DIRECTED ALGEBRAIC TOPOLOGY

AND

CONCURRENCY

Emmanuel Haucourt

emmanuel.haucourt@polytechnique.edu

MPRI : Concurrency (2.3.1) - Lecture 2 -

2024 - 2025

A BIT OF CATEGORY THEORY

 $\mathsf{Category}\ \mathcal{C}$ Definition (the "underlying graph" part)

Category \mathcal{C} Definition (the "underlying graph" part)

- Ob(C) : collection of objects

Category CDefinition (the "underlying graph" part)

- Ob(C) : collection of objects
- $Mo(\mathcal{C})$: collection of morphisms

Category \mathcal{C} Definition (the "underlying graph" part)

- Ob(C) : collection of objects
- Mo(C) : collection of morphisms
- ∂^{-} , ∂^{+} : mappings source, target as follows

$$\mathsf{Mo}(\mathcal{C}) \xrightarrow[\partial^+]{\partial^+} \mathsf{Ob}(\mathcal{C})$$

Category CDefinition (the "underlying graph" part)

- $Ob(\mathcal{C})$: collection of objects
- $Mo(\mathcal{C})$: collection of morphisms
- $\partial^{\scriptscriptstyle +}$, $\partial^{\scriptscriptstyle +}$: mappings source, target as follows

$$\mathsf{Mo}(\mathcal{C}) \xrightarrow[\partial^+]{\partial^+} \mathsf{Ob}(\mathcal{C})$$

- We define the homset $\mathcal{C}(x,y) := \Big\{ \gamma \in \mathsf{Mo}(\mathcal{C}) \ \Big| \ \partial^{\scriptscriptstyle +} \gamma = x \text{ and } \partial^{\scriptscriptstyle +} \gamma = y \Big\}$

 $\mathsf{Category}\ \mathcal{C}$ Definition (the "underlying local monoid" part)

Category \mathcal{C} Definition (the "underlying local monoid" part)

- id : provides each object with an identity

$$\mathsf{Mo}(\mathcal{C}) \xrightarrow[\partial^+]{\leftarrow \operatorname{id}} \mathsf{Ob}(\mathcal{C})$$

Category \mathcal{C} Definition (the "underlying local monoid" part)

- id : provides each object with an identity

$$\mathsf{Mo}(\mathcal{C}) \xrightarrow[\partial^+]{} \mathsf{Ob}(\mathcal{C})$$

- The binary composition is a partially defined and often denoted by \circ

$$\left\{(\gamma, \delta) \mid \gamma, \delta \text{ morphisms of } \mathcal{C} \text{ s.t. } \partial^{\cdot} \gamma = \partial^{\cdot} \delta \right\} \xrightarrow{\text{composition}} \mathsf{Mo}(\mathcal{C})$$

$\mathsf{Category}\ \mathcal{C}$ Definition (the axioms)

Category CDefinition (the axioms)

- The composition law is associative

Category \mathcal{C} Definition (the axioms)

- The composition law is associative
- For all objects x one has $\partial^{-}id_{x} = x = \partial^{+}id_{x}$

Category CDefinition (the axioms)

- The composition law is associative
- For all objects x one has $\partial^{\cdot} id_x = x = \partial^{+} id_x$

- For all morphisms γ one has $\mathrm{id}_{\partial^+\gamma}\circ\gamma=\gamma=\gamma\circ\mathrm{id}_{\partial^-\gamma}$

Standard examples

- *Set*: the category of sets.

- *Set*: the category of sets.
- *Mon*: the category of monoids
- *Cmon*: the category of commutative monoids
- *Gr*: the category of groups

- *Set*: the category of sets.
- *Mon*: the category of monoids
- *Cmon*: the category of commutative monoids
- *Gr*: the category of groups
- Pre: the category of preordered sets.
- Pos: the category of posets.

- *Set*: the category of sets.
- Mon: the category of monoids
- Cmon: the category of commutative monoids
- *Gr*: the category of groups
- Pre: the category of preordered sets.
- Pos: the category of posets.
- Any preordered set can be seen as a category in which any homset has at most one element.

- *Set*: the category of sets.
- Mon: the category of monoids
- Cmon: the category of commutative monoids
- *Gr*: the category of groups
- Pre: the category of preordered sets.
- *Pos*: the category of posets.
- Any preordered set can be seen as a category in which any homset has at most one element.
- Any monoid can be seen as a category with a single object.

- Set: the category of sets.
- Mon: the category of monoids
- *Cmon*: the category of commutative monoids
- Gr: the category of groups
- Pre: the category of preordered sets.
- *Pos*: the category of posets.
- Any preordered set can be seen as a category in which any homset has at most one element.
- Any monoid can be seen as a category with a single object.
- The opposite of a category is obtained by reversing all its arrows (i.e. by swapping the roles of the source and the target)

- f is an isomorphism when there exists g such that both $f \circ g$ and $g \circ f$ are identities.

- f is an isomorphism when there exists g such that both $f \circ g$ and $g \circ f$ are identities.
- Two objects related by an isomorphism are said to be isomorphic.

- f is an isomorphism when there exists g such that both $f \circ g$ and $g \circ f$ are identities.
- Two objects related by an isomorphism are said to be isomorphic.
- A groupoid is a category that only has isomorphisms.

- f is an isomorphism when there exists g such that both $f \circ g$ and $g \circ f$ are identities.
- Two objects related by an isomorphism are said to be isomorphic.
- A groupoid is a category that only has isomorphisms.
- f is a monomorphism when it is left-cancellative i.e. for all $g_1, g_2, f \circ g_1 = f \circ g_2$ implies $g_1 = g_2$.

- f is an isomorphism when there exists g such that both $f \circ g$ and $g \circ f$ are identities.
- Two objects related by an isomorphism are said to be isomorphic.
- A groupoid is a category that only has isomorphisms.
- f is a monomorphism when it is left-cancellative i.e. for all $g_1, g_2, f \circ g_1 = f \circ g_2$ implies $g_1 = g_2$.
- f is a epimorphism when it is right-cancellative i.e. for all $g_1, g_2, g_1 \circ f = g_2 \circ f$ implies $g_1 = g_2$.

- f is an isomorphism when there exists g such that both $f \circ g$ and $g \circ f$ are identities.
- Two objects related by an isomorphism are said to be isomorphic. -
- A groupoid is a category that only has isomorphisms.
- f is a monomorphism when it is left-cancellative i.e. for all $g_1, g_2, f \circ g_1 = f \circ g_2$ implies $g_1 = g_2$.
- f is a epimorphism when it is right-cancellative i.e. for all $g_1, g_2, g_1 \circ f = g_2 \circ f$ implies $g_1 = g_2$.
- any isomorphism is both monomorphism and an epimorphism, the converse is false in general (e.g. \mathcal{P}_{OS}).

- f is an isomorphism when there exists g such that both $f \circ g$ and $g \circ f$ are identities.
- Two objects related by an isomorphism are said to be isomorphic. -
- A groupoid is a category that only has isomorphisms.
- f is a monomorphism when it is left-cancellative i.e. for all $g_1, g_2, f \circ g_1 = f \circ g_2$ implies $g_1 = g_2$.
- f is a epimorphism when it is right-cancellative i.e. for all $g_1, g_2, g_1 \circ f = g_2 \circ f$ implies $g_1 = g_2$.
- any isomorphism is both monomorphism and an epimorphism, the converse is false in general (e.g. \mathcal{P}_{OS}).
- if $r \circ s = id$ then r is called a retract/split epimorphism and s is called a section/split monomorphism.

The elements of V are the vertices and those of A are the arrows In particular A and V are sets

The elements of V are the vertices and those of A are the arrows In particular A and V are sets

Objects

The elements of V are the vertices and those of A are the arrows In particular A and V are sets

Morphisms

 $A \\ s \downarrow \downarrow t \\ V$

The category of graphs (Grph)

The elements of V are the vertices and those of A are the arrows In particular A and V are sets

The elements of V are the vertices and those of A are the arrows In particular A and V are sets

with $s'(\phi_1(\alpha)) = \phi_0(\partial^{\cdot} \alpha)$ and $t'(\phi_1(\alpha)) = \phi_0(\partial^{\cdot} \alpha)$

The category of bases of topologies ($\mathcal{B}as$)

A base of a topology is a collection of sets $\ensuremath{\mathcal{B}}$ such that
A base of a topology is a collection of sets \mathcal{B} such that for all $U, V \in \mathcal{B}$,

The category of bases of topologies (Bas)

A base of a topology is a collection of sets \mathcal{B} such that for all $U, V \in \mathcal{B}$, all $p \in U \cap V$,

A base of a topology is a collection of sets \mathcal{B} such that for all $U, V \in \mathcal{B}$, all $p \in U \cap V$, there exists $W \in \mathcal{B}$ such that $p \in W \subseteq U \cap V$.

A map $f : \mathcal{B} \to \mathcal{B}'$ is *continuous* when

A map $f : \mathcal{B} \to \mathcal{B}'$ is *continuous* when for every point p of \mathcal{B} ,

A map $f : \mathcal{B} \to \mathcal{B}'$ is *continuous* when for every point p of \mathcal{B} , every $V \in \mathcal{B}'$ with $f(p) \in V$,

A map $f : \mathcal{B} \to \mathcal{B}'$ is *continuous* when for every point p of \mathcal{B} , every $V \in \mathcal{B}'$ with $f(p) \in V$, there exists $U \in \mathcal{B}$ with $p \in U$ such that

A map $f : \mathcal{B} \to \mathcal{B}'$ is *continuous* when for every point p of \mathcal{B} , every $V \in \mathcal{B}'$ with $f(p) \in V$, there exists $U \in \mathcal{B}$ with $p \in U$ such that $f(U) \subseteq V$.

The category of topological spaces (Top)

The category of topological spaces (Top)

A topological space is a set X and a collection $\Omega_X \subseteq \mathcal{P}(X)$ s.t.

The category of topological spaces (Top)

A topological space is a set X and a collection $\Omega_X \subseteq \mathcal{P}(X)$ s.t.

1) $\emptyset \in \Omega_X$ and $X \in \Omega_X$

The category of topological spaces (Top)

A topological space is a set X and a collection $\Omega_X \subseteq \mathcal{P}(X)$ s.t.

1) $\emptyset \in \Omega_X$ and $X \in \Omega_X$ 2) Ω_X is stable under union

The category of topological spaces (Top)

A topological space is a set X and a collection $\Omega_X \subseteq \mathcal{P}(X)$ s.t.

- 1) $\emptyset \in \Omega_X$ and $X \in \Omega_X$
- 2) Ω_X is stable under union
- 3) Ω_X is stable under finite intersection

The category of topological spaces (Top)

A topological space is a set X and a collection $\Omega_X \subseteq \mathcal{P}(X)$ s.t.

- 1) $\emptyset \in \Omega_X$ and $X \in \Omega_X$
- 2) Ω_X is stable under union
- 3) Ω_X is stable under finite intersection

Equivalently, a topological space is a base of a topology stable under union.

The category of topological spaces (Top)

A topological space is a set X and a collection $\Omega_X \subseteq \mathcal{P}(X)$ s.t.

- 1) $\emptyset \in \Omega_X$ and $X \in \Omega_X$
- 2) Ω_X is stable under union
- 3) Ω_X is stable under finite intersection

Equivalently, a topological space is a base of a topology stable under union.

A continuous map $f: (X, \Omega_X) \to (Y, \Omega_Y)$ is a map $f: X \to Y$ s.t.

The category of topological spaces (Top)

A topological space is a set X and a collection $\Omega_X \subseteq \mathcal{P}(X)$ s.t.

- 1) $\emptyset \in \Omega_X$ and $X \in \Omega_X$
- 2) Ω_X is stable under union
- 3) Ω_X is stable under finite intersection

Equivalently, a topological space is a base of a topology stable under union.

