Abstract setting

Congruences on small categories

A congruence on a small category C is an equivalence relation \sim over Mo(C) such that:

$$\label{eq:gamma-state} \begin{array}{ccc} & - & \gamma \sim \gamma' & \Rightarrow & \partial^{\scriptscriptstyle \rm T} \gamma = \partial^{\scriptscriptstyle \rm T} \gamma' \text{ and } \partial^{\scriptscriptstyle \rm T} \gamma = \partial^{\scriptscriptstyle \rm T} \gamma' \end{array}$$

$$- \gamma \sim \gamma', \, \delta \sim \delta' \text{ and } \partial^{\scriptscriptstyle -} \gamma = \partial^{\scriptscriptstyle +} \delta \quad \Rightarrow \quad \gamma \circ \delta \sim \gamma' \circ \delta'$$

In diagrams we have

Hence the \sim -equivalence class of $\gamma \circ \delta$ only depends on the \sim -equivalence classes of γ and δ and we have a quotient category C/\sim in which the composition is given by

$$[\gamma] \circ [\delta] = [\gamma \circ \delta]$$

The quotient map $q: \gamma \in Mo(\mathcal{C}) \mapsto [\gamma] \in Mo(\mathcal{C})/\sim$ induces a functor $q: \mathcal{C} \to \mathcal{C}/\sim$

Natural congruences on a functor $P : C \rightarrow Cat$

A natural congruence on a functor $P: C \to Cat$ is a collection of congruences \sim_X on PX, for X ranging through the objects of C, such that for all morphisms $f: X \to Y$ of C, for all $\alpha, \beta \in PX$,

 $\alpha \sim_X \beta \quad \Rightarrow \quad P(f)(\alpha) \sim_Y P(f)(\beta)$

Then we can define the functor $\overrightarrow{\pi_1}$: $\mathcal{C} \to \mathcal{C}at$ as follows:

- for all $X \in \mathcal{C}$, $\pi_1(X) = P(X) / \sim_X$
- for all $f: X \to Y$ in \mathcal{C}

The collection of quotient functors q_X , for X ranging through the objects of C, provides a natural transformation from P to $\vec{\pi_1}$.

Object part

Let X be a locally ordered space.

- The objects of PX are the points of X.
- The homset PX(a, b) is

$$\bigcup_{r \geqslant 0} \left\{ \gamma \in \text{Lpo}([0, r], X) \mid \gamma(0) = a \text{ and } \gamma(r) = b \right\}$$

- For $\delta: [0,r] \to X$ and $\gamma: [0,r'] \to X$ with $\delta(r) = \gamma(0)$, define the concatenation

$$\gamma \cdot \delta : [0, r + r'] \longrightarrow X$$

$$t \longmapsto \begin{cases} \delta(t) & \text{if } t \leqslant r \\ \gamma(t-r) & \text{if } t \geqslant r \end{cases}$$

Morphism part

The (Moore) path category construction gives rise to a functor P from Lpo to Cat since for all $f \in Lpo(X, Y)$ and all paths γ on X, the composite $f \circ \gamma$ is a path on Y.

Equivalent directed paths on a local pospace X

An elementary homotopy is a finite concatenation of directed and anti-directed homotopies.

If $\theta : [0, r] \rightarrow [0, r]$ is a reparametrization and $\gamma \in \pounds_{po}([0, r], X)$, then γ and $\gamma \circ \theta$ are dihomotopic.

Two directed paths $\gamma : [0, r'] \to X$ and $\delta : [0, r''] \to X$ on a local pospace are said to be equivalent (denoted by \sim_X) when there exists two reparametrizations $\theta : [0, r] \to [0, r']$ and $\psi : [0, r] \to [0, r'']$ such that there is an elementary homotopy between $\gamma \circ \theta$ and $\delta \circ \psi$.

The relation \sim_X is symmetric because if h(s, t) is an elementary homotopy, then so is the mapping $(s, t) \mapsto h(-s, t)$.

The relation \sim_X is transitive because a concatenation of elementary homotopies is an elementary homotopy.

