DIRECTED ALGEBRAIC TOPOLOGY

AND

CONCURRENCY

Emmanuel Haucourt

emmanuel.haucourt@polytechnique.edu

MPRI : Concurrency (2.3.1)
- Lecture 5 -

2024 - 2025

A congruence on a small category $\mathcal C$ is an equivalence relation \sim over $\mathsf{Mo}(\mathcal C)$ such that:

A congruence on a small category $\mathcal C$ is an equivalence relation \sim over $\mathsf{Mo}(\mathcal C)$ such that:

-
$$\gamma \sim \gamma'$$
 \Rightarrow $\partial^{\scriptscriptstyle \perp} \gamma = \partial^{\scriptscriptstyle \perp} \gamma'$ and $\partial^{\scriptscriptstyle \perp} \gamma = \partial^{\scriptscriptstyle \perp} \gamma'$

A congruence on a small category $\mathcal C$ is an equivalence relation \sim over $\mathsf{Mo}(\mathcal C)$ such that:

- $\gamma \sim \gamma'$ \Rightarrow $\partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle -} \gamma'$ and $\partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle +} \gamma'$
- $\gamma \sim \gamma'$, $\delta \sim \delta'$ and $\partial^{\scriptscriptstyle -} \gamma = \partial^{\scriptscriptstyle +} \delta \quad \Rightarrow \quad \gamma \circ \delta \sim \gamma' \circ \delta'$

A congruence on a small category C is an equivalence relation \sim over Mo(C) such that:

-
$$\gamma \sim \gamma'$$
 \Rightarrow $\partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle -} \gamma'$ and $\partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle +} \gamma'$

-
$$\gamma \sim \gamma'$$
, $\delta \sim \delta'$ and $\partial^{\scriptscriptstyle -} \gamma = \partial^{\scriptscriptstyle +} \delta \quad \Rightarrow \quad \gamma \circ \delta \sim \gamma' \circ \delta'$

In diagrams we have

A congruence on a small category C is an equivalence relation \sim over Mo(C) such that:

- $\gamma \sim \gamma'$ \Rightarrow $\partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle -} \gamma'$ and $\partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle +} \gamma'$
- $\ \gamma \sim \gamma', \ \delta \sim \delta' \ \text{and} \ \partial^{\scriptscriptstyle{\perp}} \gamma = \partial^{\scriptscriptstyle{\perp}} \delta \quad \Rightarrow \quad \gamma \circ \delta \sim \gamma' \circ \delta'$

In diagrams we have

Hence the \sim -equivalence class of $\gamma \circ \delta$ only depends on the \sim -equivalence classes of γ and δ and we have a quotient category \mathcal{C}/\sim in which the composition is given by

$$[\gamma] \circ [\delta] = [\gamma \circ \delta]$$

A congruence on a small category C is an equivalence relation \sim over Mo(C) such that:

- $-\ \gamma \sim \gamma' \quad \Rightarrow \quad \partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle +} \gamma' \text{ and } \partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle +} \gamma'$
- $\ \gamma \sim \gamma', \ \delta \sim \delta' \ \text{and} \ \partial^{\scriptscriptstyle{\top}} \gamma = \partial^{\scriptscriptstyle{+}} \delta \quad \Rightarrow \quad \gamma \circ \delta \sim \gamma' \circ \delta'$

In diagrams we have

Hence the \sim -equivalence class of $\gamma \circ \delta$ only depends on the \sim -equivalence classes of γ and δ and we have a quotient category \mathcal{C}/\sim in which the composition is given by

$$[\gamma] \circ [\delta] \quad = \quad [\gamma \circ \delta]$$

The quotient map $q:\gamma\in\mathsf{Mo}(\mathcal{C})\mapsto[\gamma]\in\mathsf{Mo}(\mathcal{C})/\sim\mathsf{induces}$ a functor $q:\mathcal{C}\to\mathcal{C}/\sim\mathsf{Mo}(\mathcal{C})$

Natural congruences on a functor $P:\mathcal{C} o \mathcal{C}$ at

Natural congruences on a functor $P:\mathcal{C} \to \mathcal{C}at$

A natural congruence on a functor $P:\mathcal{C}\to\mathcal{C}at$ is a collection of congruences \sim_X on PX, for X ranging through the objects of \mathcal{C} , such that for all morphisms $f:X\to Y$ of \mathcal{C} , for all $\alpha,\beta\in PX$,

$$\alpha \sim_X \beta \quad \Rightarrow \quad P(f)(\alpha) \sim_Y P(f)(\beta)$$

Natural congruences on a functor $P:\mathcal{C} \to \mathcal{C}at$

A natural congruence on a functor $P:\mathcal{C}\to\mathcal{C}at$ is a collection of congruences \sim_X on PX, for X ranging through the objects of \mathcal{C} , such that for all morphisms $f:X\to Y$ of \mathcal{C} , for all $\alpha,\beta\in PX$,

$$\alpha \sim_X \beta \quad \Rightarrow \quad P(f)(\alpha) \sim_Y P(f)(\beta)$$

Then we can define the functor $\overrightarrow{\pi_1}:\mathcal{C}\to\mathcal{C}at$ as follows:

Natural congruences on a functor $P:\mathcal{C}\to\mathcal{C}at$

A natural congruence on a functor $P:\mathcal{C}\to\mathcal{C}at$ is a collection of congruences \sim_X on PX, for X ranging through the objects of \mathcal{C} , such that for all morphisms $f:X\to Y$ of \mathcal{C} , for all $\alpha,\beta\in PX$,

$$\alpha \sim_X \beta \quad \Rightarrow \quad P(f)(\alpha) \sim_Y P(f)(\beta)$$

Then we can define the functor $\overrightarrow{\pi_1}:\mathcal{C}\to\mathcal{C}at$ as follows:

- for all
$$X \in \mathcal{C}$$
, $\pi_1(X) = P(X)/\sim_X$

Natural congruences on a functor $P:\mathcal{C}\to\mathcal{C}at$

A natural congruence on a functor $P:\mathcal{C}\to\mathcal{C}at$ is a collection of congruences \sim_X on PX, for X ranging through the objects of \mathcal{C} , such that for all morphisms $f:X\to Y$ of \mathcal{C} , for all $\alpha,\beta\in PX$,

$$\alpha \sim_X \beta \quad \Rightarrow \quad P(f)(\alpha) \sim_Y P(f)(\beta)$$

Then we can define the functor $\overrightarrow{\pi_1}: \mathcal{C} \to \mathcal{C}at$ as follows:

- for all $X \in \mathcal{C}$, $\pi_1(X) = P(X)/\sim_X$
- for all $f: X \to Y$ in C

Natural congruences on a functor $P:\mathcal{C} \to \mathcal{C}at$

A natural congruence on a functor $P:\mathcal{C}\to\mathcal{C}at$ is a collection of congruences \sim_X on PX, for X ranging through the objects of \mathcal{C} , such that for all morphisms $f:X\to Y$ of \mathcal{C} , for all $\alpha,\beta\in PX$,

$$\alpha \sim_X \beta \quad \Rightarrow \quad P(f)(\alpha) \sim_Y P(f)(\beta)$$

Then we can define the functor $\overrightarrow{\pi_1}:\mathcal{C}\to\mathcal{C}at$ as follows:

- for all $X \in \mathcal{C}$, $\pi_1(X) = P(X)/\sim_X$
- for all $f: X \to Y$ in C

$$X \xrightarrow{f} Y$$

Natural congruences on a functor $P:\mathcal{C} \to \mathcal{C}at$

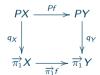
A natural congruence on a functor $P:\mathcal{C}\to\mathcal{C}$ at is a collection of congruences \sim_X on PX, for X ranging through the objects of \mathcal{C} , such that for all morphisms $f:X\to Y$ of \mathcal{C} , for all $\alpha,\beta\in PX$,

$$\alpha \sim_X \beta \quad \Rightarrow \quad P(f)(\alpha) \sim_Y P(f)(\beta)$$

Then we can define the functor $\overrightarrow{\pi_1}: \mathcal{C} \to \mathcal{C}at$ as follows:

- for all $X \in \mathcal{C}$, $\pi_1(X) = P(X)/\sim_X$
- for all $f: X \to Y$ in C

$$X \xrightarrow{f} Y$$



The collection of quotient functors q_X , for X ranging through the objects of C, provides a natural transformation from P to $\overrightarrow{\pi_1}$.

Let X be a locally ordered space.

Let X be a locally ordered space.

- The objects of PX are the points of X.

Let X be a locally ordered space.

- The objects of PX are the points of X.
- The homset PX(a, b) is

$$\bigcup_{r\geqslant 0} \big\{\gamma\in \mathit{Lpo}([0,r],X)\mid \gamma(0)=a \text{ and } \gamma(r)=b\big\}$$

Let X be a locally ordered space.

- The objects of PX are the points of X.
- The homset PX(a, b) is

$$\bigcup_{r\geqslant 0}\big\{\gamma\in \mathit{Lpo}([0,r],X)\mid \gamma(0)=a \text{ and } \gamma(r)=b\big\}$$

- For $\delta: [0,r] \to X$ and $\gamma: [0,r'] \to X$ with $\delta(r) = \gamma(0)$, define the concatenation

The (Moore) path category construction gives rise to a functor P from $\mathcal{L}po$ to $\mathcal{C}at$ since for all $f \in \mathcal{L}po(X,Y)$ and all paths γ on X, the composite $f \circ \gamma$ is a path on Y.

The (Moore) path category construction gives rise to a functor P from $\mathcal{L}po$ to $\mathcal{C}at$ since for all $f \in \mathcal{L}po(X,Y)$ and all paths γ on X, the composite $f \circ \gamma$ is a path on Y.

$$\begin{array}{ccc}
C : & \mathcal{L}po \longrightarrow & \mathcal{C}at \\
X & & PX \\
\downarrow f \longmapsto & Pf \downarrow \\
Y & & PY
\end{array}$$

The (Moore) path category construction gives rise to a functor P from $\mathcal{L}po$ to $\mathcal{C}at$ since for all $f \in \mathcal{L}po(X,Y)$ and all paths γ on X, the composite $f \circ \gamma$ is a path on Y.

$$P: Lpo \longrightarrow Cat$$

$$X \qquad PX$$

$$\downarrow f \longmapsto Pf \downarrow$$

$$Y \qquad PY$$

with

$$Pf: PX \longrightarrow PY$$

$$\downarrow^{\gamma} \longmapsto^{f(p)} f \circ \gamma \downarrow$$

$$\downarrow^{q} f \circ \gamma \downarrow$$

An elementary homotopy is a finite concatenation of directed and anti-directed homotopies.

An elementary homotopy is a finite concatenation of directed and anti-directed homotopies.

If $\theta:[0,r]\to[0,r]$ is a reparametrization and $\gamma\in \mathcal{L}po([0,r],X)$, then γ and $\gamma\circ\theta$ are dihomotopic.

An elementary homotopy is a finite concatenation of directed and anti-directed homotopies.

If $\theta:[0,r]\to[0,r]$ is a reparametrization and $\gamma\in \mathcal{L}po([0,r],X)$, then γ and $\gamma\circ\theta$ are dihomotopic.

Two directed paths $\gamma:[0,r']\to X$ and $\delta:[0,r'']\to X$ on a local pospace are said to be equivalent (denoted by \sim_X) when there exists two reparametrizations $\theta:[0,r]\to[0,r']$ and $\psi:[0,r]\to[0,r'']$ such that there is an elementary homotopy between $\gamma\circ\theta$ and $\delta\circ\psi$.

An elementary homotopy is a finite concatenation of directed and anti-directed homotopies.

If $\theta:[0,r]\to[0,r]$ is a reparametrization and $\gamma\in \mathcal{L}po([0,r],X)$, then γ and $\gamma\circ\theta$ are dihomotopic.

Two directed paths $\gamma:[0,r']\to X$ and $\delta:[0,r'']\to X$ on a local pospace are said to be equivalent (denoted by \sim_X) when there exists two reparametrizations $\theta:[0,r]\to[0,r']$ and $\psi:[0,r]\to[0,r'']$ such that there is an elementary homotopy between $\gamma\circ\theta$ and $\delta\circ\psi$.

The relation \sim_X is symmetric because ...

An elementary homotopy is a finite concatenation of directed and anti-directed homotopies.

If $\theta:[0,r]\to[0,r]$ is a reparametrization and $\gamma\in \mathcal{L}po([0,r],X)$, then γ and $\gamma\circ\theta$ are dihomotopic.

Two directed paths $\gamma:[0,r']\to X$ and $\delta:[0,r'']\to X$ on a local pospace are said to be equivalent (denoted by \sim_X) when there exists two reparametrizations $\theta:[0,r]\to[0,r']$ and $\psi:[0,r]\to[0,r'']$ such that there is an elementary homotopy between $\gamma\circ\theta$ and $\delta\circ\psi$.

The relation \sim_X is symmetric because if h(s,t) is an elementary homotopy, then so is the mapping $(s,t)\mapsto h(-s,t)$.

An elementary homotopy is a finite concatenation of directed and anti-directed homotopies.

If $\theta:[0,r]\to[0,r]$ is a reparametrization and $\gamma\in \mathcal{L}po([0,r],X)$, then γ and $\gamma\circ\theta$ are dihomotopic.

Two directed paths $\gamma:[0,r']\to X$ and $\delta:[0,r'']\to X$ on a local pospace are said to be equivalent (denoted by \sim_X) when there exists two reparametrizations $\theta:[0,r]\to[0,r']$ and $\psi:[0,r]\to[0,r'']$ such that there is an elementary homotopy between $\gamma\circ\theta$ and $\delta\circ\psi$.

The relation \sim_X is symmetric because if h(s,t) is an elementary homotopy, then so is the mapping $(s,t)\mapsto h(-s,t)$.

The relation \sim_X is transitive because ...

An elementary homotopy is a finite concatenation of directed and anti-directed homotopies.

If $\theta:[0,r]\to[0,r]$ is a reparametrization and $\gamma\in \mathcal{L}po([0,r],X)$, then γ and $\gamma\circ\theta$ are dihomotopic.

Two directed paths $\gamma:[0,r']\to X$ and $\delta:[0,r'']\to X$ on a local pospace are said to be equivalent (denoted by \sim_X) when there exists two reparametrizations $\theta:[0,r]\to[0,r']$ and $\psi:[0,r]\to[0,r'']$ such that there is an elementary homotopy between $\gamma\circ\theta$ and $\delta\circ\psi$.

The relation \sim_X is symmetric because if h(s,t) is an elementary homotopy, then so is the mapping $(s,t)\mapsto h(-s,t)$.

The relation \sim_X is transitive because a concatenation of elementary homotopies is an elementary homotopy.

Equivalent directed paths on a local pospace X

An elementary homotopy is a finite concatenation of directed and anti-directed homotopies.

If $\theta:[0,r]\to[0,r]$ is a reparametrization and $\gamma\in \mathcal{L}po([0,r],X)$, then γ and $\gamma\circ\theta$ are dihomotopic.