A continuous map $f: (X, \Omega_X) \to (Y, \Omega_Y)$ is a map $f: X \to Y$ s.t.

 $\forall x \in X \ \forall V \in \Omega_Y \text{ s.t. } f(x) \in V, \ \exists U \in \Omega_X \text{ s.t. } x \in U \text{ and } \dots$

The category of topological spaces (Top)

A topological space is a set X and a collection $\Omega_X \subseteq \mathcal{P}(X)$ s.t.

- 1) $\emptyset \in \Omega_X$ and $X \in \Omega_X$
- 2) Ω_X is stable under union
- 3) Ω_X is stable under finite intersection

Equivalently, a topological space is a base of a topology stable under union.

A continuous map $f: (X, \Omega_X) \to (Y, \Omega_Y)$ is a map $f: X \to Y$ s.t.

 $\forall x \in X \ \forall V \in \Omega_Y \text{ s.t. } f(x) \in V, \ \exists U \in \Omega_X \text{ s.t. } x \in U \text{ and } f(U) \subseteq V$

The category of topological spaces (Top)

A topological space is a set X and a collection $\Omega_X \subseteq \mathcal{P}(X)$ s.t.

- 1) $\emptyset \in \Omega_X$ and $X \in \Omega_X$
- 2) Ω_X is stable under union
- 3) Ω_X is stable under finite intersection

Equivalently, a topological space is a base of a topology stable under union.

A continuous map $f: (X, \Omega_X) \to (Y, \Omega_Y)$ is a map $f: X \to Y$ s.t.

 $\forall x \in X \ \forall V \in \Omega_Y$ s.t. $f(x) \in V$, $\exists U \in \Omega_X$ s.t. $x \in U$ and $f(U) \subseteq V$

or equivalently

 $\forall V \in \Omega_V f^{-1}(V) \in \Omega_X$

The category of topological spaces (Top)

A topological space is a set X and a collection $\Omega_X \subseteq \mathcal{P}(X)$ s.t.

- 1) $\emptyset \in \Omega_X$ and $X \in \Omega_X$
- 2) Ω_X is stable under union
- 3) Ω_X is stable under finite intersection

Equivalently, a topological space is a base of a topology stable under union.

A continuous map $f: (X, \Omega_X) \to (Y, \Omega_Y)$ is a map $f: X \to Y$ s.t.

 $\forall x \in X \ \forall V \in \Omega_Y \text{ s.t. } f(x) \in V, \ \exists U \in \Omega_X \text{ s.t. } x \in U \text{ and } f(U) \subseteq V$

or equivalently

 $\forall V \in \Omega_Y f^{-1}(V) \in \Omega_X$

The elements of Ω_X are called the open subsets of X.

The category of topological spaces (Top)

A topological space is a set X and a collection $\Omega_X \subseteq \mathcal{P}(X)$ s.t.

- 1) $\emptyset \in \Omega_X$ and $X \in \Omega_X$
- 2) Ω_X is stable under union
- 3) Ω_X is stable under finite intersection

Equivalently, a topological space is a base of a topology stable under union.

A continuous map $f: (X, \Omega_X) \to (Y, \Omega_Y)$ is a map $f: X \to Y$ s.t.

 $\forall x \in X \ \forall V \in \Omega_Y$ s.t. $f(x) \in V$, $\exists U \in \Omega_X$ s.t. $x \in U$ and $f(U) \subseteq V$

or equivalently

 $\forall V \in \Omega_{Y} f^{-1}(V) \in \Omega_{X}$

The elements of Ω_X are called the open subsets of X. The complement of an open subsets is said to be closed.

Functors f from \mathcal{C} to \mathcal{D}

Definition (preserving the "underlying graph")

Functors f from C to D

Definition (preserving the "underlying graph")

A functor $f : C \to D$ is defined by two "mappings" Ob(f) and Mo(f) such that

Functors f from C to DDefinition (preserving the "underlying graph")

A functor $f : C \to D$ is defined by two "mappings" Ob(f) and Mo(f) such that

$$\begin{array}{c} \mathsf{Mo}(\mathcal{C}) \xrightarrow{\partial^{+}} \mathsf{Ob}(\mathcal{C}) \\ \underbrace{\mathsf{Mo}(f)}_{\mathsf{Mo}(\mathcal{D})} \xrightarrow{\partial^{-'}} \mathsf{Ob}(\mathcal{D}) \\ \underbrace{\partial^{-'}}_{\partial^{+'}} \mathsf{Ob}(\mathcal{D}) \end{array}$$

with $\partial^{-\prime}(\mathsf{Mo}(f)(\alpha)) = \mathsf{Ob}(f)(\partial^{-}\alpha)$ and $\partial^{+\prime}(\mathsf{Mo}(f)(\alpha)) = \mathsf{Ob}(f)(\partial^{+}\alpha)$

Hence it is in particular a morphism of graphs.

Functors f from \mathcal{C} to \mathcal{D}

Definition (preserving the "underlying local monoid")

Functors f from C to D

Definition (preserving the "underlying local monoid")

The "mappings" Ob(f) and Mo(f) also make the following diagram commute

Functors f from C to \mathcal{D}

Definition (preserving the "underlying local monoid")

The "mappings" Ob(f) and Mo(f) also make the following diagram commute

and satisfies $Mo(f)(\gamma \circ \delta) = Mo(f)(\gamma) \circ Mo(f)(\delta)$

Functors compose as morphisms of graphs do

Functors compose as morphisms of graphs do

Functors compose as morphisms of graphs do

Hence functors should be thought of as morphisms of categories

Functors compose as morphisms of graphs do

Hence functors should be thought of as morphisms of categories

The small categories and their funtors form a (large) category denoted by Cat

Some forgetful functors

Some forgetful functors

 $(M, *, e) \in \mathcal{M}on \mapsto M \in \mathcal{S}et$ $(X, \Omega) \in \mathcal{T}op \mapsto X \in \mathcal{S}et$ $(X, \sqsubseteq) \in \mathcal{P}os \mapsto X \in \mathcal{S}et$

Some forgetful functors

 $(M, *, e) \in \mathcal{M}on \mapsto M \in \mathcal{S}et$ $(X, \Omega) \in \mathcal{T}op \mapsto X \in \mathcal{S}et$ $(X, \sqsubseteq) \in \mathcal{P}os \mapsto X \in \mathcal{S}et$

 $\begin{array}{l} \mathcal{C} \in \mathit{Cat} \mapsto \mathsf{Ob}(\mathcal{C}) \in \mathit{Set} \\ \mathcal{C} \in \mathit{Cat} \mapsto \mathsf{Mo}(\mathcal{C}) \in \mathit{Set} \end{array}$

Some forgetful functors

 $(M, *, e) \in \mathcal{M}on \mapsto M \in \mathcal{S}et$ $(X, \Omega) \in \mathcal{T}op \mapsto X \in \mathcal{S}et$ $(X, \sqsubseteq) \in \mathcal{P}os \mapsto X \in \mathcal{S}et$

 $\begin{array}{l} \mathcal{C} \in \mathit{Cat} \mapsto \mathsf{Ob}(\mathcal{C}) \in \mathit{Set} \\ \mathcal{C} \in \mathit{Cat} \mapsto \mathsf{Mo}(\mathcal{C}) \in \mathit{Set} \end{array}$

$$\mathcal{C} \in \mathcal{C}at \mapsto \Big(\mathsf{Mo}(\mathcal{C}) \xrightarrow[]{\partial^+} \partial^+ \mathsf{Ob}(\mathcal{C}) \Big) \in \mathcal{G}rph$$

Some small functors

(functor between small categories)
Some small functors

(functor between small categories)

The morphisms of monoids are the functors between small categories with a single object

Some small functors

(functor between small categories)

The morphisms of monoids are the functors between small categories with a single object

The morphisms of preordered sets are the functors between small categories whose homsets contain at most one element

Some small functors

(functor between small categories)

The morphisms of monoids are the functors between small categories with a single object

The morphisms of preordered sets are the functors between small categories whose homsets contain at most one element

The actions of a monoid M over a set X are the functors from M to Set which sends the only element of M to X

Category theory	Functors
-----------------	----------

Given a functor $f: \mathcal{C} \to \mathcal{D}$ and two objects x and y we have the mapping

$$f_{x,y}$$
 : $\mathcal{C}[x,y] \rightarrow \mathcal{D}[\operatorname{Ob}(f)(x),\operatorname{Ob}(f)(y)]$
 $\alpha \mapsto \operatorname{Mo}(f)(\alpha)$

Given a functor $f : C \to D$ and two objects x and y we have the mapping

$$f_{x,y}$$
 : $\mathcal{C}[x,y] \rightarrow \mathcal{D}[\operatorname{Ob}(f)(x),\operatorname{Ob}(f)(y)]$
 $\alpha \mapsto \operatorname{Mo}(f)(\alpha)$

- f is faithful when for all objects x and y the mapping $f_{x,y}$ is one-to-one (injective)

Given a functor $f:\mathcal{C}
ightarrow \mathcal{D}$ and two objects x and y we have the mapping

$$f_{x,y}$$
 : $\mathcal{C}[x,y] \rightarrow \mathcal{D}[\operatorname{Ob}(f)(x),\operatorname{Ob}(f)(y)]$
 $\alpha \mapsto \operatorname{Mo}(f)(\alpha)$

- f is faithful when for all objects x and y the mapping $f_{x,y}$ is one-to-one (injective)
- f is full when for all objects x and y the mapping $f_{x,y}$ is onto (surjective)

Given a functor $f : C \to D$ and two objects x and y we have the mapping

 $\begin{array}{rcl} f_{x,y} & : & \mathcal{C}[x,y] & \to & \mathcal{D}[\operatorname{Ob}(f)(x),\operatorname{Ob}(f)(y)] \\ & & & & & & \operatorname{Mo}(f)(\alpha) \end{array}$

- f is faithful when for all objects x and y the mapping $f_{x,y}$ is one-to-one (injective)
- f is full when for all objects x and y the mapping $f_{x,y}$ is onto (surjective)
- *f* is fully faithful when it is full and faithful

Given a functor $f : C \to D$ and two objects x and y we have the mapping

 $\begin{array}{rcl} f_{x,y} & : & \mathcal{C}[x,y] & \to & \mathcal{D}[\operatorname{Ob}(f)(x),\operatorname{Ob}(f)(y)] \\ & & & & \mapsto & \operatorname{Mo}(f)(\alpha) \end{array}$

- f is faithful when for all objects x and y the mapping $f_{x,y}$ is one-to-one (injective)
- f is full when for all objects x and y the mapping $f_{x,y}$ is onto (surjective)
- f is fully faithful when it is full and faithful
- f is an embedding when it is faithful and Ob(f) is one-to-one
- f is an equivalence when it is fully faithful and every object of \mathcal{D} is isomorphic to an object of the form f(C) with $C \in \mathcal{C}$.

Some full embeddings in *Cat*

Some full embeddings in Cat

<u>Remark</u> : The full embeddings compose

Some full embeddings in Cat

<u>Remark</u> : The full embeddings compose

 $\begin{array}{l} \Pr re \hookrightarrow Cat \\ \mathcal{M}on \hookrightarrow Cat \\ \mathcal{P}os \hookrightarrow \mathcal{P}re \\ Gr \hookrightarrow \mathcal{M}on \end{array}$

Some full embeddings in Cat

<u>Remark</u> : The full embeddings compose

$\mathit{Pre} \hookrightarrow \mathit{Cat}$	$\mathit{Cmon} \hookrightarrow \mathit{Mon}$
$\mathcal{M}\!\mathit{on} \hookrightarrow \mathit{Cat}$	$\mathcal{Ab} \hookrightarrow \mathcal{Cmon}$
$\operatorname{Pos} \hookrightarrow \operatorname{Pre}$	$\mathcal{A} b \hookrightarrow \mathcal{G} r$
$\mathit{Gr} \hookrightarrow \mathit{Mon}$	$\mathcal{S}et \hookrightarrow \mathcal{P}os$

Topological spaces and their bases

Topological spaces and their bases

Full embedding $I : Top \rightarrow Bas$.

