DIRECTED ALGEBRAIC TOPOLOGY

AND

CONCURRENCY

Emmanuel Haucourt

emmanuel.haucourt@polytechnique.edu

MPRI : Concurrency (2.3.1) - Lecture 3 -

2024 - 2025

THE BIG PICTURE

sem 1 a proc: p = P(a); V(a)init: 2p

 $P_1 \mid \cdots \mid P_n$ program P

 G_1 , ... , G_n graphs $P_1 \mid \cdots \mid P_n$ program P

ordered bases

ordered bases

euclidean ordered bases

ordered bases

$$\overbrace{\mathcal{E}_{1} \times \cdots \times \mathcal{E}_{n}}^{\text{euclidean ordered bases}} \xrightarrow{\text{parallelized atlas}} \overbrace{(\mathcal{A}_{1}, f_{1}) \times \cdots \times (\mathcal{A}_{n}, f_{n})}^{\text{parallelized atlas}}$$

$$\overbrace{\mathcal{B}_{1} \\ \underbrace{\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{n}}_{\text{ordered bases}}}^{\text{parallelized atlas}}$$

GEOMETRIC MODELS

Cartesian product

Cartesian product

Cartesian product in *Set*

Cartesian product in Set

 $A imes B := ig\{(a, b) \mid a \in A \text{ and } b \in Big\}$

Cartesian product in Set

 $A imes B := ig\{(a, b) \mid a \in A \text{ and } b \in Big\}$

There exist two mappings $\pi_{\!\scriptscriptstyle A}$ and $\pi_{\!\scriptscriptstyle B}$

$$\pi_{\!_{A}}: A \times B \longrightarrow A \qquad \qquad \pi_{\!_{B}}: A \times B \longrightarrow B$$
$$(a, b) \longmapsto a \qquad \qquad (a, b) \longmapsto b$$

Cartesian product in Set

 $A \times B := \big\{ (a, b) \mid a \in A \text{ and } b \in B \big\}$

There exist two mappings π_A and π_B $\pi_A: A \times B \longrightarrow A$ $\pi_B: A \times B \longrightarrow B$ $(a, b) \longmapsto a$ $(a, b) \longmapsto b$

such that for all sets X the following map is a bijection $\mathcal{S}et[X, A \times B] \longrightarrow \mathcal{S}et[X, A] \times \mathcal{S}et[X, B]$ $h \longmapsto (\pi_{A} \circ h, \pi_{B} \circ h)$

Cartesian product in a category $\ensuremath{\mathcal{C}}$

The object c is the Cartesian product (in C) of a and b when there exist two morphisms $\pi_a : c \to a$ and $\pi_b : c \to b$ such that for all objects x of C the following map is a bijection

 $\mathcal{C}[x,c] \longrightarrow \mathcal{C}[x,a] \times \mathcal{C}[x,b]$

 $h \longmapsto (\pi_a \circ h, \pi_b \circ h)$

When such an object c exists we write $c = a \times b$

Cartesian product in the category of graphs (Grph)

Cartesian product in the category of graphs (*Grph*)

$$\left(\begin{array}{c} A\\ t \\ \downarrow \\ V \end{array}\right) \times \left(\begin{array}{c} A'\\ t' \\ \downarrow \\ \downarrow \\ V' \end{array}\right) \cong$$

Cartesian product in the category of graphs (Grph)

$$\begin{pmatrix} A \\ t \middle| f \\ V \end{pmatrix} \times \begin{pmatrix} A' \\ t' \middle| f \\ V' \end{pmatrix} \cong \begin{pmatrix} A \times A' \\ t \times t' \middle| f \\ s \times s' \\ V \times V' \end{pmatrix}$$

The Cartesian product in Grph is deduced form the Cartesian product in Set

Examples of Cartesian products

Examples of Cartesian products

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top*

Examples of Cartesian products

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$.
- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in $\mathcal{P}os$

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in $\mathcal{P}os$ is given by $X \times Y$ and the partial order \sqsubseteq defined by $(x, y) \sqsubseteq (x', y')$ when $x \sqsubseteq_X x'$ and $y \sqsubseteq_Y y'$.

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in \mathcal{P}_{os} is given by $X \times Y$ and the partial order \sqsubseteq defined by $(x, y) \sqsubseteq (x', y')$ when $x \sqsubseteq_X x'$ and $y \sqsubseteq_Y y'$. It is the greatest partial order such that the projection are poset morphisms.

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in $\mathcal{P}os$ is given by $X \times Y$ and the partial order \sqsubseteq defined by $(x, y) \sqsubseteq (x', y')$ when $x \sqsubseteq_X x'$ and $y \sqsubseteq_Y y'$. It is the greatest partial order such that the projection are poset morphisms.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in \mathcal{PoSp}

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in $\mathcal{P}os$ is given by $X \times Y$ and the partial order \sqsubseteq defined by $(x, y) \sqsubseteq (x', y')$ when $x \sqsubseteq_X x'$ and $y \sqsubseteq_Y y'$. It is the greatest partial order such that the projection are poset morphisms.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in \mathcal{PoSp} is given by $X \times Y$ and the product order $\sqsubseteq_X \times \sqsubseteq_Y$.

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in \mathcal{P} is given by $X \times Y$ and the partial order \sqsubseteq defined by $(x, y) \sqsubseteq (x', y')$ when $x \sqsubseteq_X x'$ and $y \sqsubseteq_Y y'$. It is the greatest partial order such that the projection are poset morphisms.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in PoSp is given by $X \times Y$ and the product order $\sqsubseteq_X \times \sqsubseteq_Y$.
- The product of $(X, [\mathcal{U}]_{\sim})$ and $(Y, [\mathcal{V}]_{\sim})$ in \perp_{po}

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in \mathcal{P}_{os} is given by $X \times Y$ and the partial order \sqsubseteq defined by $(x, y) \sqsubseteq (x', y')$ when $x \sqsubseteq_X x'$ and $y \sqsubseteq_Y y'$. It is the greatest partial order such that the projection are poset morphisms.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in PoSp is given by $X \times Y$ and the product order $\sqsubseteq_X \times \sqsubseteq_Y$.
- The product of $(X, [\mathcal{U}]_{\sim})$ and $(Y, [\mathcal{V}]_{\sim})$ in \perp_{po} is given by $X \times Y$ together with the collection of ordered charts $U \times V$ with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in \mathcal{P}_{os} is given by $X \times Y$ and the partial order \sqsubseteq defined by $(x, y) \sqsubseteq (x', y')$ when $x \sqsubseteq_X x'$ and $y \sqsubseteq_Y y'$. It is the greatest partial order such that the projection are poset morphisms.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in PoSp is given by $X \times Y$ and the product order $\sqsubseteq_X \times \sqsubseteq_Y$.
- The product of $(X, [\mathcal{U}]_{\sim})$ and $(Y, [\mathcal{V}]_{\sim})$ in \perp_{po} is given by $X \times Y$ together with the collection of ordered charts $U \times V$ with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.
- The product of (X, d_X) and (Y, d_Y) in $\mathcal{M}et_{emb}$

Cartesian product

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in \mathcal{P}_{os} is given by $X \times Y$ and the partial order \sqsubseteq defined by $(x, y) \sqsubseteq (x', y')$ when $x \sqsubseteq_X x'$ and $y \sqsubseteq_Y y'$. It is the greatest partial order such that the projection are poset morphisms.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in PoSp is given by $X \times Y$ and the product order $\sqsubseteq_X \times \sqsubseteq_Y$.
- The product of $(X, [\mathcal{U}]_{\sim})$ and $(Y, [\mathcal{V}]_{\sim})$ in \perp_{po} is given by $X \times Y$ together with the collection of ordered charts $U \times V$ with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.
- The product of (X, d_X) and (Y, d_Y) in $\mathcal{M}et_{emb}$ does not exist.

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in \mathcal{P}_{os} is given by $X \times Y$ and the partial order \sqsubseteq defined by $(x, y) \sqsubseteq (x', y')$ when $x \sqsubseteq_X x'$ and $y \sqsubseteq_Y y'$. It is the greatest partial order such that the projection are poset morphisms.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in PoSp is given by $X \times Y$ and the product order $\sqsubseteq_X \times \sqsubseteq_Y$.
- The product of $(X, [\mathcal{U}]_{\sim})$ and $(Y, [\mathcal{V}]_{\sim})$ in $\mathcal{L}po$ is given by $X \times Y$ together with the collection of ordered charts $U \times V$ with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.
- The product of (X, d_X) and (Y, d_Y) in $\mathcal{M}et_{emb}$ does not exist.
- The product of (X, d_X) and (Y, d_Y) in Met_{ctr}

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in \mathcal{P}_{os} is given by $X \times Y$ and the partial order \sqsubseteq defined by $(x, y) \sqsubseteq (x', y')$ when $x \sqsubseteq_X x'$ and $y \sqsubseteq_Y y'$. It is the greatest partial order such that the projection are poset morphisms.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in PoSp is given by $X \times Y$ and the product order $\sqsubseteq_X \times \sqsubseteq_Y$.
- The product of $(X, [\mathcal{U}]_{\sim})$ and $(Y, [\mathcal{V}]_{\sim})$ in \perp_{po} is given by $X \times Y$ together with the collection of ordered charts $U \times V$ with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.
- The product of (X, d_X) and (Y, d_Y) in $\mathcal{M}et_{emb}$ does not exist.
- The product of (X, d_X) and (Y, d_Y) in $\mathcal{M}et_{ctr}$ is given by $X \times Y$ together with $d((x, y), (x', y')) = \max\{d_X(x, x'), d_Y(y, y')\}.$