Two directed paths $\gamma:[0,r']\to X$ and $\delta:[0,r'']\to X$ on a local pospace are said to be equivalent (denoted by \sim_X) when there exists two reparametrizations $\theta:[0,r]\to[0,r']$ and $\psi:[0,r]\to[0,r'']$ such that there is an elementary homotopy between $\gamma\circ\theta$ and $\delta\circ\psi$.

The relation \sim_X is symmetric because if h(s,t) is an elementary homotopy, then so is the mapping $(s,t)\mapsto h(-s,t)$.

The relation \sim_X is transitive because a concatenation of elementary homotopies is an elementary homotopy.

Given $x, y \in X$ and $r \in \mathbb{R}_+$, the relation \sim_X is an equivalence relation on the set

$$\bigcup_{r \in \mathbb{R}_+} \big\{ \gamma \in \mathit{Lpo}([0,r],X) \mid \gamma(0) = x; \ \gamma(r) = y \big\}$$

horizontal composition

horizontal composition

Let $h:[0,r]\times[0,q]\to X$ and $h':[0,r']\times[0,q]\to X$ be homotopies from γ to δ and from γ' to δ' with $\partial^{\scriptscriptstyle +}\gamma=\partial^{\scriptscriptstyle -}\gamma'$.

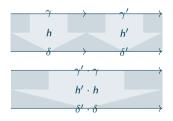
horizontal composition

Let $h:[0,r]\times[0,q]\to X$ and $h':[0,r']\times[0,q]\to X$ be homotopies from γ to δ and from γ' to δ' with $\partial^+\gamma=\partial^-\gamma'$.

The mapping $h'*h:[0,r+r']\times[0,q]\to X$ defined by

$$h'*h(t,s) = \begin{cases} h(t,s) & \text{if } 0 \leqslant t \leqslant r \\ h'(t-r,s) & \text{if } r \leqslant t \leqslant r+r' \end{cases}$$

is a homotopy from γ to δ .



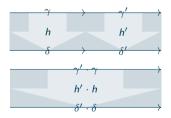
horizontal composition

Let $h:[0,r]\times[0,q]\to X$ and $h':[0,r']\times[0,q]\to X$ be homotopies from γ to δ and from γ' to δ' with $\partial^+\gamma=\partial^-\gamma'$.

The mapping $h'*h:[0,r+r']\times[0,q]\to X$ defined by

$$h'*h(t,s) = \begin{cases} h(t,s) & \text{if } 0 \leqslant t \leqslant r \\ h'(t-r,s) & \text{if } r \leqslant t \leqslant r+r' \end{cases}$$

is a homotopy from γ to δ .

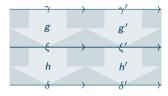


If h and h' are ((weakly) directed) homotopies, then so is their juxtaposition $h' \cdot h$.

Godement exchange law

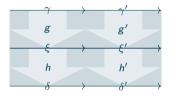
Godement exchange law

Suppose we have



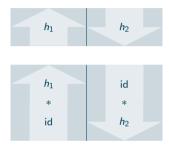
Godement exchange law

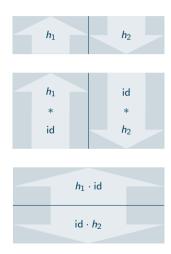
Suppose we have



then it comes

$$(g'*h')\cdot(g*h)=(g'\cdot g)*(h'\cdot h)$$





If:

If:

- h is an elementary homotopy between $\gamma \circ \theta$ and $\delta \circ \psi$

If:

- \emph{h} is an elementary homotopy between $\gamma \circ \theta$ and $\delta \circ \psi$
- h' is an elementary homotopy between $\gamma' \circ \theta'$ and $\delta' \circ \psi'$

If:

- \emph{h} is an elementary homotopy between $\gamma \circ \theta$ and $\delta \circ \psi$
- h' is an elementary homotopy between $\gamma' \circ \theta'$ and $\delta' \circ \psi'$
- the endpoint of γ is the starting point of γ'

If:

- \emph{h} is an elementary homotopy between $\gamma \circ \theta$ and $\delta \circ \psi$
- h' is an elementary homotopy between $\gamma' \circ \theta'$ and $\delta' \circ \psi'$
- the endpoint of γ is the starting point of γ'

then $h \cdot h'$ is an elementary homotopy from ...

If:

- \emph{h} is an elementary homotopy between $\gamma \circ \theta$ and $\delta \circ \psi$
- h' is an elementary homotopy between $\gamma' \circ \theta'$ and $\delta' \circ \psi'$
- the endpoint of γ is the starting point of γ'

then $h \cdot h'$ is an elementary homotopy from $(\gamma \cdot \gamma') \circ (\theta \cdot \theta')$ to $(\delta \cdot \delta') \circ (\psi \cdot \psi')$.

If:

- h is an elementary homotopy between $\gamma \circ \theta$ and $\delta \circ \psi$
- h' is an elementary homotopy between $\gamma' \circ \theta'$ and $\delta' \circ \psi'$
- the endpoint of γ is the starting point of γ'

then $h \cdot h'$ is an elementary homotopy from $(\gamma \cdot \gamma') \circ (\theta \cdot \theta')$ to $(\delta \cdot \delta') \circ (\psi \cdot \psi')$.

The relation \sim_X is a congruence on P(X)

If h is a homotopy from γ to γ' on the topological space X and $f: X \to Y$ is a continuous map, then $f \circ h$ is a homotopy from $f \circ \gamma$ to $f \circ \gamma'$ on the topological space Y.

If h is a homotopy from γ to γ' on the topological space X and $f: X \to Y$ is a continuous map, then $f \circ h$ is a homotopy from $f \circ \gamma$ to $f \circ \gamma'$ on the topological space Y.

If h is a (weakly) directed homotopy from γ to γ' on the local pospace space X and $f: X \to Y$ is a local pospace morphism, then $f \circ h$ is a (weakly) directed homotopy from $f \circ \gamma$ to $f \circ \gamma'$ on the local pospace space Y.

If h is a homotopy from γ to γ' on the topological space X and $f: X \to Y$ is a continuous map, then $f \circ h$ is a homotopy from $f \circ \gamma$ to $f \circ \gamma'$ on the topological space Y.

If h is a (weakly) directed homotopy from γ to γ' on the local pospace space X and $f: X \to Y$ is a local pospace morphism, then $f \circ h$ is a (weakly) directed homotopy from $f \circ \gamma$ to $f \circ \gamma'$ on the local pospace space Y.

If $\gamma, \gamma' : [0, r] \to X$ are ((weakly) di)homotopic, then so are $f \circ \gamma, f \circ \gamma' : [0, r] \to Y$.

- The relations \sim_X form a natural congruence on the directed path functor $P: \mathcal{L}po \rightarrow \mathcal{C}at$.

- The relations \sim_X form a natural congruence on the directed path functor $P: \mathcal{L}po \rightarrow \mathcal{C}at$.
- The fundamental category functor $\overrightarrow{\pi_1}: \mathcal{L}po \to \mathcal{C}at$ is defined accordingly.

- The relations \sim_X form a natural congruence on the directed path functor $P: \mathcal{L}po \to \mathcal{C}at.$
- The fundamental category functor $\overrightarrow{\pi_1}: \mathit{Lpo} \to \mathit{Cat}$ is defined accordingly.
- The fundamental groupoid functor $\Pi_1: \mathcal{T}\!\mathit{op} \to \mathcal{G}\!\mathit{rd}$ is obtained by substituting "paths" and "homotopies" to "directed paths" and "elementary homotopies".

- The fundamental category of the locally ordered real line is the corresponding partial order.

- The fundamental category of the locally ordered real line is the corresponding partial order.
- For all local pospaces X and Y we have

$$\overrightarrow{\pi_1}(X \times Y) \cong \overrightarrow{\pi_1}X \times \overrightarrow{\pi_1}Y$$

- The fundamental category of the locally ordered real line is the corresponding partial order.
- For all local pospaces X and Y we have

$$\overrightarrow{\pi_1}(X \times Y) \cong \overrightarrow{\pi_1}X \times \overrightarrow{\pi_1}Y$$

- Given a pospace X, $\overrightarrow{\pi_1}X$ is loop-free i.e.

$$\overrightarrow{\pi_1}X(x,y) \neq \emptyset$$
 and $\overrightarrow{\pi_1}X(y,x) \neq \emptyset$ \Rightarrow $x = y$ and $\overrightarrow{\pi_1}X(x,x) = \{\mathrm{id}_x\}$

- The fundamental category of the locally ordered real line is the corresponding partial order.
- For all local pospaces X and Y we have

$$\overrightarrow{\pi_1}(X \times Y) \cong \overrightarrow{\pi_1}X \times \overrightarrow{\pi_1}Y$$

- Given a pospace X, $\overrightarrow{\pi_1}X$ is loop-free i.e.

$$\overrightarrow{\pi_1}X(x,y) \neq \emptyset$$
 and $\overrightarrow{\pi_1}X(y,x) \neq \emptyset$ \Rightarrow $x = y$ and $\overrightarrow{\pi_1}X(x,x) = \{\mathrm{id}_x\}$

- The fundamental category of a local pospace has no nontrivial null homotopic directed paths i.e. any directed loop that is related to a constant path by an elementary homotopy is actually a constant.

- The fundamental category of the locally ordered real line is the corresponding partial order.
- For all local pospaces X and Y we have

$$\overrightarrow{\pi_1}(X \times Y) \cong \overrightarrow{\pi_1}X \times \overrightarrow{\pi_1}Y$$

- Given a pospace X, $\overrightarrow{\pi_1}X$ is loop-free i.e.

$$\overrightarrow{\pi_1}X(x,y) \neq \emptyset$$
 and $\overrightarrow{\pi_1}X(y,x) \neq \emptyset$ \Rightarrow $x = y$ and $\overrightarrow{\pi_1}X(x,x) = \{\mathrm{id}_x\}$

- The fundamental category of a local pospace has no nontrivial null homotopic directed paths i.e. any directed loop that is related to a constant path by an elementary homotopy is actually a constant.
- In particular the fundamental category of a local pospace has no isomorphism but its identities.

The fundamental category of the locally ordered circle

- Given x, y, \widehat{xy} is the anticlockwise arc from x to y. It is a singleton if x = y.

- Given x, y, \widehat{xy} is the anticlockwise arc from x to y. It is a singleton if x = y.
- $\overrightarrow{\pi_1} \mathbb{S}^1(x,y) = \{x\} \times \mathbb{N} \times \{y\}$

- Given x, y, \widehat{xy} is the anticlockwise arc from x to y. It is a singleton if x = y.
- $\overrightarrow{\pi_1} \mathbb{S}^1(x,y) = \{x\} \times \mathbb{N} \times \{y\}$
- the identities are the tuples (x, 0, x)

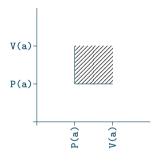
- Given x, y, \widehat{xy} is the anticlockwise arc from x to y. It is a singleton if x = y.
- $\overrightarrow{\pi_1} \mathbb{S}^1(x,y) = \{x\} \times \mathbb{N} \times \{y\}$
- the identities are the tuples (x, 0, x)
- the composition is given by

- Given x, y, \widehat{xy} is the anticlockwise arc from x to y. It is a singleton if x = y.
- $\overrightarrow{\pi_1} \mathbb{S}^1(x,y) = \{x\} \times \mathbb{N} \times \{y\}$
- the identities are the tuples (x, 0, x)
- the composition is given by
 - $(y, p, z) \circ (x, n, y) = (x, n + p, z)$ if $\widehat{xy} \cup \widehat{yz} \neq \mathbb{S}^1$

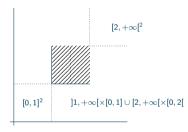
- Given x, y, \widehat{xy} is the anticlockwise arc from x to y. It is a singleton if x = y.
- $\overrightarrow{\pi_1} \mathbb{S}^1(x,y) = \{x\} \times \mathbb{N} \times \{y\}$
- the identities are the tuples (x, 0, x)
- the composition is given by
 - $(y, p, z) \circ (x, n, y) = (x, n + p, z)$ if $\widehat{xy} \cup \widehat{yz} \neq \mathbb{S}^1$
 - $(y, p, z) \circ (x, n, y) = (x, n + p + 1, z)$ if $\widehat{xy} \cup \widehat{yz} = \mathbb{S}^1$

$$x=\mathbb{R}^2_+\backslash]0,1[^2$$

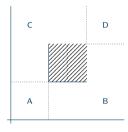
$$x=\mathbb{R}^2_+\backslash]0,1[^2$$



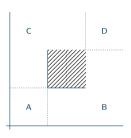
$$x=\mathbb{R}^2_+\backslash]0,1[^2$$



$$x=\mathbb{R}^2_+\backslash]0,1[^2$$

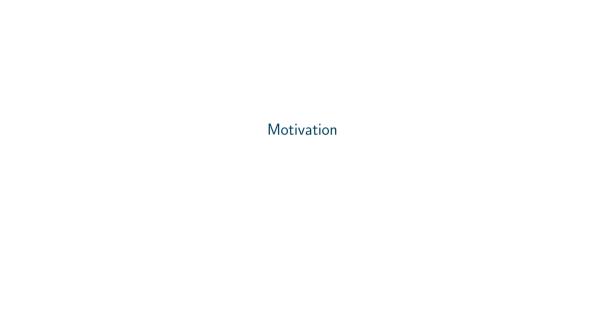


$$x = \mathbb{R}^2_+ \setminus]0, 1[^2$$



If $x \leq^2 y$, then $\overrightarrow{\pi_1}X(x,y)$ only depends on the elements of the partition x and y belong to.

\rightarrow	Α	В	C	D
A	σ	β	α	$\beta' \circ \beta$ $\alpha' \circ \alpha$
В		σ		β'
С			σ	α'
\overline{D}				σ



- A skeleton of $\mathcal C$ is a full subcategory of $\mathcal C$ whose class of objects meets every isomorphism class of $\mathcal C$ exactly once.

- A skeleton of $\mathcal C$ is a full subcategory of $\mathcal C$ whose class of objects meets every isomorphism class of $\mathcal C$ exactly once.
- The skeleton of ${\mathcal C}$ is unique up to isomorphism, it is denoted by ${\sf sk}{\mathcal C}.$

- A skeleton of $\mathcal C$ is a full subcategory of $\mathcal C$ whose class of objects meets every isomorphism class of $\mathcal C$ exactly once.
- The skeleton of C is unique up to isomorphism, it is denoted by skC.
- Two categories are equivalent (i.e. there exists an equivalence of categories between them) iff their skeleta are isomorphic.

- A skeleton of $\mathcal C$ is a full subcategory of $\mathcal C$ whose class of objects meets every isomorphism class of $\mathcal C$ exactly once.
- The skeleton of C is unique up to isomorphism, it is denoted by skC.
- Two categories are equivalent (i.e. there exists an equivalence of categories between them) iff their skeleta are isomorphic.
- The skeleton of the category of finite sets is the full subcategory whose objects are $\{0,\ldots,n-1\}$ for $n\in\mathbb{N}$.

