Congruences on small categories

A congruence on a small category \mathcal{C} is an equivalence relation \sim over $\operatorname{Mo}(\mathcal{C})$ such that:

- $\gamma \sim \gamma^{\prime} \Rightarrow \partial^{-} \gamma=\partial^{-} \gamma^{\prime}$ and $\partial^{+} \gamma=\partial^{+} \gamma^{\prime}$
- $\gamma \sim \gamma^{\prime}, \delta \sim \delta^{\prime}$ and $\partial^{-} \gamma=\partial^{+} \delta \quad \Rightarrow \quad \gamma \circ \delta \sim \gamma^{\prime} \circ \delta^{\prime}$

In diagrams we have

Hence the \sim-equivalence class of $\gamma \circ \delta$ only depends on the \sim-equivalence classes of γ and δ and we have a quotient category \mathcal{C} / \sim in which the composition is given by

$$
[\gamma] \circ[\delta]=[\gamma \circ \delta]
$$

The quotient map $q: \gamma \in \operatorname{Mo}(\mathcal{C}) \mapsto[\gamma] \in \operatorname{Mo}(\mathcal{C}) / \sim$ induces a functor $q: \mathcal{C} \rightarrow \mathcal{C} / \sim$

Natural congruences on a functor $P: \mathcal{C} \rightarrow$ Cat

A natural congruence on a functor $P: \mathcal{C} \rightarrow \mathcal{C a t}$ is a collection of congruences \sim_{X} on $P X$, for X ranging through the objects of \mathcal{C}, such that for all morphisms $f: X \rightarrow Y$ of \mathcal{C}, for all $\alpha, \beta \in P X$,

$$
\alpha \sim_{X} \beta \Rightarrow P(f)(\alpha) \sim_{Y} P(f)(\beta)
$$

Then we can define the functor $\overrightarrow{\pi_{1}}: \mathcal{C} \rightarrow$ Cat as follows:

- for all $X \in \mathcal{C}, \pi_{1}(X)=P(X) / \sim_{X}$
- for all $f: X \rightarrow Y$ in \mathcal{C}

$$
X \xrightarrow{f} Y
$$

The collection of quotient functors q_{X}, for X ranging through the objects of \mathcal{C}, provides a natural transformation from P to $\overrightarrow{\pi_{1}}$.

Object part

Let X be a locally ordered space.

- The objects of $P X$ are the points of X.
- The homset $P X(a, b)$ is

$$
\bigcup_{r \geqslant 0}\{\gamma \in \mathcal{L p o}([0, r], X) \mid \gamma(0)=a \text { and } \gamma(r)=b\}
$$

- For $\delta:[0, r] \rightarrow X$ and $\gamma:\left[0, r^{\prime}\right] \rightarrow X$ with $\delta(r)=\gamma(0)$, define the concatenation

$$
\gamma \cdot \delta:\left[0, r+r^{\prime}\right] \longrightarrow X
$$

$$
t \longmapsto \begin{cases}\delta(t) & \text { if } t \leqslant r \\ \gamma(t-r) & \text { if } t \geqslant r\end{cases}
$$

Morphism part

The (Moore) path category construction gives rise to a functor P from $\angle p o$ to Cat since for all $f \in \operatorname{Lpo}(X, Y)$ and all paths γ on X, the composite $f \circ \gamma$ is a path on Y.

Equivalent directed paths on a local pospace X

An elementary homotopy is a finite concatenation of directed and anti-directed homotopies.
If $\theta:[0, r] \rightarrow[0, r]$ is a reparametrization and $\gamma \in \mathcal{L} p o([0, r], X)$, then γ and $\gamma \circ \theta$ are dihomotopic.
Two directed paths $\gamma:\left[0, r^{\prime}\right] \rightarrow X$ and $\delta:\left[0, r^{\prime \prime}\right] \rightarrow X$ on a local pospace are said to be equivalent (denoted by \sim_{x}) when there exists two reparametrizations $\theta:[0, r] \rightarrow\left[0, r^{\prime}\right]$ and $\psi:[0, r] \rightarrow\left[0, r^{\prime \prime}\right]$ such that there is an elementary homotopy between $\gamma \circ \theta$ and $\delta \circ \psi$.