Topological spaces and their bases

Full embedding $I : Top \rightarrow Bas$.

Space functor $Sp : \mathcal{B}as \to \mathcal{T}op$ sending \mathcal{B} to $\{\bigcup \mathcal{C} \mid \mathcal{C} \subseteq \mathcal{B}\}$.

Topological spaces and their bases

Full embedding $I : Top \rightarrow Bas$.

Space functor $Sp : \mathcal{B}as \to \mathcal{T}op$ sending \mathcal{B} to $\{ \bigcup \mathcal{C} \mid \mathcal{C} \subseteq \mathcal{B} \}$.

Given $\mathcal{B} \in \mathcal{B}_{as}$, we denote by \mathcal{UB} the underlying set of \mathcal{B} , i.e. the union of all the elements of \mathcal{B} . E.g.: bases of \mathbb{R}^2 .

Topological spaces and their bases

Full embedding $I : Top \rightarrow Bas$.

Space functor $Sp : \mathcal{B}as \to \mathcal{T}op$ sending \mathcal{B} to $\{\bigcup \mathcal{C} \mid \mathcal{C} \subseteq \mathcal{B}\}$.

Given $\mathcal{B} \in \mathcal{B}as$, we denote by $U\mathcal{B}$ the underlying set of \mathcal{B} , i.e. the union of all the elements of \mathcal{B} . E.g.: bases of \mathbb{R}^2 .

Given $\mathcal{B} \in \mathcal{B}_{as}$, the identity map on $U\mathcal{B}$ induces an isomorphism from \mathcal{B} to $Sp(\mathcal{B})$ which we denote by $\mathcal{B} \Rightarrow Sp(\mathcal{B})$; and an isomorphism from $Sp(\mathcal{B})$ to \mathcal{B} which we denote by $Sp(\mathcal{B}) \Rightarrow \mathcal{B}$. We have $(\mathcal{B} \Rightarrow Sp(\mathcal{B}))^{-1} = (Sp(\mathcal{B}) \Rightarrow \mathcal{B})$

Topological spaces and their bases

Full embedding $I : Top \rightarrow Bas$.

Space functor $Sp : \mathcal{B}as \to \mathcal{T}op$ sending \mathcal{B} to $\{\bigcup \mathcal{C} \mid \mathcal{C} \subseteq \mathcal{B}\}$.

Given $\mathcal{B} \in \mathcal{B}as$, we denote by $U\mathcal{B}$ the underlying set of \mathcal{B} , i.e. the union of all the elements of \mathcal{B} . E.g.: bases of \mathbb{R}^2 .

Given $\mathcal{B} \in \mathcal{B}_{as}$, the identity map on $U\mathcal{B}$ induces an isomorphism from \mathcal{B} to $Sp(\mathcal{B})$ which we denote by $\mathcal{B} \Rightarrow Sp(\mathcal{B})$; and an isomorphism from $Sp(\mathcal{B})$ to \mathcal{B} which we denote by $Sp(\mathcal{B}) \Rightarrow \mathcal{B}$. We have $(\mathcal{B} \Rightarrow Sp(\mathcal{B}))^{-1} = (Sp(\mathcal{B}) \Rightarrow \mathcal{B})$

The functors *I* and *Sp* are equivalences of categories.

morphisms of functors from $f:\mathcal{C}\to\mathcal{D}$ to $g:\mathcal{C}\to\mathcal{D}$

morphisms of functors from $f:\mathcal{C}\to\mathcal{D}$ to $g:\mathcal{C}\to\mathcal{D}$

A natural transformation $\eta : f \to g$ is a collection of morphisms $(\eta_x)_{x \in Ob(\mathcal{C})}$ where $\eta_x \in \mathcal{D}[f(x), g(x)]$ and such that for all $\alpha \in \mathcal{C}[x, y]$ we have $\eta_y \circ f(\alpha) = g(\alpha) \circ \eta_x$ i.e. the following diagram commute

morphisms of functors from $f:\mathcal{C}\to\mathcal{D}$ to $g:\mathcal{C}\to\mathcal{D}$

A natural transformation $\eta : f \to g$ is a collection of morphisms $(\eta_x)_{x \in Ob(\mathcal{C})}$ where $\eta_x \in \mathcal{D}[f(x), g(x)]$ and such that for all $\alpha \in \mathcal{C}[x, y]$ we have $\eta_y \circ f(\alpha) = g(\alpha) \circ \eta_x$ i.e. the following diagram commute

$$\begin{array}{ccc} f(x) & \xrightarrow{f(\alpha)} & f(y) \\ x & \xrightarrow{\alpha} & y & & \eta_x \\ & & & & \downarrow \\ & & & g(x) & \xrightarrow{g(\alpha)} & g(y) \end{array}$$

morphisms of functors from $f:\mathcal{C}\to\mathcal{D}$ to $g:\mathcal{C}\to\mathcal{D}$

A natural transformation $\eta : f \to g$ is a collection of morphisms $(\eta_x)_{x \in Ob(\mathcal{C})}$ where $\eta_x \in \mathcal{D}[f(x), g(x)]$ and such that for all $\alpha \in \mathcal{C}[x, y]$ we have $\eta_y \circ f(\alpha) = g(\alpha) \circ \eta_x$ i.e. the following diagram commute

$$\begin{array}{ccc} f(x) & \xrightarrow{f(\alpha)} & f(y) \\ x & \xrightarrow{\alpha} & y & & \eta_x \\ & & & & \downarrow \\ & & & g(x) & \xrightarrow{g(\alpha)} & g(y) \end{array}$$

This description is summarized by the following diagram

morphisms of functors from $f:\mathcal{C}\to\mathcal{D}$ to $g:\mathcal{C}\to\mathcal{D}$

A natural transformation $\eta : f \to g$ is a collection of morphisms $(\eta_x)_{x \in Ob(\mathcal{C})}$ where $\eta_x \in \mathcal{D}[f(x), g(x)]$ and such that for all $\alpha \in \mathcal{C}[x, y]$ we have $\eta_y \circ f(\alpha) = g(\alpha) \circ \eta_x$ i.e. the following diagram commute

This description is summarized by the following diagram

If every η_x is an isomorphism of \mathcal{D} , then η is said to be a natural isomorphism, its inverse η^{-1} is $(\eta_x^{-1})_{x \in Ob(\mathcal{C})}$.

A functor $f : \mathcal{C} \to \mathcal{D}$ is an equivalence iff there exists a functor $g : \mathcal{D} \to \mathcal{C}$ and natural isomorphisms $\mathrm{id}_{\mathcal{C}} \cong g \circ f$ and $\mathrm{id}_{\mathcal{D}} \cong f \circ g$.

A functor $f : \mathcal{C} \to \mathcal{D}$ is an equivalence iff there exists a functor $g : \mathcal{D} \to \mathcal{C}$ and natural isomorphisms $\mathrm{id}_{\mathcal{C}} \cong g \circ f$ and $\mathrm{id}_{\mathcal{D}} \cong f \circ g$.

E.g.: we have $\operatorname{id}_{\operatorname{Top}} = I \circ Sp$ and the collection $B \Rightarrow Sp(B)$ for $B \in \operatorname{Bas}$ is a natural isomorphism from $\operatorname{id}_{\operatorname{Bas}}$ to $Sp \circ I$.

AN ALGEBRAIC TOPOLOGY TEASER

Every functor preserves the isomorphisms

Every functor preserves the isomorphisms

Problem: prove the topological spaces X and Y are *not* the same

Every functor preserves the isomorphisms

Problem: prove the topological spaces X and Y are *not* the same Strategy: find a functor F defined over Top such that $F(X) \ncong F(Y)$

Compactness

More topological notions

More topological notions

The interior of a subset A of X is the greatest open subset of X contained in A.

More topological notions

The interior of a subset A of X is the greatest open subset of X contained in A.

Then closure of a subset A of X is the least closed subset of X containing A.
The interior of a subset A of X is the greatest open subset of X contained in A.

Then closure of a subset A of X is the least closed subset of X containing A.

A neighbourhood of a subset A of X is a subset of X whose interior contains A.

- The interior of a subset A of X is the greatest open subset of X contained in A.
- Then closure of a subset A of X is the least closed subset of X containing A.
- A neighbourhood of a subset A of X is a subset of X whose interior contains A.
- A topological space X is said to be Hausdorff when for all $x, x' \in X$, if $x \neq x'$ then x and x' have disjoint neighbourhoods.

The interior of a subset A of X is the greatest open subset of X contained in A.

Then closure of a subset A of X is the least closed subset of X containing A.

A neighbourhood of a subset A of X is a subset of X whose interior contains A.

A topological space X is said to be Hausdorff when for all $x, x' \in X$, if $x \neq x'$ then x and x' have disjoint neighbourhoods.

A subset Q of X is said to be saturated when

 $Q = \bigcap \{ U \mid U \text{ open and } Q \subseteq U \}$

The interior of a subset A of X is the greatest open subset of X contained in A.

Then closure of a subset A of X is the least closed subset of X containing A.

A neighbourhood of a subset A of X is a subset of X whose interior contains A.

A topological space X is said to be Hausdorff when for all $x, x' \in X$, if $x \neq x'$ then x and x' have disjoint neighbourhoods.

A subset Q of X is said to be saturated when

 $Q = \bigcap \{ U \mid U \text{ open and } Q \subseteq U \}$

Every subset of a Hausdorff space is saturated.

Compactness and local compactness

Compactness

Compactness and local compactness

Let X be a topological space.

Compactness and local compactness

Let X be a topological space.

- An open covering of X is a collection of open subsets of X whose union is X.

Compactness

Compactness and local compactness

Let X be a topological space.

- An open covering of X is a collection of open subsets of X whose union is X.
- X is said to be compact when every open covering of X admit a finite sub-covering.

Compactness and local compactness

Let X be a topological space.

- An open covering of X is a collection of open subsets of X whose union is X.
- X is said to be compact when every open covering of X admit a finite sub-covering.
- X is said to be locally compact when for every $x \in X$, every open neighbourhood U of x contains a saturated compact neighbourhood of x.

Compactness and local compactness

Let X be a topological space.

- An open covering of X is a collection of open subsets of X whose union is X.
- X is said to be compact when every open covering of X admit a finite sub-covering.
- X is said to be locally compact when for every $x \in X$, every open neighbourhood U of x contains a saturated compact neighbourhood of x.

A Hausdorff space is locally compact iff each of its points admits a compact neighbourhood.

1) A topological space X is said to be connected when its only closed-open subsets are \emptyset and X

1) A topological space X is said to be connected when its only closed-open subsets are \emptyset and X 2) A union of connected subspaces sharing a point is connected

- 1) A topological space X is said to be connected when its only closed-open subsets are \emptyset and X
- 2) A union of connected subspaces sharing a point is connected
- 3) The connected components of a topological space induce a partition of its underlying set

- 1) A topological space X is said to be connected when its only closed-open subsets are \emptyset and X
- 2) A union of connected subspaces sharing a point is connected
- 3) The connected components of a topological space induce a partition of its underlying set
- 4) Any connected subset of X is contained in a connected component of X

- 1) A topological space X is said to be connected when its only closed-open subsets are \emptyset and X
- 2) A union of connected subspaces sharing a point is connected
- 3) The connected components of a topological space induce a partition of its underlying set
- 4) Any connected subset of X is contained in a connected component of X
- 5) Any continuous direct image of a connected subset of X is connected

The connected component functor

1) A topological space X is said to be connected when its only closed-open subsets are \emptyset and X

- 2) A union of connected subspaces sharing a point is connected
- 3) The connected components of a topological space induce a partition of its underlying set
- 4) Any connected subset of X is contained in a connected component of X
- 5) Any continuous direct image of a connected subset of X is connected

An application

The continuous image of a connected space is connected

The image of the space B is entirely contained in a connected component of the space V.