- A skeleton of $\mathcal C$ is a full subcategory of $\mathcal C$ whose class of objects meets every isomorphism class of $\mathcal C$ exactly once.
- The skeleton of C is unique up to isomorphism, it is denoted by skC.
- Two categories are equivalent (i.e. there exists an equivalence of categories between them) iff their skeleta are isomorphic.
- The skeleton of the category of finite sets is the full subcategory whose objects are $\{0,\ldots,n-1\}$ for $n\in\mathbb{N}$.
- The skeleton of the fundamental groupoid of a path-connected space is the fundamental group of this space.

- A skeleton of $\mathcal C$ is a full subcategory of $\mathcal C$ whose class of objects meets every isomorphism class of $\mathcal C$ exactly once.
- The skeleton of $\mathcal C$ is unique up to isomorphism, it is denoted by $\mathsf{sk}\mathcal C.$
- Two categories are equivalent (i.e. there exists an equivalence of categories between them) iff their skeleta are isomorphic.
- The skeleton of the category of finite sets is the full subcategory whose objects are $\{0,\ldots,n-1\}$ for $n\in\mathbb{N}$.
- The skeleton of the fundamental groupoid of a path-connected space is the fundamental group of this space.
- Problem: The fundamental category of a local pospace has no isomorphisms but its identities, hence it is its own skeleton.

- A category \mathcal{C} is said to be one-way when all its endomorphisms are identities i.e. $\mathcal{C}(x,x) = \{id_x\}$ for all x Every Grothendieck topos has a one-way site. C. MacLarty. Theor. Appl. of Cat. 16(5) pp 123-126 (2006).

- A category C is said to be one-way when all its endomorphisms are identities i.e. $C(x, x) = \{id_x\}$ for all x Every Grothendieck topos has a one-way site. C. MacLarty. Theor. Appl. of Cat. 16(5) pp 123-126 (2006).
- A one-way category C is said to be loop-free when for all x, y

$$\mathcal{C}(x,y) \neq \emptyset$$
 and $\mathcal{C}(y,x) \neq \emptyset$ implies $x = y$

Complexes of groups and orbihedra in Group theory from a geometrical viewpoint.

A. Haefliger. World Scientific (1991).

- A category C is said to be one-way when all its endomorphisms are identities i.e. $C(x, x) = \{id_x\}$ for all x Every Grothendieck topos has a one-way site. C. MacLarty. Theor. Appl. of Cat. 16(5) pp 123-126 (2006).
- A one-way category C is said to be loop-free when for all x, y

$$C(x,y) \neq \emptyset$$
 and $C(y,x) \neq \emptyset$ implies $x = y$

Complexes of groups and orbihedra in Group theory from a geometrical viewpoint.

- A. Haefliger. World Scientific (1991).
- A loop-free category is its own skeleton

- A category C is said to be one-way when all its endomorphisms are identities i.e. $C(x, x) = \{id_x\}$ for all x Every Grothendieck topos has a one-way site. C. MacLarty. Theor. Appl. of Cat. 16(5) pp 123-126 (2006).
- A one-way category C is said to be loop-free when for all x, y

$$C(x,y) \neq \emptyset$$
 and $C(y,x) \neq \emptyset$ implies $x = y$

Complexes of groups and orbihedra in Group theory from a geometrical viewpoint.

- A. Haefliger. World Scientific (1991).
- A loop-free category is its own skeleton
- A category is one-way iff its skeleton is loop-free

M. A. Bednarczyk, A. M. Borzyszkowski, W. Pawlowski. Theor. Appl. Cat. 5(11). 1999

M. A. Bednarczyk, A. M. Borzyszkowski, W. Pawlowski. Theor. Appl. Cat. 5(11). 1999

- Given a binary relation $\mathcal R$ on the set of morphisms of a category $\mathcal C$, there is a unique category $\mathcal C/\mathcal R$ and a unique functor $q:\mathcal C\to\mathcal C/\mathcal R$ such that for all functors $f:\mathcal C\to\mathcal D$, if $\alpha\mathcal R\beta\Rightarrow f(\alpha)=f(\beta)$, then there is a unique functor $g:\mathcal C/\mathcal R\to\mathcal D$ such that $f=g\circ q$

M. A. Bednarczyk, A. M. Borzyszkowski, W. Pawlowski. Theor. Appl. Cat. 5(11). 1999

- Given a binary relation $\mathcal R$ on the set of morphisms of a category $\mathcal C$, there is a unique category $\mathcal C/\mathcal R$ and a unique functor $q:\mathcal C\to\mathcal C/\mathcal R$ such that for all functors $f:\mathcal C\to\mathcal D$, if $\alpha\mathcal R\beta\Rightarrow f(\alpha)=f(\beta)$, then there is a unique functor $g:\mathcal C/\mathcal R\to\mathcal D$ such that $f=g\circ q$

- Examples

M. A. Bednarczyk, A. M. Borzyszkowski, W. Pawlowski. Theor. Appl. Cat. 5(11). 1999

- Given a binary relation $\mathcal R$ on the set of morphisms of a category $\mathcal C$, there is a unique category $\mathcal C/\mathcal R$ and a unique functor $q:\mathcal C\to\mathcal C/\mathcal R$ such that for all functors $f:\mathcal C\to\mathcal D$, if $\alpha\mathcal R\beta\Rightarrow f(\alpha)=f(\beta)$, then there is a unique functor $g:\mathcal C/\mathcal R\to\mathcal D$ such that $f=g\circ q$

- Examples
 - any congruence is a generalized congruence.

M. A. Bednarczyk, A. M. Borzyszkowski, W. Pawlowski. Theor. Appl. Cat. 5(11). 1999

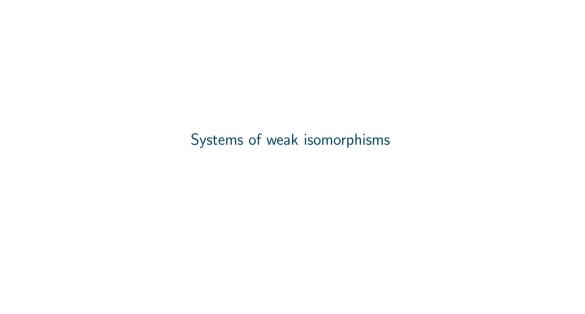
- Given a binary relation $\mathcal R$ on the set of morphisms of a category $\mathcal C$, there is a unique category $\mathcal C/\mathcal R$ and a unique functor $q:\mathcal C\to\mathcal C/\mathcal R$ such that for all functors $f:\mathcal C\to\mathcal D$, if $\alpha\mathcal R\beta\Rightarrow f(\alpha)=f(\beta)$, then there is a unique functor $g:\mathcal C/\mathcal R\to\mathcal D$ such that $f=g\circ q$

- Examples
 - any congruence is a generalized congruence.
 - \mathcal{C} freely generated by $x \xrightarrow{\alpha} y$ with $id_x \mathcal{R} id_y$ (resp. with $\alpha \mathcal{R} id_x$).

M. A. Bednarczyk, A. M. Borzyszkowski, W. Pawlowski. Theor. Appl. Cat. 5(11). 1999

Given a binary relation $\mathcal R$ on the set of morphisms of a category $\mathcal C$, there is a unique category $\mathcal C/\mathcal R$ and a unique functor $q:\mathcal C\to\mathcal C/\mathcal R$ such that for all functors $f:\mathcal C\to\mathcal D$, if $\alpha\mathcal R\beta\Rightarrow f(\alpha)=f(\beta)$, then there is a unique functor $g:\mathcal C/\mathcal R\to\mathcal D$ such that $f=g\circ q$

- Examples
 - any congruence is a generalized congruence.
 - \mathcal{C} freely generated by $x \xrightarrow{\alpha} y$ with $id_x \mathcal{R} id_y$ (resp. with $\alpha \mathcal{R} id_x$).
 - $(\mathbb{N}, +, 0)$ with $0\Re n$ for some $n \in \mathbb{N}$.



Goal

Goal

Let $\mathcal C$ be a one-way category:

Goal

Let $\mathcal C$ be a one-way category:

- Define a class Σ of morphisms of $\mathcal C$ so we can keep one representative in each class of Σ -related objects without loss of information

Goal

- Define a class Σ of morphisms of $\mathcal C$ so we can keep one representative in each class of Σ -related objects without loss of information
- To do so, we are in search for a class that behaves much like the one of isomorphisms

Goal

- Define a class Σ of morphisms of $\mathcal C$ so we can keep one representative in each class of Σ -related objects without loss of information
- To do so, we are in search for a class that behaves much like the one of isomorphisms
- From now on $\mathcal C$ denotes a one-way category

Let ${\mathcal C}$ be a one-way category

- For all morphisms σ and all objects z define

Let $\ensuremath{\mathcal{C}}$ be a one-way category

- For all morphisms σ and all objects z define
 - the σ,z -precomposition as $\gamma\in\mathcal{C}(\partial^{\scriptscriptstyle +}\sigma,z)$ \to $\gamma\circ\sigma\in\mathcal{C}(\partial^{\scriptscriptstyle -}\sigma,z)$

- For all morphisms σ and all objects z define
 - the σ, z -precomposition as $\gamma \in \mathcal{C}(\partial^+ \sigma, z) \to \gamma \circ \sigma \in \mathcal{C}(\partial^+ \sigma, z)$
 - the z,σ -postcomposition as $\delta\in\mathcal{C}(z,\partial^+\sigma)$ \mapsto $\sigma\circ\delta\in\mathcal{C}(z,\partial^+\sigma)$

- For all morphisms σ and all objects z define
 - the σ, z -precomposition as $\gamma \in \mathcal{C}(\partial^{\scriptscriptstyle +}\sigma, z) \to \gamma \circ \sigma \in \mathcal{C}(\partial^{\scriptscriptstyle -}\sigma, z)$
 - the z, σ -postcomposition as $\delta \in \mathcal{C}(z, \partial^{\perp} \sigma) \mapsto \sigma \circ \delta \in \mathcal{C}(z, \partial^{\perp} \sigma)$
- One may have $\mathcal{C}(\partial^{\scriptscriptstyle +}\sigma,z)=\emptyset$ or $\mathcal{C}(z,\partial^{\scriptscriptstyle -}\sigma)=\emptyset$

- For all morphisms σ and all objects z define
 - the σ , z-precomposition as $\gamma \in \mathcal{C}(\partial^+ \sigma, z) \rightarrow \gamma \circ \sigma \in \mathcal{C}(\partial^- \sigma, z)$
 - the z, σ -postcomposition as $\delta \in \mathcal{C}(z, \partial^{\perp} \sigma) \mapsto \sigma \circ \delta \in \mathcal{C}(z, \partial^{\perp} \sigma)$
- One may have $\mathcal{C}(\partial^{\scriptscriptstyle +}\sigma,z)=\emptyset$ or $\mathcal{C}(z,\partial^{\scriptscriptstyle -}\sigma)=\emptyset$
- Note that σ is an isomorphism iff for all z both precomposition and postcomposition are bijective.

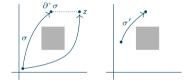
- For all morphisms σ and all objects z define
 - the σ , z-precomposition as $\gamma \in \mathcal{C}(\partial^+ \sigma, z) \rightarrow \gamma \circ \sigma \in \mathcal{C}(\partial^- \sigma, z)$
 - the z,σ -postcomposition as $\delta\in\mathcal{C}(z,\partial^{\scriptscriptstyle{+}}\sigma)\;\mapsto\;\sigma\circ\delta\in\mathcal{C}(z,\partial^{\scriptscriptstyle{+}}\sigma)$
- One may have $\mathcal{C}(\partial^{\scriptscriptstyle +}\sigma,z)=\emptyset$ or $\mathcal{C}(z,\partial^{\scriptscriptstyle -}\sigma)=\emptyset$
- Note that σ is an isomorphism iff for all z both precomposition and postcomposition are bijective.
- The latter condition is weakened: σ is said to preserve the future cones (resp. past cones) when for all z if $\mathcal{C}(\partial^*\sigma,z)\neq\emptyset$ (resp. $\mathcal{C}(z,\partial^*\sigma)\neq\emptyset$) then the precomposition (resp. postcomposition) is bijective.

- For all morphisms σ and all objects z define
 - the σ, z -precomposition as $\gamma \in \mathcal{C}(\partial^+ \sigma, z) \to \gamma \circ \sigma \in \mathcal{C}(\partial^- \sigma, z)$
 - the z,σ -postcomposition as $\delta\in\mathcal{C}(z,\partial^{\scriptscriptstyle{+}}\sigma)\;\mapsto\;\sigma\circ\delta\in\mathcal{C}(z,\partial^{\scriptscriptstyle{+}}\sigma)$
- One may have $\mathcal{C}(\partial^{\scriptscriptstyle +}\sigma,z)=\emptyset$ or $\mathcal{C}(z,\partial^{\scriptscriptstyle -}\sigma)=\emptyset$
- Note that σ is an isomorphism iff for all z both precomposition and postcomposition are bijective.
- The latter condition is weakened: σ is said to preserve the future cones (resp. past cones) when for all z if $\mathcal{C}(\partial^+\sigma,z)\neq\emptyset$ (resp. $\mathcal{C}(z,\partial^-\sigma)\neq\emptyset$) then the precomposition (resp. postcomposition) is bijective.
- Then σ is a potential weak isomorphism when it preserves both future cones and past cones. Potential weak isomorphisms compose.

- For all morphisms σ and all objects z define
 - the σ , z-precomposition as $\gamma \in \mathcal{C}(\partial^+ \sigma, z) \rightarrow \gamma \circ \sigma \in \mathcal{C}(\partial^- \sigma, z)$
 - the z,σ -postcomposition as $\delta\in\mathcal{C}(z,\partial^{\scriptscriptstyle{+}}\sigma)\;\mapsto\;\sigma\circ\delta\in\mathcal{C}(z,\partial^{\scriptscriptstyle{+}}\sigma)$
- One may have $\mathcal{C}(\partial^{\scriptscriptstyle +}\sigma,z)=\emptyset$ or $\mathcal{C}(z,\partial^{\scriptscriptstyle -}\sigma)=\emptyset$
- Note that σ is an isomorphism iff for all z both precomposition and postcomposition are bijective.
- The latter condition is weakened: σ is said to preserve the future cones (resp. past cones) when for all z if $\mathcal{C}(\partial^+\sigma,z)\neq\emptyset$ (resp. $\mathcal{C}(z,\partial^-\sigma)\neq\emptyset$) then the precomposition (resp. postcomposition) is bijective.
- Then σ is a potential weak isomorphism when it preserves both future cones and past cones. Potential weak isomorphisms compose.
- If C(x,y) contains a potential weak isomorphism, then it is a singleton Requires the assumption that C is one-way

An example of potential weak isomorphism

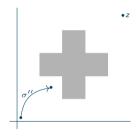
An example of potential weak isomorphism



Due to the lower dipath, the σ,z -precomposition is not bijective; yet σ' is a potential weak isomorphism.