The relation \sim_{X} is symmetric because if $h(s, t)$ is an elementary homotopy, then so is the mapping $(s, t) \mapsto h(-s, t)$.
The relation \sim_{X} is transitive because a concatenation of elementary homotopies is an elementary homotopy.
Given $x, y \in X$ and $r \in \mathbb{R}_{+}$, the relation \sim_{X} is an equivalence relation on the set

$$
\bigcup_{r \in \mathbb{R}_{+}}\{\gamma \in \mathcal{L} p o([0, r], X) \mid \gamma(0)=x ; \gamma(r)=y\}
$$

Juxtaposition of homotopies

horizontal composition
Let $h:[0, r] \times[0, q] \rightarrow X$ and $h^{\prime}:\left[0, r^{\prime}\right] \times[0, q] \rightarrow X$ be homotopies
from γ to δ and from γ^{\prime} to δ^{\prime} with $\partial^{+} \gamma=\partial^{-} \gamma^{\prime}$.
The mapping $h^{\prime} * h:\left[0, r+r^{\prime}\right] \times[0, q] \rightarrow X$ defined by

$$
h^{\prime} * h(t, s)= \begin{cases}h(t, s) & \text { if } 0 \leqslant t \leqslant r \\ h^{\prime}(t-r, s) & \text { if } r \leqslant t \leqslant r+r^{\prime}\end{cases}
$$

is a homotopy from γ to δ.

If h and h^{\prime} are ((weakly) directed) homotopies, then so is their juxtaposition $h^{\prime} \cdot h$.

Godement exchange law

Suppose we have

then it comes

$$
\left(g^{\prime} * h^{\prime}\right) \cdot(g * h)=\left(g^{\prime} \cdot g\right) *\left(h^{\prime} \cdot h\right)
$$

Applying Godement exchange law

Equivalences are congurences

If:

- h is an elementary homotopy between $\gamma \circ \theta$ and $\delta \circ \psi$
- h^{\prime} is an elementary homotopy between $\gamma^{\prime} \circ \theta^{\prime}$ and $\delta^{\prime} \circ \psi^{\prime}$
- the endpoint of γ is the starting point of γ^{\prime}
then $h \cdot h^{\prime}$ is an elementary homotopy from $\left(\gamma \cdot \gamma^{\prime}\right) \circ\left(\theta \cdot \theta^{\prime}\right)$ to $\left(\delta \cdot \delta^{\prime}\right) \circ\left(\psi \cdot \psi^{\prime}\right)$.
The relation \sim_{X} is a congruence on $P(X)$

Naturality

If h is a homotopy from γ to γ^{\prime} on the topological space X and $f: X \rightarrow Y$ is a continuous map, then $f \circ h$ is a homotopy from $f \circ \gamma$ to $f \circ \gamma^{\prime}$ on the topological space Y.

If h is a (weakly) directed homotopy from γ to γ^{\prime} on the local pospace space X and $f: X \rightarrow Y$ is a local pospace morphism, then $f \circ h$ is a (weakly) directed homotopy from $f \circ \gamma$ to $f \circ \gamma^{\prime}$ on the local pospace space Y.

If $\gamma, \gamma^{\prime}:[0, r] \rightarrow X$ are ((weakly) di)homotopic, then so are $f \circ \gamma, f \circ \gamma^{\prime}:[0, r] \rightarrow Y$.

Conclusion

- The relations \sim_{X} form a natural congruence on the directed path functor $P: \mathcal{L p o} \rightarrow$ Cat.
- The fundamental category functor $\vec{\pi}_{1}:\llcorner p o \rightarrow$ Cat is defined accordingly.
- The fundamental groupoid functor $\Pi_{1}: \mathcal{T o p} \rightarrow \operatorname{Grd}$ is obtained by substituting "paths" and "homotopies" to "directed paths" and "elementary homotopies".
- The fundamental category of the locally ordered real line is the corresponding partial order.
- For all local pospaces X and Y we have

$$
\overrightarrow{\pi_{1}}(X \times Y) \cong \overrightarrow{\pi_{1}} X \times \overrightarrow{\pi_{1}} Y
$$

- Given a pospace $X, \overrightarrow{\pi_{1}} X$ is loop-free i.e.

$$
\overrightarrow{\pi_{1}} X(x, y) \neq \emptyset \text { and } \overrightarrow{\pi_{1}} X(y, x) \neq \emptyset \quad \Rightarrow \quad x=y \text { and } \overrightarrow{\pi_{1}} X(x, x)=\left\{\mathrm{id}_{x}\right\}
$$

- The fundamental category of a local pospace has no nontrivial null homotopic directed paths i.e. any directed loop that is related to a constant path by an elementary homotopy is actually a constant.
- In particular the fundamental category of a local pospace has no isomorphism but its identities.