- The product of (X, Ω_X) and (Y, Ω_Y) in *Top* is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in \mathcal{P}_{os} is given by $X \times Y$ and the partial order \sqsubseteq defined by $(x, y) \sqsubseteq (x', y')$ when $x \sqsubseteq_X x'$ and $y \sqsubseteq_Y y'$. It is the greatest partial order such that the projection are poset morphisms.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in PoSp is given by $X \times Y$ and the product order $\sqsubseteq_X \times \sqsubseteq_Y$.
- The product of $(X, [\mathcal{U}]_{\sim})$ and $(Y, [\mathcal{V}]_{\sim})$ in \perp_{po} is given by $X \times Y$ together with the collection of ordered charts $U \times V$ with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.
- The product of (X, d_X) and (Y, d_Y) in $\mathcal{M}et_{emb}$ does not exist.
- The product of (X, d_X) and (Y, d_Y) in $\mathcal{M}et_{ctr}$ is given by $X \times Y$ together with $d((x, y), (x', y')) = \max\{d_X(x, x'), d_Y(y, y')\}.$
- The product of (X, d_X) and (Y, d_Y) in $\mathcal{M}et_{top}$

- The product of (X, Ω_X) and (Y, Ω_Y) in Top is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \Box_X) and (Y, \Box_Y) in \mathcal{P} is given by $X \times Y$ and the partial order \Box defined by $(x, y) \Box (x', y')$ when $x \sqsubseteq_X x'$ and $y \sqsubseteq_Y y'$. It is the greatest partial order such that the projection are poset morphisms.
- The product of (X, \Box_X) and (Y, \Box_Y) in *PoSp* is given by $X \times Y$ and the product order $\Box_X \times \Box_Y$.
- The product of $(X, [\mathcal{U}]_{\sim})$ and $(Y, [\mathcal{V}]_{\sim})$ in \perp_{po} is given by $X \times Y$ together with the collection of ordered charts $U \times V$ with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.
- The product of (X, d_X) and (Y, d_Y) in $\mathcal{M}et_{emb}$ does not exist.
- The product of (X, d_X) and (Y, d_Y) in $\mathcal{M}et_{ctr}$ is given by $X \times Y$ together with $d((x, y), (x', y')) = \max\{d_x(x, x'), d_y(y, y')\}.$
- The product of (X, d_X) and (Y, d_Y) in \mathcal{M}_{etup} can also be given by $X \times Y$ together with the Euclidean product

 $d((x, y), (x', y')) = \sqrt{d_X^2(x, x') + d_Y^2(y, y')}$

- The product of (X, Ω_X) and (Y, Ω_Y) in Top is given by $X \times Y$ together with unions of subsets of the form $U \times V$ with $U \in \Omega_X$ and $V \in \Omega_Y$. It is the least topology making the projections continuous.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in \mathcal{P}_{os} is given by $X \times Y$ and the partial order \sqsubseteq defined by $(x, y) \sqsubseteq (x', y')$ when $x \sqsubseteq_X x'$ and $y \sqsubseteq_Y y'$. It is the greatest partial order such that the projection are poset morphisms.
- The product of (X, \sqsubseteq_X) and (Y, \sqsubseteq_Y) in PoSp is given by $X \times Y$ and the product order $\sqsubseteq_X \times \sqsubseteq_Y$.
- The product of $(X, [\mathcal{U}]_{\sim})$ and $(Y, [\mathcal{V}]_{\sim})$ in \perp_{po} is given by $X \times Y$ together with the collection of ordered charts $U \times V$ with $U \in \mathcal{U}$ and $V \in \mathcal{V}$.
- The product of (X, d_X) and (Y, d_Y) in $\mathcal{M}et_{emb}$ does not exist.
- The product of (X, d_X) and (Y, d_Y) in $\mathcal{M}et_{ctr}$ is given by $X \times Y$ together with $d((x, y), (x', y')) = \max\{d_X(x, x'), d_Y(y, y')\}.$
- The product of (X, d_X) and (Y, d_Y) in $\mathcal{M}et_{top}$ can also be given by $X \times Y$ together with the Euclidean product

$$d((x,y),(x',y')) = \sqrt{d_X^2(x,x') + d_Y^2(y,y')}$$

- Categories of models of algebraic theories.

Cartesian product

Infinite Cartesian product

The product of a family $(A_i)_{i \in \mathcal{I}}$ of objects of a category \mathcal{C} , when it exists, is an object

 $\prod_i A_i$

The product of a family $(A_i)_{i \in \mathcal{I}}$ of objects of a category \mathcal{C} , when it exists, is an object

together with projections

 $\pi_{A_j}: \prod_i A_i \longrightarrow A_j$

 $\prod A_i$

The product of a family $(A_i)_{i \in \mathcal{I}}$ of objects of a category \mathcal{C} , when it exists, is an object

0

together with projections

 $\pi_{A_j}: \prod_i A_i \longrightarrow A_j$

 $\prod A_i$

such that the next mapping is a bijection.

$$\mathcal{C}(X, \prod_{i} A_{i}) \longrightarrow \prod_{i} \mathcal{C}(X, A_{i})$$

$$h \longmapsto (\pi_{A_{i}} \circ h)$$

The product of a family $(A_i)_{i \in \mathcal{I}}$ of objects of a category \mathcal{C} , when it exists, is an object

together with projections

 $\pi_{A_j}: \prod_i A_i \longrightarrow A_j$

 $\prod A_i$

such that the next mapping is a bijection.

$$\mathcal{C}(X, \prod_{i} A_{i}) \longrightarrow \prod_{i} \mathcal{C}(X, A_{i})$$
$$h \longmapsto (\pi_{A_{i}} \circ h)$$

Infinite products of directed circle does not exist in Lpo.

Turning discrete models into geometric ones

$$G: A \xrightarrow{\partial^+} V$$

$$G: A \xrightarrow{\partial^+} V \qquad \qquad |G| = V \sqcup A \times]0,1[$$

$$G: A \xrightarrow{\partial^+} V \qquad |G| = V \sqcup A \times]0,1[$$
$$|G_1| \times \cdots \times |G_n| = (V_1 \sqcup A_1 \times]0,1[) \times \cdots \times (V_n \sqcup A_n \times]0,1[)$$

$$G: A \xrightarrow{\partial^{+}} V \qquad |G| = V \sqcup A \times]0, 1[$$

$$|G_{1}| \times \cdots \times |G_{n}| = (V_{1} \sqcup A_{1} \times]0, 1[) \times \cdots \times (V_{n} \sqcup A_{n} \times]0, 1[)$$

$$|G_{1}| \times \cdots \times |G_{n}| = \bigsqcup_{\substack{\text{points } p \text{ of} \\ G_{1}, \dots, G_{n}}} \{p\} \times]0, 1[\dim(p_{1}, \dots, p_{n})$$

where $p = (p_1, \ldots, p_n)$, $p_i \in V_i \sqcup A_i$, and dim $p = \#\{i \in \{1, \ldots, n\} \mid p_i \in A_i\}$

$$G: A \xrightarrow{\partial^+} V \qquad |G| = V \sqcup A \times]0, 1[$$
$$|G_1| \times \cdots \times |G_n| = (V_1 \sqcup A_1 \times]0, 1[) \times \cdots \times (V_n \sqcup A_n \times]0, 1[)$$

$$|G_1| \times \cdots \times |G_n| = \bigsqcup_{\substack{\text{points } p \text{ of } \\ G_1, \dots, G_n}} \{p\} \times]0, 1[\dim(p_1, \dots, p_n)]$$

where $p = (p_1, \ldots, p_n)$, $p_i \in V_i \sqcup A_i$, and dim $p = \# \{i \in \{1, \ldots, n\} \mid p_i \in A_i\}$

 $B_p = \{p\} imes]0, 1[$ $\dim(p_1, \dots, p_n)$ is called a canonical block

$$G: A \xrightarrow{\partial^+} V \qquad \qquad |G| = V \sqcup A \times]0,1[$$

 $|G_1| \times \cdots \times |G_n| = (V_1 \sqcup A_1 \times]0, 1[) \times \cdots \times (V_n \sqcup A_n \times]0, 1[)$

$$|G_1| \times \cdots \times |G_n| = \bigsqcup_{\substack{\text{points } p \text{ of } \\ G_1, \dots, G_n}} \{p\} \times]0, 1[\dim(p_1, \dots, p_n)]$$

where $p = (p_1, \ldots, p_n)$, $p_i \in V_i \sqcup A_i$, and dim $p = \#\{i \in \{1, \ldots, n\} \mid p_i \in A_i\}$

 $B_p = \{p\} \times]0,1[$ dim $(p_1,...,p_n)$ is called a canonical block

The collection of canonical blocks forms the canonical partition of $|G_1| \times \cdots \times |G_n|$.

The forbidden region of a conservative program $\Pi = (G_1, \ldots, G_n)$ is the disjoint union of canonical blocks

 $\bigcup_{\substack{forbidden points p \\ of (G_1, \ldots, G_n)}} B_p$

The forbidden region of a conservative program $\Pi = (G_1, \ldots, G_n)$ is the disjoint union of canonical blocks

 $\bigcup_{\substack{\text{forbidden points } p \\ \text{of } (G_1, \ldots, G_n)}} B_p$

The geometric model of Π is the locally ordered metric space

 $|G_1| \times \cdots \times |G_n| \setminus \{\text{forbidden region}\}$

The forbidden region of a conservative program $\Pi = (G_1, \ldots, G_n)$ is the disjoint union of canonical blocks

forbidden points pof (G_1, \ldots, G_n)

The geometric model of Π is the locally ordered metric space

 $|G_1| \times \cdots \times |G_n| \setminus \{\text{forbidden region}\}$

the distance being given by

$$d(p,p') = \max\left\{d_{|G_i|}(p_i,p'_i) \mid i \in \{1,\ldots,n\}\right\}$$

in accordance with the fact that the execution time of the simultaneous execution of many processes is the longest execution time among that of the processes considered individually.