An unwanted example of potential weak isomorphism

An unwanted example of potential weak isomorphism



Note that σ'' is a potential weak isomorphism though there exists a morphism from $\partial^*\sigma''$ to z but none from $\partial^*\sigma''$ to z.

Stability under pushout and pullback

Stability under pushout and pullback

- A collection of morphisms Σ is said to be stable under pushout when for all $\sigma \in \Sigma$, for all γ with $\partial \gamma = \partial \sigma$, the pushout of σ along γ exists and belongs to Σ

Stability under pushout and pullback

- A collection of morphisms Σ is said to be stable under pushout when for all $\sigma \in \Sigma$, for all γ with $\partial \gamma = \partial \sigma$, the pushout of σ along γ exists and belongs to Σ

- A collection of morphisms Σ is said to be stable under pullback when for all $\sigma \in \Sigma$, for all γ with $\partial^* \gamma = \partial^* \sigma$, the pullback of σ along γ exists and belongs to Σ

- Any collection Σ of morphisms of a category $\mathcal C$ admits a greatest subcollection that is stable under pushout and pullback

- Any collection Σ of morphisms of a category $\mathcal C$ admits a greatest subcollection that is stable under pushout and pullback
- Construction:

- Any collection Σ of morphisms of a category $\mathcal C$ admits a greatest subcollection that is stable under pushout and pullback
- Construction:
 - Start with $\Sigma_0=\Sigma$

- Any collection Σ of morphisms of a category $\mathcal C$ admits a greatest subcollection that is stable under pushout and pullback
- Construction:
 - Start with $\Sigma_0 = \Sigma$
 - For $n \in \mathbb{N}$ define Σ_{n+1} as the collection of morphisms $\sigma \in \Sigma_n$ s.t. the pushout and the pullback of σ along any morphism exists (when sources or targets match accordingly) and belongs to Σ_n

$$\Sigma_0 \supseteq \cdots \Sigma_1 \supseteq \cdots \supseteq \Sigma_n \supseteq \Sigma_{n+1} \supseteq \cdots$$

- Any collection Σ of morphisms of a category $\mathcal C$ admits a greatest subcollection that is stable under pushout and pullback
- Construction:
 - Start with $\Sigma_0 = \Sigma$
 - For $n \in \mathbb{N}$ define Σ_{n+1} as the collection of morphisms $\sigma \in \Sigma_n$ s.t. the pushout and the pullback of σ along any morphism exists (when sources or targets match accordingly) and belongs to Σ_n

$$\Sigma_0 \supseteq \cdots \Sigma_1 \supseteq \cdots \supseteq \Sigma_n \supseteq \Sigma_{n+1} \supseteq \cdots$$

- The expected subcollection is the decreasing intersection

$$\Sigma_{\infty} := \bigcap_{n \in \mathbb{N}}^{\downarrow} \Sigma_n$$

- Any collection Σ of morphisms of a category $\mathcal C$ admits a greatest subcollection that is stable under pushout and pullback
- Construction:
 - Start with $\Sigma_0 = \Sigma$
 - For $n \in \mathbb{N}$ define Σ_{n+1} as the collection of morphisms $\sigma \in \Sigma_n$ s.t. the pushout and the pullback of σ along any morphism exists (when sources or targets match accordingly) and belongs to Σ_n

$$\Sigma_0 \supseteq \cdots \Sigma_1 \supseteq \cdots \supseteq \Sigma_n \supseteq \Sigma_{n+1} \supseteq \cdots$$

- The expected subcollection is the decreasing intersection

$$\Sigma_{\infty} := \bigcap_{n \in \mathbb{N}}^{\downarrow} \Sigma_n$$

- The collection Σ_{∞} is stable under the action of $\mathsf{Aut}(\mathcal{C})$

- The class of isomorphisms of any category is stable under pushout and pullback

- The class of isomorphisms of any category is stable under pushout and pullback
- A system of weak isomorphisms is a collection of potential weak isomorphisms that is stable under pushout and pullback

- The class of isomorphisms of any category is stable under pushout and pullback
- A system of weak isomorphisms is a collection of potential weak isomorphisms that is stable under pushout and pullback
- The class of all isomorphisms of any category is a system of weak isomorphisms

- The class of isomorphisms of any category is stable under pushout and pullback
- A system of weak isomorphisms is a collection of potential weak isomorphisms that is stable under pushout and pullback
- The class of all isomorphisms of any category is a system of weak isomorphisms
- If Σ is a system of weak isomorphisms, then so is its closure under composition

- The class of isomorphisms of any category is stable under pushout and pullback
- A system of weak isomorphisms is a collection of potential weak isomorphisms that is stable under pushout and pullback
- The class of all isomorphisms of any category is a system of weak isomorphisms
- If Σ is a system of weak isomorphisms, then so is its closure under composition
- Hence we suppose the systems of weak isomorphisms are closed under composition

- Given a partition $\mathcal P$ of $\mathbb R$ into intervals, the following collection is a system of weak isomorphisms

$$\{(x,y) \mid x \leqslant y; \exists I \in \mathcal{P}, [x,y] \subseteq I\}$$

- Given a partition $\mathcal P$ of $\mathbb R$ into intervals, the following collection is a system of weak isomorphisms

$$\{(x,y) \mid x \leqslant y; \exists I \in \mathcal{P}, [x,y] \subseteq I\}$$

- In the preceding example, $\mathbb R$ can be replaced by any totally ordered set

- Given a partition $\mathcal P$ of $\mathbb R$ into intervals, the following collection is a system of weak isomorphisms

$$\{(x,y) \mid x \leqslant y; \ \exists I \in \mathcal{P}, \ [x,y] \subseteq I\}$$

- In the preceding example, $\mathbb R$ can be replaced by any totally ordered set
- Let $\Sigma_i \subseteq C_i$ be a family of collections of morphisms, then

 $\prod_i \Sigma_i$ is a swi of $\prod_i C_i$ iff each Σ_i is a swi of C_i

- Given a partition $\mathcal P$ of $\mathbb R$ into intervals, the following collection is a system of weak isomorphisms

$$\{(x,y) \mid x \leqslant y; \exists I \in \mathcal{P}, [x,y] \subseteq I\}$$

- In the preceding example, $\mathbb R$ can be replaced by any totally ordered set
- Let $\Sigma_i \subset \mathcal{C}_i$ be a family of collections of morphisms, then

$$\prod_i \Sigma_i$$
 is a swi of $\prod_i \mathcal{C}_i$ iff each Σ_i is a swi of \mathcal{C}_i

- The inverse image (resp. the direct image) of a system of weak isomorphisms by an equivalence of categories is a system of weak isomorphisms.

Pureness

Pureness

- A collection Σ of morphisms is said to be pure when

$$\gamma \circ \delta \in \Sigma \Rightarrow \gamma, \delta \in \Sigma$$

Pureness

- A collection Σ of morphisms is said to be pure when

$$\gamma \circ \delta \in \Sigma \ \Rightarrow \ \gamma, \delta \in \Sigma$$

- Given a one-way category ${\mathcal C}$ we have:

All the systems of weak isomorphisms of $\ensuremath{\mathcal{C}}$ are pure

$$\times \wedge \left(\bigvee_{i} y_{i}\right) = \bigvee_{i} (\times \wedge y_{i})$$

- A locale is a complete lattice whose binary meet distributes over arbitrary join i.e.

$$\times \wedge \left(\bigvee_{i} y_{i}\right) = \bigvee_{i} (\times \wedge y_{i})$$

- The collection ΩX open subsets of a topological space X form a locale and we have the functor $L: \mathcal{T}\!\mathit{op} \to \mathcal{L}\!\mathit{oc}$ (that admits a left adjoint) defined by

$$\times \wedge \left(\bigvee_{i} y_{i}\right) = \bigvee_{i} (\times \wedge y_{i})$$

- The collection ΩX open subsets of a topological space X form a locale and we have the functor $L: \mathcal{T}\!\mathit{op} \to \mathcal{L}\!\mathit{oc}$ (that admits a left adjoint) defined by
 - $L(X) = \Omega X$

$$\times \wedge \left(\bigvee_{i} y_{i}\right) = \bigvee_{i} (\times \wedge y_{i})$$

- The collection ΩX open subsets of a topological space X form a locale and we have the functor $L: \mathcal{T}\!\mathit{op} \to \mathcal{L}\!\mathit{oc}$ (that admits a left adjoint) defined by
 - $L(X) = \Omega X$
 - $L(f)(W) = f^{-1}(W)$ for all $f: X \to Y$ and $W \in \Omega Y$

$$\times \wedge \left(\bigvee_{i} y_{i}\right) = \bigvee_{i} (\times \wedge y_{i})$$

- The collection ΩX open subsets of a topological space X form a locale and we have the functor $L: \mathcal{T}op \to \mathcal{L}oc$ (that admits a left adjoint) defined by
 - $L(X) = \Omega X$
 - $L(f)(W) = f^{-1}(W)$ for all $f: X \to Y$ and $W \in \Omega Y$
- The collection of systems of weak isomorphisms of a category has a greatest element

$$x \wedge \left(\bigvee_{i} y_{i}\right) = \bigvee_{i} (x \wedge y_{i})$$

- The collection ΩX open subsets of a topological space X form a locale and we have the functor $L: \mathcal{T}op \to \mathcal{L}oc$ (that admits a left adjoint) defined by
 - $L(X) = \Omega X$
 - $L(f)(W) = f^{-1}(W)$ for all $f: X \to Y$ and $W \in \Omega Y$
- The collection of systems of weak isomorphisms of a category has a greatest element
- Given a one-way category $\ensuremath{\mathcal{C}}$ we have:

$$x \wedge \left(\bigvee_{i} y_{i}\right) = \bigvee_{i} (x \wedge y_{i})$$

- The collection ΩX open subsets of a topological space X form a locale and we have the functor $L: Top \to Loc$ (that admits a left adjoint) defined by
 - $L(X) = \Omega X$
 - $L(f)(W) = f^{-1}(W)$ for all $f: X \to Y$ and $W \in \Omega Y$
 - The collection of systems of weak isomorphisms of a category has a greatest element
- Given a one-way category $\mathcal C$ we have:
 - The collection of systems of weak isomorphisms of $\mathcal C$ forms a locale

$$x \wedge \left(\bigvee_{i} y_{i}\right) = \bigvee_{i} (x \wedge y_{i})$$

- The collection ΩX open subsets of a topological space X form a locale and we have the functor $L: Top \to Loc$ (that admits a left adjoint) defined by
 - $L(X) = \Omega X$
 - $L(f)(W) = f^{-1}(W)$ for all $f: X \to Y$ and $W \in \Omega Y$
 - The collection of systems of weak isomorphisms of a category has a greatest element
- Given a one-way category $\mathcal C$ we have:
 - The collection of systems of weak isomorphisms of ${\mathcal C}$ forms a locale
 - The greatest swi is invariant under the action of Aut(C)

- From now on ${\mathcal C}$ is a one-way category and Σ is a system of weak isomorphisms on it

- From now on ${\mathcal C}$ is a one-way category and Σ is a system of weak isomorphisms on it
- Recall that if C(x,y) meets Σ , then C(x,y) is a singleton, a fact that we represent on diagrams by: $x \xrightarrow{\Sigma} y$

- From now on ${\mathcal C}$ is a one-way category and Σ is a system of weak isomorphisms on it
- Recall that if C(x,y) meets Σ , then C(x,y) is a singleton, a fact that we represent on diagrams by: $x \xrightarrow{\Sigma} y$
- Given two objects x and y of C t.f.a.e.:

- From now on ${\mathcal C}$ is a one-way category and Σ is a system of weak isomorphisms on it
- Recall that if C(x,y) meets Σ , then C(x,y) is a singleton, a fact that we represent on diagrams by: $x \xrightarrow{\Sigma} y$
- Given two objects x and y of C t.f.a.e.:
 - there exists a Σ -zigzag between x and y

- From now on $\mathcal C$ is a one-way category and Σ is a system of weak isomorphisms on it
- Recall that if C(x,y) meets Σ , then C(x,y) is a singleton, a fact that we represent on diagrams by: $x \xrightarrow{\Sigma} y$
- Given two objects x and y of C t.f.a.e.:
 - there exists a Σ -zigzag between x and y
 - there exists z such that $x \stackrel{\Sigma}{\lessdot} z \stackrel{\Sigma}{\longrightarrow} y$

- From now on ${\mathcal C}$ is a one-way category and Σ is a system of weak isomorphisms on it
- Recall that if C(x,y) meets Σ , then C(x,y) is a singleton, a fact that we represent on diagrams by: $x \xrightarrow{\Sigma} y$
- Given two objects x and y of C t.f.a.e.:
 - there exists a Σ -zigzag between x and y
 - there exists z such that $x \stackrel{\Sigma}{\lessdot} z \stackrel{\Sigma}{\longrightarrow} y$
 - there exists z such that $x \xrightarrow{\Sigma} z \xleftarrow{\Sigma} y$

- From now on ${\mathcal C}$ is a one-way category and Σ is a system of weak isomorphisms on it
- Recall that if C(x,y) meets Σ , then C(x,y) is a singleton, a fact that we represent on diagrams by: $x \xrightarrow{\Sigma} y$
- Given two objects x and y of C t.f.a.e.:
 - there exists a Σ -zigzag between x and y
 - there exists z such that $x \stackrel{\Sigma}{\longleftarrow} z \stackrel{\Sigma}{\longrightarrow} y$
 - there exists z such that $x \xrightarrow{\Sigma} z \xleftarrow{\Sigma} y$
- When any of the following property is satisfied x and y are said to be Σ -connected

- From now on ${\mathcal C}$ is a one-way category and Σ is a system of weak isomorphisms on it
- Recall that if C(x,y) meets Σ , then C(x,y) is a singleton, a fact that we represent on diagrams by: $x \xrightarrow{\Sigma} y$
- Given two objects x and y of C t.f.a.e.:
 - there exists a Σ -zigzag between x and y
 - there exists z such that $x \stackrel{\Sigma}{\longleftarrow} z \stackrel{\Sigma}{\longrightarrow} y$
 - there exists z such that $x \xrightarrow{\Sigma} z \xleftarrow{\Sigma} y$
- When any of the following property is satisfied x and y are said to be Σ -connected
- Σ -connectedness is an equivalence relation on the objects of ${\mathcal C}$

- From now on ${\mathcal C}$ is a one-way category and Σ is a system of weak isomorphisms on it
- Recall that if C(x,y) meets Σ , then C(x,y) is a singleton, a fact that we represent on diagrams by: $x \xrightarrow{\Sigma} y$
- Given two objects x and y of C t.f.a.e.:
 - there exists a Σ -zigzag between x and y
 - there exists z such that $x \stackrel{\Sigma}{\lessdot} z \stackrel{\Sigma}{\longrightarrow} y$
 - there exists z such that $x \xrightarrow{\Sigma} z \xleftarrow{\Sigma} y$
- When any of the following property is satisfied x and y are said to be Σ -connected
- Σ -connectedness is an equivalence relation on the objects of ${\mathcal C}$
- The equivalence classes are called a Σ -components

 Σ system of weak isomorphisms of ${\mathcal C}$ one-way category

 Σ system of weak isomorphisms of ${\mathcal C}$ one-way category

A prelattice is a preordered set in which $x \wedge y$ and $x \vee y$ exist for all x and y. However they are defined only up to isomorphism

 Σ system of weak isomorphisms of ${\mathcal C}$ one-way category

A prelattice is a preordered set in which $x \wedge y$ and $x \vee y$ exist for all x and y. However they are defined only up to isomorphism

Let K be a Σ -component of $\mathcal C$ and $\mathcal K$ be the full subcategory of $\mathcal C$ whose objects are the elements of K. The following properties are satisfied:

 Σ system of weak isomorphisms of ${\mathcal C}$ one-way category

A prelattice is a preordered set in which $x \wedge y$ and $x \vee y$ exist for all x and y. However they are defined only up to isomorphism

Let K be a Σ -component of C and K be the full subcategory of C whose objects are the elements of K. The following properties are satisfied:

1. The category \mathcal{K} is isomorphic with the preorder (K, \preccurlyeq) where $x \preccurlyeq y$ stands for $\mathcal{C}[x, y] \neq \emptyset$. In particular, every diagram in \mathcal{K} commutes.