This situation is abstracted by classifying continuous maps from B to V according to which connected component (V_1 or V_2) the single connected components of B (namely B itself) is sent to. There are exactly two set theoretic maps from the singleton $\{B\}$ to the pair $\{V_1, V_2\}$ hence there is at most (in fact exactly) two kinds of continuous maps from B to V.

 $\{B\} \longrightarrow \{V_1, V_2\}$

In particular B and V are not homeomorphic.

Application

The compact interval and the circle are not homeomorphic

Application

The compact interval and the circle are not homeomorphic

Let $\mathbb{S}^1 := \{z \in \mathbb{C} \mid |z| = 1\}$ be the Euclidean circle and suppose $\varphi : [0, 1] \to \mathbb{S}^1$ is a homeomorphism.

Application

The compact interval and the circle are not homeomorphic

Let $\mathbb{S}^1 := \{z \in \mathbb{C} \mid |z| = 1\}$ be the Euclidean circle and suppose $\varphi : [0, 1] \to \mathbb{S}^1$ is a homeomorphism.

Then φ induces a homeomorphism

 $[0, rac{1}{2}[\ \cup \]rac{1}{2}, 1] \ o \ \mathbb{S}^1 ackslash \{ arphi(rac{1}{2}) \}$

which does not exist!

Generalization Bouquets of circles

These topological spaces are pairwise not homeomorphic. Why ?

Maurice Herlihy Dmitry Kozlov Sergio Rajsbaum

METRIC SPACES

Categories of Metric Spaces

A metric space is a set X together with a mapping $d: X \times X \to \mathbb{R}_+ \cup \{\infty\}$ such that:

A metric space is a set X together with a mapping $d:X\times X\to \mathbb{R}_+\cup\{\infty\}$ such that:

 $- d(x,y) = 0 \Leftrightarrow x = y$

A metric space is a set X together with a mapping $d: X \times X \to \mathbb{R}_+ \cup \{\infty\}$ such that:

$$- d(x,y) = 0 \Leftrightarrow x = y$$

- d(x,y) = d(y,x)

A metric space is a set X together with a mapping $d: X \times X \to \mathbb{R}_+ \cup \{\infty\}$ such that:

$$- d(x,y) = 0 \Leftrightarrow x = y$$

$$- d(x,y) = d(y,x)$$

$$- d(x,z) \leqslant d(x,y) + d(y,z)$$

A metric space is a set X together with a mapping $d: X \times X \to \mathbb{R}_+ \cup \{\infty\}$ such that:

$$- d(x,y) = 0 \Leftrightarrow x = y$$

$$- d(x,y) = d(y,x)$$

$$- d(x,z) \leqslant d(x,y) + d(y,z)$$

The open balls $B(c,r) = \{x \in X \mid d(c,x) < r\}$ with $x \in X$ and r > 0 form a base of a topology.

A metric space is a set X together with a mapping $d: X \times X \to \mathbb{R}_+ \cup \{\infty\}$ such that:

$$- d(x,y) = 0 \Leftrightarrow x = y$$

$$- d(x,y) = d(y,x)$$

$$- d(x,z) \leqslant d(x,y) + d(y,z)$$

The open balls $B(c,r) = \{x \in X \mid d(c,x) < r\}$ with $x \in X$ and r > 0 form a base of a topology.

Goal: turn any graph into metric space in a functorial way.

Metric space morphisms

Metric space morphisms

- $\mathcal{M}et_{emb} f: X \to Y \text{ s.t. } \forall x, x' \in X, \ d_Y(f(x), f(x')) = d_X(x, x')$
- $\mathcal{M}et_{emb} f: X \to Y \text{ s.t. } \forall x, x' \in X, \ d_Y(f(x), f(x')) = d_X(x, x')$
- Met_{ctr} $f: X \to Y$ s.t. $\forall x, x' \in X, \ d_Y(f(x), f(x')) \leqslant d_X(x, x')$

- $\mathcal{M}et_{emb} f: X \to Y \text{ s.t. } \forall x, x' \in X, \ d_Y(f(x), f(x')) = d_X(x, x')$
- $\mathcal{M}et_{ctr} f: X \to Y \text{ s.t. } \forall x, x' \in X, \ d_Y(f(x), f(x')) \leqslant d_X(x, x')$
- Met $f: X \to Y$ s.t. $\exists r \in]0, \infty[\ \forall x, x' \in X, \ d_Y(f(x), f(x')) \leqslant r \cdot d_X(x, x')$

- $\mathcal{M}et_{emb} f: X \to Y \text{ s.t. } \forall x, x' \in X, \ d_Y(f(x), f(x')) = d_X(x, x')$
- $\mathcal{M}et_{ctr} f: X \to Y \text{ s.t. } \forall x, x' \in X, \ d_Y(f(x), f(x')) \leqslant d_X(x, x')$
- Met $f: X \to Y$ s.t. $\exists r \in]0, \infty[\forall x, x' \in X, d_Y(f(x), f(x')) \leqslant r \cdot d_X(x, x')$
- $\mathcal{M}et_{top} f: X \to Y \text{ s.t. } \forall x \in X \ \forall \varepsilon > 0 \ \exists \eta > 0, \ f(B(x,\eta)) \subseteq B(f(x),\varepsilon)$

- $\mathcal{M}et_{emb} f: X \to Y \text{ s.t. } \forall x, x' \in X, \ d_Y(f(x), f(x')) = d_X(x, x')$
- $\mathcal{M}et_{ctr} f: X \to Y \text{ s.t. } \forall x, x' \in X, \ d_Y(f(x), f(x')) \leqslant d_X(x, x')$
- Met $f: X \to Y$ s.t. $\exists r \in]0, \infty[\ \forall x, x' \in X, \ d_Y(f(x), f(x')) \leqslant r \cdot d_X(x, x')$
- $\mathcal{M}et_{top} f: X \to Y \text{ s.t. } \forall x \in X \ \forall \varepsilon > 0 \ \exists \eta > 0, \ f(B(x,\eta)) \subseteq B(f(x),\varepsilon)$

$$\mathcal{M}et_{emb} \hookrightarrow \mathcal{M}et_{ctr} \hookrightarrow \mathcal{M}et \hookrightarrow \mathcal{M}et_{top} \stackrel{full}{\hookrightarrow} \mathcal{T}op$$

The length $\ell(\gamma)$ of a path $\gamma: [0, r] \to (X, d)$ is the least upper bound of the collection of sums

 $\sum_{i=0}^n dig(\gamma(t_{i+1}),\gamma(t_i)ig)$

where $n \in \mathbb{N}$ and $0 = t_0 \leqslant \cdots \leqslant t_n = r$.

The length $\ell(\gamma)$ of a path $\gamma: [0, r] \to (X, d)$ is the least upper bound of the collection of sums

 $\sum_{i=0}^n dig(\gamma(t_{i+1}),\gamma(t_i)ig)$

where $n \in \mathbb{N}$ and $0 = t_0 \leqslant \cdots \leqslant t_n = r$.

The metric space (X, d) is a length space when the distance between two points $x, x' \in X$ is the following greatest lower bound

 $\inf \left\{ \ell(\gamma) \mid \gamma \text{ is a path from } x \text{ to } x' \right\}$

The length $\ell(\gamma)$ of a path $\gamma: [0, r] \to (X, d)$ is the least upper bound of the collection of sums

 $\sum_{i=0}^n dig(\gamma(t_{i+1}),\gamma(t_i)ig)$

where $n \in \mathbb{N}$ and $0 = t_0 \leqslant \cdots \leqslant t_n = r$.

The metric space (X, d) is a length space when the distance between two points $x, x' \in X$ is the following greatest lower bound

 $\inf \left\{ \ell(\gamma) \mid \gamma \text{ is a path from } x \text{ to } x' \right\}$

A path γ from x to x' such that $\ell(\gamma) = d(x, x')$ is said to be geodesic.

The length $\ell(\gamma)$ of a path $\gamma: [0, r] \to (X, d)$ is the least upper bound of the collection of sums

 $\sum_{i=0}^n dig(\gamma(t_{i+1}),\gamma(t_i)ig)$

where $n \in \mathbb{N}$ and $0 = t_0 \leqslant \cdots \leqslant t_n = r$.

The metric space (X, d) is a length space when the distance between two points $x, x' \in X$ is the following greatest lower bound

 $\inf \left\{ \ell(\gamma) \mid \gamma \text{ is a path from } x \text{ to } x' \right\}$

A path γ from x to x' such that $\ell(\gamma) = d(x, x')$ is said to be geodesic.

The space is said to be geodesic when any two points are related by a geodesic path.

Metric Spaces of Non-Positive Curvature, M. R. Bridson, and A. Haefliger, 1999

Metric Spaces of Non-Positive Curvature, M. R. Bridson, and A. Haefliger, 1999

A metric space is said to be complete when all its Cauchy sequences admit a limit.

Metric Spaces of Non-Positive Curvature, M. R. Bridson, and A. Haefliger, 1999

A metric space is said to be complete when all its Cauchy sequences admit a limit.

Let X be a length space.

Metric Spaces of Non-Positive Curvature, M. R. Bridson, and A. Haefliger, 1999

A metric space is said to be complete when all its Cauchy sequences admit a limit.

Let X be a length space. If X is complete and locally compact, then

Metric Spaces of Non-Positive Curvature, M. R. Bridson, and A. Haefliger, 1999

A metric space is said to be complete when all its Cauchy sequences admit a limit.

Let X be a length space.

- If X is complete and locally compact, then
 - every closed bounded subset of X is compact, and

Metric Spaces of Non-Positive Curvature, M. R. Bridson, and A. Haefliger, 1999

A metric space is said to be complete when all its Cauchy sequences admit a limit.

- Let X be a length space.
- If X is complete and locally compact, then
 - every closed bounded subset of X is compact, and
 - X is a geodesic space.

- \mathbb{R}^n is

- \mathbb{R}^n is a geodesic space

- \mathbb{R}^n is a geodesic space
- $\mathbb{R}^n \setminus \{0\}$ with the distance inherited from \mathbb{R}^n is

- \mathbb{R}^n is a geodesic space
- $\mathbb{R}^n \setminus \{0\}$ with the distance inherited from \mathbb{R}^n is a length space, not a geodesic one.

- \mathbb{R}^n is a geodesic space
- $\mathbb{R}^n \setminus \{0\}$ with the distance inherited from \mathbb{R}^n is a length space, not a geodesic one.
- $\mathbb{R}^n \setminus [0,1]^n$ with the distance inherited from \mathbb{R}^n is

- \mathbb{R}^n is a geodesic space
- $\mathbb{R}^n \setminus \{0\}$ with the distance inherited from \mathbb{R}^n is a length space, not a geodesic one.
- $\mathbb{R}^n \setminus [0,1]^n$ with the distance inherited from \mathbb{R}^n is not a length space.