Gallery of examples

From discrete to continuous

sem: 1 a sync: 1 b

Gallery of examples

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

Gallery of examples

From discrete to continuous

Gallery of examples

From discrete to continuous

sem 1 a
proc: p = P(a);V(a)
init: 2p

sem 1 a
proc: p = P(a);V(a)
init: 2p

V(a)-

```
sem 1 a b
proc:
p = P(a);P(b);V(b);V(a)
q = P(b);P(a);V(a);V(b)
init: p q
```

```
sem 1 a b
proc:
p = P(a);P(b);V(b);V(a)
q = P(b);P(a);V(a);V(b)
init: p q
```


sem 1 a b
proc:
p = P(a);P(b);V(b);V(a)
q = P(b);P(a);V(a);V(b)
init: p q

proc:


```
sync 1 a
proc:
    p = x:=x+1 ; W(a)
    c = W(a) ; x:=x-1
init: p c
```

```
sync 1 a
proc:
    p = x:=x+1 ; W(a)
    c = W(a) ; x:=x-1
init: p c
```



```
sync 1 a
proc:
    p = x:=x+1 ; W(a)
    c = W(a) ; x:=x-1
init: p c
```


```
sync 1 a
proc:
    p = x:=x+1 ; W(a)
    c = W(a) ; x:=x-1
init: p c
```



```
sync 1 a
proc:
    p = x:=x+1 ; W(a)
    c = W(a) ; x:=x-1
init: p c
```



```
sync 1 a
proc:
    p = x:=x+1 ; W(a)
    c = W(a) ; x:=x-1
init: p c
```



```
sync 1 a
proc:
    p = x:=x+1 ; W(a)
    c = W(a) ; x:=x-1
init: p c
```


${\sf Producer}/{\sf Consumer}$

looping

```
sync 1 a b
proc:
    p = x:=x+1 ; W(a) ; W(b) ; J(p)
    c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
```

```
sync 1 a b
proc:
    p = x:=x+1 ; W(a) ; W(b) ; J(p)
    c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
```



```
sync 1 a b
proc:
    p = x:=x+1 ; W(a) ; W(b) ; J(p)
    c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
```



```
sync 1 a b
proc:
    p = x:=x+1 ; W(a) ; W(b) ; J(p)
    c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
```



```
sync 1 a b
proc:
    p = x:=x+1 ; W(a) ; W(b) ; J(p)
    c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
```



```
sync 1 a b
proc:
    p = x:=x+1 ; W(a) ; W(b) ; J(p)
    c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
```



```
sync 1 a b
proc:
    p = x:=x+1 ; W(a) ; W(b) ; J(p)
    c = W(a) ; x:=x-1 ; W(b) ; J(c)
init: p c
```


Gallery of examples

3D Swiss Cross (tetrahemihexacron) and floating cube

The Lipski algorithm

sem 1: u v w x y z
proc:
 p = P(x);P(y);P(z);V(x);P(w);V(z);V(y);V(w)
 q = P(u);P(v);P(x);V(u);P(z);V(v);V(x);V(z)
 r = P(y);P(w);V(y);P(u);V(w);P(v);V(u);V(v)
init: p q r

Geometric vs Discrete

Let B_p and $B_{p'}$ be canonical blocks.

Let B_p and $B_{p'}$ be canonical blocks.

If there exists a directed path starting in B_{ρ} , ending in $B_{\rho'}$, and whose image is contained in $B_{\rho} \cup B_{\rho'}$ then one of the following facts is satisfied:

Let B_p and $B_{p'}$ be canonical blocks.

If there exists a directed path starting in B_{ρ} , ending in $B_{\rho'}$, and whose image is contained in $B_{\rho} \cup B_{\rho'}$ then one of the following facts is satisfied:

- for all $i \in \{1, \ldots, n\}$, $p_i = p'_i$ or p_i is the source of the arrow p'_i ,

Let B_p and $B_{p'}$ be canonical blocks.

If there exists a directed path starting in B_{ρ} , ending in $B_{\rho'}$, and whose image is contained in $B_{\rho} \cup B_{\rho'}$ then one of the following facts is satisfied:

- for all $i \in \{1, \ldots, n\}$, $p_i = p'_i$ or p_i is the source of the arrow p'_i , or
- for all $i \in \{1, \ldots, n\}$, $p_i = p'_i$ or p'_i is the target of the arrow p_i .

- Given a directed path γ on the local pospace $|G_1| \times \cdots \times |G_n|$ we have a finite partition $I_0 < \cdots < I_N$ of dom (γ) such that for all $k \in \{0, \ldots, N\}$, there exists a (necessarily unique) point p^k such that $\gamma(I_k) \subseteq B_{p^k}$.

- Given a directed path γ on the local pospace $|G_1| \times \cdots \times |G_n|$ we have a finite partition $I_0 < \cdots < I_N$ of dom (γ) such that for all $k \in \{0, \ldots, N\}$, there exists a (necessarily unique) point p^k such that $\gamma(I_k) \subseteq B_{p^k}$.
- The sequence p^0, \ldots, p^N is a directed path on (G_1, \ldots, G_n) , it is called the discretization of γ and denoted by $D(\gamma)$.

- Given a directed path γ on the local pospace $|G_1| \times \cdots \times |G_n|$ we have a finite partition $I_0 < \cdots < I_N$ of dom (γ) such that for all $k \in \{0, \ldots, N\}$, there exists a (necessarily unique) point p^k such that $\gamma(I_k) \subseteq B_{p^k}$.
- The sequence p^0, \ldots, p^N is a directed path on (G_1, \ldots, G_n) , it is called the discretization of γ and denoted by $D(\gamma)$.
- Given a directed path δ on (G_1, \ldots, G_n) there exists a directed path γ on $|G_1| \times \cdots \times |G_n|$ whose discretization is δ , such a directed path γ is said to be a lifting of δ .

Example of discretization

The sequence of multi-instructions of a directed path γ on $|G_1| \times \cdots \times |G_n|$ is that of its discretization of $D(\gamma)$.

The sequence of multi-instructions of a directed path γ on $|G_1| \times \cdots \times |G_n|$ is that of its discretization of $D(\gamma)$.

A directed path on $|G_1| \times \cdots \times |G_n|$ is admissible (resp. an execution trace) iff so is its discretization.

The sequence of multi-instructions of a directed path γ on $|G_1| \times \cdots \times |G_n|$ is that of its discretization of $D(\gamma)$.

A directed path on $|G_1| \times \cdots \times |G_n|$ is admissible (resp. an execution trace) iff so is its discretization.

The action of a directed path γ on $|G_1| \times \cdots \times |G_n|$ on the right of a state σ is that of its discretization of $D(\gamma)$.

init p q

sem 1 a proc p = y:=0; W(b); P(a); x:=z; V(a)proc q = z:=1; W(b); P(a); x:=y; V(a)

var z = 0sync 1 b

var x = 0var y = 0

Example

Discretization of an execution trace

sem: 1 a sync: 1 b

Discretization of an execution trace

sem: 1 a sync: 1 b

Discretization of an execution trace

sem: 1 a sync: 1 b

Potential function on $|G_1| \times \cdots \times |G_n|$
Potential function on $|G_1| \times \cdots \times |G_n|$

If the program under consideration is conservative, then we have the potential function

 $F: |G_1| \times \cdots \times |G_n| \times S \to \{ \text{multisets over } \{1, \ldots, n\} \}$

Potential function on $|G_1| \times \cdots \times |G_n|$

If the program under consideration is conservative, then we have the potential function

 $F: |G_1| \times \cdots \times |G_n| \times S \to \{ \text{multisets over } \{1, \dots, n\} \}$

The function F is constant on each canonical block B_p ,

Potential function on $|G_1| \times \cdots \times |G_n|$

If the program under consideration is conservative, then we have the potential function

$$F: |G_1| \times \cdots \times |G_n| \times S \rightarrow \{ \text{multisets over } \{1, \ldots, n\} \}$$

The function F is constant on each canonical block B_p , its value is given by $\tilde{F}(p)$ where \tilde{F} denotes the "discrete" potential function.

Geometric models are sound and complete

Geometric models are sound and complete

- Any directed path on a continuous model is admissible.

Geometric models are sound and complete

- Any directed path on a continuous model is admissible.
- Conversely, for each admissible path on a continuous model which meets a forbidden point, there exists a directed path which avoids them and such that both directed paths induce the same sequence of multi-instructions.

Directed paths on the geometric model are admissible

Directed paths on the geometric model are admissible sem: 1 a sync: 1 b

The motivating theorem

Trade off

More mathematics for more properties?

Trade off More mathematics for more properties?

- Both discrete and geometric models are sound and complete.

Trade off More mathematics for more properties?

- Both discrete and geometric models are sound and complete.
- The continuous models satisfy extra properties that are "naturally" expressed in terms of metrics.

Uniform distance between directed paths

Uniform distance between directed paths

Given a compact Hausdorff space K and a metric space (X, d_X) , the set of continuous maps from K to X can be equipped with the uniform distance

 $d(f,g) = \max\{d_X(f(k),g(k)) \mid k \in K\} .$

Uniform distance between directed paths

Given a compact Hausdorff space K and a metric space (X, d_X) , the set of continuous maps from K to X can be equipped with the uniform distance

$$d(f,g) = \max\{d_X(f(k),g(k)) \mid k \in K\}$$

We consider the case where K = [0, r] is the domain of definition of a directed path and (X, d_X) is the geometric model of a conservative program.

Let B_p and $B_{p'}$ be canonical blocks of the geometric model X of a conservative program.

Let B_p and $B_{p'}$ be canonical blocks of the geometric model X of a conservative program.

Let $dX^{[0,r]}(B_{\rho}, B_{\rho'})$ be the set of directed paths on X whose sources and targets lie in B_{ρ} and $B_{\rho'}$ respectively.

Let B_p and $B_{p'}$ be canonical blocks of the geometric model X of a conservative program.

Let $dX^{[0,r]}(B_p, B_{p'})$ be the set of directed paths on X whose sources and targets lie in B_p and $B_{p'}$ respectively. Let γ be an element of $dX^{[0,r]}(B_p, B_{p'})$.