 Σ system of weak isomorphisms of ${\mathcal C}$ one-way category

A prelattice is a preordered set in which $x \wedge y$ and $x \vee y$ exist for all x and y. However they are defined only up to isomorphism

Let K be a Σ -component of C and K be the full subcategory of C whose objects are the elements of K. The following properties are satisfied:

- 1. The category \mathcal{K} is isomorphic with the preorder (K, \preccurlyeq) where $x \preccurlyeq y$ stands for $\mathcal{C}[x, y] \neq \emptyset$. In particular, every diagram in \mathcal{K} commutes.
- 2. The preordered set (K, \leq) is a prelattice.

 Σ system of weak isomorphisms of ${\mathcal C}$ one-way category

A prelattice is a preordered set in which $x \wedge y$ and $x \vee y$ exist for all x and y. However they are defined only up to isomorphism

Let K be a Σ -component of C and K be the full subcategory of C whose objects are the elements of K. The following properties are satisfied:

- 1. The category \mathcal{K} is isomorphic with the preorder (K, \preccurlyeq) where $x \preccurlyeq y$ stands for $\mathcal{C}[x, y] \neq \emptyset$. In particular, every diagram in \mathcal{K} commutes.
- 2. The preordered set (K, \preceq) is a prelattice.
- 3. If d and u are respectively a greatest lower bound and a least upper bound of the pair $\{x,y\}$, then Diagram 1 is both a pullback and a pushout in C, and all the arrows apprearing on the diagram belong to Σ .



 Σ system of weak isomorphisms of ${\mathcal C}$ one-way category

A prelattice is a preordered set in which $x \wedge y$ and $x \vee y$ exist for all x and y. However they are defined only up to isomorphism

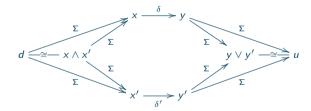
Let K be a Σ -component of C and K be the full subcategory of C whose objects are the elements of K. The following properties are satisfied:

- 1. The category \mathcal{K} is isomorphic with the preorder (K, \preccurlyeq) where $x \preccurlyeq y$ stands for $\mathcal{C}[x, y] \neq \emptyset$. In particular, every diagram in \mathcal{K} commutes.
- 2. The preordered set (K, \preceq) is a prelattice.
- 3. If d and u are respectively a greatest lower bound and a least upper bound of the pair $\{x, y\}$, then Diagram 1 is both a pullback and a pushout in C, and all the arrows apprearing on the diagram belong to Σ .
- 4. C = K iff C is a prelattice, and Σ is the greatest system of weak isomorphisms of C i.e. all the morphisms in this case.

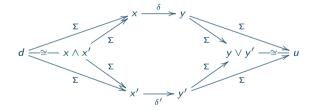
- Let $\delta \in \mathcal{C}(x,y)$ and $\delta' \in \mathcal{C}(x',y')$. Then write $\delta \sim \delta'$ when

```
- Let \delta \in \mathcal{C}(x,y) and \delta' \in \mathcal{C}(x',y'). Then write \delta \sim \delta' when - x \sim x' and y \sim y', and
```

- Let $\delta \in \mathcal{C}(x,y)$ and $\delta' \in \mathcal{C}(x',y')$. Then write $\delta \sim \delta'$ when
 - $x \sim x'$ and $y \sim y'$, and
 - the inner hexagon of the next diagram commutes

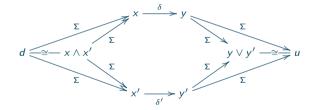


- Let $\delta \in \mathcal{C}(x,y)$ and $\delta' \in \mathcal{C}(x',y')$. Then write $\delta \sim \delta'$ when
 - $x \sim x'$ and $y \sim y'$, and
 - the inner hexagon of the next diagram commutes



- Note that if $d \cong x \wedge x'$ and $u \cong y \vee y'$ then the outter hexagon also commutes, hence the relation \sim is well defined.

- Let $\delta \in \mathcal{C}(x,y)$ and $\delta' \in \mathcal{C}(x',y')$. Then write $\delta \sim \delta'$ when
 - $x \sim x'$ and $y \sim y'$, and
 - the inner hexagon of the next diagram commutes



- Note that if $d \cong x \wedge x'$ and $u \cong y \vee y'$ then the outter hexagon also commutes, hence the relation \sim is well defined.
- If $\gamma \sim \delta$ then $\partial^{\scriptscriptstyle -} \gamma \sim \partial^{\scriptscriptstyle -} \delta$ and $\partial^{\scriptscriptstyle +} \gamma \sim \partial^{\scriptscriptstyle +} \delta$

The relation \sim is an equivalence

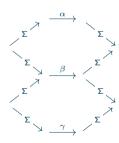
- The relation \sim is:

- The relation \sim is:
 - reflexive since Σ contains all identities

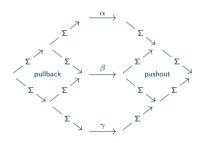
- The relation \sim is:
 - reflexive since Σ contains all identities
 - symmetric by definition

- The relation \sim is:
 - reflexive since Σ contains all identities
 - symmetric by definition
 - transitive

- The relation \sim is:
 - reflexive since Σ contains all identities
 - symmetric by definition
 - transitive



- The relation \sim is:
 - reflexive since Σ contains all identities
 - symmetric by definition
 - transitive



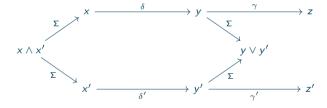
- Suppose $\partial^{\scriptscriptstyle -}\gamma=\partial^{\scriptscriptstyle +}\delta$, $\partial^{\scriptscriptstyle -}\gamma'=\partial^{\scriptscriptstyle +}\delta'$ and $\gamma\sim\gamma'$ and $\delta\sim\delta'$.

- Suppose $\partial^{\scriptscriptstyle \perp} \gamma = \partial^{\scriptscriptstyle +} \delta$, $\partial^{\scriptscriptstyle \perp} \gamma' = \partial^{\scriptscriptstyle +} \delta'$ and $\gamma \sim \gamma'$ and $\delta \sim \delta'$.
- Then we have $\gamma \circ \delta \sim \gamma' \circ \delta'$

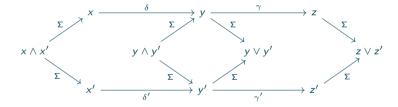
$$x \xrightarrow{\delta} y \xrightarrow{\gamma} z$$

$$x' \xrightarrow{\delta'} y' \xrightarrow{\gamma'} z'$$

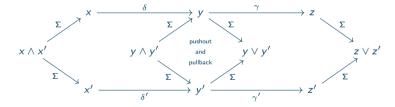
- Suppose $\partial^{\scriptscriptstyle \perp} \gamma = \partial^{\scriptscriptstyle +} \delta$, $\partial^{\scriptscriptstyle \perp} \gamma' = \partial^{\scriptscriptstyle +} \delta'$ and $\gamma \sim \gamma'$ and $\delta \sim \delta'$.
- Then we have $\gamma \circ \delta \sim \gamma' \circ \delta'$



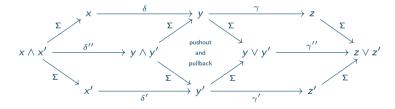
- Suppose $\partial^{\text{-}}\gamma = \partial^{\text{+}}\delta$, $\partial^{\text{-}}\gamma' = \partial^{\text{+}}\delta'$ and $\gamma \sim \gamma'$ and $\delta \sim \delta'$.
- Then we have $\gamma \circ \delta \sim \gamma' \circ \delta'$



- Suppose $\partial^{\scriptscriptstyle \perp} \gamma = \partial^{\scriptscriptstyle +} \delta$, $\partial^{\scriptscriptstyle \perp} \gamma' = \partial^{\scriptscriptstyle +} \delta'$ and $\gamma \sim \gamma'$ and $\delta \sim \delta'$.
- Then we have $\gamma \circ \delta \sim \gamma' \circ \delta'$



- Suppose $\partial^{\scriptscriptstyle \perp} \gamma = \partial^{\scriptscriptstyle +} \delta$, $\partial^{\scriptscriptstyle \perp} \gamma' = \partial^{\scriptscriptstyle +} \delta'$ and $\gamma \sim \gamma'$ and $\delta \sim \delta'$.
- Then we have $\gamma \circ \delta \sim \gamma' \circ \delta'$



- The quotient category \mathcal{C}/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:

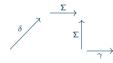
- The quotient category \mathcal{C}/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:
 - The objects are the Σ -components

- The quotient category \mathcal{C}/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:
 - The objects are the Σ -components
 - The morphisms are the \sim -equivalence classes

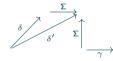
- The quotient category \mathcal{C}/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:
 - The objects are the Σ -components
 - The morphisms are the \sim -equivalence classes
- If $\partial^{\scriptscriptstyle +}\gamma\sim\partial^{\scriptscriptstyle +}\delta$ then

- The quotient category \mathcal{C}/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:
 - The objects are the Σ -components
 - The morphisms are the \sim -equivalence classes
- If $\partial^{\scriptscriptstyle +}\gamma\sim\partial^{\scriptscriptstyle +}\delta$ then
 - there exists γ' and δ' such that $\gamma'\sim\gamma$, $\delta'\sim\delta$, and $\partial^{\scriptscriptstyle +}\gamma'=\partial^{\scriptscriptstyle +}\delta'$

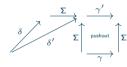
- The quotient category \mathcal{C}/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:
 - The objects are the Σ -components
 - The morphisms are the \sim -equivalence classes
- If $\partial^{\scriptscriptstyle +}\gamma\sim\partial^{\scriptscriptstyle +}\delta$ then
 - there exists γ' and δ' such that $\gamma' \sim \gamma$, $\delta' \sim \delta$, and $\partial^{\scriptscriptstyle -} \gamma' = \partial^{\scriptscriptstyle +} \delta'$



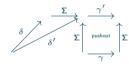
- The quotient category \mathcal{C}/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:
 - The objects are the Σ -components
 - The morphisms are the \sim -equivalence classes
- If $\partial^{\scriptscriptstyle +}\gamma\sim\partial^{\scriptscriptstyle +}\delta$ then
 - there exists γ' and δ' such that $\gamma' \sim \gamma$, $\delta' \sim \delta$, and $\partial^{\scriptscriptstyle -} \gamma' = \partial^{\scriptscriptstyle +} \delta'$



- The quotient category \mathcal{C}/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:
 - The objects are the Σ -components
 - The morphisms are the \sim -equivalence classes
- If $\partial^{\scriptscriptstyle +} \gamma \sim \partial^{\scriptscriptstyle +} \delta$ then
 - there exists γ' and δ' such that $\gamma'\sim\gamma$, $\delta'\sim\delta$, and $\partial^{\cdot}\gamma'=\partial^{\scriptscriptstyle{+}}\delta'$

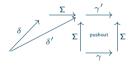


- The quotient category \mathcal{C}/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:
 - The objects are the Σ -components
 - The morphisms are the \sim -equivalence classes
- If $\partial^{\scriptscriptstyle +}\gamma\sim\partial^{\scriptscriptstyle +}\delta$ then
 - there exists γ' and δ' such that $\gamma'\sim\gamma$, $\delta'\sim\delta$, and $\partial^{\cdot}\gamma'=\partial^{\scriptscriptstyle{+}}\delta'$



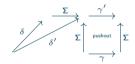
- so we define $[\gamma] \circ [\delta] = [\gamma' \circ \delta']$

- The quotient category \mathcal{C}/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:
 - The objects are the Σ -components
 - The morphisms are the \sim -equivalence classes
- If $\partial^{\scriptscriptstyle +}\gamma\sim\partial^{\scriptscriptstyle +}\delta$ then
 - there exists γ' and δ' such that $\gamma'\sim\gamma$, $\delta'\sim\delta$, and $\partial^{\scriptscriptstyle au}\gamma'=\partial^{\scriptscriptstyle +}\delta'$

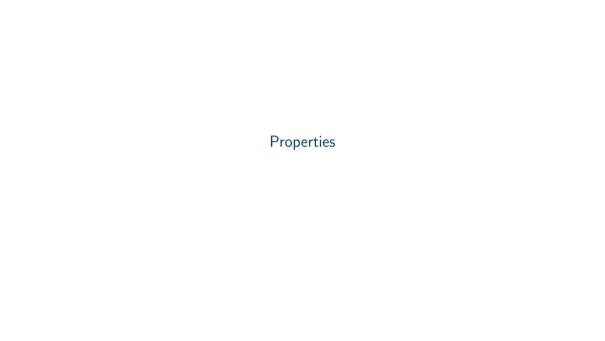


- so we define $[\gamma] \circ [\delta] = [\gamma' \circ \delta']$
- We have the quotient functor $Q:\mathcal{C} o\mathcal{C}/\Sigma$

- The quotient category \mathcal{C}/Σ (obtained by turning each morphism of Σ into an identity) can be defined as follows:
 - The objects are the Σ -components
 - The morphisms are the \sim -equivalence classes
- If $\partial^{\scriptscriptstyle +}\gamma\sim\partial^{\scriptscriptstyle +}\delta$ then
 - there exists γ' and δ' such that $\gamma'\sim\gamma$, $\delta'\sim\delta$, and $\partial^{\scriptscriptstyle au}\gamma'=\partial^{\scriptscriptstyle +}\delta'$



- so we define $[\gamma] \circ [\delta] = [\gamma' \circ \delta']$
- We have the quotient functor $Q:\mathcal{C} o\mathcal{C}/\Sigma$
- The category of components is \mathcal{C}/Σ with Σ being the greatest swi of \mathcal{C}



For any morphism δ of ${\mathcal C}$ t.f.a.e.

- $\delta \in \Sigma$

For any morphism δ of ${\mathcal C}$ t.f.a.e.