- \mathbb{R}^n is a geodesic space
- $\mathbb{R}^n \setminus \{0\}$ with the distance inherited from \mathbb{R}^n is a length space, not a geodesic one.
- $\mathbb{R}^n \setminus [0,1]^n$ with the distance inherited from \mathbb{R}^n is not a length space.
- Any metric space (X,d) is associated to a length space (X,d_ℓ) with

- \mathbb{R}^n is a geodesic space
- $\mathbb{R}^n \setminus \{0\}$ with the distance inherited from \mathbb{R}^n is a length space, not a geodesic one.
- $\mathbb{R}^n \setminus [0,1]^n$ with the distance inherited from \mathbb{R}^n is not a length space.
- Any metric space (X,d) is associated to a length space (X,d_ℓ) with

 $d_{\ell}(x, x') = \inf \{\ell(\gamma) \mid \gamma \text{ is a path from } x \text{ to } x'\}$

Metric Graphs

$$G: A \xrightarrow[]{\partial^-} V$$

$$G: A \xrightarrow[]{\partial^-} V$$

- The underlying set of the metric graph is $A \times]0,1[\ \sqcup \ V]$

$$G: A \xrightarrow[\partial^+]{\partial^+} V$$

- The underlying set of the metric graph is Aimes]0,1[\sqcup V
- Two points p, p' are said to be neighbours when there is an arrow a such that $p, p' \in \{a\} \times]0, 1[\sqcup \{\partial a, \partial^+a\}$

Metric graphs

Distance between two neighbours

Distance between two neighbours

- If $\partial^{\cdot} a \neq \partial^{+} a$ there is a canonical bijection

 $\phi: \{a\} imes]0,1[\ \sqcup \ \{\partial^{\scriptscriptstyle au} a, \partial^{\scriptscriptstyle au} a\}
ightarrow [0,1]$

In that case d(p, p') =

Distance between two neighbours

- If $\partial^{\scriptscriptstyle +} a \neq \partial^{\scriptscriptstyle +} a$ there is a canonical bijection

 $\phi: \{a\} imes]0,1[\ \sqcup \ \{\partial^{\scriptscriptstyle imes} a, \partial^{\scriptscriptstyle imes} a\}
ightarrow [0,1]$

In that case d(p, p') = |t - t'| with $t = \phi(p)$ and $t' = \phi(p')$.

Distance between two neighbours

- If $\partial^{\scriptscriptstyle -} a \neq \partial^{\scriptscriptstyle +} a$ there is a canonical bijection

 $\phi: \{a\} imes]0,1[\ \sqcup \ \{\partial^{\scriptscriptstyle au} a, \partial^{\scriptscriptstyle au} a\}
ightarrow [0,1]$

In that case d(p, p') = |t - t'| with $t = \phi(p)$ and $t' = \phi(p')$.

- If $\partial^{\scriptscriptstyle -} a = \partial^{\scriptscriptstyle +} a$ there is a canonical bijection

 $\phi: \{a\} \times]0,1[\ \sqcup \ \{\partial^{\scriptscriptstyle -}a, \partial^{\scriptscriptstyle +}a\} \rightarrow [0,1[$

In that case

$$d(p,p') =$$

Metric graphs

Distance between two neighbours

- If $\partial^{-}a \neq \partial^{+}a$ there is a canonical bijection

$$\phi: \{a\} imes]0,1[\ \sqcup \ \{\partial^{\scriptscriptstyle au} a, \partial^{\scriptscriptstyle au} a\}
ightarrow [0,1]$$

In that case d(p, p') = |t - t'| with $t = \phi(p)$ and $t' = \phi(p')$.

- If $\partial^{\cdot} a = \partial^{+} a$ there is a canonical bijection

 $\phi: \{a\} \times]0,1[\sqcup \{\partial^{\scriptscriptstyle -}a, \partial^{\scriptscriptstyle +}a\} \to [0,1[$

In that case

$$d(p,p') = \min \{ |t - t'|, 1 - |t - t'| \}$$

with $t = \phi(p)$ and $t' = \phi(p')$.

Itinerary

Itinerary

An itinerary on $A \times]0,1[\sqcup V \text{ is a (finite) sequence } p_0, \ldots, p_q \text{ of points such that } p_k \text{ and } p_{k+1} \text{ are neighbours for } k \in \{0, \ldots, q-1\}.$
An itinerary on $A \times]0,1[\sqcup V \text{ is a (finite) sequence } p_0, \ldots, p_q \text{ of points such that } p_k \text{ and } p_{k+1} \text{ are neighbours for } k \in \{0, \ldots, q-1\}.$

The length of that itinerary is

$$\ell(p_0, \dots, p_q) = \sum_{k=0}^{q-1} d(p_k, p_{k+1})$$

An itinerary on $A \times]0,1[\sqcup V \text{ is a (finite) sequence } p_0, \ldots, p_q \text{ of points such that } p_k \text{ and } p_{k+1} \text{ are neighbours for } k \in \{0, \ldots, q-1\}.$

The length of that itinerary is

$$\ell(p_0,\ldots,p_q) = \sum_{k=0}^{q-1} d(p_k,p_{k+1})$$

The distance between two points p and p' of $A \times]0,1[\ \sqcup \ V$ is

d(p, p') =

An itinerary on $A \times]0,1[\sqcup V \text{ is a (finite) sequence } p_0, \ldots, p_q \text{ of points such that } p_k \text{ and } p_{k+1} \text{ are neighbours for } k \in \{0, \ldots, q-1\}.$

The length of that itinerary is

$$\ell(p_0, \ldots, p_q) = \sum_{k=0}^{q-1} d(p_k, p_{k+1})$$

The distance between two points p and p' of $A \times]0,1[\ \sqcup \ V$ is

 $d(p,p') = \inf \left\{ \ell(p_0,\ldots,p_q) \mid p_0,\ldots,p_q \text{ is a itinerary from } p \text{ to } p' \right\}$

An itinerary on $A \times]0,1[\sqcup V \text{ is a (finite) sequence } p_0, \ldots, p_q \text{ of points such that } p_k \text{ and } p_{k+1} \text{ are neighbours for } k \in \{0, \ldots, q-1\}.$

The length of that itinerary is

$$\ell(p_0,\ldots,p_q) \quad = \quad \sum_{k=0}^{q-1} d(p_k,p_{k+1})$$

The distance between two points p and p' of $A \times]0,1[\ \sqcup \ V$ is

$$d(p,p') = \inf \left\{ \ell(p_0,\ldots,p_q) \mid p_0,\ldots,p_q \text{ is a itinerary from } p \text{ to } p' \right\}$$

The metric graph associated with G is the metric space

$$(A \times]0,1[\sqcup V, d)$$

The open ball of radius r < 1 centered at the vertex v is the set

 $\{v\} \quad \cup \quad \{a \mid \partial^{\scriptscriptstyle \top} a = v\} \times]0, r[\quad \cup \quad \{a \mid \partial^{\scriptscriptstyle +} a = v\} \times]1 - r, 1[$

The open ball of radius r < 1 centered at the vertex v is the set

$$\{v\} \quad \cup \quad \{a \mid \partial^{\scriptscriptstyle \mathsf{T}} a = v\} \times]0, r[\quad \cup \quad \{a \mid \partial^{\scriptscriptstyle \mathsf{T}} a = v\} \times]1 - r, 1[$$

For $(a, t) \in \{a\} \times]0, 1[$ the open ball of radius $r \leq \min\{t, 1-t\}$ centered at the vertex (a, t) is the set

 $\{a\} \times]t - r, t + r[$

The open ball of radius r < 1 centered at the vertex v is the set

$$\{v\} \quad \cup \quad \{a \mid \partial^{\scriptscriptstyle \mathsf{T}} a = v\} \times]0, r[\quad \cup \quad \{a \mid \partial^{\scriptscriptstyle \mathsf{T}} a = v\} \times]1 - r, 1[$$

For $(a, t) \in \{a\} \times]0, 1[$ the open ball of radius $r \leq \min\{t, 1-t\}$ centered at the vertex (a, t) is the set

$$\{a\}\times]t-r,t+r[$$

That collection of open balls forms a base of open sets.

The open ball of radius r < 1 centered at the vertex v is the set

$$\{v\} \quad \cup \quad \{a \mid \partial^{\scriptscriptstyle \mathsf{T}} a = v\} \times]0, r[\quad \cup \quad \{a \mid \partial^{\scriptscriptstyle \mathsf{T}} a = v\} \times]1 - r, 1[$$

For $(a, t) \in \{a\} \times]0, 1[$ the open ball of radius $r \leq \min\{t, 1 - t\}$ centered at the vertex (a, t) is the set

$$\{a\}\times]t-r,t+r[$$

That collection of open balls forms a base of open sets.

If $r \leq \frac{1}{4}$ then B(c, r) is geodesically stable, i.e. for all $p, q \in B(c, r)$

 $\{p,q\} \subseteq \bigcup \{\operatorname{im}(\gamma) \mid \gamma \text{ geodesic from } p \text{ to } q\} \subseteq B(c,r).$

Metric spaces	Metric graphs
---------------	---------------

The metric graph construction is functorial from *Grph* to

The metric graph construction is functorial from Grph to Met_{ctr}

The metric graph construction is functorial from *Grph* to *Met_{ctr}*

Every finite graph with weighted arrows (in $\mathbb{R}_+ \setminus \{0\}$) with can be embedded in \mathbb{R}^3 .

LOCALLY ORDERED METRIC GRAPHS

The category of ordered bases (OB)

The category of ordered bases (OB)

We write that (X, \leq_x) is a subposet of (Y, \leq_y) , or $(X, \leq_x) \hookrightarrow (Y, \leq_y)$, when $X \subseteq Y$ and $a \leq_x b \Leftrightarrow a \leq_y b$ for all $a, b \in X$.

The category of ordered bases (OB)

We write that (X, \leq_x) is a subposet of (Y, \leq_y) , or $(X, \leq_x) \hookrightarrow (Y, \leq_y)$, when $X \subseteq Y$ and $a \leq_x b \Leftrightarrow a \leq_y b$ for all $a, b \in X$.

An ordered base is a collection of posets \mathcal{B} such that ...

The category of ordered bases (OB)

We write that (X, \leq_x) is a subposet of (Y, \leq_y) , or $(X, \leq_x) \hookrightarrow (Y, \leq_y)$, when $X \subseteq Y$ and $a \leq_x b \Leftrightarrow a \leq_y b$ for all $a, b \in X$.

An ordered base is a collection of posets \mathcal{B} such that for all (U, \leq_u) , $(V, \leq_v) \in \mathcal{B}$, ...

The category of ordered bases (OB)

We write that (X, \leq_x) is a subposet of (Y, \leq_y) , or $(X, \leq_x) \hookrightarrow (Y, \leq_y)$, when $X \subseteq Y$ and $a \leq_x b \Leftrightarrow a \leq_y b$ for all $a, b \in X$.

An ordered base is a collection of posets \mathcal{B} such that for all (U, \leq_v) , $(V, \leq_v) \in \mathcal{B}$, every $p \in U \cap V$, ...

The category of ordered bases (OB)

We write that (X, \leq_x) is a subposet of (Y, \leq_y) , or $(X, \leq_x) \hookrightarrow (Y, \leq_y)$, when $X \subseteq Y$ and $a \leq_x b \Leftrightarrow a \leq_y b$ for all $a, b \in X$.

An ordered base is a collection of posets \mathcal{B} such that for all (U, \leq_v) , $(V, \leq_v) \in \mathcal{B}$, every $p \in U \cap V$, there exists $(W, \leq_w) \in \mathcal{B}$ such that $p \in (W, \leq_w) \hookrightarrow (U, \leq_v)$, (V, \leq_v) .