Given $x, y \in X$ and $r \in \mathbb{R}_+$, the relation \sim_X is an equivalence relation on the set

$$\bigcup_{r\in\mathbb{R}_+}\big\{\gamma\in \textit{Lpo}([0,r],X)\mid \gamma(0)=x;\,\gamma(r)=y\big\}$$

Juxtaposition of homotopies

horizontal composition

Let $h: [0, r] \times [0, q] \to X$ and $h': [0, r'] \times [0, q] \to X$ be homotopies from γ to δ and from γ' to δ' with $\partial^* \gamma = \partial^* \gamma'$.

The mapping $h' * h : [0, r + r'] \times [0, q] \rightarrow X$ defined by

$$h'*h(t,s) = \left\{egin{array}{cc} h(t,s) & ext{if } 0\leqslant t\leqslant r\ h'(t-r,s) & ext{if } r\leqslant t\leqslant r+r' \end{array}
ight.$$

is a homotopy from γ to δ .

If h and h' are ((weakly) directed) homotopies, then so is their juxtaposition $h' \cdot h$.

Godement exchange law

Suppose we have

then it comes

 $(g'*h')\cdot(g*h)=(g'\cdot g)*(h'\cdot h)$

Applying Godement exchange law

h ₁ *		id *	
id		<i>h</i> ₂	

Equivalences are congurences

If:

- h is an elementary homotopy between $\gamma \circ \theta$ and $\delta \circ \psi$
- $\mathit{h'}$ is an elementary homotopy between $\gamma' \circ \theta'$ and $\delta' \circ \psi'$
- the endpoint of γ is the starting point of γ'

then $h \cdot h'$ is an elementary homotopy from $(\gamma \cdot \gamma') \circ (\theta \cdot \theta')$ to $(\delta \cdot \delta') \circ (\psi \cdot \psi')$.

The relation \sim_X is a congruence on P(X)

Naturality

If h is a homotopy from γ to γ' on the topological space X and $f: X \to Y$ is a continuous map, then $f \circ h$ is a homotopy from $f \circ \gamma$ to $f \circ \gamma'$ on the topological space Y.

If h is a (weakly) directed homotopy from γ to γ' on the local pospace space X and $f: X \to Y$ is a local pospace morphism, then $f \circ h$ is a (weakly) directed homotopy from $f \circ \gamma$ to $f \circ \gamma'$ on the local pospace space Y.

If $\gamma, \gamma' : [0, r] \to X$ are ((weakly) di)homotopic, then so are $f \circ \gamma, f \circ \gamma' : [0, r] \to Y$.

Conclusion

- The relations \sim_X form a natural congruence on the directed path functor P : $Lpo \rightarrow Cat$.
- The fundamental category functor $\overrightarrow{\pi_1}: \pounds po \rightarrow Cat$ is defined accordingly.
- The fundamental groupoid functor $\Pi_1: \mathcal{T} op \to \mathcal{G} rd$ is obtained by substituting "paths" and "homotopies" to "directed paths" and "elementary homotopies".

- The fundamental category of the locally ordered real line is the corresponding partial order.
- For all local pospaces X and Y we have

$$\overrightarrow{\pi_1}(X imes Y) \cong \overrightarrow{\pi_1}X imes \overrightarrow{\pi_1}Y$$

- Given a pospace X, $\overrightarrow{\pi_1}X$ is loop-free i.e.

$$\overrightarrow{\pi_1}X(x,y) \neq \emptyset$$
 and $\overrightarrow{\pi_1}X(y,x) \neq \emptyset$ \Rightarrow $x = y$ and $\overrightarrow{\pi_1}X(x,x) = \{ \mathrm{id}_x \}$

- The fundamental category of a local pospace has no nontrivial null homotopic directed paths i.e. any directed loop that is related to a constant path by an elementary homotopy is actually a constant.
- In particular the fundamental category of a local pospace has no isomorphism but its identities.

The fundamental category of the locally ordered circle

- Given x, y, xy is the anticlockwise arc from x to y.
 It is a singleton if x = y.
- $\overrightarrow{\pi_1}\mathbb{S}^1(x,y) = \{x\} \times \mathbb{N} \times \{y\}$
- the identities are the tuples (x, 0, x)
- the composition is given by

-
$$(y, p, z) \circ (x, n, y) = (x, n + p, z)$$
 if $\widehat{xy} \cup \widehat{yz} \neq \mathbb{S}^1$

- $(y, p, z) \circ (x, n, y) = (x, n + p + 1, z)$ if $\widehat{xy} \cup \widehat{yz} = \mathbb{S}^1$

Plane without a square $x = \mathbb{R}^2_+ \setminus]0, 1[^2$

If $x \leq^2 y$, then $\overrightarrow{\pi_1}X(x, y)$ only depends on the elements of the partition x and y belong to.