- $\delta \in \Sigma$
- $[\delta] \subseteq \Sigma$

For any morphism δ of ${\mathcal C}$ t.f.a.e.

- $\delta \in \Sigma$
- $[\delta] \subseteq \Sigma$
- $[\delta]$ is an identity of \mathcal{C}/Σ

For any morphism δ of $\mathcal C$ t.f.a.e.

- $\delta \in \Sigma$
- $[\delta] \subseteq \Sigma$
- $[\delta]$ is an identity of \mathcal{C}/Σ

The quotient functor $Q:\mathcal{C}\to\mathcal{C}/\Sigma$ satisfies the following universal property:

For any morphism δ of $\mathcal C$ t.f.a.e.

- $\delta \in \Sigma$
- $[\delta] \subseteq \Sigma$
- $[\delta]$ is an identity of \mathcal{C}/Σ

The quotient functor $Q: \mathcal{C} \to \mathcal{C}/\Sigma$ satisfies the following universal property: for all functors $F: \mathcal{C} \to \mathcal{D}$ s.t. $F(\Sigma) \subseteq \{\text{identities of } \mathcal{D}\}$

For any morphism δ of $\mathcal C$ t.f.a.e.

- $\delta \in \Sigma$
- $[\delta] \subseteq \Sigma$
- $[\delta]$ is an identity of \mathcal{C}/Σ

The quotient functor $Q:\mathcal{C}\to\mathcal{C}/\Sigma$ satisfies the following universal property: for all functors $F:\mathcal{C}\to\mathcal{D}$ s.t. $F(\Sigma)\subseteq\{\text{identities of }\mathcal{D}\}$ there exists a unique $G:\mathcal{C}/\Sigma\to\mathcal{D}$ s.t. $F=G\circ Q$

The fundamental properties of \mathcal{C}/Σ

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

The fundamental properties of \mathcal{C}/Σ

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- The quotient functor $Q:\mathcal{C} o \mathcal{C}/\Sigma$ is surjective on morphisms

The fundamental properties of \mathcal{C}/Σ

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- The quotient functor $Q:\mathcal{C} o \mathcal{C}/\Sigma$ is surjective on morphisms
- The quotient category \mathcal{C}/Σ is loop-free

- The quotient functor $Q: \mathcal{C} \to \mathcal{C}/\Sigma$ is surjective on morphisms
- The quotient category \mathcal{C}/Σ is loop-free
- If $C(x, y) \neq \emptyset$ then the following map is a bijection.

$$\delta \in \mathcal{C}(x, y) \mapsto Q(\delta) \in \mathcal{C}/\Sigma(Q(x), Q(y))$$

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- The quotient functor $Q: \mathcal{C} \to \mathcal{C}/\Sigma$ is surjective on morphisms
- The quotient category \mathcal{C}/Σ is loop-free
- If $C(x, y) \neq \emptyset$ then the following map is a bijection.

$$\delta \in \mathcal{C}(x,y) \mapsto Q(\delta) \in \mathcal{C}/\Sigma(Q(x),Q(y))$$

- If $\mathcal{C}/\Sigmaig(Q(x),Q(y)ig)
eq \emptyset$ then there exist x' and y' such that $\Sigma(x',x)$, $\Sigma(y,y')$, $\mathcal{C}(x',y)$, and $\mathcal{C}(x,y')$ are nonempty.

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- The quotient functor $Q: \mathcal{C} \to \mathcal{C}/\Sigma$ is surjective on morphisms
- The quotient category \mathcal{C}/Σ is loop-free
- If $C(x, y) \neq \emptyset$ then the following map is a bijection.

$$\delta \in \mathcal{C}(x,y) \mapsto Q(\delta) \in \mathcal{C}/\Sigma(Q(x),Q(y))$$

- If $\mathcal{C}/\Sigmaig(Q(x),Q(y)ig)
eq \emptyset$ then there exist x' and y' such that $\Sigma(x',x)$, $\Sigma(y,y')$, $\mathcal{C}(x',y)$, and $\mathcal{C}(x,y')$ are nonempty.

X

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- The quotient functor $Q: \mathcal{C} \to \mathcal{C}/\Sigma$ is surjective on morphisms
- The quotient category \mathcal{C}/Σ is loop-free
- If $C(x, y) \neq \emptyset$ then the following map is a bijection.

$$\delta \in \mathcal{C}(x, y) \mapsto Q(\delta) \in \mathcal{C}/\Sigma(Q(x), Q(y))$$

- If $\mathcal{C}/\Sigmaig(Q(x),Q(y)ig)
eq \emptyset$ then there exist x' and y' such that $\Sigma(x',x)$, $\Sigma(y,y')$, $\mathcal{C}(x',y)$, and $\mathcal{C}(x,y')$ are nonempty.

$$\begin{array}{c}
x \\
\Sigma \\
x \land a \xrightarrow{\Sigma} a \xrightarrow{\alpha} b \xrightarrow{\Sigma} y \lor b \\
\downarrow \Sigma \\
y
\end{array}$$

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- The quotient functor $Q: \mathcal{C} \to \mathcal{C}/\Sigma$ is surjective on morphisms
- The quotient category \mathcal{C}/Σ is loop-free
- If $C(x, y) \neq \emptyset$ then the following map is a bijection.

$$\delta \in \mathcal{C}(x, y) \mapsto Q(\delta) \in \mathcal{C}/\Sigma(Q(x), Q(y))$$

- If $\mathcal{C}/\Sigmaig(Q(x),Q(y)ig)
eq \emptyset$ then there exist x' and y' such that $\Sigma(x',x)$, $\Sigma(y,y')$, $\mathcal{C}(x',y)$, and $\mathcal{C}(x,y')$ are nonempty.

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- The quotient functor $Q:\mathcal{C}\to\mathcal{C}/\Sigma$ is surjective on morphisms
- The quotient category \mathcal{C}/Σ is loop-free
- If $C(x,y) \neq \emptyset$ then the following map is a bijection.

$$\delta \in \mathcal{C}(x,y) \mapsto Q(\delta) \in \mathcal{C}/\Sigma(Q(x),Q(y))$$

- If $\mathcal{C}/\Sigmaig(Q(x),Q(y)ig)
eq \emptyset$ then there exist x' and y' such that $\Sigma(x',x)$, $\Sigma(y,y')$, $\mathcal{C}(x',y)$, and $\mathcal{C}(x,y')$ are nonempty.

- The quotient functor ${\it Q}$ preserves and reflects potential weak isomorphisms

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- The quotient functor $Q:\mathcal{C}\to\mathcal{C}/\Sigma$ is surjective on morphisms
- The quotient category \mathcal{C}/Σ is loop-free
- If $C(x, y) \neq \emptyset$ then the following map is a bijection.

$$\delta \in \mathcal{C}(x,y) \mapsto Q(\delta) \in \mathcal{C}/\Sigma(Q(x),Q(y))$$

- If $\mathcal{C}/\Sigmaig(Q(x),Q(y)ig)
eq \emptyset$ then there exist x' and y' such that $\Sigma(x',x)$, $\Sigma(y,y')$, $\mathcal{C}(x',y)$, and $\mathcal{C}(x,y')$ are nonempty.

- The quotient functor Q preserves and reflects potential weak isomorphisms
- If C is finite then so is the quotient C/Σ

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- The quotient functor $Q:\mathcal{C}\to\mathcal{C}/\Sigma$ is surjective on morphisms
- The quotient category \mathcal{C}/Σ is loop-free
- If $C(x, y) \neq \emptyset$ then the following map is a bijection.

$$\delta \in \mathcal{C}(x,y) \mapsto Q(\delta) \in \mathcal{C}/\Sigma(Q(x),Q(y))$$

- If $\mathcal{C}/\Sigmaig(Q(x),Q(y)ig)
eq \emptyset$ then there exist x' and y' such that $\Sigma(x',x)$, $\Sigma(y,y')$, $\mathcal{C}(x',y)$, and $\mathcal{C}(x,y')$ are nonempty.

- The quotient functor Q preserves and reflects potential weak isomorphisms
- If C is finite then so is the quotient C/Σ
- C is a preorder iff C/Σ is a poset

Describing the localization of ${\mathcal C}$ by Σ

Describing the localization of ${\mathcal C}$ by Σ

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- The objects of $\mathcal{C}[\Sigma^{-1}]$ are the objects of \mathcal{C}

Describing the localization of C by Σ

- The objects of $\mathcal{C}[\Sigma^{-1}]$ are the objects of \mathcal{C}
- The morphisms are the equivalence classes of ordered pairs of coinitial morphisms (γ, σ) with $\sigma \in \Sigma$,

Describing the localization of C by Σ

- The objects of $\mathcal{C}[\Sigma^{-1}]$ are the objects of \mathcal{C}
- The morphisms are the equivalence classes of ordered pairs of coinitial morphisms (γ, σ) with $\sigma \in \Sigma$,
 - Two pairs (γ, σ) and (γ', σ') being equivalent when $\partial^+\sigma = \partial^+\sigma'$, $\partial^+\gamma = \partial^+\gamma'$, and $Q(\gamma) = Q(\gamma')$

Describing the localization of C by Σ

- The objects of $\mathcal{C}[\Sigma^{-1}]$ are the objects of \mathcal{C}
- The morphisms are the equivalence classes of ordered pairs of coinitial morphisms (γ, σ) with $\sigma \in \Sigma$,
 - Two pairs (γ, σ) and (γ', σ') being equivalent when $\partial^{\scriptscriptstyle +} \sigma = \partial^{\scriptscriptstyle +} \sigma'$, $\partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle +} \gamma'$, and $Q(\gamma) = Q(\gamma')$
 - In the diagram below we have $Q(\gamma' \circ \gamma'') = Q(\gamma') \circ Q(\gamma'') = Q(\gamma') \circ Q(\gamma)$ hence the composite $(\gamma' \circ \gamma'', \sigma \circ \sigma'')$ neither depend on the choice of the pullback nor on the representatives (γ, σ) and (γ', σ') .

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- Define I by $I(\gamma) := (\gamma, \mathrm{id}_{\partial^- \gamma})$ and the identity on objects

- Define I by $I(\gamma) := (\gamma, \mathrm{id}_{\partial^- \gamma})$ and the identity on objects
- Given a functor $F:\mathcal{C}\to\mathcal{D}$ s.t. $F(\Sigma)\subseteq\{\text{isomorphisms of }\mathcal{D}\}$ define

- Define I by $I(\gamma) := (\gamma, \mathrm{id}_{\partial^+ \gamma})$ and the identity on objects
- Given a functor $F: \mathcal{C} \to \mathcal{D}$ s.t. $F(\Sigma) \subseteq \{\text{isomorphisms of } \mathcal{D}\}$ define
 - G(x) := F(x) for all objects x of $\mathcal{C}[\Sigma^{-1}]$ and

- Define I by $I(\gamma) := (\gamma, \mathrm{id}_{\partial^- \gamma})$ and the identity on objects
- Given a functor $F: \mathcal{C} \to \mathcal{D}$ s.t. $F(\Sigma) \subseteq \{\text{isomorphisms of } \mathcal{D}\}$ define
 - G(x) := F(x) for all objects x of $\mathcal{C}[\Sigma^{-1}]$ and
 - $G(\gamma, \sigma) := F(\gamma) \circ (F(\sigma))^{-1}$ for any representative (γ, σ) of a morphism of $\mathcal{C}[\Sigma^{-1}]$

- Define I by $I(\gamma) := (\gamma, \operatorname{id}_{\partial^- \gamma})$ and the identity on objects
- Given a functor $F: \mathcal{C} \to \mathcal{D}$ s.t. $F(\Sigma) \subseteq \{\text{isomorphisms of } \mathcal{D}\}$ define
 - G(x) := F(x) for all objects x of $C[\Sigma^{-1}]$ and
 - $G(\gamma, \sigma) := F(\gamma) \circ (F(\sigma))^{-1}$ for any representative (γ, σ) of a morphism of $\mathcal{C}[\Sigma^{-1}]$
- The functor $I: \mathcal{C} \to \mathcal{C}[\Sigma^{-1}]$ then satisfies the universal property: for all functors $F: \mathcal{C} \to \mathcal{D}$ there exists a unique $G: \mathcal{C} \to \mathcal{C}[\Sigma^{-1}]$ s.t. $F = G \circ I$

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- Define I by $I(\gamma) := (\gamma, \mathrm{id}_{\partial^- \gamma})$ and the identity on objects
- Given a functor $F: \mathcal{C} \to \mathcal{D}$ s.t. $F(\Sigma) \subseteq \{\text{isomorphisms of } \mathcal{D}\}$ define
 - G(x) := F(x) for all objects x of $\mathcal{C}[\Sigma^{-1}]$ and
 - $G(\gamma, \sigma) := F(\gamma) \circ (F(\sigma))^{-1}$ for any representative (γ, σ) of a morphism of $\mathcal{C}[\Sigma^{-1}]$
- The functor $I: \mathcal{C} \to \mathcal{C}[\Sigma^{-1}]$ then satisfies the universal property: for all functors $F: \mathcal{C} \to \mathcal{D}$ there exists a unique $G: \mathcal{C} \to \mathcal{C}[\Sigma^{-1}]$ s.t. $F = G \circ I$
- In particular there is a unique functor P s.t. $Q = P \circ I$ with $Q : \mathcal{C} \to \mathcal{C}/\Sigma$ and we have

The functor P is an equivalence of categories

with Σ being a system of weak isomorphisms of a one-way category ${\mathcal C}$

- Define I by $I(\gamma) := (\gamma, \mathrm{id}_{\partial^- \gamma})$ and the identity on objects
- Given a functor $F: \mathcal{C} \to \mathcal{D}$ s.t. $F(\Sigma) \subseteq \{\text{isomorphisms of } \mathcal{D}\}$ define
 - G(x) := F(x) for all objects x of $C[\Sigma^{-1}]$ and
 - $G(\gamma, \sigma) := F(\gamma) \circ (F(\sigma))^{-1}$ for any representative (γ, σ) of a morphism of $\mathcal{C}[\Sigma^{-1}]$
- The functor $I: \mathcal{C} \to \mathcal{C}[\Sigma^{-1}]$ then satisfies the universal property: for all functors $F: \mathcal{C} \to \mathcal{D}$ there exists a unique $G: \mathcal{C} \to \mathcal{C}[\Sigma^{-1}]$ s.t. $F = G \circ I$
- In particular there is a unique functor P s.t. $Q=P\circ I$ with $Q:\mathcal{C}\to\mathcal{C}/\Sigma$ and we have

The functor P is an equivalence of categories

- The skeleton of $\mathcal{C}[\Sigma^{-1}]$ is \mathcal{C}/Σ and $\mathcal{C}[\Sigma^{-1}]$ is one-way.