The category of ordered bases (OB)

A map $f : U \to V$ is *locally order-preserving* when

The category of ordered bases (OB)

A map $f : \mathcal{U} \to \mathcal{V}$ is *locally order-preserving* when for every point *p* of \mathcal{U} ,

The category of ordered bases (OB)

A map $f: \mathcal{U} \to \mathcal{V}$ is *locally order-preserving* when for every point p of \mathcal{U} , every $(V, \leq_v) \in \mathcal{V}$ with $f(p) \in V$,

The category of ordered bases (OB)

A map $f: \mathcal{U} \to \mathcal{V}$ is *locally order-preserving* when for every point p of \mathcal{U} , every $(V, \leq_v) \in \mathcal{V}$ with $f(p) \in V$, there exists $(U, \leq_{\nu}) \in \mathcal{U}$ with $p \in U$ such that

The category of ordered bases (OB)

A map $f : \mathcal{U} \to \mathcal{V}$ is *locally order-preserving* when for every point *p* of \mathcal{U} , every $(V, \leq_v) \in \mathcal{V}$ with $f(p) \in V$, there exists $(U, \leq_u) \in \mathcal{U}$ with $p \in U$ such that $f(U) \subseteq V$ and f is order-preserving from (U, \leq_u) to (V, \leq_v) .

The category of ordered bases (OB)

A map $f: \mathcal{U} \to \mathcal{V}$ is *locally order-preserving* when for every point p of \mathcal{U} , every $(V, \leq_v) \in \mathcal{V}$ with $f(p) \in V$, there exists $(U, \leq_u) \in \mathcal{U}$ with $p \in U$ such that $f(U) \subseteq V$ and f is order-preserving from (U, \leq_u) to (V, \leq_v) .

Ordered bases and locally order-preserving maps form the category $O\mathcal{B}$.

If \mathcal{B} is an ordered base, then $U\mathcal{B} = \{UB \mid B \in \mathcal{B}\}$ is a base of a topology (UB denotes the underlying set of the poset B).

If \mathcal{B} is an ordered base, then $U\mathcal{B} = \{UB \mid B \in \mathcal{B}\}$ is a base of a topology (UB denotes the underlying set of the poset B).

If $f: \mathcal{B} \to \mathcal{B}'$ is locally order-preserving, then $Uf: U\mathcal{B} \to U\mathcal{B}'$ is continuous; we have a forgetful functor $\mathcal{OB} \to \mathcal{B}as$.

If \mathcal{B} is an ordered base, then $U\mathcal{B} = \{UB \mid B \in \mathcal{B}\}$ is a base of a topology (UB denotes the underlying set of the poset B).

If $f: \mathcal{B} \to \mathcal{B}'$ is locally order-preserving, then $Uf: U\mathcal{B} \to U\mathcal{B}'$ is continuous; we have a forgetful functor $\mathcal{OB} \to \mathcal{B}as$.

We have a functor $U: OB \rightarrow Set$ obtained as the composite $OB \rightarrow Bas \rightarrow Set$.

If \mathcal{B} is an ordered base, then $U\mathcal{B} = \{UB \mid B \in \mathcal{B}\}$ is a base of a topology (UB denotes the underlying set of the poset B).

If $f: \mathcal{B} \to \mathcal{B}'$ is locally order-preserving, then $Uf: U\mathcal{B} \to U\mathcal{B}'$ is continuous; we have a forgetful functor $\mathcal{OB} \to \mathcal{B}as$.

We have a functor $U: OB \rightarrow Set$ obtained as the composite $OB \rightarrow Bas \rightarrow Set$.

The underlying space functor $Sp: OB \to Top$ is the composite $OB \to Bas \to Top$.

If \mathcal{B} is an ordered base, then $U\mathcal{B} = \{UB \mid B \in \mathcal{B}\}$ is a base of a topology (UB denotes the underlying set of the poset B).

If $f : \mathcal{B} \to \mathcal{B}'$ is locally order-preserving, then $Uf : U\mathcal{B} \to U\mathcal{B}'$ is continuous; we have a forgetful functor $\mathcal{OB} \to \mathcal{B}as$.

We have a functor $U: OB \rightarrow Set$ obtained as the composite $OB \rightarrow Bas \rightarrow Set$.

The underlying space functor $Sp: OB \to Top$ is the composite $OB \to Bas \to Top$.

We write $\mathcal{B} \sim \mathcal{B}'$ when $Sp(\mathcal{B}) = Sp(\mathcal{B}')$ and $\mathcal{B} \cup \mathcal{B}'$ is still an ordered base; and we say that \mathcal{B} and \mathcal{B}' are equivalent.

If \mathcal{B} is an ordered base, then $U\mathcal{B} = \{UB \mid B \in \mathcal{B}\}$ is a base of a topology (UB denotes the underlying set of the poset B).

If $f : \mathcal{B} \to \mathcal{B}'$ is locally order-preserving, then $Uf : U\mathcal{B} \to U\mathcal{B}'$ is continuous; we have a forgetful functor $\mathcal{OB} \to \mathcal{B}as$.

We have a functor $U: OB \rightarrow Set$ obtained as the composite $OB \rightarrow Bas \rightarrow Set$.

The underlying space functor $Sp: OB \to Top$ is the composite $OB \to Bas \to Top$.

We write $\mathcal{B} \sim \mathcal{B}'$ when $Sp(\mathcal{B}) = Sp(\mathcal{B}')$ and $\mathcal{B} \cup \mathcal{B}'$ is still an ordered base; and we say that \mathcal{B} and \mathcal{B}' are equivalent.

The relation \sim is an equivalence relation on the collection of ordered bases over a given set.

If \mathcal{B} is an ordered base, then $U\mathcal{B} = \{UB \mid B \in \mathcal{B}\}$ is a base of a topology (UB denotes the underlying set of the poset B).

If $f : \mathcal{B} \to \mathcal{B}'$ is locally order-preserving, then $Uf : U\mathcal{B} \to U\mathcal{B}'$ is continuous; we have a forgetful functor $\mathcal{OB} \to \mathcal{B}as$.

We have a functor $U: OB \rightarrow Set$ obtained as the composite $OB \rightarrow Bas \rightarrow Set$.

The underlying space functor $Sp: OB \to Top$ is the composite $OB \to Bas \to Top$.

We write $\mathcal{B} \sim \mathcal{B}'$ when $Sp(\mathcal{B}) = Sp(\mathcal{B}')$ and $\mathcal{B} \cup \mathcal{B}'$ is still an ordered base; and we say that \mathcal{B} and \mathcal{B}' are equivalent.

The relation \sim is an equivalence relation on the collection of ordered bases over a given set.

If $\mathcal{A} \sim \mathcal{A}'$ and $\mathcal{B} \sim \mathcal{B}'$, then any map $f : U\mathcal{A} \rightarrow U\mathcal{B}$ is locally order-preserving from \mathcal{A} to \mathcal{B} iff it is so from \mathcal{A}' to \mathcal{B}' .

Locally ordered spaces
An ordered base \mathcal{B} is said to be maximal when for every poset X, if UX is open in $Sp(\mathcal{B})$ and $\mathcal{B} \cup \{X\}$ is still an ordered base, then $X \in \mathcal{B}$.

An ordered base \mathcal{B} is said to be maximal when for every poset X, if UX is open in $Sp(\mathcal{B})$ and $\mathcal{B} \cup \{X\}$ is still an ordered base, then $X \in \mathcal{B}$.

A locally ordered space is a maximal ordered base.

An ordered base \mathcal{B} is said to be maximal when for every poset X, if UX is open in $Sp(\mathcal{B})$ and $\mathcal{B} \cup \{X\}$ is still an ordered base, then $X \in \mathcal{B}$.

A locally ordered space is a maximal ordered base.

We denote by LoSp the full subcategory of OB whose objects are the locally ordered spaces.

An ordered base \mathcal{B} is said to be maximal when for every poset X, if UX is open in $Sp(\mathcal{B})$ and $\mathcal{B} \cup \{X\}$ is still an ordered base, then $X \in \mathcal{B}$.

A locally ordered space is a maximal ordered base.

We denote by LoSp the full subcategory of OB whose objects are the locally ordered spaces.

Lemma: Every ordered base is contained in a unique maximal ordered base.

An ordered base \mathcal{B} is said to be maximal when for every poset X, if UX is open in $Sp(\mathcal{B})$ and $\mathcal{B} \cup \{X\}$ is still an ordered base, then $X \in \mathcal{B}$.

A locally ordered space is a maximal ordered base.

We denote by LoSp the full subcategory of OB whose objects are the locally ordered spaces.

Lemma: Every ordered base is contained in a unique maximal ordered base.

Proposition: the full embedding $LaSp \rightarrow OB$ is an equivalence of categories whose quasi-inverse is the functor that assigns its locally ordered space to every ordered base.

Examples of equivalent ordered bases on $\ensuremath{\mathbb{R}}$

- $\{(I,\leqslant) \mid I \text{ open interval of } \mathbb{R}\},$

- $\{(I,\leqslant) \mid I \text{ open interval of } \mathbb{R}\},\$
- $\{(U,\leqslant) \mid U \text{ open subset of } \mathbb{R}\},\$

- $\{(I,\leqslant) \mid I \text{ open interval of } \mathbb{R}\},\$
- $\{(U,\leqslant) \mid U \text{ open subset of } \mathbb{R}\},\$
- $\{(U, \sqsubseteq_U) \mid U \text{ open subset of } \mathbb{R}\}$ where $x \sqsubseteq_U y$ stands for $x \leqslant y$ and $[x, y] \subseteq U$,

- $\{(I,\leqslant) \mid I \text{ open interval of } \mathbb{R}\},\$
- $\{(U,\leqslant) \mid U \text{ open subset of } \mathbb{R}\}$,
- $\{(U, \sqsubseteq_U) \mid U \text{ open subset of } \mathbb{R}\}$ where $x \sqsubseteq_U y$ stands for $x \leqslant y$ and $[x, y] \subseteq U$,
- $\{(U, \sqsubseteq'_U) \mid U \text{ open subset of } \mathbb{R}\}$ where $x \sqsubseteq'_U y$ is any extension of \sqsubseteq_U .

Examples of equivalent ordered bases on $\mathbb R$

- $\{(I,\leqslant) \mid I \text{ open interval of } \mathbb{R}\},\$
- $\{(U,\leqslant) \mid U \text{ open subset of } \mathbb{R}\}$,
- $\{(U, \sqsubseteq_U) \mid U \text{ open subset of } \mathbb{R}\}$ where $x \sqsubseteq_U y$ stands for $x \leqslant y$ and $[x, y] \subseteq U$,
- $\{(U, \sqsubseteq'_U) \mid U \text{ open subset of } \mathbb{R}\}$ where $x \sqsubseteq'_U y$ is any extension of \sqsubseteq_U .

Suppose that $[0,1] \cup [2,3]$ is a locally ordered subspace of \mathbb{R} , the map $t \in [0,1] \cup [2,3] \mapsto t+2 \pmod{4} \in [0,1] \cup [2,3]$ is locally order-preserving.

Examples of equivalent ordered bases on $\mathbb R$

- $\{(I,\leqslant) \mid I \text{ open interval of } \mathbb{R}\},\$
- $\{(U,\leqslant) \mid U \text{ open subset of } \mathbb{R}\},\$
- $\{(U, \sqsubseteq_U) \mid U \text{ open subset of } \mathbb{R}\}$ where $x \sqsubseteq_U y$ stands for $x \leqslant y$ and $[x, y] \subseteq U$,
- $\{(U, \sqsubseteq'_U) \mid U \text{ open subset of } \mathbb{R}\}$ where $x \sqsubseteq'_U y$ is any extension of \sqsubseteq_U .

Suppose that $[0,1] \cup [2,3]$ is a locally ordered subspace of \mathbb{R} , the map $t \in [0,1] \cup [2,3] \mapsto t+2 \pmod{4} \in [0,1] \cup [2,3]$ is locally order-preserving. A directed path on an ordered base \mathcal{B} is a locally order-preserving map defined over some compact interval equipped with the ordered base inherited from \mathbb{R} .