Motivation

Skeleta and equivalences of categories

- A skeleton of C is a full subcategory of C whose class of objects meets every isomorphism class of C exactly once.
- The skeleton of C is unique up to isomorphism, it is denoted by skC.
- Two categories are equivalent (i.e. there exists an equivalence of categories between them) iff their skeleta are isomorphic.
- The skeleton of the category of finite sets is the full subcategory whose objects are $\{0, \ldots, n-1\}$ for $n \in \mathbb{N}$.
- The skeleton of the fundamental groupoid of a path-connected space is the fundamental group of this space.
- Problem: The fundamental category of a local pospace has no isomorphisms but its identities, hence it is its own skeleton.

The categories *LfCat* and *OwCat*

- A category C is said to be one-way when all its endomorphisms are identities i.e. $C(x, x) = \{id_x\}$ for all x Every Grothendieck topos has a one-way site. C. MacLarty. Theor. Appl. of Cat. 16(5) pp 123-126 (2006).
- A one-way category $\mathcal C$ is said to be loop-free when for all x, y

 $\mathcal{C}(x,y) \neq \emptyset$ and $\mathcal{C}(y,x) \neq \emptyset$ implies x = y

Complexes of groups and orbihedra in Group theory from a geometrical viewpoint.

A. Haefliger. World Scientific (1991).

- A loop-free category is its own skeleton
- A category is one-way iff its skeleton is loop-free

Generalized congruences

M. A. Bednarczyk, A. M. Borzyszkowski, W. Pawlowski. Theor. Appl. Cat. 5(11). 1999

- Given a binary relation \mathcal{R} on the set of morphisms of a category \mathcal{C} , there is a unique category \mathcal{C}/\mathcal{R} and a unique functor $q: \mathcal{C} \to \mathcal{C}/\mathcal{R}$ such that for all functors $f: \mathcal{C} \to \mathcal{D}$, if $\alpha \mathcal{R}\beta \Rightarrow f(\alpha) = f(\beta)$, then there is a unique functor $g: \mathcal{C}/\mathcal{R} \to \mathcal{D}$ such that $f = g \circ q$

- Examples
 - any congruence is a generalized congruence.
 - C freely generated by $x \xrightarrow{\alpha} y$ with $id_x \mathcal{R}id_y$ (resp. with $\alpha \mathcal{R}id_x$).
 - $(\mathbb{N}, +, 0)$ with $0\mathcal{R}n$ for some $n \in \mathbb{N}$.

Goal

Let \mathcal{C} be a one-way category:

- Define a class Σ of morphisms of C so we can keep one representative in each class of Σ -related objects without loss of information
- To do so, we are in search for a class that behaves much like the one of isomorphisms
- From now on $\ensuremath{\mathcal{C}}$ denotes a one-way category

Potential weak isomorphisms

Let $\ensuremath{\mathcal{C}}$ be a one-way category

- For all morphisms σ and all objects z define
 - the σ, z -precomposition as $\gamma \in \mathcal{C}(\partial^{\scriptscriptstyle +}\sigma, z) \rightarrow \gamma \circ \sigma \in \mathcal{C}(\partial^{\scriptscriptstyle -}\sigma, z)$
 - the z, σ -postcomposition as $\delta \in \mathcal{C}(z, \partial^{\scriptscriptstyle +} \sigma) \mapsto \sigma \circ \delta \in \mathcal{C}(z, \partial^{\scriptscriptstyle +} \sigma)$
- One may have $\mathcal{C}(\partial^{\scriptscriptstyle +}\sigma,z)=\emptyset$ or $\mathcal{C}(z,\partial^{\scriptscriptstyle -}\sigma)=\emptyset$
- Note that σ is an isomorphism iff for all z both precomposition and postcomposition are bijective.
- The latter condition is weakened: σ is said to preserve the future cones (resp. past cones) when for all z if $C(\partial^+\sigma, z) \neq \emptyset$ (resp. $C(z, \partial^-\sigma) \neq \emptyset$) then the precomposition (resp. postcomposition) is bijective.
- Then σ is a potential weak isomorphism when it preserves both future cones and past cones. Potential weak isomorphisms compose.
- If C(x, y) contains a potential weak isomorphism, then it is a singleton Requires the assumption that C is one-way

An example of potential weak isomorphism

Due to the lower dipath, the σ , z-precomposition is not bijective; yet σ' is a potential weak isomorphism.