Let B_p and $B_{p'}$ be canonical blocks of the geometric model X of a conservative program.

Let $dX^{[0,r]}(B_p, B_{p'})$ be the set of directed paths on X whose sources and targets lie in B_p and $B_{p'}$ respectively. Let γ be an element of $dX^{[0,r]}(B_p, B_{p'})$.

There exists an open ball Ω of $dX^{[0,r]}(B_p, B_{p'})$, centred in γ , such that all the elements of Ω induce the same action on valuations. Moreover, if γ is an execution trace, then so are all the elements of Ω .

Illustration

HOMOTOPY OF PATHS

The undirected case

Let γ and δ be two paths on X defined over the segment [0, r]

Let γ and δ be two paths on X defined over the segment [0, r]

A homotopy from γ to δ is a continuous map h from $[0,r] \times [0,q]$ to X such that

Let γ and δ be two paths on X defined over the segment [0, r]

A homotopy from γ to δ is a continuous map h from $[0, r] \times [0, q]$ to X such that

- The mappings h(0,-):[0,q] o X and h(r,-):[0,q] o X are constant

Let γ and δ be two paths on X defined over the segment [0, r]

A homotopy from γ to δ is a continuous map h from [0,r] imes [0,q] to X such that

- The mappings h(0,-):[0,q] o X and h(r,-):[0,q] o X are constant
- The mappings h(-,0):[0,r] o X and h(-,q):[0,r] o X are γ and δ

Let γ and δ be two paths on X defined over the segment [0, r]

A homotopy from γ to δ is a continuous map h from [0,r] imes [0,q] to X such that

- The mappings h(0,-):[0,q] o X and h(r,-):[0,q] o X are constant
- The mappings h(-,0):[0,r] o X and h(-,q):[0,r] o X are γ and δ

As a consequence we have $\gamma(0) = \delta(0)$ and $\gamma(r) = \delta(r)$.

Uniform distance and Curryfication

The undirected case

Uniform distance and Curryfication

Suppose that X is a metric space.
Uniform distance and Curryfication

Suppose that X is a metric space.

For all compact Hausdorff space K, the homset Top(K, X) with the (topology induced by the) uniform distance is denoted by X^{K}

Uniform distance and Curryfication

Suppose that X is a metric space.

For all compact Hausdorff space K, the homset Top(K, X) with the (topology induced by the) uniform distance is denoted by X^{K}

The Curryfication (_) induces a homeomorphism from $X^{[0,r] \times [0,q]}$ to $(X^{[0,r]})^{[0,q]}$

$$(h:[0,r] imes [0,q] o X) o (\hat{h}:[0,q] o X^{[0,r]})$$

The two faces of homotopies

The two faces of homotopies

h is a continuous map from $[0, r] \times [0, q]$ to *X* i.e. $h \in Top[[0, r] \times [0, q], X]$

The two faces of homotopies

but is also a path from γ to δ in the space $X^{[0,r]}$ i.e. $h \in Top[[0,q], X^{[0,r]}]$

The two faces of homotopies

h is a continuous map from $[0, r] \times [0, q]$ to X i.e. $h \in \mathcal{T}op\big[[0, r] \times [0, q], X\big]$

but is also a path from γ to δ in the space $X^{[0,r]}$ i.e. $h \in Top[[0,q], X^{[0,r]}]$

We introduce the following notation

Concatenation of homotopies

vertical composition

Concatenation of homotopies

vertical composition

Let $g:[0,r] \times [0,q'] \to X$ and $h:[0,r] \times [0,q] \to X$ be homotopies from γ to ξ and from ξ to δ .

Concatenation of homotopies

vertical composition

Let $g:[0,r] \times [0,q'] \to X$ and $h:[0,r] \times [0,q] \to X$ be homotopies from γ to ξ and from ξ to δ .

The mapping $h * g : [0, r] \times [0, q + q'] \rightarrow X$ defined by

$$h*g(t,s) = \left\{ egin{array}{cc} g(t,s) & ext{if } 0\leqslant s\leqslant q \ h(t,s-q) & ext{if } q\leqslant s\leqslant q+q' \end{array}
ight.$$

is a homotopy from γ to δ .

Concatenation of homotopies

vertical composition

Let $g:[0,r] \times [0,q'] \to X$ and $h:[0,r] \times [0,q] \to X$ be homotopies from γ to ξ and from ξ to δ .

The mapping $h * g : [0, r] \times [0, q + q'] \rightarrow X$ defined by

$$h*g(t,s) = egin{cases} g(t,s) & ext{if } 0\leqslant s\leqslant q \ h(t,s-q) & ext{if } q\leqslant s\leqslant q+q' \end{cases}$$

is a homotopy from γ to δ .

Let $\gamma, \delta \in \pounds po([0, r], X)$ such that $\partial^{\scriptscriptstyle -} \gamma = \partial^{\scriptscriptstyle -} \delta$ and $\partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle +} \delta$.

Directed homotopy on a locally ordered space

Let $\gamma, \delta \in \mathcal{L}po([0, r], X)$ such that $\partial^{\scriptscriptstyle -} \gamma = \partial^{\scriptscriptstyle +} \delta$ and $\partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle +} \delta$.

- A directed homotopy from γ to δ is a local pospace morphism $h: [0, r] \times [0, q] \rightarrow X$ whose underlying map U(h) is a homotopy from $U(\gamma)$ to $U(\delta)$.

Let $\gamma, \delta \in Lpo([0, r], X)$ such that $\partial^{\scriptscriptstyle -} \gamma = \partial^{\scriptscriptstyle -} \delta$ and $\partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle +} \delta$.

- A directed homotopy from γ to δ is a local pospace morphism $h : [0, r] \times [0, q] \rightarrow X$ whose underlying map U(h) is a homotopy from $U(\gamma)$ to $U(\delta)$.
- An anti-directed homotopy from γ to δ is a homotopy of paths $h: [0, r] \times [0, q] \rightarrow X$ such that $(t, s) \mapsto h(t, q s)$ is a directed homotopy from δ to γ .

Let $\gamma, \delta \in Lpo([0, r], X)$ such that $\partial^{\scriptscriptstyle -} \gamma = \partial^{\scriptscriptstyle -} \delta$ and $\partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle +} \delta$.

- A directed homotopy from γ to δ is a local pospace morphism $h: [0, r] \times [0, q] \rightarrow X$ whose underlying map U(h) is a homotopy from $U(\gamma)$ to $U(\delta)$.
- An anti-directed homotopy from γ to δ is a homotopy of paths $h: [0, r] \times [0, q] \rightarrow X$ such that $(t, s) \mapsto h(t, q s)$ is a directed homotopy from δ to γ .
- An elementary homotopy between γ to δ is a homotopy of paths $h: [0, r] \times [0, q] \rightarrow X$ obtained as a finite concatenation of directed homotopies and anti-directed homotopies.

Let $\gamma, \delta \in Lpo([0, r], X)$ such that $\partial^{\scriptscriptstyle -} \gamma = \partial^{\scriptscriptstyle -} \delta$ and $\partial^{\scriptscriptstyle +} \gamma = \partial^{\scriptscriptstyle +} \delta$.

- A directed homotopy from γ to δ is a local pospace morphism $h: [0, r] \times [0, q] \rightarrow X$ whose underlying map U(h) is a homotopy from $U(\gamma)$ to $U(\delta)$.
- An anti-directed homotopy from γ to δ is a homotopy of paths $h: [0, r] \times [0, q] \rightarrow X$ such that $(t, s) \mapsto h(t, q s)$ is a directed homotopy from δ to γ .
- An elementary homotopy between γ to δ is a homotopy of paths $h: [0, r] \times [0, q] \rightarrow X$ obtained as a finite concatenation of directed homotopies and anti-directed homotopies.
- A weakly directed homotopy from γ to δ is a homotopy of paths $h: [0, r] \times [0, q] \rightarrow X$ whose intermediate paths h(-, s), for $s \in [0, q]$, are directed.

Directed homotopy on a locally ordered space

Let $\gamma, \delta \in \mathcal{L}po([0, r], X)$ such that $\partial^{-}\gamma = \partial^{-}\delta$ and $\partial^{+}\gamma = \partial^{+}\delta$.

- A directed homotopy from γ to δ is a local pospace morphism $h: [0, r] \times [0, q] \to X$ whose underlying map U(h) is a homotopy from $U(\gamma)$ to $U(\delta)$.
- An anti-directed homotopy from γ to δ is a homotopy of paths $h: [0, r] \times [0, q] \rightarrow X$ such that $(t, s) \mapsto h(t, q s)$ is a directed homotopy from δ to γ .
- An elementary homotopy between γ to δ is a homotopy of paths $h: [0, r] \times [0, q] \to X$ obtained as a finite concatenation of directed homotopies and anti-directed homotopies.
- A weakly directed homotopy from γ to δ is a homotopy of paths $h: [0, r] \times [0, q] \to X$ whose intermediate paths $h(_, s)$, for $s \in [0, q]$, are directed.
- Any elementary homotopy is a weakly directed homotopy. The converse is false.

Directed homotopy on a locally ordered space

Let $\gamma, \delta \in \mathcal{L}po([0, r], X)$ such that $\partial^{-}\gamma = \partial^{-}\delta$ and $\partial^{+}\gamma = \partial^{+}\delta$.

- A directed homotopy from γ to δ is a local pospace morphism $h: [0, r] \times [0, q] \to X$ whose underlying map U(h) is a homotopy from $U(\gamma)$ to $U(\delta)$.
- An anti-directed homotopy from γ to δ is a homotopy of paths $h: [0, r] \times [0, q] \rightarrow X$ such that $(t, s) \mapsto h(t, q s)$ is a directed homotopy from δ to γ .
- An elementary homotopy between γ to δ is a homotopy of paths $h: [0, r] \times [0, q] \to X$ obtained as a finite concatenation of directed homotopies and anti-directed homotopies.
- A weakly directed homotopy from γ to δ is a homotopy of paths $h: [0, r] \times [0, q] \to X$ whose intermediate paths $h(_, s)$, for $s \in [0, q]$, are directed.
- Any elementary homotopy is a weakly directed homotopy. The converse is false.
- Each of the preceding class of homotopies is stable under concatenation.