Examples of equivalent ordered bases on $\ensuremath{\mathbb{S}}^1$

- {(A, \leq) | A open arc} where \leq is the order induced by \mathbb{R} and the restriction of the exponential map to an open subinterval of { $t \in \mathbb{R} \mid e^{it} \in A$ } of length at most 2π ,

- { $(A, \leq) | A \text{ open arc}$ } where \leq is the order induced by \mathbb{R} and the restriction of the exponential map to an open subinterval of { $t \in \mathbb{R} | e^{it} \in A$ } of length at most 2π ,
- { $(U, \sqsubseteq_U) \mid U$ proper open subset of \mathbb{S}^1 } where $x \sqsubseteq_U y$ means that the anticlockwise compact arc from x to y is included in U,

Examples of equivalent ordered bases on \mathbb{S}^1

- { $(A, \leq) | A \text{ open arc}$ } where \leq is the order induced by \mathbb{R} and the restriction of the exponential map to an open subinterval of { $t \in \mathbb{R} | e^{it} \in A$ } of length at most 2π ,
- { $(U, \sqsubseteq_U) \mid U$ proper open subset of \mathbb{S}^1 } where $x \sqsubseteq_U y$ means that the anticlockwise compact arc from x to y is included in U,
- $\{(U, \sqsubseteq_U) \mid U \text{ proper open subset of } \mathbb{S}^1\}$ where \sqsubseteq_U is any extension of the partial order \sqsubseteq_U .

Ordered spaces

Ordered spaces

Topology and Order, L. Nachbin, 1965

An ordered space is a topological space X together with a partial order \sqsubseteq on (the underlying set of) X.

An ordered space is a topological space X together with a partial order \sqsubseteq on (the underlying set of) X. If the relation \sqsubseteq is closed in the sense that

$$\{(a, b) \in X \times X \mid a \sqsubseteq b\}$$

is a closed subset of $X \times X$, then X is said to be a partially ordered space (or pospace).

An ordered space is a topological space X together with a partial order \sqsubseteq on (the underlying set of) X. If the relation \sqsubseteq is closed in the sense that

$$\{(a, b) \in X \times X \mid a \sqsubseteq b\}$$

is a closed subset of $X \times X$, then X is said to be a partially ordered space (or pospace). A ordered space morphism is an order-preserving continuous map.

An ordered space is a topological space X together with a partial order \sqsubseteq on (the underlying set of) X. If the relation \sqsubseteq is closed in the sense that

$$\{(a, b) \in X \times X \mid a \sqsubseteq b\}$$

is a closed subset of $X \times X$, then X is said to be a partially ordered space (or pospace). A ordered space morphism is an order-preserving continuous map.

Ordered spaces and their morphisms form the category Ord.

An ordered space is a topological space X together with a partial order \sqsubseteq on (the underlying set of) X. If the relation \sqsubseteq is closed in the sense that

$$\{(a, b) \in X \times X \mid a \sqsubseteq b\}$$

is a closed subset of $X \times X$, then X is said to be a partially ordered space (or pospace). A ordered space morphism is an order-preserving continuous map.

Ordered spaces and their morphisms form the category Ord.

The underlying space of a pospace is Hausdorff.

- The real line with standard topology and order.

- The real line with standard topology and order.
- Any subset of a pospace with the induced topology and order.

- The real line with standard topology and order.
- Any subset of a pospace with the induced topology and order.
- The collection of compact subsets of a metric space equipped with the Hausdorff distance is a metric space.

$$d_{H}(K,K') = \sup \left\{ d(x,K'), d(x',K) \mid x \in K; x' \in K' \right\}$$
$$d(x,K) = \inf \left\{ d(x,k) \mid k \in K \right\}$$

The induced topological space ordered by inclusion is a pospace.

- The real line with standard topology and order.
- Any subset of a pospace with the induced topology and order.
- The collection of compact subsets of a metric space equipped with the Hausdorff distance is a metric space.

$$d_{H}(K,K') = \sup \{ d(x,K'), d(x',K) \mid x \in K; x' \in K' \}$$

$$d(x,K) = \inf \left\{ d(x,k) \mid k \in K \right\}$$

The induced topological space ordered by inclusion is a pospace.

- Problem: there is no pospace on the circle whose collection of directed paths is

 $\left\{ e^{i\theta(t)} \mid \theta : [0, r] \rightarrow \mathbb{R} \text{ increasing} \right\}$

Each ordered space (X, \sqsubseteq) can be seen as a locally ordered space

 $(X, \{(U, \sqsubseteq_{|_U}) \mid U \text{ open subset of } X\})$

Each ordered space (X, \sqsubseteq) can be seen as a locally ordered space

$$\left(X,\left\{\left(U,\sqsubseteq_{\mid_U}\right)\mid U \text{ open subset of } X\right\}\right)$$

The resulting functor is:

Each ordered space (X, \sqsubseteq) can be seen as a locally ordered space

 $\left(X,\left\{(U,\sqsubseteq_{|_U})\mid U \text{ open subset of } X\right\}\right)$

The resulting functor is:

- faithful

Each ordered space (X, \sqsubseteq) can be seen as a locally ordered space

$$\left(X,\left\{(U,\sqsubseteq_{\mid U})\mid U \text{ open subset of } X\right\}\right)$$

The resulting functor is:

- faithful
- not injective on object (hence not an embedding)

Each ordered space (X, \sqsubseteq) can be seen as a locally ordered space

```
(X, \{(U, \sqsubseteq_{|_U}) \mid U \text{ open subset of } X\})
```

The resulting functor is:

- faithful
- not injective on object (hence not an embedding)
- not full

Directed loops on locally ordered spaces

Directed loops on locally ordered spaces

A locally order-preserving map $\delta : [a, b] \to \mathcal{X}$ whose image is contained in $C \in \mathcal{X}$ induces an order-preserving map from [a, b] to C.
Directed loops on locally ordered spaces

A locally order-preserving map $\delta : [a, b] \to \mathcal{X}$ whose image is contained in $C \in \mathcal{X}$ induces an order-preserving map from [a, b] to C.

A directed path δ on a local pospace X is constant iff its extremities are equal and there exists $C \in \mathcal{X}$ that contains the image of δ .

Directed loops on locally ordered spaces

A locally order-preserving map $\delta : [a, b] \to \mathcal{X}$ whose image is contained in $C \in \mathcal{X}$ induces an order-preserving map from [a, b] to C.

A directed path δ on a local pospace X is constant iff its extremities are equal and there exists $C \in \mathcal{X}$ that contains the image of δ .

A vortex is a point every neighbourhood of which contains a non-constant directed loop.

Directed loops on locally ordered spaces

A locally order-preserving map $\delta : [a, b] \to \mathcal{X}$ whose image is contained in $C \in \mathcal{X}$ induces an order-preserving map from [a, b] to C.

A directed path δ on a local pospace X is constant iff its extremities are equal and there exists $C \in \mathcal{X}$ that contains the image of δ .

A vortex is a point every neighbourhood of which contains a non-constant directed loop.

A local pospace has no vortex.

Ordered bases on metric graphs

(~ ~)

-(•>>)

(•>>)

- - 1

Let \mathcal{B} be the collection of open balls B of |G| such that

Let \mathcal{B} be the collection of open balls B of |G| such that

- B is centred at a vertex and its radius is $\leq \frac{1}{3}$, or

Let \mathcal{B} be the collection of open balls B of |G| such that

- B is centred at a vertex and its radius is $\leq \frac{1}{3}$, or
- $B = \{a\} \times U$ for some arrow *a* and some open interval $U \subseteq [0, 1[$ of length $\leq \frac{1}{3}$.

Let \mathcal{B} be the collection of open balls B of |G| such that

- B is centred at a vertex and its radius is $\leq \frac{1}{3}$, or
- $B = \{a\} \times U$ for some arrow a and some open interval $U \subseteq [0, 1[$ of length $\leq \frac{1}{3}$.

Given $B, B' \in \mathcal{B}$ if B is of the second kind, then

Let \mathcal{B} be the collection of open balls B of |G| such that

- B is centred at a vertex and its radius is $\leq \frac{1}{3}$, or
- $B = \{a\} \times U$ for some arrow *a* and some open interval $U \subseteq [0, 1[$ of length $\leq \frac{1}{3}$.

Given $B, B' \in \mathcal{B}$ if B is of the second kind, then so is $B \cap B'$.

Let \mathcal{B} be the collection of open balls B of |G| such that

- B is centred at a vertex and its radius is $\leq \frac{1}{3}$, or
- $B = \{a\} \times U$ for some arrow a and some open interval $U \subseteq [0, 1[$ of length $\leq \frac{1}{3}$.

Given $B, B' \in \mathcal{B}$ if B is of the second kind, then so is $B \cap B'$.

If B, B' are centred at v and v' we have

Let \mathcal{B} be the collection of open balls B of |G| such that

- B is centred at a vertex and its radius is $\leq \frac{1}{3}$, or
- $B = \{a\} \times U$ for some arrow a and some open interval $U \subseteq [0, 1[$ of length $\leq \frac{1}{3}$.

Given $B, B' \in \mathcal{B}$ if B is of the second kind, then so is $B \cap B'$.

If B, B' are centred at v and v' we have

- $v \neq v' \Rightarrow$

Let \mathcal{B} be the collection of open balls B of |G| such that

- B is centred at a vertex and its radius is $\leq \frac{1}{3}$, or
- $B = \{a\} \times U$ for some arrow a and some open interval $U \subseteq [0, 1[$ of length $\leq \frac{1}{3}$.

Given $B, B' \in \mathcal{B}$ if B is of the second kind, then so is $B \cap B'$.

If B, B' are centred at v and v' we have

- $v \neq v' \Rightarrow B \cap B' = \emptyset$ and

Let \mathcal{B} be the collection of open balls B of |G| such that

- B is centred at a vertex and its radius is $\leq \frac{1}{3}$, or
- $B = \{a\} \times U$ for some arrow a and some open interval $U \subseteq [0, 1[$ of length $\leq \frac{1}{3}$.

Given $B, B' \in \mathcal{B}$ if B is of the second kind, then so is $B \cap B'$.

If B, B' are centred at v and v' we have

-
$$v \neq v' \Rightarrow B \cap B' = \emptyset$$
 and

-
$$v = v' \Rightarrow$$

Let \mathcal{B} be the collection of open balls B of |G| such that

- B is centred at a vertex and its radius is $\leq \frac{1}{3}$, or
- $B = \{a\} \times U$ for some arrow *a* and some open interval $U \subseteq [0, 1[$ of length $\leq \frac{1}{3}$.

Given $B, B' \in \mathcal{B}$ if B is of the second kind, then so is $B \cap B'$.