An unwanted example of potential weak isomorphism

Note that σ'' is a potential weak isomorphism though there exists a morphism from $\partial^{+}\sigma''$ to z but none from $\partial^{+}\sigma''$ to z.

Stability under pushout and pullback

- A collection of morphisms Σ is said to be stable under pushout when for all $\sigma \in \Sigma$, for all γ with $\partial^{\cdot} \gamma = \partial^{\cdot} \sigma$, the pushout of σ along γ exists and belongs to Σ

- A collection of morphisms Σ is said to be stable under pullback when for all $\sigma \in \Sigma$, for all γ with $\partial^+ \gamma = \partial^+ \sigma$, the pullback of σ along γ exists and belongs to Σ

Greatest inner collection stable under pushout and pullback

- Any collection Σ of morphisms of a category ${\cal C}$ admits a greatest subcollection that is stable under pushout and pullback
- Construction:
 - Start with $\Sigma_0=\Sigma$
 - For $n \in \mathbb{N}$ define Σ_{n+1} as the collection of morphisms $\sigma \in \Sigma_n$ s.t. the pushout and the pullback of σ along with all morphisms exist (when sources or targets match) and belong to Σ_n

$$\Sigma_0 \supseteq \cdots \Sigma_1 \supseteq \cdots \supseteq \Sigma_n \supseteq \Sigma_{n+1} \supseteq \cdots$$

- The expected subcollection is the decreasing intersection

$$\Sigma_{\infty} := \bigcap_{n \in \mathbb{N}}^{\downarrow} \Sigma_n$$

- The collection Σ_∞ is stable under the action of ${\sf Aut}(\mathcal{C})$

Systems of weak isomorphisms

- The class of isomorphisms of any category is stable under pushout and pullback
- A system of weak isomorphisms is a collection of potential weak isomorphisms that is stable under pushout and pullback
- The class of all isomorphisms of any category is a system of weak isomorphisms
- If $\boldsymbol{\Sigma}$ is a system of weak isomorphisms, then so is its closure under composition
- Hence we suppose the systems of weak isomorphisms are closed under composition

Examples of systems of weak ismorphisms

- Given a partition $\mathcal P$ of $\mathbb R$ into intervals, the following collection is a system of weak isomorphisms

 $\{(x,y) \mid x \leq y; \exists I \in \mathcal{P}, [x,y] \subseteq I\}$

- In the preceding example, ${\mathbb R}$ can be replaced by any totally ordered set
- Let $\Sigma_i \subseteq C_i$ be a family of collections of morphisms, then

 $\prod_i \Sigma_i$ is a swi of $\prod_i C_i$ iff each Σ_i is a swi of C_i

- The inverse image (resp. the direct image) of a system of weak isomorphisms by an equivalence of categories is a system of weak isomorphisms.

Pureness

- A collection $\boldsymbol{\Sigma}$ of morphisms is said to be pure when

 $\gamma\circ\delta\in\Sigma\ \Rightarrow\ \gamma,\delta\in\Sigma$

- Given a one-way category \mathcal{C} we have:

All the systems of weak isomorphisms of $\ensuremath{\mathcal{C}}$ are pure

The locale of systems of weak isomorphisms

- A locale is a complete lattice whose binary meet distributes over arbitrary join i.e.

$$x \wedge \left(\bigvee_{i} y_{i}\right) = \bigvee_{i} (x \wedge y_{i})$$

- The collection ΩX open subsets of a topological space X form a locale and we have the functor $L: Top \to Loc$ (that admits a left adjoint) defined by

-
$$L(X) = \Omega X$$

-
$$L(f)(W) = f^{-1}(W)$$
 for all $f: X \to Y$ and $W \in \Omega Y$

- The collection of systems of weak isomorphisms of a category has a greatest element
- Given a one-way category $\ensuremath{\mathcal{C}}$ we have:

The collection of systems of weak isomorphisms of C forms a locale

The greatest swi is invariant under the action of Aut(C)