The fundamental category of the locally ordered circle

- Given $x, y, \widehat{x y}$ is the anticlockwise arc from x to y. It is a singleton if $x=y$.
- $\vec{\pi}_{1} \mathbb{S}^{1}(x, y)=\{x\} \times \mathbb{N} \times\{y\}$
- the identities are the tuples $(x, 0, x)$
- the composition is given by
- $(y, p, z) \circ(x, n, y)=(x, n+p, z)$ if $\widehat{x y} \cup \widehat{y z} \neq \mathbb{S}^{1}$
- $(y, p, z) \circ(x, n, y)=(x, n+p+1, z)$ if $\widehat{x y} \cup \widehat{y z}=\mathbb{S}^{1}$

Plane without a square

$\left.x=\mathbb{R}_{+}^{2} \backslash\right] 0,1\left[\left[^{2}\right.\right.$

If $x \leqslant^{2} y$, then $\overrightarrow{\pi_{1}} X(x, y)$ only depends on the elements of the partition x and y belong to.

\rightarrow	A	B	C	D
A	σ	β	α	$\beta^{\prime} \circ \beta$ $\alpha^{\prime} \circ \alpha$
B		σ		β^{\prime}
C			σ	α^{\prime}
D				σ

Skeleta and equivalences of categories

- A skeleton of \mathcal{C} is a full subcategory of \mathcal{C} whose class of objects meets every isomorphism class of \mathcal{C} exactly once.
- The skeleton of \mathcal{C} is unique up to isomorphism, it is denoted by skC .
- Two categories are equivalent (i.e. there exists an equivalence of categories between them) iff their skeleta are isomorphic.
- The skeleton of the category of finite sets is the full subcategory whose objects are $\{0, \ldots, n-1\}$ for $n \in \mathbb{N}$.
- The skeleton of the fundamental groupoid of a path-connected space is the fundamental group of this space.
- Problem: The fundamental category of a local pospace has no isomorphisms but its identities, hence it is its own skeleton.

The categories LfC Cat and OwCat

- A category \mathcal{C} is said to be one-way when all its endomorphisms are identities i.e. $\mathcal{C}(x, x)=\left\{\right.$ id $\left._{x}\right\}$ for all x Every Grothendieck topos has a one-way site. C. MacLarty. Theor. Appl. of Cat. 16(5) pp 123-126 (2006)
- A one-way category \mathcal{C} is said to be loop-free when for all x, y

$$
\mathcal{C}(x, y) \neq \emptyset \text { and } \mathcal{C}(y, x) \neq \emptyset \text { implies } x=y
$$

Complexes of groups and orbihedra in Group theory from a geometrical viewpoint.
A. Haefliger. World Scientific (1991).

- A loop-free category is its own skeleton
- A category is one-way iff its skeleton is loop-free

Generalized congruences

M. A. Bednarczyk, A. M. Borzyszkowski, W. Pawlowski. Theor. Appl. Cat. 5(11). 1999

- Given a binary relation \mathcal{R} on the set of morphisms of a category \mathcal{C}, there is a unique category $\mathcal{C} / \mathcal{R}$ and a unique functor $q: \mathcal{C} \rightarrow \mathcal{C} / \mathcal{R}$ such that for all functors $f: \mathcal{C} \rightarrow \mathcal{D}$, if $\alpha \mathcal{R} \beta \Rightarrow f(\alpha)=f(\beta)$, then there is a unique functor $g: \mathcal{C} / \mathcal{R} \rightarrow \mathcal{D}$ such that $f=g \circ q$

- Examples
- any congruence is a generalized congruence.
- \mathcal{C} freely generated by $x \xrightarrow{\alpha} y$ with id $_{x} \mathcal{R i d}_{y}$ (resp. with $\alpha \mathcal{R i d}_{x}$).
- ($\mathbb{N},+, 0$) with $0 \mathcal{R} n$ for some $n \in \mathbb{N}$.