- Let $\phi: \Sigma$ -components of $\mathcal{C} \to \mathsf{Ob}(\mathcal{C})$ such that

- Let $\phi: \Sigma$ -components of $\mathcal{C} \to \mathsf{Ob}(\mathcal{C})$ such that
 - for all Σ -components K, K', if there exists $x \in K$ and $x' \in K'$ such that $\mathcal{C}(x, x') \neq \emptyset$, then $\mathcal{C}(\phi(K), \phi(K')) \neq \emptyset$

- Let $\phi: \Sigma$ -components of $\mathcal{C} \to \mathsf{Ob}(\mathcal{C})$ such that
 - for all Σ -components K, K', if there exists $x \in K$ and $x' \in K'$ such that $\mathcal{C}(x, x') \neq \emptyset$, then $\mathcal{C}(\phi(K), \phi(K')) \neq \emptyset$
 - in this case \mathcal{C}/Σ is isomorphic with the full subcategory of \mathcal{C} whose set of objects is $\operatorname{im}(\phi)$.

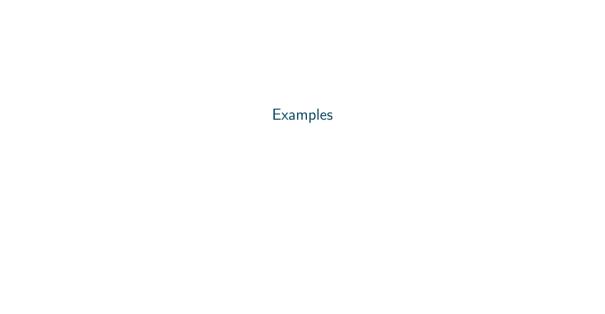
- Let $\phi: \Sigma$ -components of $\mathcal{C} \to \mathsf{Ob}(\mathcal{C})$ such that
 - for all Σ -components K, K', if there exists $x \in K$ and $x' \in K'$ such that $\mathcal{C}(x, x') \neq \emptyset$, then $\mathcal{C}(\phi(K), \phi(K')) \neq \emptyset$
 - in this case \mathcal{C}/Σ is isomorphic with the full subcategory of \mathcal{C} whose set of objects is $\operatorname{im}(\phi)$.
 - the mapping ϕ is called an admissible choice (of canonical objects)

- Let $\phi: \Sigma$ -components of $\mathcal{C} \to \mathsf{Ob}(\mathcal{C})$ such that
 - for all Σ -components K, K', if there exists $x \in K$ and $x' \in K'$ such that $\mathcal{C}(x, x') \neq \emptyset$, then $\mathcal{C}(\phi(K), \phi(K')) \neq \emptyset$
 - in this case \mathcal{C}/Σ is isomorphic with the full subcategory of \mathcal{C} whose set of objects is $\operatorname{im}(\phi)$.
 - the mapping ϕ is called an admissible choice (of canonical objects)
- Write $\phi \leq \phi'$ when $\mathcal{C}(\phi(K), \phi'(K)) \neq \emptyset$ for all Σ -components K

- Let $\phi: \Sigma$ -components of $\mathcal{C} \to \mathsf{Ob}(\mathcal{C})$ such that
 - for all Σ -components K, K', if there exists $x \in K$ and $x' \in K'$ such that $\mathcal{C}(x, x') \neq \emptyset$, then $\mathcal{C}(\phi(K), \phi(K')) \neq \emptyset$
 - in this case \mathcal{C}/Σ is isomorphic with the full subcategory of \mathcal{C} whose set of objects is $\operatorname{im}(\phi)$.
 - the mapping ϕ is called an admissible choice (of canonical objects)
- Write $\phi \preccurlyeq \phi'$ when $\mathcal{C}(\phi(K), \phi'(K)) \neq \emptyset$ for all Σ -components K
 - The collection of admissible choice then forms a (pre)lattice

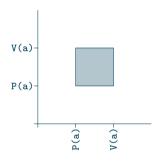
- Let $\phi: \Sigma$ -components of $\mathcal{C} \to \mathsf{Ob}(\mathcal{C})$ such that
 - for all Σ -components K, K', if there exists $x \in K$ and $x' \in K'$ such that $\mathcal{C}(x, x') \neq \emptyset$, then $\mathcal{C}(\phi(K), \phi(K')) \neq \emptyset$
 - in this case \mathcal{C}/Σ is isomorphic with the full subcategory of \mathcal{C} whose set of objects is $\operatorname{im}(\phi)$.
 - the mapping ϕ is called an admissible choice (of canonical objects)
- Write $\phi \preccurlyeq \phi'$ when $\mathcal{C}(\phi(K), \phi'(K)) \neq \emptyset$ for all Σ -components K
 - The collection of admissible choice then forms a (pre)lattice
 - If \mathcal{C}/Σ is finite then there exists an admissible choice

- Let $\phi: \Sigma$ -components of $\mathcal{C} \to \mathsf{Ob}(\mathcal{C})$ such that
 - for all Σ -components K, K', if there exists $x \in K$ and $x' \in K'$ such that $C(x, x') \neq \emptyset$, then $C(\phi(K), \phi(K')) \neq \emptyset$
 - in this case \mathcal{C}/Σ is isomorphic with the full subcategory of \mathcal{C} whose set of objects is $\operatorname{im}(\phi)$.
 - the mapping ϕ is called an admissible choice (of canonical objects)
- Write $\phi \leq \phi'$ when $\mathcal{C}(\phi(K), \phi'(K)) \neq \emptyset$ for all Σ -components K
 - The collection of admissible choice then forms a (pre)lattice
 - If \mathcal{C}/Σ is finite then there exists an admissible choice
 - If \mathcal{C}/Σ is infinite the existence of an admissible choice is a open question

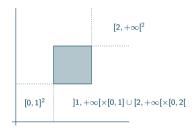


$$x=\mathbb{R}^2_+\backslash]0,1[^2$$

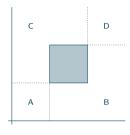
$$x=\mathbb{R}^2_+\backslash]0,1[^2$$



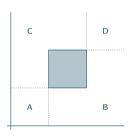
$$x=\mathbb{R}^2_+\backslash]0,1[^2$$



$$x=\mathbb{R}^2_+\backslash]0,1[^2$$



$$x=\mathbb{R}^2_+\backslash]0,1[^2$$

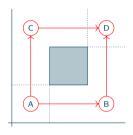


Let x, y such that $x \leq^2 y$, then $\overrightarrow{\pi_1}X(x,y)$ only depends on which elements of the partition x and y belong to

\rightarrow	A	В	C	D
Α	σ	β	γ	$\beta'\circ\beta$
				$\alpha' \circ \alpha$
В		σ		β'
С			σ	γ'
D				σ

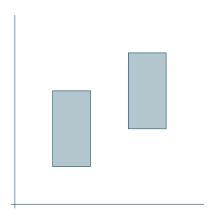
Plane without a square

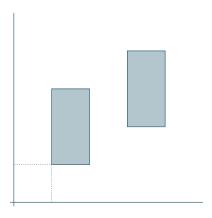
$$x = \mathbb{R}^2_+ \setminus]0, 1[^2$$

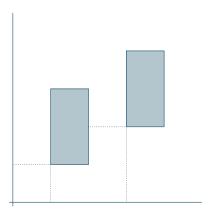


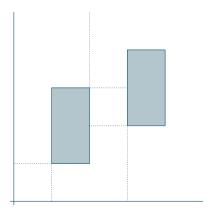
Let x, y such that $x \leq^2 y$, then $\overrightarrow{\pi_1}X(x,y)$ only depends on which elements of the partition x and y belong to

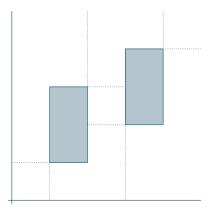
\rightarrow	Α	В	C	D
Α	σ	β	γ	$\beta' \circ \beta$ $\alpha' \circ \alpha$
				$\alpha' \circ \alpha$
В		σ		β'
С			σ	γ'
D				σ

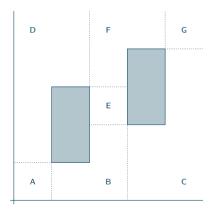


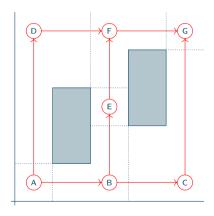


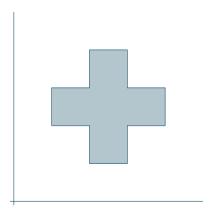


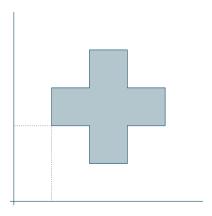


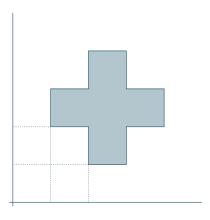


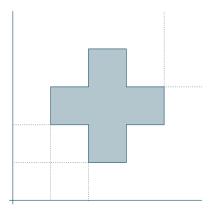


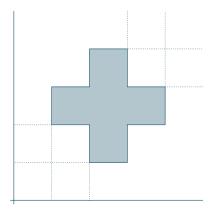


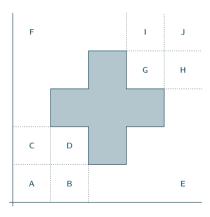


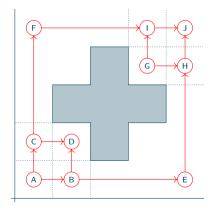


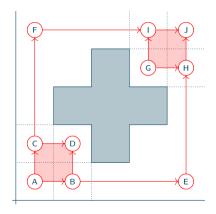


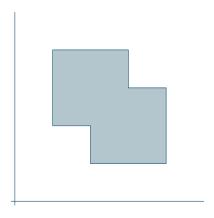


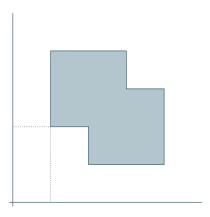


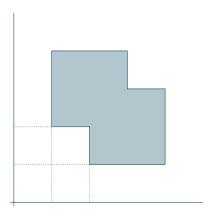


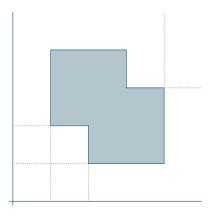


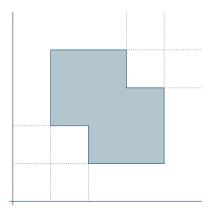


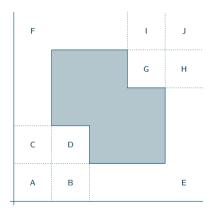


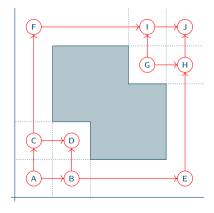


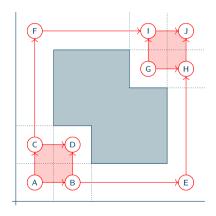


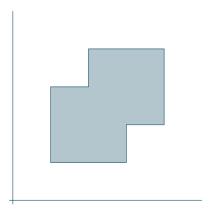


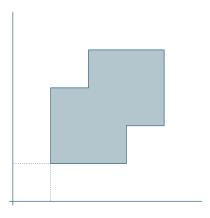


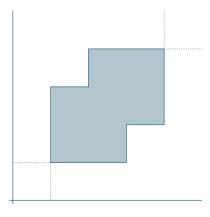


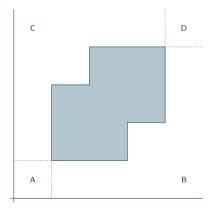


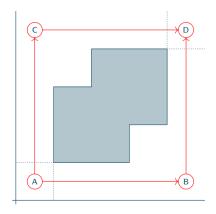










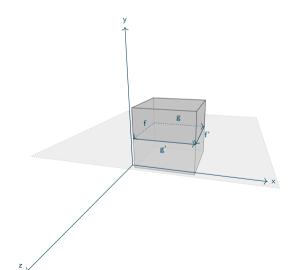


The floating cube

Non potential weak isomorphisms

The floating cube

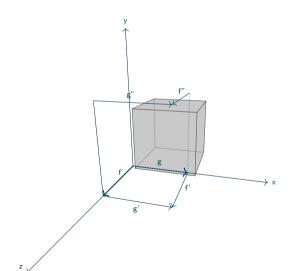
Non potential weak isomorphisms



The floating cube

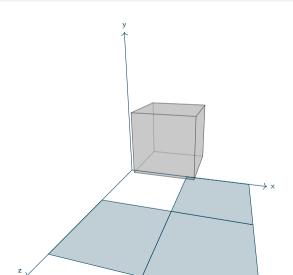
A "vee" that does not extend to a pushout

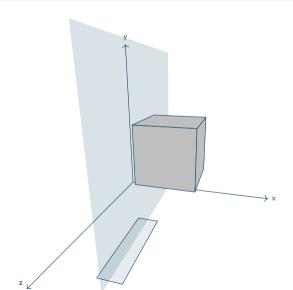
A "vee" that does not extend to a pushout



Some pushouts squares

Some pushouts squares





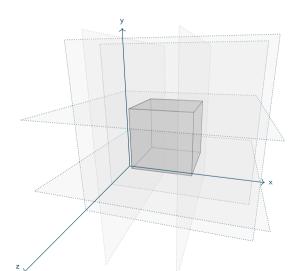
- Since the pushout of f (resp. g) along g (resp. f) does not exist, $f, g \notin \Sigma$

- Since the pushout of f (resp. g) along g (resp. f) does not exist, $f,g\not\in\Sigma$
- The commutative square f, g, f', and g' is a pullback:

- Since the pushout of f (resp. g) along g (resp. f) does not exist, $f, g \notin \Sigma$
- The commutative square f, g, f', and g' is a pullback:
 - Therefore $f',g'\not\in\Sigma$ (anyway they do not preserve the future cones)

boundaries of the components

boundaries of the components



of nonempty finite connected loop-free categories

- The Cartesian product of categories $\mathcal{A} \times \mathcal{B}$ is non-empty iff so are \mathcal{A} and \mathcal{B} . If \mathcal{A} and \mathcal{B} are indeed nonempty then we also have

- The Cartesian product of categories $\mathcal{A} \times \mathcal{B}$ is non-empty iff so are \mathcal{A} and \mathcal{B} . If \mathcal{A} and \mathcal{B} are indeed nonempty then we also have
 - $\mathcal{A} \times \mathcal{B}$ finite iff so are \mathcal{A} and \mathcal{B}

- The Cartesian product of categories $\mathcal{A} \times \mathcal{B}$ is non-empty iff so are \mathcal{A} and $\mathcal{B}.$
 - If ${\mathcal A}$ and ${\mathcal B}$ are indeed nonempty then we also have
 - $\mathcal{A} \times \mathcal{B}$ finite iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ connected iff so are \mathcal{A} and \mathcal{B}

- The Cartesian product of categories $\mathcal{A} \times \mathcal{B}$ is non-empty iff so are \mathcal{A} and \mathcal{B} .
 - If ${\mathcal A}$ and ${\mathcal B}$ are indeed nonempty then we also have
 - $\mathcal{A} \times \mathcal{B}$ finite iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ connected iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ loop-free iff so are \mathcal{A} and \mathcal{B}