Components of a one-way category \mathcal{C}

- From now on C is a one-way category and Σ is a system of weak isomorphisms on it
- Recall that if $\mathcal{C}(x, y)$ meets Σ , then $\mathcal{C}(x, y)$ is a singleton, a fact that we represent on diagrams by: $x \xrightarrow{\Sigma} y$
- Given two objects x and y of C t.f.a.e.:
 - there exists a Σ -zigzag between x and y
 - there exists z such that $x \stackrel{\Sigma}{\longleftarrow} z \stackrel{\Sigma}{\longrightarrow} v$
 - there exists z such that $x \xrightarrow{\Sigma} z \xleftarrow{\Sigma} v$
- When any of the following property is satisfied x and y are said to be Σ -connected -
- Σ -connectedness is an equivalence relation on the objects of C
- The equivalence classes are called a Σ -components

Structure of the Σ -components

 Σ system of weak isomorphisms of ${\mathcal C}$ one-way category

A prelattice is a preordered set in which $x \land y$ and $x \lor y$ exist for all x and y. However they are defined only up to isomorphism

Let K be a Σ -component of C and K be the full subcategory of C whose objects are the elements of K. The following properties are satisfied:

- 1. The category \mathcal{K} is isomorphic with the preorder $(\mathcal{K}, \preccurlyeq)$ where $x \preccurlyeq y$ stands for $\mathcal{C}[x, y] \neq \emptyset$. In particular, every diagram in \mathcal{K} commutes.
- 2. The preordered set (K, \preccurlyeq) is a prelattice.
- 3. If d and u are respectively a greatest lower bound and a least upper bound of the pair $\{x, y\}$, then Diagram 1 is both a pullback and a pushout in C, and all the arrows apprearing on the diagram belong to Σ .
- 4. C = K iff C is a prelattice, and Σ is the greatest system of weak isomorphisms of C i.e. all the morphisms in this case.

Equivalent morphisms with respect to Σ

- Let $\delta \in \mathcal{C}(x, y)$ and $\delta' \in \mathcal{C}(x', y')$. Then write $\delta \sim \delta'$ when
 - $x \sim x'$ and $y \sim y'$, and
 - the inner hexagon of the next diagram commutes

- Note that if $d \cong x \land x'$ and $u \cong y \lor y'$ then the outter hexagon also commutes, hence the relation \sim is well defined.
- If $\gamma \sim \delta$ then $\partial^{_+}\gamma \sim \partial^{_+}\delta$ and $\partial^{_+}\gamma \sim \partial^{_+}\delta$

The relation \sim is an equivalence

- The relation \sim is: _
 - reflexive since Σ contains all identities
 - symmetric by definition
 - transitive

The relation \sim fits with composition

- Suppose $\partial^{\cdot} \gamma = \partial^{\cdot} \delta$, $\partial^{\cdot} \gamma' = \partial^{\cdot} \delta'$ and $\gamma \sim \gamma'$ and $\delta \sim \delta'$.
- Then we have $\gamma \circ \delta \sim \gamma' \circ \delta'$

The category of components C/Σ

- The quotient category C/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:
 - The objects are the Σ -components
 - The morphisms are the \sim -equivalence classes
- If $\partial^{\perp} \gamma \sim \partial^{\perp} \delta$ then
 - there exists γ' and δ' such that $\gamma' \sim \gamma$, $\delta' \sim \delta$, and $\partial^{\scriptscriptstyle +} \gamma' = \partial^{\scriptscriptstyle +} \delta'$

- so we define $[\gamma] \circ [\delta] = [\gamma' \circ \delta']$
- We have the quotient functor $Q: \mathcal{C} \to \mathcal{C}/\Sigma$
- The category of components is C/Σ with Σ being the greatest swi of C-

Characterizing the identities of \mathcal{C}/Σ

For any morphism δ of ${\mathcal C}$ t.f.a.e.