Two paths γ and γ' are said to be homotopic when there exists a homotopy between them. We have the equivalence relation \sim_h between paths on a topological space.

Two paths γ and γ' are said to be homotopic when there exists a homotopy between them. We have the equivalence relation \sim_h between paths on a topological space.

They are said to be dihomotopic when there exists an elementary homotopy between them. We have the equivalence relation \sim_d between directed paths on a locally ordered space.

Two paths γ and γ' are said to be homotopic when there exists a homotopy between them. We have the equivalence relation \sim_h between paths on a topological space.

They are said to be dihomotopic when there exists an elementary homotopy between them. We have the equivalence relation \sim_d between directed paths on a locally ordered space.

They are said to be weakly dihomotopic when there exists a weakly directed homotopy between them. We have the equivalence relation \sim_w between directed paths on a locally ordered space.

An increasing and surjective map $\theta : [0, r] \rightarrow [0, r]$ is called a reparametrization.

An increasing and surjective map $\theta:[0,r]\to [0,r]$ is called a reparametrization. The mapping

 $h:(t,s)\in [0,r] imes [0,1]\mapsto heta(t)+s\cdot(\max(t, heta(t))- heta(t))\in [0,r]$

is a directed homotopy from θ to max(id_[0,r], θ).

An increasing and surjective map $\theta:[0,r]\to [0,r]$ is called a reparametrization. The mapping

$$h:(t,s)\in [0,r] imes [0,1]\mapsto heta(t)+s\cdot(\mathsf{max}(t, heta(t))- heta(t))\in [0,r]$$

is a directed homotopy from θ to max(id_[0,r], θ).

If $\gamma : [0, r] \to X$ is a directed path on the local pospace X, then $\gamma \circ h$ is a directed homotopy from $\gamma \circ \theta$ to $\gamma \circ \max(id_{[0, r]}, \theta)$

An increasing and surjective map $\theta:[0,r]\to [0,r]$ is called a reparametrization. The mapping

$$h:(t,s)\in [0,r] imes [0,1]\mapsto heta(t)+s\cdot(\mathsf{max}(t, heta(t))- heta(t))\in [0,r]$$

is a directed homotopy from θ to max(id_[0,r], θ).

If $\gamma : [0, r] \to X$ is a directed path on the local pospace X, then $\gamma \circ h$ is a directed homotopy from $\gamma \circ \theta$ to $\gamma \circ \max(id_{[0, r]}, \theta)$

Therefore γ and $\gamma \circ \theta$ are dihomotopic.

Images of directed paths on a pospace

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to [0, 1].

Images of directed paths on a pospace

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to [0, 1].

Corollary

Two directed paths on a posapce having the same image are dihomotopic.

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to [0, 1].

Corollary

Two directed paths on a posapce having the same image are dihomotopic.

proof:

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to [0,1].

Corollary

Two directed paths on a posapce having the same image are dihomotopic.

proof: Suppose that $im(\gamma) = im(\gamma')$.

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to [0, 1].

Corollary

Two directed paths on a posapce having the same image are dihomotopic.

proof: Suppose that $im(\gamma) = im(\gamma')$. $\phi : [0, r] \rightarrow im(\gamma)$ a pospace isomorphism.

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to [0, 1].

Corollary

Two directed paths on a posapce having the same image are dihomotopic.

proof: Suppose that $\operatorname{im}(\gamma) = \operatorname{im}(\gamma')$. $\phi : [0, r] \to \operatorname{im}(\gamma)$ a pospace isomorphism. $\phi^{-1} \circ \gamma$ and $\phi^{-1} \circ \gamma'$ are reparametrization.

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to [0, 1].

Corollary

Two directed paths on a posapce having the same image are dihomotopic.

proof: Suppose that $\operatorname{im}(\gamma) = \operatorname{im}(\gamma')$. $\phi : [0, r] \to \operatorname{im}(\gamma)$ a pospace isomorphism. $\phi^{-1} \circ \gamma$ and $\phi^{-1} \circ \gamma'$ are reparametrization. We have *h* an elementary homotopy from $\phi^{-1} \circ \gamma$ to $\phi^{-1} \circ \gamma'$.
Images of directed paths on a pospace

Theorem

The image of a nonconstant directed path on a pospace is isomorphic to [0, 1].

Corollary

Two directed paths on a posapce having the same image are dihomotopic.

proof: Suppose that $\operatorname{im}(\gamma) = \operatorname{im}(\gamma')$. $\phi : [0, r] \to \operatorname{im}(\gamma)$ a pospace isomorphism. $\phi^{-1} \circ \gamma$ and $\phi^{-1} \circ \gamma'$ are reparametrization. We have *h* an elementary homotopy from $\phi^{-1} \circ \gamma$ to $\phi^{-1} \circ \gamma'$. Hence $\phi \circ h$ is an elementary homotopy from γ and γ' . Relation to geometric models

Main theorem

Main theorem

Two weakly dihomotopic paths on the geometric model of a conservative program induce the same action on valuations. Moreover, if one of them is an execution trace, then so is the other.

By a standard result from general topology, the Curryfication of h

 $\hat{h}:s\in [0,q]\mapsto (t\in [0,r]\mapsto h(t,s)\in X)$

is a continuous path on $dX^{[0,r]}(p,p')$.

By a standard result from general topology, the Curryfication of h

$$\hat{h}:s\in [0,q]\mapsto (t\in [0,r]\mapsto h(t,s)\in X)$$

is a continuous path on $dX^{[0,r]}(p,p')$.

The image of \hat{h} is thus compact, so we cover it with open balls given by the main theorem of geometric models.

By a standard result from general topology, the Curryfication of h

$$\hat{h}:s\in [0,q]\mapsto (t\in [0,r]\mapsto h(t,s)\in X)$$

is a continuous path on $dX^{[0,r]}(p,p')$.

The image of \hat{h} is thus compact, so we cover it with open balls given by the main theorem of geometric models.

By the Lebesgue number theorem there exists a real number $\varepsilon > 0$ such that $|s - s'| \leq \varepsilon$ implies that $\hat{h}(s)$ and $\hat{h}(s')$ belong to the same open ball from the covering.

By a standard result from general topology, the Curryfication of h

$$\hat{h}:s\in [0,q]\mapsto (t\in [0,r]\mapsto h(t,s)\in X)$$

is a continuous path on $dX^{[0,r]}(p,p')$.

The image of \hat{h} is thus compact, so we cover it with open balls given by the main theorem of geometric models.

By the Lebesgue number theorem there exists a real number $\varepsilon > 0$ such that $|s - s'| \leq \varepsilon$ implies that $\hat{h}(s)$ and $\hat{h}(s')$ belong to the same open ball from the covering.

The conclusion follows considering the sequence

 $\hat{h}(0), \hat{h}(\varepsilon), \hat{h}(2\varepsilon), \hat{h}(3\varepsilon), \cdots, \hat{h}(n\varepsilon), \hat{h}(q)$

where *n* is the greatest natural number such that $n\varepsilon \leq q$.

Programs with mutex only

Directed Homotopy in Non-Positively Curved Spaces, É. Goubault and S. Mimram, LMCS 2020

Programs with mutex only

Directed Homotopy in Non-Positively Curved Spaces, É. Goubault and S. Mimram, LMCS 2020

Let X be the geometric model of a conservative program whose semaphores have arity 1 (mutex), then two directed paths on X are dihomotopic if and only if they are homotopic.

SMOOTH MODELS

Removing singularities

$$G = \left(\begin{array}{c} G^{(1)} \xrightarrow{tgt} G^{(0)} \end{array}
ight)$$
 : graph

$$G = \left(\begin{array}{c} G^{(1)} \xrightarrow{tgt} G^{(0)} \end{array}
ight)$$
 : graph

$$\|G\| = \left(G^{(1)} imes]0,1[
ight) \cup \left\{(a,b) \in G^{(1)} imes G^{(1)} \mid \partial^{\scriptscriptstyle +}(a) = \partial^{\scriptscriptstyle +}(b)
ight\} \quad : \quad ext{set}$$

$$G = \left(\begin{array}{c} G^{(1)} \xrightarrow{tgt} G^{(0)} \end{array}
ight)$$
 : graph

$$\|G\| = \left(G^{\scriptscriptstyle (1)} imes]0,1[
ight) \cup \left\{(a,b) \in G^{\scriptscriptstyle (1)} imes G^{\scriptscriptstyle (1)} \mid \partial^*(a) = \partial^*(b)
ight\} \quad : \quad ext{set}$$

For small $\varepsilon > 0$, the ε -neighborhoods of (a, t) and (a, b) are

$$\begin{cases} \{a\} \times]t - \varepsilon, t + \varepsilon[& (\text{for } \varepsilon \le \min\{t, 1 - t\}) \\ \{a\} \times]1 - \varepsilon, 1[\cup \{(a, b)\} \cup \{b\} \times]0, \varepsilon[& (\text{for } \varepsilon \le \frac{1}{2}) \end{cases}$$

$$G = \left(\begin{array}{c} G^{(1)} \xrightarrow{tgt} G^{(0)} \end{array}
ight)$$
 : graph

$$\|G\| = \left(G^{(1)} \times]0, 1[\right) \cup \left\{(a, b) \in G^{(1)} \times G^{(1)} \mid \partial^{*}(a) = \partial^{*}(b)\right\} \quad : \quad \mathsf{set}$$

For small $\varepsilon > 0$, the ε -neighborhoods of (a, t) and (a, b) are

$$\begin{cases} \{a\} \times]t - \varepsilon, t + \varepsilon[& (\text{for } \varepsilon \le \min\{t, 1 - t\}) \\ \{a\} \times]1 - \varepsilon, 1[\cup \{(a, b)\} \cup \{b\} \times]0, \varepsilon[& (\text{for } \varepsilon \le \frac{1}{2}) \end{cases}$$

The standard ordered base \mathcal{E}_G of G is the collection of ε -neighborhoods (each of them being equipped with the obvious total order).