If B, B' are centred at v and v' we have

- $v \neq v' \Rightarrow B \cap B' = \emptyset$ and
- $v = v' \Rightarrow B \subseteq B'$ or $B' \subseteq B$

An element B of B centred at v of radius $r \leq \frac{1}{3}$ is the disjoint union of $\{v\}$ together with

An element B of B centred at v of radius $r \leq \frac{1}{3}$ is the disjoint union of $\{v\}$ together with

- $\{a\} \times]0, r[$ for each arrow a such that $\partial^{-}a = v$

An element B of B centred at v of radius $r \leq \frac{1}{3}$ is the disjoint union of $\{v\}$ together with

- $\{a\} \times]0, r[$ for each arrow a such that $\partial^{-}a = v$
- $\{a\} imes]1 r, 1[$ for each arrow a such that $\partial^{\scriptscriptstyle +} a = v$

An element B of B centred at v of radius $r \leq \frac{1}{3}$ is the disjoint union of $\{v\}$ together with

- $\{a\} \times]0, r[$ for each arrow a such that $\partial^{-}a = v$
- $\{a\} imes]1 r, 1[$ for each arrow a such that $\partial^{\scriptscriptstyle +} a = v$

The partial order on B is characterized by the following constraints:

An element B of B centred at v of radius $r \leq \frac{1}{3}$ is the disjoint union of $\{v\}$ together with

- $\{a\} \times]0, r[$ for each arrow a such that $\partial^{-}a = v$
- $\{a\} imes]1 r, 1[$ for each arrow a such that $\partial^{\scriptscriptstyle +} a = v$

The partial order on B is characterized by the following constraints:

- each branch $\{a\} \times]1 - r, 1[$ and $\{a\} \times]0, r[$ inherits its order from \mathbb{R}

An element B of B centred at v of radius $r \leq \frac{1}{3}$ is the disjoint union of $\{v\}$ together with

- $\{a\} \times]0, r[$ for each arrow a such that $\partial^{-}a = v$
- $\{a\} imes]1 r, 1[$ for each arrow a such that $\partial^{\scriptscriptstyle +} a = v$

The partial order on B is characterized by the following constraints:

- each branch $\{a\} \times]1 r, 1[$ and $\{a\} \times]0, r[$ inherits its order from \mathbb{R}
- $\{v\} \sqsubseteq \{a\} \times]0, r[$ for each arrow a such that $\partial a = v$

An element B of B centred at v of radius $r \leq \frac{1}{3}$ is the disjoint union of $\{v\}$ together with

- $\{a\} \times]0, r[$ for each arrow a such that $\partial^{-}a = v$
- $\{a\} imes]1 r, 1[$ for each arrow a such that $\partial^{\scriptscriptstyle +} a = v$

The partial order on B is characterized by the following constraints:

- each branch $\{a\} \times]1 r, 1[$ and $\{a\} \times]0, r[$ inherits its order from $\mathbb R$
- $\{v\} \sqsubseteq \{a\} \times]0, r[$ for each arrow a such that $\partial^{\cdot} a = v$
- $\{a\} imes]1 r, 1[\sqsubseteq \{v\}$ for each arrow a such that $\partial^{\scriptscriptstyle +} a = v$

An element B of B centred at v of radius $r \leq \frac{1}{3}$ is the disjoint union of $\{v\}$ together with

- $\{a\} \times]0, r[$ for each arrow a such that $\partial^{-}a = v$
- $\{a\} imes]1 r, 1[$ for each arrow a such that $\partial^{\scriptscriptstyle +} a = v$

The partial order on B is characterized by the following constraints:

- each branch $\{a\} \times]1 r, 1[$ and $\{a\} \times]0, r[$ inherits its order from $\mathbb R$
- $\{v\} \sqsubseteq \{a\} \times]0, r[$ for each arrow a such that $\partial^{\cdot} a = v$
- $\{a\} imes]1 r, 1[\sqsubseteq \{v\}$ for each arrow a such that $\partial^{\scriptscriptstyle +} a = v$

We have $B \cap B' \neq \emptyset \Rightarrow B \cap B' \in \mathcal{B}$ and

$$\sqsubseteq_{B_{|_{B\cap B'}}} = \sqsubseteq_{B\cap B'} = \sqsubseteq_{B'_{|_{B\cap B'}}}$$

An element B of B centred at v of radius $r \leq \frac{1}{3}$ is the disjoint union of $\{v\}$ together with

- $\{a\} \times]0, r[$ for each arrow a such that $\partial^{-}a = v$
- $\{a\} imes]1 r, 1[$ for each arrow a such that $\partial^{\scriptscriptstyle +} a = v$

The partial order on B is characterized by the following constraints:

- each branch $\{a\} \times]1 r, 1[$ and $\{a\} \times]0, r[$ inherits its order from $\mathbb R$
- $\{v\} \sqsubseteq \{a\} \times]0, r[$ for each arrow a such that $\partial a = v$
- $\{a\} imes]1 r, 1[\sqsubseteq \{v\}$ for each arrow a such that $\partial^{\scriptscriptstyle +} a = v$

We have $B \cap B' \neq \emptyset \Rightarrow B \cap B' \in \mathcal{B}$ and

$$\sqsubseteq_{B_{|_{B\cap B'}}} = \sqsubseteq_{B\cap B'} = \sqsubseteq_{B'_{|_{B\cap B'}}}$$

The metric graph of |G| thus becomes a local pospace.

An element B of B centred at v of radius $r \leq \frac{1}{3}$ is the disjoint union of $\{v\}$ together with

- $\{a\} \times]0, r[$ for each arrow a such that $\partial^{-}a = v$
- $\{a\} imes]1 r, 1[$ for each arrow a such that $\partial^{\scriptscriptstyle +} a = v$

The partial order on B is characterized by the following constraints:

- each branch $\{a\} \times]1 r, 1[$ and $\{a\} \times]0, r[$ inherits its order from $\mathbb R$
- $\{v\} \sqsubseteq \{a\} \times]0, r[$ for each arrow a such that $\partial a = v$
- $\{a\} imes]1 r, 1[\sqsubseteq \{v\}$ for each arrow a such that $\partial^{\scriptscriptstyle +} a = v$

We have $B \cap B' \neq \emptyset \Rightarrow B \cap B' \in \mathcal{B}$ and

$$\sqsubseteq_{B_{|_{B\cap B'}}} = \sqsubseteq_{B\cap B'} = \sqsubseteq_{B'_{|_{B\cap B'}}}$$

The metric graph of |G| thus becomes a local pospace.

The locally ordered metric graph construction is functorial.

Description

Description

There exists a (unique) intrinsic metric d_{ε} on |G| such that the open balls of radii $\varepsilon > 0$ about (a, t) and v are $\{a\} \times]t - \varepsilon, t + \varepsilon[$ if $\varepsilon \leq \min(t, 1 - t)$, and $\{a \in G^{(1)} | \operatorname{tgt}(a) = v\} \times]1 - \varepsilon, 1[\cup \{v\} \cup \{a \in G^{(1)} | \operatorname{src}(a) = v\} \times]0, \varepsilon[$ if $\varepsilon \leq \frac{1}{2}$.

Description

There exists a (unique) intrinsic metric d_{ε} on |G| such that the open balls of radii $\varepsilon > 0$ about (a, t) and v are $\{a\} \times]t - \varepsilon, t + \varepsilon[$ if $\varepsilon \leq \min(t, 1 - t)$, and $\{a \in G^{(1)} | \operatorname{tgt}(a) = v\} \times]1 - \varepsilon, 1[\cup \{v\} \cup \{a \in G^{(1)} | \operatorname{src}(a) = v\} \times]0, \varepsilon[$ if $\varepsilon \leq \frac{1}{2}$.

The partial order \sqsubseteq and the metric d_c on the ball centered at v of radius ε are characterized by the following properties:

$$\begin{array}{ll} d_{c}((a,t),v)=1-t & (a,t)\sqsubseteq v & \text{if } t\in]1-\varepsilon,1[\\ d_{c}(v,(a,t))=t & v\sqsubseteq (a,t) & \text{if } t\in]0,\varepsilon[\\ d_{c}((a,t),(a,t'))=t'-t & (a,t)\sqsubseteq (a,t') & \text{if } t\leqslant t' \text{ and } (t,t'\in]0,\varepsilon[\text{ or } t,t'\in]1-\varepsilon,1[)\\ d_{c}((a,t),(a,t'))=\min\{t'-t,1-(t'-t)\} & (a,t')\sqsubseteq (a,t) & \text{if } t\in]0,\varepsilon[\text{ and } t'\in]1-\varepsilon,1[\\ d_{c}((a,t),(b,t'))=d_{c}((a,t),v)+d_{c}(v,(b,t')) & \text{if } a\neq b\\ & (a,t)\sqsubseteq (b,t') & \text{if } t\in]1-\varepsilon,1[\text{ and } t'\in]0,\varepsilon[\end{array}$$
Description

There exists a (unique) intrinsic metric d_{ε} on |G| such that the open balls of radii $\varepsilon > 0$ about (a, t) and v are $\{a\} \times]t - \varepsilon, t + \varepsilon[$ if $\varepsilon \leq \min(t, 1 - t)$, and $\{a \in G^{(1)} | \operatorname{tgt}(a) = v\} \times]1 - \varepsilon, 1[\cup \{v\} \cup \{a \in G^{(1)} | \operatorname{src}(a) = v\} \times]0, \varepsilon[$ if $\varepsilon \leq \frac{1}{2}$.

The partial order \sqsubseteq and the metric d_c on the ball centered at v of radius ε are characterized by the following properties:

$$\begin{aligned} & d_{\mathcal{G}}((a,t),v) = 1 - t & (a,t) \sqsubseteq v & \text{if } t \in]1 - \varepsilon, 1[\\ & d_{\mathcal{G}}(v,(a,t)) = t & v \sqsubseteq (a,t) & \text{if } t \in]0, \varepsilon[\\ & d_{\mathcal{G}}((a,t),(a,t')) = t' - t & (a,t) \sqsubseteq (a,t') & \text{if } t \in]0, \varepsilon[\text{ or } t, t' \in]1 - \varepsilon, 1[) \\ & d_{\mathcal{G}}((a,t),(a,t')) = \min\{t' - t, 1 - (t' - t)\} & (a,t') \sqsubseteq (a,t) & \text{if } t \in]0, \varepsilon[\text{ and } t' \in]1 - \varepsilon, 1[\\ & d_{\mathcal{G}}((a,t),(b,t')) = d_{\mathcal{G}}((a,t),v) + d_{\mathcal{G}}(v,(b,t')) & \text{if } a \neq b \\ & (a,t) \sqsubseteq (b,t') & \text{if } t \in]1 - \varepsilon, 1[\text{ and } t' \in]0, \varepsilon[\end{aligned}$$

If $\varepsilon \leq \frac{1}{4}$ then the ball centered at v of radius ε , say B, is geodesically stable: for all p, $q \in B$, the union of the images of the geodesics from p to q is nonempty and contained in B.

Description

There exists a (unique) intrinsic metric d_{ε} on |G| such that the open balls of radii $\varepsilon > 0$ about (a, t) and v are $\{a\} \times]t - \varepsilon, t + \varepsilon[$ if $\varepsilon \leq \min(t, 1 - t)$, and $\{a \in G^{(1)} | \operatorname{tgt}(a) = v\} \times]1 - \varepsilon, 1[\cup \{v\} \cup \{a \in G^{(1)} | \operatorname{src}(a) = v\} \times]0, \varepsilon[$ if $\varepsilon \leq \frac{1}{2}$.

The partial order \sqsubseteq and the metric d_c on the ball centered at v of radius ε are characterized by the following properties:

$$\begin{aligned} & d_{c}((a,t),v) = 1 - t & (a,t) \sqsubseteq v & \text{if } t \in]1 - \varepsilon, 1[\\ & d_{c}(v,(a,t)) = t & v \sqsubseteq (a,t) & \text{if } t \in]0, \varepsilon[\\ & d_{c}((a,t),(a,t')) = t' - t & (a,t) \sqsubseteq (a,t') & \text{if } t \in]0, \varepsilon[\text{ or } t, t' \in]1 - \varepsilon, 1[) \\ & d_{c}((a,t),(a,t')) = \min\{t' - t, 1 - (t' - t)\} & (a,t') \sqsubseteq (a,t) & \text{if } t \in]0, \varepsilon[\text{ and } t' \in]1 - \varepsilon, 1[\\ & d_{c}((a,t),(b,t')) = d_{c}((a,t),v) + d_{c}(v,(b,t')) & \text{if } a \neq b \\ & (a,t) \sqsubseteq (b,t') & \text{if } t \in]1 - \varepsilon, 1[\text{ and } t' \in]0, \varepsilon[\end{aligned}$$

If $\varepsilon \leq \frac{1}{4}$ then the ball centered at v of radius ε , say B, is geodesically stable: for all p, $q \in B$, the union of the images of the geodesics from p to q is nonempty and contained in B.

The *standard ordered base* of G is the collection of ordered open balls of radii $\varepsilon \leq \frac{1}{2}$ with their 'canonical' partial order.