- $\delta \in \Sigma$
- $[\delta] \subseteq \Sigma$
- $\left[\delta\right]$ is an identity of \mathcal{C}/Σ

The quotient functor $Q: \mathcal{C} \to \mathcal{C}/\Sigma$ satisfies the following universal property: for all functors $F: \mathcal{C} \to \mathcal{D}$ s.t. $F(\Sigma) \subseteq \{\text{identities of } \mathcal{D}\}$ there exists a unique $G: \mathcal{C}/\Sigma \to \mathcal{D}$ s.t. $F = G \circ Q$

The fundamental properties of C/Σ

with Σ being a system of weak isomorphisms of a one-way category C

- The quotient functor $Q: \mathcal{C} \to \mathcal{C} / \Sigma$ is surjective on morphisms
- The quotient category C/Σ is loop-free
- If $\mathcal{C}(x, y) \neq \emptyset$ then the following map is a bijection.

$$\delta \in \mathcal{C}(x,y) \;\mapsto\; Q(\delta) \in \mathcal{C}/\Sigmaig(Q(x),Q(y)ig)$$

- If $\mathcal{C}/\Sigma(Q(x), Q(y)) \neq \emptyset$ then there exist x' and y' such that $\Sigma(x', x), \Sigma(y, y'), \mathcal{C}(x', y)$, and $\mathcal{C}(x, y')$ are nonempty.

- The quotient functor Q preserves and reflects potential weak isomorphisms
- If C is finite then so is the quotient C/Σ
- C is a preorder iff C/Σ is a poset

Describing the localization of C by Σ

with Σ being a system of weak isomorphisms of a one-way category C

- The objects of $\mathcal{C}[\Sigma^{-1}]$ are the objects of \mathcal{C}
- The morphisms are the equivalence classes of ordered pairs of coinitial morphisms (γ, σ) with $\sigma \in \Sigma$, -
 - Two pairs (γ, σ) and (γ', σ') being equivalent when $\partial^{-}\sigma = \partial^{-}\sigma'$, $\partial^{-}\gamma = \partial^{-}\gamma'$, and $Q(\gamma) = Q(\gamma')$
 - In the diagram below we have $Q(\gamma' \circ \gamma'') = Q(\gamma') \circ Q(\gamma'') = Q(\gamma') \circ Q(\gamma)$ hence the composite $(\gamma' \circ \gamma'', \sigma \circ \sigma'')$ neither depend on the choice of the pushout nor on the representatives (γ, σ) and (γ', σ') .

The canonical comparison $P: \mathcal{C}[\Sigma^{-1}] \to \mathcal{C}/\Sigma$

with Σ being a system of weak isomorphisms of a one-way category C

- Define I by $I(\gamma) := (\gamma, id_{\partial^- \gamma})$ and the identity on objects
- Given a functor $F : \mathcal{C} \to \mathcal{D}$ s.t. $F(\Sigma) \subseteq \{\text{isomorphisms of } \mathcal{D}\}$ define
 - G(x) := F(x) for all objects x of $\mathcal{C}[\Sigma^{-1}]$ and
 - $G(\gamma, \sigma) := F(\gamma) \circ (F(\sigma))^{-1}$ for any representative (γ, σ) of a morphism of $\mathcal{C}[\Sigma^{-1}]$
- The functor $I: \mathcal{C} \to \mathcal{C}[\Sigma^{-1}]$ then satisfies the universal property: for all functors $F: \mathcal{C} \to \mathcal{D}$ there exists a unique $G: \mathcal{C} \to \mathcal{C}[\Sigma^{-1}]$ s.t. $F = G \circ I$
- In particular there is a unique functor P s.t. $Q = P \circ I$ with $Q : C \to C/\Sigma$ and we have

The functor P is an equivalence of categories

- The skeleton of $\mathcal{C}[\Sigma^{-1}]$ is \mathcal{C}/Σ and $\mathcal{C}[\Sigma^{-1}]$ is one-way.

Embeding C/Σ into C

- Let $\phi: \Sigma$ -components of $\mathcal{C} o \mathsf{Ob}(\mathcal{C})$ such that
 - for all Σ -components K, K', if there exists $x \in K$ and $x' \in K'$ such that $\mathcal{C}(x, x') \neq \emptyset$, then $\mathcal{C}(\phi(K), \phi(K')) \neq \emptyset$
 - in this case C/Σ is isomorphic with the full subcategory of C whose set of objects is im (ϕ) .
 - the mapping ϕ is called an admissible choice (of canonical objects)
- Write $\phi \preccurlyeq \phi'$ when $\mathcal{C}(\phi(K), \phi'(K)) \neq \emptyset$ for all Σ -components K
 - The collection of admissible choice then forms a (pre)lattice
 - If \mathcal{C}/Σ is finite then there exists an admissible choice
 - If \mathcal{C}/Σ is infinite the existence of an admissible choice is a open question