Smooth models	Blow up
---------------	---------

The *blowup* of G is the map

$$egin{array}{rcl} eta_{G} & : & \|G\| &
ightarrow & |G| \ & (a,b) & \mapsto & \partial^{+}(a)(=\partial^{+}(b)) \ & (a,t) & \mapsto & (a,t) \end{array}$$

The *blowup* of G is the map

$$egin{array}{rcl} eta_{G} & : & \|G\| &
ightarrow & |G| \ & (a,b) & \mapsto & \partial^{*}(a)(=\partial^{*}(b)) \ & (a,t) & \mapsto & (a,t) \end{array}$$

The blowup β_{c} is locally order-preserving from \mathcal{E}_{c} to \mathcal{X}_{c} .

Universal property of graph blowups

An ordered base \mathcal{E} is said to be *euclidean* of dimension $n \in \mathbb{N}$ when every point p of \mathcal{E} is contained in some $E \in \mathcal{E}$ with $E \cong \mathbb{R}^n$ (as ordered spaces).

An ordered base \mathcal{E} is said to be *euclidean* of dimension $n \in \mathbb{N}$ when every point p of \mathcal{E} is contained in some $E \in \mathcal{E}$ with $E \cong \mathbb{R}^n$ (as ordered spaces).

A locally order-preserving map $f : \mathcal{E} \to \mathcal{X}$ is a *local embedding* when for every point p of \mathcal{E} and $X \in \mathcal{X}$ containing f(p), there exists $E \in \mathcal{E}$ containing p such that $f : E \to X$ is an ordered space embedding.

An ordered base \mathcal{E} is said to be *euclidean* of dimension $n \in \mathbb{N}$ when every point p of \mathcal{E} is contained in some $E \in \mathcal{E}$ with $E \cong \mathbb{R}^n$ (as ordered spaces).

A locally order-preserving map $f : \mathcal{E} \to \mathcal{X}$ is a *local embedding* when for every point p of \mathcal{E} and $X \in \mathcal{X}$ containing f(p), there exists $E \in \mathcal{E}$ containing p such that $f : E \to X$ is an ordered space embedding.

Theorem (Universal property of graph blowups)

For every euclidean ordered base \mathcal{E} , and every local embedding $f : \mathcal{E} \to \mathcal{X}_{c_1} \times \cdots \times \mathcal{X}_{c_n}$ of dimension n, there is a unique continuous map $g : \mathcal{E} \to \mathcal{E}_{c_1} \times \cdots \times \mathcal{E}_{c_n}$ such that $f = \overline{\beta} \circ g$ with $\overline{\beta} = \beta_{c_1} \times \cdots \times \beta_{c_n}$; moreover g is a local embedding of dimension n.

Local orders and Vector fields

Smooth models Chart	
---------------------	--

A *chart* of dimension $n \in \mathbb{N}$ is a bijection ϕ whose codomain is an open subset of \mathbb{R}^n .

A *chart* of dimension $n \in \mathbb{N}$ is a bijection ϕ whose codomain is an open subset of \mathbb{R}^n .

 $U \subseteq \operatorname{dom}(\phi)$ is said to be *open* when so is $\phi(U)$ in \mathbb{R}^n ; we deduce $\phi_u : U \to \phi(U)$.

The *n*-charts ϕ and ψ are

The *n*-charts ϕ and ψ are *compatible at* $p \in dom(\phi) \cap dom(\psi)$ when

The *n*-charts ϕ and ψ are *compatible at* $p \in dom(\phi) \cap dom(\psi)$ when there exists W open in $dom(\phi)$ and in $dom(\psi)$ such that

The *n*-charts ϕ and ψ are compatible at $p \in \text{dom}(\phi) \cap \text{dom}(\psi)$ when there exists W open in $\text{dom}(\phi)$ and in $\text{dom}(\psi)$ such that $\phi_W \circ \psi_W^{-1}$ and $\psi_W \circ \phi_W^{-1}$ are smooth.

The *n*-charts ϕ and ψ are compatible at $p \in \text{dom}(\phi) \cap \text{dom}(\psi)$ when there exists W open in $\text{dom}(\phi)$ and in $\text{dom}(\psi)$ such that $\phi_w \circ \psi_w^{-1}$ and $\psi_w \circ \phi_w^{-1}$ are smooth.

We say that W is a witness of compatibility of ϕ and ψ at p.

Smooth models	Atlas
---------------	-------

Atlas

The *n*-charts ϕ and ψ are *compatible* when they are compatible at every $p \in dom(\phi) \cap dom(\psi)$.

The *n*-charts ϕ and ψ are *compatible* when they are compatible at every $p \in dom(\phi) \cap dom(\psi)$.

 \mathbb{P} $W = \operatorname{dom}(\phi) \cap \operatorname{dom}(\psi) \text{ is open in } \operatorname{dom}(\phi) \text{ and in } \operatorname{dom}(\psi) \text{ and the maps } \phi_w \circ \psi_w^{-1} \text{ and } \psi_w \circ \phi_w^{-1} \text{ are smooth.}$ The *n*-charts ϕ and ψ are *compatible* when they are compatible at every $p \in \text{dom}(\phi) \cap \text{dom}(\psi)$.

 \mathbb{P} $W = \operatorname{dom}(\phi) \cap \operatorname{dom}(\psi) \text{ is open in } \operatorname{dom}(\phi) \text{ and in } \operatorname{dom}(\psi) \text{ and the maps } \phi_W \circ \psi_W^{-1} \text{ and } \psi_W \circ \phi_W^{-1} \text{ are smooth.}$

An *atlas* of dimension $n \in \mathbb{N}$ is a collection \mathcal{A} of pairwise compatible *n*-charts.

The *n*-charts ϕ and ψ are *compatible* when they are compatible at every $p \in \text{dom}(\phi) \cap \text{dom}(\psi)$.

↕

 $W = \operatorname{dom}(\phi) \cap \operatorname{dom}(\psi)$ is open in $\operatorname{dom}(\phi)$ and in $\operatorname{dom}(\psi)$ and the maps $\phi_w \circ \psi_w^{-1}$ and $\psi_w \circ \phi_w^{-1}$ are smooth.

An *atlas* of dimension $n \in \mathbb{N}$ is a collection \mathcal{A} of pairwise compatible *n*-charts.

Given atlases \mathcal{A} , \mathcal{B} , map $f : \mathcal{A} \to \mathcal{B}$ is said to be *smooth* when for all $\phi \in \mathcal{A}$, $p \in dom(\phi)$, $\psi \in \mathcal{B}$ with $f(p) \in dom(\psi)$, $\psi \circ f \circ \phi^{-1}$ is smooth (as a map between open subsets of euclidean spaces).

Smooth models	Atlas
---------------	-------

The *standard charts* of G are the following bijections

$$\begin{array}{rcl} \phi_{a} & : & \{a\} \times \left]0, 1\right[\ \to & \left]0, 1\right[\ , & \text{and} \\ \\ \phi_{ab} & : & \{a\} \times \left]\frac{1}{2}, 1\left[\ \cup \ \{(a,b)\} \ \cup \ \{b\} \times \left]0, \frac{1}{2}\right[\ \to & \left]-\frac{1}{2}, \frac{1}{2}\right[\\ \\ \text{with} & (a,t) \mapsto t-1 \ , & (a,b) \mapsto 0 \ , & (b,t) \mapsto t \end{array}$$

for all arrows a and all 2-tuples of arrows (a, b) such that $\partial^{_+}(a) = \partial^{_-}(b)$.

The *standard charts* of G are the following bijections

$$\begin{array}{rcl} \phi_{a} & : & \{a\} \times \left]0, 1\right[\ \to \ \left]0, 1\right[\ , & \text{and} \\ \\ \phi_{ab} & : & \{a\} \times \left]\frac{1}{2}, 1\left[\ \cup \ \{(a,b)\} \ \cup \ \{b\} \times \left]0, \frac{1}{2}\right[\ \to \ \left]-\frac{1}{2}, \frac{1}{2}\right[\\ \\ \text{with} & (a,t) \mapsto t-1 \ , & (a,b) \mapsto 0 \ , & (b,t) \mapsto t \end{array}$$

for all arrows a and all 2-tuples of arrows (a, b) such that $\partial^{\scriptscriptstyle +}(a) = \partial^{\scriptscriptstyle -}(b)$.

The standard atlas \mathcal{A}_G of G is the collection of its standard charts.

The *standard charts* of G are the following bijections

$$\begin{array}{rcl} \phi_{a} & : & \{a\} \times \left]0, 1\right[\ \to \ \left]0, 1\right[\ , & \text{and} \\ \\ \phi_{ab} & : & \{a\} \times \left]\frac{1}{2}, 1\left[\ \cup \ \{(a,b)\} \ \cup \ \{b\} \times \left]0, \frac{1}{2}\right[\ \to \ \left]-\frac{1}{2}, \frac{1}{2}\right[\\ \\ \text{with} & (a,t) \mapsto t-1 \ , & (a,b) \mapsto 0 \ , & (b,t) \mapsto t \end{array}$$

for all arrows a and all 2-tuples of arrows (a, b) such that $\partial^{\scriptscriptstyle +}(a) = \partial^{\scriptscriptstyle -}(b)$.

The standard atlas \mathcal{A}_G of G is the collection of its standard charts.

