Equivalence
	Application – Assumed Parameter Filter