Goal

Let \mathcal{C} be a one-way category:

- Define a class Σ of morphisms of \mathcal{C} so we can keep one representative in each class of Σ-related objects without loss of information
- To do so, we are in search for a class that behaves much like the one of isomorphisms
- From now on \mathcal{C} denotes a one-way category

Potential weak isomorphisms

Let \mathcal{C} be a one-way category

- For all morphisms σ and all objects z define
- the σ, z-precomposition as $\gamma \in \mathcal{C}\left(\partial^{+} \sigma, z\right) \rightarrow \gamma \circ \sigma \in \mathcal{C}\left(\partial^{\circ} \sigma, z\right)$
- the z, σ-postcomposition as $\delta \in \mathcal{C}\left(z, \partial^{-} \sigma\right) \mapsto \sigma \circ \delta \in \mathcal{C}\left(z, \partial^{+} \sigma\right)$
- One may have $\mathcal{C}\left(\partial^{+} \sigma, z\right)=\emptyset$ or $\mathcal{C}\left(z, \partial^{-} \sigma\right)=\emptyset$
- Note that σ is an isomorphism iff for all z both precomposition and postcomposition are bijective.
- The latter condition is weakened: σ is said to preserve the future cones (resp. past cones) when for all z if $\mathcal{C}\left(\partial^{+} \sigma, z\right) \neq \emptyset$ (resp. $\left.\mathcal{C}\left(z, \partial^{-} \sigma\right) \neq \emptyset\right)$ then the precomposition (resp. postcomposition) is bijective.
- Then σ is a potential weak isomorphism when it preserves both future cones and past cones. Potential weak isomorphisms compose.
- If $\mathcal{C}(x, y)$ contains a potential weak isomorphism, then it is a singleton Requires the assumption that \mathcal{C} is one-way

An example of potential weak isomorphism

Due to the lower dipath, the σ, z-precomposition is not bijective; yet σ^{\prime} is a potential weak isomorphism.

An unwanted example of potential weak isomorphism

Note that $\sigma^{\prime \prime}$ is a potential weak isomorphism though there exists a morphism from $\partial^{-} \sigma^{\prime \prime}$ to z but none from $\partial^{+} \sigma^{\prime \prime}$ to z.

Stability under pushout and pullback

- A collection of morphisms Σ is said to be stable under pushout when for all $\sigma \in \Sigma$, for all γ with $\partial^{\gamma} \gamma=\partial^{\gamma} \sigma$, the pushout of σ along γ exists and belongs to Σ

- A collection of morphisms Σ is said to be stable under pullback when for all $\sigma \in \Sigma$, for all γ with $\partial^{+} \gamma=\partial^{+} \sigma$, the pullback of σ along γ exists and belongs to Σ

Greatest inner collection stable under pushout and pullback

- Any collection Σ of morphisms of a category \mathcal{C} admits a greatest subcollection that is stable under pushout and pullback
- Construction:
- Start with $\Sigma_{0}=\Sigma$
- For $n \in \mathbb{N}$ define Σ_{n+1} as the collection of morphisms $\sigma \in \Sigma_{n}$ s.t. the pushout and the pullback of σ along with all morphisms exist (when sources or targets match) and belong to Σ_{n}

$$
\Sigma_{0} \supseteq \cdots \Sigma_{1} \supseteq \cdots \supseteq \Sigma_{n} \supseteq \Sigma_{n+1} \supseteq \cdots
$$

- The expected subcollection is the decreasing intersection

$$
\Sigma_{\infty}:=\bigcap_{n \in \mathbb{N}}^{\downarrow} \Sigma_{n}
$$

- The collection Σ_{∞} is stable under the action of $\operatorname{Aut}(\mathcal{C})$

Systems of weak isomorphisms

- The class of isomorphisms of any category is stable under pushout and pullback
- A system of weak isomorphisms is a collection of potential weak isomorphisms that is stable under pushout and pullback
- The class of all isomorphisms of any category is a system of weak isomorphisms
- If Σ is a system of weak isomorphisms, then so is its closure under composition
- Hence we suppose the systems of weak isomorphisms are closed under composition