- The Cartesian product of categories $\mathcal{A} \times \mathcal{B}$ is non-empty iff so are \mathcal{A} and \mathcal{B} .
 - If ${\mathcal A}$ and ${\mathcal B}$ are indeed nonempty then we also have
 - $\mathcal{A} \times \mathcal{B}$ finite iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ connected iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ loop-free iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \cong \mathcal{A}'$ and $\mathcal{B} \cong \mathcal{B}'$ implies $\mathcal{A} \times \mathcal{A}' \cong \mathcal{B} \times \mathcal{B}'$

- The Cartesian product of categories $\mathcal{A} \times \mathcal{B}$ is non-empty iff so are \mathcal{A} and \mathcal{B} .
 - If ${\mathcal A}$ and ${\mathcal B}$ are indeed nonempty then we also have
 - $\mathcal{A} \times \mathcal{B}$ finite iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ connected iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ loop-free iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \cong \mathcal{A}'$ and $\mathcal{B} \cong \mathcal{B}'$ implies $\mathcal{A} \times \mathcal{A}' \cong \mathcal{B} \times \mathcal{B}'$
- $(A \times B) \times C \cong A \times (B \times C)$

- The Cartesian product of categories $\mathcal{A} \times \mathcal{B}$ is non-empty iff so are \mathcal{A} and \mathcal{B} .
 - If ${\mathcal A}$ and ${\mathcal B}$ are indeed nonempty then we also have
 - $\mathcal{A} \times \mathcal{B}$ finite iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ connected iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ loop-free iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \cong \mathcal{A}'$ and $\mathcal{B} \cong \mathcal{B}'$ implies $\mathcal{A} \times \mathcal{A}' \cong \mathcal{B} \times \mathcal{B}'$
- $(\mathcal{A} \times \mathcal{B}) \times \mathcal{C} \cong \mathcal{A} \times (\mathcal{B} \times \mathcal{C})$
- $1 \times \mathcal{A} \cong \mathcal{A} \cong \mathcal{A} \times 1$

- The Cartesian product of categories $\mathcal{A} \times \mathcal{B}$ is non-empty iff so are \mathcal{A} and \mathcal{B} .
 - If ${\mathcal A}$ and ${\mathcal B}$ are indeed nonempty then we also have
 - $\mathcal{A} \times \mathcal{B}$ finite iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ connected iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ loop-free iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A}\cong\mathcal{A}'$ and $\mathcal{B}\cong\mathcal{B}'$ implies $\mathcal{A}\times\mathcal{A}'\cong\mathcal{B}\times\mathcal{B}'$
- $(A \times B) \times C \cong A \times (B \times C)$
- $1 \times \mathcal{A} \cong \mathcal{A} \cong \mathcal{A} \times 1$
- $\mathcal{A} \times \mathcal{B} \cong \mathcal{B} \times \mathcal{A}$

- The Cartesian product of categories $\mathcal{A} \times \mathcal{B}$ is non-empty iff so are \mathcal{A} and \mathcal{B} .
 - If ${\mathcal A}$ and ${\mathcal B}$ are indeed nonempty then we also have
 - $\mathcal{A} \times \mathcal{B}$ finite iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ connected iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ loop-free iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \cong \mathcal{A}'$ and $\mathcal{B} \cong \mathcal{B}'$ implies $\mathcal{A} \times \mathcal{A}' \cong \mathcal{B} \times \mathcal{B}'$
- $(\mathcal{A} \times \mathcal{B}) \times \mathcal{C} \cong \mathcal{A} \times (\mathcal{B} \times \mathcal{C})$
- $1 \times \mathcal{A} \cong \mathcal{A} \cong \mathcal{A} \times 1$
- $\mathcal{A} \times \mathcal{B} \cong \mathcal{B} \times \mathcal{A}$
- The collection of isomorphism classes of nonempty finite connected loop-free categories is thus a commutative monoid ${\cal M}$

of nonempty finite connected loop-free categories

- The Cartesian product of categories $\mathcal{A} \times \mathcal{B}$ is non-empty iff so are \mathcal{A} and \mathcal{B} .
 - If ${\mathcal A}$ and ${\mathcal B}$ are indeed nonempty then we also have
 - $\mathcal{A} \times \mathcal{B}$ finite iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ connected iff so are \mathcal{A} and \mathcal{B}
 - $\mathcal{A} \times \mathcal{B}$ loop-free iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \cong \mathcal{A}'$ and $\mathcal{B} \cong \mathcal{B}'$ implies $\mathcal{A} \times \mathcal{A}' \cong \mathcal{B} \times \mathcal{B}'$
- $(A \times B) \times C \cong A \times (B \times C)$
- $1 \times \mathcal{A} \cong \mathcal{A} \cong \mathcal{A} \times 1$
- $\mathcal{A} \times \mathcal{B} \cong \mathcal{B} \times \mathcal{A}$
- The collection of isomorphism classes of nonempty finite connected loop-free categories is thus a commutative monoid ${\mathcal M}$

The commutative monoid \mathcal{M} is free.

- The monoid ${\mathcal M}$ is graded by the following morphisms

- The monoid ${\mathcal M}$ is graded by the following morphisms
 - $\#\textit{Ob}: \mathcal{C} \in \mathcal{M} \mapsto \mathsf{card}(\mathsf{Ob}(\mathcal{C})) \in (\mathbb{N} \setminus \{0\}, \times, 1)$

- The monoid \mathcal{M} is graded by the following morphisms
 - $\#\mathit{Ob}: \mathcal{C} \in \mathcal{M} \mapsto \mathsf{card}(\mathsf{Ob}(\mathcal{C})) \in (\mathbb{N} \setminus \{0\}, \times, 1)$
 - $\# \mathsf{Mo} : \mathcal{C} \in \mathcal{M} \mapsto \mathsf{card}(\mathsf{Mo}(\mathcal{C})) \in (\mathbb{N} \setminus \{0\}, \times, 1)$

- The monoid $\mathcal M$ is graded by the following morphisms
 - $\#\textit{Ob}: \mathcal{C} \in \mathcal{M} \mapsto \mathsf{card}(\mathsf{Ob}(\mathcal{C})) \in (\mathbb{N} \setminus \{0\}, \times, 1)$
 - $\# \mathsf{Mo} : \mathcal{C} \in \mathcal{M} \mapsto \mathsf{card}(\mathsf{Mo}(\mathcal{C})) \in (\mathbb{N} \setminus \{0\}, \times, 1)$
 - $\#Mo(\mathcal{C}) \geqslant 2 \times \#Ob(\mathcal{C}) 1$, for all $\mathcal{C} \in \mathcal{M}$

- The monoid $\mathcal M$ is graded by the following morphisms
 - $\#\mathit{Ob}: \mathcal{C} \in \mathcal{M} \mapsto \mathsf{card}(\mathsf{Ob}(\mathcal{C})) \in (\mathbb{N} \setminus \{0\}, \times, 1)$
 - $\ \# \textit{Mo} : \mathcal{C} \in \mathcal{M} \mapsto \mathsf{card}(\mathsf{Mo}(\mathcal{C})) \in (\mathbb{N} \setminus \{0\}, \times, 1)$
 - $\# Mo(\mathcal{C}) \geqslant 2 \times \# Ob(\mathcal{C}) 1$, for all $\mathcal{C} \in \mathcal{M}$
- In particular if $\#Ob(\mathcal{C})$ or $\#Mo(\mathcal{C})$ is prime, then so is \mathcal{C} . The converse is false.

- The monoid $\mathcal M$ is graded by the following morphisms
 - $\#\textit{Ob}: \mathcal{C} \in \mathcal{M} \mapsto \mathsf{card}(\mathsf{Ob}(\mathcal{C})) \in (\mathbb{N} \setminus \{0\}, \times, 1)$
 - $\ \# \mathsf{Mo} : \mathcal{C} \in \mathcal{M} \mapsto \mathsf{card}(\mathsf{Mo}(\mathcal{C})) \in (\mathbb{N} \setminus \{0\}, \times, 1)$
 - $\#Mo(\mathcal{C})\geqslant 2\times\#Ob(\mathcal{C})-1$, for all $\mathcal{C}\in\mathcal{M}$
- In particular if $\#Ob(\mathcal{C})$ or $\#Mo(\mathcal{C})$ is prime, then so is \mathcal{C} . The converse is false.
- Any element of ${\mathcal M}$ freely generated by a graph, is prime

- The mapping $\mathcal{C} \in \mathcal{M} \mapsto \overrightarrow{\pi_0}(\mathcal{C}) \in \mathcal{M}$ is a morphism of monoids

- The mapping $\mathcal{C}\in\mathcal{M}\mapsto\overrightarrow{\pi_0}(\mathcal{C})\in\mathcal{M}$ is a morphism of monoids
- We would like to know which prime element of $\ensuremath{\mathcal{M}}$ are preserved by it

- The mapping $\mathcal{C} \in \mathcal{M} \mapsto \overrightarrow{\pi_0}(\mathcal{C}) \in \mathcal{M}$ is a morphism of monoids
- We would like to know which prime element of ${\mathcal M}$ are preserved by it
- We known that $\overrightarrow{\pi_0}(\mathcal{C})$ is null iff \mathcal{C} is a lattices (e.g. $\overrightarrow{\pi_0}(0<1)=\{0\}$ though $\{0<1\}$ is prime in $\mathcal{M})$

- The mapping $\mathcal{C}\in\mathcal{M}\mapsto\overrightarrow{\pi_0}(\mathcal{C})\in\mathcal{M}$ is a morphism of monoids
- We would like to know which prime element of ${\mathcal M}$ are preserved by it
- We known that $\overrightarrow{\pi_0}(\mathcal{C})$ is null iff \mathcal{C} is a lattices (e.g. $\overrightarrow{\pi_0}(0<1)=\{0\}$ though $\{0<1\}$ is prime in $\mathcal{M})$
- For all d-spaces X and Y, $\overrightarrow{\pi_1}(X \times Y) \cong \overrightarrow{\pi_1}X \times \overrightarrow{\pi_1}Y$

- The mapping $\mathcal{C} \in \mathcal{M} \mapsto \overrightarrow{\pi_0}(\mathcal{C}) \in \mathcal{M}$ is a morphism of monoids
- We would like to know which prime element of ${\mathcal M}$ are preserved by it
- We known that $\overrightarrow{\pi_0}(\mathcal{C})$ is null iff \mathcal{C} is a lattices (e.g. $\overrightarrow{\pi_0}(0<1)=\{0\}$ though $\{0<1\}$ is prime in $\mathcal{M})$
- For all d-spaces X and Y, $\overrightarrow{\pi_1}(X \times Y) \cong \overrightarrow{\pi_1}X \times \overrightarrow{\pi_1}Y$
- Hence $\mathcal{N}':=\{X\in\mathcal{H}_f|G|\mid\overrightarrow{\pi_1}X\text{ is nonempty, connected, and loop-free}\}$ is a pure submonoid of $\mathcal{H}_f|G|$

- The mapping $\mathcal{C} \in \mathcal{M} \mapsto \overrightarrow{\pi_0}(\mathcal{C}) \in \mathcal{M}$ is a morphism of monoids
- We would like to know which prime element of ${\mathcal M}$ are preserved by it
- We known that $\overrightarrow{\pi_0}(\mathcal{C})$ is null iff \mathcal{C} is a lattices (e.g. $\overrightarrow{\pi_0}(0<1)=\{0\}$ though $\{0<1\}$ is prime in $\mathcal{M})$
- For all d-spaces X and Y, $\overrightarrow{\pi_1}(X \times Y) \cong \overrightarrow{\pi_1}X \times \overrightarrow{\pi_1}Y$
- Hence $\mathcal{N}':=\{X\in\mathcal{H}_f|G|\mid\overrightarrow{\pi_1}X\text{ is nonempty, connected, and loop-free}\}$ is a pure submonoid of $\mathcal{H}_f|G|$
- Then $\mathcal{N}:=\{X\in\mathcal{N}'\mid\overrightarrow{\pi_0}(\overrightarrow{\pi_1}X) \text{ is finite}\}$ is a pure submonoid of \mathcal{N}'

- The mapping $\mathcal{C} \in \mathcal{M} \mapsto \overrightarrow{\pi_0}(\mathcal{C}) \in \mathcal{M}$ is a morphism of monoids
- We would like to know which prime element of ${\mathcal M}$ are preserved by it
- We known that $\overrightarrow{\pi_0}(\mathcal{C})$ is null iff \mathcal{C} is a lattices (e.g. $\overrightarrow{\pi_0}(0<1)=\{0\}$ though $\{0<1\}$ is prime in $\mathcal{M})$
- For all d-spaces X and Y, $\overrightarrow{\pi_1}(X \times Y) \cong \overrightarrow{\pi_1}X \times \overrightarrow{\pi_1}Y$
- Hence $\mathcal{N}':=\{X\in\mathcal{H}_f|\mathcal{G}|\mid\overrightarrow{\pi_1}X\text{ is nonempty, connected, and loop-free}\}$ is a pure submonoid of $\mathcal{H}_f|\mathcal{G}|$
- Then $\mathcal{N}:=\{X\in\mathcal{N}'\mid\overrightarrow{\pi_0}(\overrightarrow{\pi_1}X)\text{ is finite}\}$ is a pure submonoid of \mathcal{N}'
- Therefore it is free commutative and we would like to know which prime elements are preserved by $X \in \mathcal{N} \mapsto \overrightarrow{\pi_0}(\overrightarrow{\pi_1}X) \in \mathcal{M}$

- The mapping $\mathcal{C} \in \mathcal{M} \mapsto \overrightarrow{\pi_0}(\mathcal{C}) \in \mathcal{M}$ is a morphism of monoids
- We would like to know which prime element of ${\mathcal M}$ are preserved by it
- We known that $\overrightarrow{\pi_0}(\mathcal{C})$ is null iff \mathcal{C} is a lattices (e.g. $\overrightarrow{\pi_0}(0<1)=\{0\}$ though $\{0<1\}$ is prime in $\mathcal{M})$
- For all d-spaces X and Y, $\overrightarrow{\pi_1}(X \times Y) \cong \overrightarrow{\pi_1}X \times \overrightarrow{\pi_1}Y$
- Hence $\mathcal{N}':=\{X\in\mathcal{H}_f|\mathcal{G}|\mid\overrightarrow{\pi_1}X\text{ is nonempty, connected, and loop-free}\}$ is a pure submonoid of $\mathcal{H}_f|\mathcal{G}|$
- Then $\mathcal{N}:=\{X\in\mathcal{N}'\mid\overrightarrow{\pi_0}(\overrightarrow{\pi_1}X) \text{ is finite}\}$ is a pure submonoid of \mathcal{N}'
- Therefore it is free commutative and we would like to know which prime elements are preserved by $X \in \mathcal{N} \mapsto \overrightarrow{\pi_0}(\overrightarrow{\pi_1}X) \in \mathcal{M}$
- Conjecture

If $P \in \mathcal{N}$ is prime and $\overrightarrow{\pi_1}(P)$ is not a lattice, then $\overrightarrow{\pi_0}(\overrightarrow{\pi_1}(P))$ is prime