Plane without a square $x = \mathbb{R}^2_+ \setminus]0, 1[^2$

Let x, y such that $x \leq^2 y$, then $\overrightarrow{\pi_1} X(x, y)$ only depends on which elements of the partition x and y belong to

Two rectangles

Swiss Flag

Examples

Achronal overlaping square

Examples

Diagonal overlaping squares

The floating cube

boundaries of the components

Commutative monoid

of nonempty finite connected loop-free categories

- The Cartesian product of categories $\mathcal{A} \times \mathcal{B}$ is non-empty iff so are \mathcal{A} and \mathcal{B} .
 - If ${\mathcal A}$ and ${\mathcal B}$ are indeed nonempty then we also have
 - $\mathcal{A}\times\mathcal{B}$ finite iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A}\times\mathcal{B}$ connected iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A}\times\mathcal{B}$ loop-free iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \cong \mathcal{A}'$ and $\mathcal{B} \cong \mathcal{B}'$ implies $\mathcal{A} \times \mathcal{A}' \cong \mathcal{B} \times \mathcal{B}'$
- $(\mathcal{A} \times \mathcal{B}) \times \mathcal{C} \cong \mathcal{A} \times (\mathcal{B} \times \mathcal{C})$
- $1 imes \mathcal{A} \cong \mathcal{A} \cong \mathcal{A} imes 1$
- $\mathcal{A} \times \mathcal{B} \cong \mathcal{B} \times \mathcal{A}$
- The collection of isomorphism classes of nonempty finite connected loop-free categories is thus a commutative monoid ${\cal M}$

The commutative monoid \mathcal{M} is free.

Criteria for primality

- The monoid ${\mathcal M}$ is graded by the following morphisms
 - $\#Ob: \mathcal{C} \in \mathcal{M} \mapsto \mathsf{card}(\mathsf{Ob}(\mathcal{C})) \in (\mathbb{N} \setminus \{0\}, \times, 1)$
 - $\ \#\textit{Mo}: \mathcal{C} \in \mathcal{M} \mapsto \mathsf{card}(\mathsf{Mo}(\mathcal{C})) \in (\mathbb{N} \setminus \{0\}, \times, 1)$
 - $\#Mo(\mathcal{C}) \ge 2 \times \#Ob(\mathcal{C}) 1$, for all $\mathcal{C} \in \mathcal{M}$
- In particular if $\#Ob(\mathcal{C})$ or $\#Mo(\mathcal{C})$ is prime, then so is \mathcal{C} . The converse is false.
- Any element of ${\mathcal M}$ freely generated by a graph, is prime

Comparing decompositions

- The mapping $\mathcal{C}\in\mathcal{M}\mapsto\overrightarrow{\pi_0}(\mathcal{C})\in\mathcal{M}$ is a morphism of monoids
- We would like to know which prime element of ${\mathcal M}$ are preserved by it
- We known that $\overrightarrow{\pi_0}(\mathcal{C})$ is null iff \mathcal{C} is a lattices (e.g. $\overrightarrow{\pi_0}(0 < 1) = \{0\}$ though $\{0 < 1\}$ is prime in \mathcal{M})
- For all d-spaces X and Y, $\overrightarrow{\pi_1}(X \times Y) \cong \overrightarrow{\pi_1}X \times \overrightarrow{\pi_1}Y$
- Hence $\mathcal{N}' := \{ X \in \mathcal{H}_f | G \mid | \overrightarrow{\pi_1} X \text{ is nonempty, connected, and loop-free} \}$ is a pure submonoid of $\mathcal{H}_f | G |$
- Then $\mathcal{N}:=\{X\in\mathcal{N}'\mid\overrightarrow{\pi_0}(\overrightarrow{\pi_1}X)\text{ is finite}\}$ is a pure submonoid of \mathcal{N}'
- Therefore it is free commutative and we would like to know which prime elements are preserved by $X \in \mathcal{N} \mapsto \overrightarrow{\pi_0}(\overrightarrow{\pi_1}X) \in \mathcal{M}$
- Conjecture

If $P \in \mathcal{N}$ is prime and $\overrightarrow{\pi_1}(P)$ is not a lattice, then $\overrightarrow{\pi_0}(\overrightarrow{\pi_1}(P))$ is prime