Examples of systems of weak ismorphisms

- Given a partition \mathcal{P} of \mathbb{R} into intervals, the following collection is a system of weak isomorphisms

$$
\{(x, y) \mid x \leqslant y ; \exists I \in \mathcal{P},[x, y] \subseteq I\}
$$

- In the preceding example, \mathbb{R} can be replaced by any totally ordered set
- Let $\Sigma_{i} \subseteq \mathcal{C}_{i}$ be a family of collections of morphisms, then

$$
\prod_{i} \Sigma_{i} \text { is a swi of } \prod_{i} \mathcal{C}_{i} \text { iff each } \Sigma_{i} \text { is a swi of } \mathcal{C}_{i}
$$

- The inverse image (resp. the direct image) of a system of weak isomorphisms by an equivalence of categories is a system of weak isomorphisms.

Pureness

- A collection Σ of morphisms is said to be pure when

$$
\gamma \circ \delta \in \Sigma \Rightarrow \gamma, \delta \in \Sigma
$$

- Given a one-way category \mathcal{C} we have:

All the systems of weak isomorphisms of \mathcal{C} are pure

The locale of systems of weak isomorphisms

- A locale is a complete lattice whose binary meet distributes over arbitrary join i.e.

$$
x \wedge\left(\bigvee_{i} y_{i}\right)=\bigvee_{i}\left(x \wedge y_{i}\right)
$$

- The collection ΩX open subsets of a topological space X form a locale and we have the functor $L: \mathcal{T o p} \rightarrow$ Loc (that admits a left adjoint) defined by
- $L(X)=\Omega X$
- $L(f)(W)=f^{-1}(W)$ for all $f: X \rightarrow Y$ and $W \in \Omega Y$
- The collection of systems of weak isomorphisms of a category has a greatest element
- Given a one-way category \mathcal{C} we have:

- The collection of systems of weak isomorphisms of \mathcal{C} forms a locale	
	The greatest swi is invariant under the action of $\operatorname{Aut}(\mathcal{C})$

Components of a one-way category \mathcal{C}

- From now on \mathcal{C} is a one-way category and Σ is a system of weak isomorphisms on it
- Recall that if $\mathcal{C}(x, y)$ meets Σ, then $\mathcal{C}(x, y)$ is a singleton, a fact that we represent on diagrams by: $x \xrightarrow{\Sigma} y$
- Given two objects x and y of \mathcal{C} t.f.a.e.:
- there exists a \sum-zigzag between x and y
- there exists z such that $x<{ }^{\Sigma} z \xrightarrow{\Sigma} y$
- there exists z such that $x \xrightarrow{\Sigma} z<{ }^{\Sigma} y$
- When any of the following property is satisfied x and y are said to be Σ-connected
- Σ-connectedness is an equivalence relation on the objects of \mathcal{C}
- The equivalence classes are called a Σ-components

Structure of the Σ-components

Σ system of weak isomorphisms of \mathcal{C} one-way category

A prelattice is a preordered set in which $x \wedge y$ and $x \vee y$ exist for all x and y.
However they are defined only up to isomorphism
Let K be a Σ-component of \mathcal{C} and \mathcal{K} be the full subcategory of \mathcal{C} whose objects are the elements of K. The following properties are satisfied:

1. The category \mathcal{K} is isomorphic with the preorder (K, \preccurlyeq) where $x \preccurlyeq y$ stands for $\mathcal{C}[x, y] \neq \emptyset$. In particular, every diagram in \mathcal{K} commutes.
2. The preordered set (K, \preccurlyeq) is a prelattice.
3. If d and u are respectively a greatest lower bound and a least upper bound of the pair $\{x, y\}$, then Diagram 1 is both a pullback and a pushout in \mathcal{C}, and all the arrows apprearing on the diagram belong to Σ.
4. $\mathcal{C}=\mathcal{K}$ iff \mathcal{C} is a prelattice, and Σ is the greatest system of weak isomorphisms of \mathcal{C} i.e. all the morphisms in this case.