The *transition maps* are translations:

$$\begin{array}{rcl} \phi_{ab} \circ \phi_{a}^{-1} \ : \ t \ \in \]\frac{1}{2}, 1[& \mapsto & t-1 & \in & \]-\frac{1}{2}, 0[\\ \phi_{ab} \circ \phi_{b}^{-1} \ : \ t \ \in \]0, \frac{1}{2}[& \mapsto & t & \in & \] \ 0, \frac{1}{2}[\end{array}$$

 $\{(p, \phi, u) \mid \phi \in \mathcal{A}; \ p \in \operatorname{dom}(\phi); \ u \in \mathbb{R}^n\} / \sim$

with $(p, \phi, u) \sim (q, \psi, v)$ when p = q and $d(\psi_w \circ \phi_w^{-1})_{\phi(p)}(u) = v$ (with W a witness of compatibility of ϕ and ψ at p). Denote by $[\![p, \phi, u]\!]$ the \sim -equivalence class of (p, ϕ, u) .

 $\{(p,\phi,u) \mid \phi \in \mathcal{A}; \ p \in \mathsf{dom}(\phi); \ u \in \mathbb{R}^n\} / \sim$

with $(p, \phi, u) \sim (q, \psi, v)$ when p = q and $d(\psi_w \circ \phi_w^{-1})_{\phi(p)}(u) = v$ (with W a witness of compatibility of ϕ and ψ at p). Denote by $[\![p, \phi, u]\!]$ the \sim -equivalence class of (p, ϕ, u) .

We have $(p, \phi, u) \sim (p, \phi, v) \Rightarrow u = v$, and the collection $T\mathcal{A} = \{T\phi \mid \phi \in \mathcal{A}\}$ with $T\phi[\![p, \phi, u]\!] = (\phi(p), u)$ is an atlas.

 $\{(p, \phi, u) \mid \phi \in \mathcal{A}; \ p \in \mathsf{dom}(\phi); \ u \in \mathbb{R}^n\} / \sim$

with $(p, \phi, u) \sim (q, \psi, v)$ when p = q and $d(\psi_w \circ \phi_w^{-1})_{\phi(p)}(u) = v$ (with W a witness of compatibility of ϕ and ψ at p). Denote by $[\![p, \phi, u]\!]$ the \sim -equivalence class of (p, ϕ, u) .

We have $(p, \phi, u) \sim (p, \phi, v) \Rightarrow u = v$, and the collection $T\mathcal{A} = \{T\phi \mid \phi \in \mathcal{A}\}$ with $T\phi[\![p, \phi, u]\!] = (\phi(p), u)$ is an atlas.

The tangent bundle of \mathcal{A} is the smooth map $\pi_{\mathcal{A}} : T\mathcal{A} \to \mathcal{A}$ sending a tangent vector to its attachment point; i.e. $\pi_{\mathcal{A}}(\llbracket p, \phi, u \rrbracket) = p$.

 $\{(p,\phi,u) \mid \phi \in \mathcal{A}; \ p \in \mathsf{dom}(\phi); \ u \in \mathbb{R}^n\} / \sim$

with $(p, \phi, u) \sim (q, \psi, v)$ when p = q and $d(\psi_w \circ \phi_w^{-1})_{\phi(p)}(u) = v$ (with W a witness of compatibility of ϕ and ψ at p). Denote by $[\![p, \phi, u]\!]$ the \sim -equivalence class of (p, ϕ, u) .

We have $(p, \phi, u) \sim (p, \phi, v) \Rightarrow u = v$, and the collection $T\mathcal{A} = \{T\phi \mid \phi \in \mathcal{A}\}$ with $T\phi[\![p, \phi, u]\!] = (\phi(p), u)$ is an atlas.

The tangent bundle of \mathcal{A} is the smooth map $\pi_{\mathcal{A}} : T\mathcal{A} \to \mathcal{A}$ sending a tangent vector to its attachment point; i.e. $\pi_{\mathcal{A}}(\llbracket p, \phi, u \rrbracket) = p$.

The *tangent space* at p is $T_p A = \pi_A^{-1}(\{p\})$; it is a vector space with

 $\llbracket \boldsymbol{p}, \phi, \boldsymbol{u} \rrbracket + \lambda \llbracket \boldsymbol{p}, \phi, \boldsymbol{v} \rrbracket = \llbracket \boldsymbol{p}, \phi, \boldsymbol{u} + \lambda \boldsymbol{v} \rrbracket.$

Smooth models	Vector fields
---------------	---------------

A vector field on \mathcal{A} is a smooth map $f : \mathcal{A} \to T\mathcal{A}$ such that $\pi_{\mathcal{A}} \circ f = id_{\mathcal{A}}$, i.e. $f(p) \in \overline{f}\mathcal{A}$ for every point p of \mathcal{A} .

A vector field on \mathcal{A} is a smooth map $f : \mathcal{A} \to T\mathcal{A}$ such that $\pi_{\mathcal{A}} \circ f = id_{\mathcal{A}}$, i.e. $f(p) \in \mathcal{F}\mathcal{A}$ for every point p of \mathcal{A} .

If ϕ and ψ are standard charts of G, then $d(\psi \circ \phi^{-1})_{_{\phi(\rho)}} = \operatorname{id}_{\mathbb{R}}$, so $\llbracket p, \phi, u \rrbracket$ does not depend on $\phi \in \mathcal{A}_G$.

A vector field on \mathcal{A} is a smooth map $f : \mathcal{A} \to T\mathcal{A}$ such that $\pi_{\mathcal{A}} \circ f = id_{\mathcal{A}}$, i.e. $f(p) \in \mathcal{F}\mathcal{A}$ for every point p of \mathcal{A} .

If ϕ and ψ are standard charts of G, then $d(\psi \circ \phi^{-1})_{_{\phi(\rho)}} = \operatorname{id}_{\mathbb{R}}$, so $\llbracket p, \phi, u \rrbracket$ does not depend on $\phi \in \mathcal{A}_G$.

 $\mathcal{T} \mathcal{A}_G \cong \mathcal{A}_G imes \mathbb{R}$ and $\mathcal{T}_p \mathcal{A}_G \cong \{p\} imes \mathbb{R}$

A vector field on \mathcal{A} is a smooth map $f : \mathcal{A} \to T\mathcal{A}$ such that $\pi_{\mathcal{A}} \circ f = id_{\mathcal{A}}$, i.e. $f(p) \in \mathcal{F}\mathcal{A}$ for every point p of \mathcal{A} .

If ϕ and ψ are standard charts of G, then $d(\psi \circ \phi^{-1})_{_{\phi(\rho)}} = \operatorname{id}_{\mathbb{R}}$, so $\llbracket p, \phi, u \rrbracket$ does not depend on $\phi \in \mathcal{A}_G$.

 $\mathcal{T}\!\mathcal{A}_G \cong \mathcal{A}_G imes \mathbb{R}$ and $\mathcal{T}_{\!\!P}\!\mathcal{A}_G \cong \{p\} imes \mathbb{R}$

The standard vector field on the standard atlas is

$$egin{array}{cccc} \mathcal{A}_G & o & \mathcal{T}\!\mathcal{A}_G \ p & \mapsto & (p,1) \end{array}$$

For every smooth map $f : A \to B$ we have $Tf : TA \to TB$ defined by

```
Tf\llbracket p, \phi, u \rrbracket = \llbracket fp, \psi, d(\psi \circ f \circ \phi^{-1})_{\phi(p)}(u) \rrbracket
```

with $\phi \in \mathcal{A}$, $\psi \in \mathcal{B}$ charts around p and f(p).

For every smooth map $f : A \to B$ we have $Tf : TA \to TB$ defined by

```
Tf\llbracket p, \phi, u\rrbracket = \llbracket fp, \psi, d(\psi \circ f \circ \phi^{-1})_{\phi(p)}(u)\rrbracket
```

with $\phi \in \mathcal{A}$, $\psi \in \mathcal{B}$ charts around p and f(p).

A *curve* is a smooth map defined on an open interval of \mathbb{R} ; a *smooth path* is the restriction of a curve to a compact subinterval.

For every smooth map $f:\mathcal{A}\to\mathcal{B}$ we have $Tf:T\mathcal{A}\to T\mathcal{B}$ defined by

```
Tf\llbracket p, \phi, u\rrbracket = \llbracket fp, \psi, d(\psi \circ f \circ \phi^{-1})_{\phi(p)}(u)\rrbracket
```

with $\phi \in \mathcal{A}$, $\psi \in \mathcal{B}$ charts around p and f(p).

A *curve* is a smooth map defined on an open interval of \mathbb{R} ; a *smooth path* is the restriction of a curve to a compact subinterval.

For every smooth path γ on $\mathcal{A}_{\scriptscriptstyle G}$, every $\phi \in \mathcal{A}_{\scriptscriptstyle G}$ we have

 $T\gamma(t, u) = T\gamma[\![t, \mathrm{id}_I, u]\!] = [\![\gamma(t), \phi, d(\phi \circ \gamma \circ \mathrm{id}_I^{-1})_t(u)]\!] = (\gamma(t), \gamma'(t) \cdot u) .$

For every smooth map $f : A \to B$ we have $Tf : TA \to TB$ defined by

```
Tf\llbracket p, \phi, u \rrbracket = \llbracket fp, \psi, d(\psi \circ f \circ \phi^{-1})_{\phi(p)}(u) \rrbracket
```

with $\phi \in \mathcal{A}$, $\psi \in \mathcal{B}$ charts around p and f(p).

A *curve* is a smooth map defined on an open interval of \mathbb{R} ; a *smooth path* is the restriction of a curve to a compact subinterval.