Diagram 1

Diagram 2

Diagram 3

Equivalent morphisms with respect to Σ

- Let $\delta \in \mathcal{C}(x, y)$ and $\delta^{\prime} \in \mathcal{C}\left(x^{\prime}, y^{\prime}\right)$. Then write $\delta \sim \delta^{\prime}$ when
- $x \sim x^{\prime}$ and $y \sim y^{\prime}$, and
- the inner hexagon of the next diagram commutes

- Note that if $d \cong x \wedge x^{\prime}$ and $u \cong y \vee y^{\prime}$ then the outter hexagon also commutes, hence the relation \sim is well defined.
- If $\gamma \sim \delta$ then $\partial^{-} \gamma \sim \partial^{-} \delta$ and $\partial^{+} \gamma \sim \partial^{+} \delta$

The relation \sim is an equivalence

- The relation \sim is:
- reflexive since Σ contains all identities
- symmetric by definition
- transitive

The relation \sim fits with composition

- Suppose $\partial^{-} \gamma=\partial^{+} \delta, \partial^{-} \gamma^{\prime}=\partial^{+} \delta^{\prime}$ and $\gamma \sim \gamma^{\prime}$ and $\delta \sim \delta^{\prime}$.
- Then we have $\gamma \circ \delta \sim \gamma^{\prime} \circ \delta^{\prime}$

The category of components \mathcal{C} / Σ

- The quotient category \mathcal{C} / Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:
- The objects are the Σ-components
- The morphisms are the \sim-equivalence classes
- If $\partial^{\gamma} \gamma \sim \partial^{+} \delta$ then
- there exists γ^{\prime} and δ^{\prime} such that $\gamma^{\prime} \sim \gamma, \delta^{\prime} \sim \delta$, and $\partial^{-} \gamma^{\prime}=\partial^{+} \delta^{\prime}$

- so we define $[\gamma] \circ[\delta]=\left[\gamma^{\prime} \circ \delta^{\prime}\right]$
- We have the quotient functor $Q: \mathcal{C} \rightarrow \mathcal{C} / \Sigma$
- The category of components is \mathcal{C} / Σ with Σ being the greatest swi of \mathcal{C}

Characterizing the identities of \mathcal{C} / Σ

For any morphism δ of \mathcal{C} t.f.a.e.

- $\delta \in \Sigma$
- $[\delta] \subseteq \Sigma$
- [δ] is an identity of \mathcal{C} / Σ

The quotient functor $Q: \mathcal{C} \rightarrow \mathcal{C} / \Sigma$ satisfies the following universal property:
for all functors $F: \mathcal{C} \rightarrow \mathcal{D}$ s.t. $F(\Sigma) \subseteq\{$ identities of $\mathcal{D}\}$
there exists a unique $G: \mathcal{C} / \Sigma \rightarrow \mathcal{D}$ s.t. $F=G \circ Q$

The fundamental properties of \mathcal{C} / Σ

with Σ being a system of weak isomorphisms of a one-way category \mathcal{C}

- The quotient functor $Q: \mathcal{C} \rightarrow \mathcal{C} / \Sigma$ is surjective on morphisms
- The quotient category \mathcal{C} / Σ is loop-free
- If $\mathcal{C}(x, y) \neq \emptyset$ then the following map is a bijection.

$$
\delta \in \mathcal{C}(x, y) \mapsto Q(\delta) \in \mathcal{C} / \Sigma(Q(x), Q(y))
$$

- If $\mathcal{C} / \Sigma(Q(x), Q(y)) \neq \emptyset$ then there exist x^{\prime} and y^{\prime} such that $\Sigma\left(x^{\prime}, x\right), \Sigma\left(y, y^{\prime}\right), \mathcal{C}\left(x^{\prime}, y\right)$, and $\mathcal{C}\left(x, y^{\prime}\right)$ are nonempty.

- The quotient functor Q preserves and reflects potential weak isomorphisms
- If \mathcal{C} is finite then so is the quotient \mathcal{C} / Σ
- \mathcal{C} is a preorder iff \mathcal{C} / Σ is a poset

Describing the localization of \mathcal{C} by Σ

with Σ being a system of weak isomorphisms of a one-way category \mathcal{C}

- The objects of $\mathcal{C}\left[\Sigma^{-1}\right]$ are the objects of \mathcal{C}
- The morphisms are the equivalence classes of ordered pairs of coinitial morphisms (γ, σ) with $\sigma \in \Sigma$,
- Two pairs (γ, σ) and $\left(\gamma^{\prime}, \sigma^{\prime}\right)$ being equivalent when $\partial^{-} \sigma=\partial^{-} \sigma^{\prime}, \partial^{-} \gamma=\partial^{-} \gamma^{\prime}$, and $Q(\gamma)=Q\left(\gamma^{\prime}\right)$
- In the diagram below we have $Q\left(\gamma^{\prime} \circ \gamma^{\prime \prime}\right)=Q\left(\gamma^{\prime}\right) \circ Q\left(\gamma^{\prime \prime}\right)=Q\left(\gamma^{\prime}\right) \circ Q(\gamma)$ hence the composite ($\gamma^{\prime} \circ \gamma^{\prime \prime}, \sigma \circ \sigma^{\prime \prime}$) neither depend on the choice of the pushout nor on the representatives (γ, σ) and $\left(\gamma^{\prime}, \sigma^{\prime}\right)$.

The canonical comparison $P: \mathcal{C}\left[\Sigma^{-1}\right] \rightarrow \mathcal{C} / \Sigma$

with Σ being a system of weak isomorphisms of a one-way category \mathcal{C}

- Define I by $I(\gamma):=\left(\gamma, \mathrm{id}_{\partial-\gamma}\right)$ and the identity on objects
- Given a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ s.t. $F(\Sigma) \subseteq\{$ isomorphisms of $\mathcal{D}\}$ define
- $G(x):=F(x)$ for all objects x of $\mathcal{C}\left[\Sigma^{-1}\right]$ and
- $G(\gamma, \sigma):=F(\gamma) \circ(F(\sigma))^{-1}$ for any representative (γ, σ) of a morphism of $\mathcal{C}\left[\Sigma^{-1}\right]$
- The functor $I: \mathcal{C} \rightarrow \mathcal{C}\left[\Sigma^{-1}\right]$ then satisfies the universal property: for all functors $F: \mathcal{C} \rightarrow \mathcal{D}$ there exists a unique $G: \mathcal{C} \rightarrow \mathcal{C}\left[\Sigma^{-1}\right]$ s.t. $F=G \circ /$
- In particular there is a unique functor P s.t. $Q=P \circ /$ with $Q: \mathcal{C} \rightarrow \mathcal{C} / \Sigma$ and we have

$$
\text { The functor } P \text { is an equivalence of categories }
$$

- The skeleton of $\mathcal{C}\left[\Sigma^{-1}\right]$ is \mathcal{C} / Σ and $\mathcal{C}\left[\Sigma^{-1}\right]$ is one-way.

Embeding \mathcal{C} / Σ into \mathcal{C}

- Let $\phi: \Sigma$-components of $\mathcal{C} \rightarrow \mathrm{Ob}(\mathcal{C})$ such that
- for all Σ-components K, K^{\prime}, if there exists $x \in K$ and $x^{\prime} \in K^{\prime}$ such that $\mathcal{C}\left(x, x^{\prime}\right) \neq \emptyset$, then $\mathcal{C}\left(\phi(K), \phi\left(K^{\prime}\right)\right) \neq \emptyset$
- in this case \mathcal{C} / Σ is isomorphic with the full subcategory of \mathcal{C} whose set of objects is $\operatorname{im}(\phi)$.
- the mapping ϕ is called an admissible choice (of canonical objects)
- Write $\phi \preccurlyeq \phi^{\prime}$ when $\mathcal{C}\left(\phi(K), \phi^{\prime}(K)\right) \neq \emptyset$ for all Σ-components K
- The collection of admissible choice then forms a (pre)lattice
- If \mathcal{C} / Σ is finite then there exists an admissible choice
- If \mathcal{C} / Σ is infinite the existence of an admissible choice is a open question

Plane without a square

$\left.x=\mathbb{R}_{+}^{2} \backslash\right] 0,1\left[\left[^{2}\right.\right.$

Let x, y such that $x \leqslant^{2} y$, then $\overrightarrow{\pi_{1}} X(x, y)$ only depends on which elements of the partition x and y belong to

\rightarrow	A	B	C	D
A	σ	β	γ	$\beta^{\prime} \circ \beta$ $\alpha^{\prime} \circ \alpha$
B		σ		β^{\prime}
C			σ	γ^{\prime}
D				σ

Two rectangles

Swiss Flag

Achronal overlaping square

Diagonal overlaping squares

The floating cube

boundaries of the components

Commutative monoid

of nonempty finite connected loop-free categories

- The Cartesian product of categories $\mathcal{A} \times \mathcal{B}$ is non-empty iff so are \mathcal{A} and \mathcal{B}.