For every smooth path γ on \mathcal{A}_{c} , every $\phi \in \mathcal{A}_{c}$ we have

 $T\gamma(t, u) = T\gamma[\![t, \mathrm{id}_I, u]\!] = [\![\gamma(t), \phi, d(\phi \circ \gamma \circ \mathrm{id}_I^{-1})_t(u)]\!] = (\gamma(t), \gamma'(t) \cdot u) .$

The tangent vector to γ at t is of the form $(\gamma(t), \gamma'(t))$; γ is locally order-preserving iff $\gamma'(t) \ge 0$ for every t.
Proposition (standard vector field vs standard ordered base)

For every $\phi \in A_c$, for all $p, q \in dom(\phi)$, we have $p \leq q$ (with $(dom(\phi), \leq) \in A_c$) iff there exists a smooth path γ on A_c from p to q with $im(\gamma) \subseteq dom(\phi)$ and $\gamma' \geq 0$, i.e. $\phi \circ \gamma$ is a smooth map between open intervals of \mathbb{R} with nonnegative derivative, $min(\phi \circ \gamma) = \phi(p)$, and $max(\phi \circ \gamma) = \phi(q)$.

Proposition (standard vector field vs standard ordered base)

For every $\phi \in A_c$, for all $p, q \in dom(\phi)$, we have $p \leq q$ (with $(dom(\phi), \leq) \in A_c$) iff there exists a smooth path γ on A_c from p to q with $im(\gamma) \subseteq dom(\phi)$ and $\gamma' \geq 0$, i.e. $\phi \circ \gamma$ is a smooth map between open intervals of \mathbb{R} with nonnegative derivative, $min(\phi \circ \gamma) = \phi(p)$, and $max(\phi \circ \gamma) = \phi(q)$.

The above result is a special instance of Lawson's correspondence:

Ordered manifolds, invariant cone fields, and semigroups. Lawson, J. D., Forum Mathematicum, 1989.

Approximation

From every norm $|_{\cdot}|$ on \mathbb{R}^n one defines the length of a smooth path $\gamma = (\gamma_1, \ldots, \gamma_n)$ on $\mathcal{A}_{c_i} \times \cdots \times \mathcal{A}_{c_n}$ by

$$\mathcal{L}(\gamma) = \int_{t \in I} |\gamma'(t)| dt$$

with $\gamma'(t) = (\gamma'_1(t), \ldots, \gamma'_n(t))$ the coordinates of the tangent vector to γ at t in the standard base $((\gamma_1(t), 1), \ldots, (\gamma_n(t), 1))$ of the tangent space at $\gamma(t)$.

From every norm $|_{-}|$ on \mathbb{R}^n one defines the length of a smooth path $\gamma = (\gamma_1, \ldots, \gamma_n)$ on $\mathcal{A}_{c_i} \times \cdots \times \mathcal{A}_{c_n}$ by

$$\mathcal{L}(\gamma) = \int_{t \in I} |\gamma'(t)| dt$$

with $\gamma'(t) = (\gamma'_1(t), \ldots, \gamma'_n(t))$ the coordinates of the tangent vector to γ at t in the standard base $((\gamma_1(t), 1), \ldots, (\gamma_n(t), 1))$ of the tangent space at $\gamma(t)$.

We also define the distance between $p, q \in |G_1| \times \cdots \times |G_n|$ as $d(p,q) = |d_{G_1}(p_1,q_1), \ldots, d_{G_n}(p_n,q_n)|$ from which we deduce the length $L(\gamma)$ of any path γ on $|G_1| \times \cdots \times |G_n|$.

From every norm $|_{-}|$ on \mathbb{R}^n one defines the length of a smooth path $\gamma = (\gamma_1, \ldots, \gamma_n)$ on $\mathcal{A}_{c_i} \times \cdots \times \mathcal{A}_{c_n}$ by

$$\mathcal{L}(\gamma) = \int_{t \in I} |\gamma'(t)| dt$$

with $\gamma'(t) = (\gamma'_1(t), \ldots, \gamma'_n(t))$ the coordinates of the tangent vector to γ at t in the standard base $((\gamma_1(t), 1), \ldots, (\gamma_n(t), 1))$ of the tangent space at $\gamma(t)$.

We also define the distance between $p, q \in |G_1| \times \cdots \times |G_n|$ as $d(p,q) = |d_{G_1}(p_1,q_1), \ldots, d_{G_n}(p_n,q_n)|$ from which we deduce the length $L(\gamma)$ of any path γ on $|G_1| \times \cdots \times |G_n|$.

If δ is a smooth path on $\mathcal{A}_{G_1} \times \cdots \times \mathcal{A}_{G_n}$ then $\mathcal{L}(\delta) = L((\beta_{G_1} \times \cdots \times \beta_{G_n}) \circ \delta).$

From every norm $|_{-}|$ on \mathbb{R}^n one defines the length of a smooth path $\gamma = (\gamma_1, \ldots, \gamma_n)$ on $\mathcal{A}_{c_i} \times \cdots \times \mathcal{A}_{c_n}$ by

$$\mathcal{L}(\gamma) = \int_{t \in I} |\gamma'(t)| dt$$

with $\gamma'(t) = (\gamma'_1(t), \ldots, \gamma'_n(t))$ the coordinates of the tangent vector to γ at t in the standard base $((\gamma_1(t), 1), \ldots, (\gamma_n(t), 1))$ of the tangent space at $\gamma(t)$.

We also define the distance between $p, q \in |G_1| \times \cdots \times |G_n|$ as $d(p,q) = |d_{G_1}(p_1,q_1), \ldots, d_{G_n}(p_n,q_n)|$ from which we deduce the length $L(\gamma)$ of any path γ on $|G_1| \times \cdots \times |G_n|$.

If δ is a smooth path on $\mathcal{A}_{G_1} \times \cdots \times \mathcal{A}_{G_n}$ then $\mathcal{L}(\delta) = L((\beta_{G_1} \times \cdots \times \beta_{G_n}) \circ \delta).$

A subset X of $|G_1| \times \cdots \times |G_n|$ is said to be *tile compatible* when for all $p, q \in |G_1| \times \cdots \times |G_n|$ such that $(\pi_{G_1}, \ldots, \pi_{G_n})(p) = (\pi_{G_1}, \ldots, \pi_{G_n})(q)$, we have $p \in X$ iff $q \in X$.

A subset X of $|G_1| \times \cdots \times |G_n|$ is said to be *tile compatible* when for all $p, q \in |G_1| \times \cdots \times |G_n|$ such that $(\pi_{c_1}, \ldots, \pi_{c_n})(p) = (\pi_{c_1}, \ldots, \pi_{c_n})(q)$, we have $p \in X$ iff $q \in X$.

The standard cone of $\mathcal{A}_{G_1} \times \cdots \times \mathcal{A}_{G_n}$ at $p = (p_1, \dots, p_n)$ is the cone $C_p = \left\{ \sum_{i=1}^n (p_i, \lambda_i) \mid \lambda_i \ge 0 \right\} \subseteq T_p(\mathcal{A}_{G_1} \times \cdots \times \mathcal{A}_{G_n})$.

A subset X of $|G_1| \times \cdots \times |G_n|$ is said to be *tile compatible* when for all $p, q \in |G_1| \times \cdots \times |G_n|$ such that $(\pi_{c_1}, \ldots, \pi_{c_n})(p) = (\pi_{c_1}, \ldots, \pi_{c_n})(q)$, we have $p \in X$ iff $q \in X$.

The standard cone of $\mathcal{A}_{G_1} \times \cdots \times \mathcal{A}_{G_n}$ at $p = (p_1, \dots, p_n)$ is the cone $C_p = \left\{ \sum_{i=1}^n (p_i, \lambda_i) \mid \lambda_i \ge 0 \right\} \subseteq T_p(\mathcal{A}_{G_1} \times \cdots \times \mathcal{A}_{G_n})$.

A *conal path* on a subset Y of $||G_1|| \times \cdots \times ||G_n||$ is a smooth path δ on $\mathcal{A}_{G_1} \times \cdots \times \mathcal{A}_{G_n}$ such that $\delta(t) \in Y$ and $T\delta(t) \in C_{\delta(t)}$ for every $t \in \operatorname{dom}(\delta)$.

A subset X of $|G_1| \times \cdots \times |G_n|$ is said to be *tile compatible* when for all $p, q \in |G_1| \times \cdots \times |G_n|$ such that $(\pi_{G_1}, \ldots, \pi_{G_n})(p) = (\pi_{G_1}, \ldots, \pi_{G_n})(q)$, we have $p \in X$ iff $q \in X$.

The standard cone of $\mathcal{A}_{G_1} \times \cdots \times \mathcal{A}_{G_n}$ at $p = (p_1, \dots, p_n)$ is the cone $C_p = \left\{ \sum_{i=1}^n (p_i, \lambda_i) \mid \lambda_i \ge 0 \right\} \subseteq T_p(\mathcal{A}_{G_1} \times \cdots \times \mathcal{A}_{G_n})$.

A *conal path* on a subset Y of $||G_1|| \times \cdots \times ||G_n||$ is a smooth path δ on $\mathcal{A}_{G_1} \times \cdots \times \mathcal{A}_{G_n}$ such that $\delta(t) \in Y$ and $T\delta(t) \in C_{\delta(t)}$ for every $t \in \operatorname{dom}(\delta)$.

Theorem (Approximation)

For every directed path $\gamma = (\gamma_1, \ldots, \gamma_n)$ on a tile compatible subset X of $|G_1| \times \cdots \times |G_n|$, and every $\varepsilon > 0$, there exists a conal path $\delta = (\delta_1, \ldots, \delta_n)$ on $(\beta_{G_1} \times \cdots \times \beta_{G_n})^{-1}(X)$ such that:

- $-\gamma$ and $(\beta_{G_1} \times \cdots \times \beta_{G_n}) \circ \delta$ start (resp. finish) at the same point,
- $\max\left\{d_i(\gamma_i(t),\beta_i(\delta_i(t))) \mid t \in \mathsf{dom}(\gamma); \ i \in \{1,\ldots,n\}\right\} < \varepsilon, \ \textit{and}$
- $\mathcal{L}_{\infty}(\delta) < L_{\infty}(\gamma).$