If \mathcal{A} and \mathcal{B} are indeed nonempty then we also have

- $\mathcal{A} \times \mathcal{B}$ finite iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \times \mathcal{B}$ connected iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \times \mathcal{B}$ loop-free iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \cong \mathcal{A}^{\prime}$ and $\mathcal{B} \cong \mathcal{B}^{\prime}$ implies $\mathcal{A} \times \mathcal{A}^{\prime} \cong \mathcal{B} \times \mathcal{B}^{\prime}$
- $(\mathcal{A} \times \mathcal{B}) \times \mathcal{C} \cong \mathcal{A} \times(\mathcal{B} \times \mathcal{C})$
- $1 \times \mathcal{A} \cong \mathcal{A} \cong \mathcal{A} \times 1$
- $\mathcal{A} \times \mathcal{B} \cong \mathcal{B} \times \mathcal{A}$
- The collection of isomorphism classes of nonempty finite connected loop-free categories is thus a commutative monoid \mathcal{M}

The commutative monoid \mathcal{M} is free.

Criteria for primality

- The monoid \mathcal{M} is graded by the following morphisms
- $\# O b: \mathcal{C} \in \mathcal{M} \mapsto \operatorname{card}(\operatorname{Ob}(\mathcal{C})) \in(\mathbb{N} \backslash\{0\}, \times, 1)$
- \#Mo: $\mathcal{C} \in \mathcal{M} \mapsto \operatorname{card}(\operatorname{Mo}(\mathcal{C})) \in(\mathbb{N} \backslash\{0\}, \times, 1)$
- $\# \operatorname{Mo}(\mathcal{C}) \geqslant 2 \times \# O b(\mathcal{C})-1$, for all $\mathcal{C} \in \mathcal{M}$
- In particular if $\# \operatorname{Ob}(\mathcal{C})$ or $\# \operatorname{Mo}(\mathcal{C})$ is prime, then so is \mathcal{C}. The converse is false.
- Any element of \mathcal{M} freely generated by a graph, is prime

Comparing decompositions

- The mapping $\mathcal{C} \in \mathcal{M} \mapsto \overrightarrow{\pi_{0}}(\mathcal{C}) \in \mathcal{M}$ is a morphism of monoids
- We would like to know which prime element of \mathcal{M} are preserved by it
- We known that $\overrightarrow{\pi_{0}}(\mathcal{C})$ is null iff \mathcal{C} is a lattices (e.g. $\overrightarrow{\pi_{0}}(0<1)=\{0\}$ though $\{0<1\}$ is prime in $\left.\mathcal{M}\right)$
- For all d-spaces X and $Y, \overrightarrow{\pi_{1}}(X \times Y) \cong \overrightarrow{\pi_{1}} X \times \overrightarrow{\pi_{1}} Y$
- Hence $\mathcal{N}^{\prime}:=\left\{X \in \mathcal{H}_{f} \upharpoonleft G| | \overrightarrow{\pi_{1}} X\right.$ is nonempty, connected, and loop-free $\}$
is a pure submonoid of $\mathcal{H}_{f} \backslash G \downharpoonright$
- Then $\mathcal{N}:=\left\{X \in \mathcal{N}^{\prime} \mid \overrightarrow{\pi_{0}}\left(\vec{\pi}_{1} X\right)\right.$ is finite $\}$ is a pure submonoid of \mathcal{N}^{\prime}
- Therefore it is free commutative and we would like to know which prime elements are preserved by $X \in \mathcal{N} \mapsto \overrightarrow{\pi_{0}}\left(\overrightarrow{\pi_{1}} X\right) \in \mathcal{M}$
- Conjecture

If $P \in \mathcal{N}$ is prime and $\overrightarrow{\pi_{1}}(P)$ is not a lattice, then $\overrightarrow{\pi_{0}}\left(\overrightarrow{\pi_{1}}(P)\right)$ is prime

