
DIRECTED ALGEBRAIC TOPOLOGY

AND

CONCURRENCY

Emmanuel Haucourt
emmanuel.haucourt@polytechnique.edu

MPRI : Concurrency (2.3.1)
– Lecture 1 –

2024 – 2025

A QUICK OVERVIEW

OF

CONCURRENCY THEORY

PARALLEL AUTOMATA META LANGUAGE

Syntax

Parallel Automata Meta Language Syntax

Paradigm
Cooperating sequential processes, E. W. Dijkstra, 1965.
System deadlocks, E. G. Coffman, M. J. Elphick, and A. Shoshani, 1971.
The geometry of semaphore programs, S. D. Carson and P. F. Reynolds, 1987.

- The Dijkstra’s language is a parallel extension of ALGOL60 with
P (lock/take), V (unlock/release), and parbegin ... parend

- Shared memory (e.g. Parallel RAM - Concurrent Read Exclusive Write)

- e.g. POSIX1 Threads

- Parallel compound can occur anywhere in a program e.g.

x:=0 ; y:=0 ; (x:=1 || y:=1)

- The Carson and Reynolds language is a restriction of Dijkstra’s language:
· Operator || in outermost position: only sequential processes are executed in parallel
· Neither branchings nor loops

1Portable Operating Systems Interface, X is a reference to Unix
1 / 49

Parallel Automata Meta Language Syntax

Paradigm
Cooperating sequential processes, E. W. Dijkstra, 1965.
System deadlocks, E. G. Coffman, M. J. Elphick, and A. Shoshani, 1971.
The geometry of semaphore programs, S. D. Carson and P. F. Reynolds, 1987.

- The Dijkstra’s language is a parallel extension of ALGOL60 with
P (lock/take), V (unlock/release), and parbegin ... parend

- Shared memory (e.g. Parallel RAM - Concurrent Read Exclusive Write)

- e.g. POSIX1 Threads

- Parallel compound can occur anywhere in a program e.g.

x:=0 ; y:=0 ; (x:=1 || y:=1)

- The Carson and Reynolds language is a restriction of Dijkstra’s language:
· Operator || in outermost position: only sequential processes are executed in parallel
· Neither branchings nor loops

1Portable Operating Systems Interface, X is a reference to Unix
1 / 49

Parallel Automata Meta Language Syntax

Paradigm
Cooperating sequential processes, E. W. Dijkstra, 1965.
System deadlocks, E. G. Coffman, M. J. Elphick, and A. Shoshani, 1971.
The geometry of semaphore programs, S. D. Carson and P. F. Reynolds, 1987.

- The Dijkstra’s language is a parallel extension of ALGOL60 with
P (lock/take), V (unlock/release), and parbegin ... parend

- Shared memory (e.g. Parallel RAM - Concurrent Read Exclusive Write)

- e.g. POSIX1 Threads

- Parallel compound can occur anywhere in a program e.g.

x:=0 ; y:=0 ; (x:=1 || y:=1)

- The Carson and Reynolds language is a restriction of Dijkstra’s language:
· Operator || in outermost position: only sequential processes are executed in parallel
· Neither branchings nor loops

1Portable Operating Systems Interface, X is a reference to Unix
1 / 49

Parallel Automata Meta Language Syntax

Paradigm
Cooperating sequential processes, E. W. Dijkstra, 1965.
System deadlocks, E. G. Coffman, M. J. Elphick, and A. Shoshani, 1971.
The geometry of semaphore programs, S. D. Carson and P. F. Reynolds, 1987.

- The Dijkstra’s language is a parallel extension of ALGOL60 with
P (lock/take), V (unlock/release), and parbegin ... parend

- Shared memory (e.g. Parallel RAM - Concurrent Read Exclusive Write)

- e.g. POSIX1 Threads

- Parallel compound can occur anywhere in a program e.g.

x:=0 ; y:=0 ; (x:=1 || y:=1)

- The Carson and Reynolds language is a restriction of Dijkstra’s language:
· Operator || in outermost position: only sequential processes are executed in parallel
· Neither branchings nor loops

1Portable Operating Systems Interface, X is a reference to Unix
1 / 49

Parallel Automata Meta Language Syntax

Paradigm
Cooperating sequential processes, E. W. Dijkstra, 1965.
System deadlocks, E. G. Coffman, M. J. Elphick, and A. Shoshani, 1971.
The geometry of semaphore programs, S. D. Carson and P. F. Reynolds, 1987.

- The Dijkstra’s language is a parallel extension of ALGOL60 with
P (lock/take), V (unlock/release), and parbegin ... parend

- Shared memory (e.g. Parallel RAM - Concurrent Read Exclusive Write)

- e.g. POSIX1 Threads

- Parallel compound can occur anywhere in a program e.g.

x:=0 ; y:=0 ; (x:=1 || y:=1)

- The Carson and Reynolds language is a restriction of Dijkstra’s language:
· Operator || in outermost position: only sequential processes are executed in parallel
· Neither branchings nor loops

1Portable Operating Systems Interface, X is a reference to Unix
1 / 49

Parallel Automata Meta Language Syntax

Paradigm
Cooperating sequential processes, E. W. Dijkstra, 1965.
System deadlocks, E. G. Coffman, M. J. Elphick, and A. Shoshani, 1971.
The geometry of semaphore programs, S. D. Carson and P. F. Reynolds, 1987.

- The Dijkstra’s language is a parallel extension of ALGOL60 with
P (lock/take), V (unlock/release), and parbegin ... parend

- Shared memory (e.g. Parallel RAM - Concurrent Read Exclusive Write)

- e.g. POSIX1 Threads

- Parallel compound can occur anywhere in a program e.g.

x:=0 ; y:=0 ; (x:=1 || y:=1)

- The Carson and Reynolds language is a restriction of Dijkstra’s language:

· Operator || in outermost position: only sequential processes are executed in parallel
· Neither branchings nor loops

1Portable Operating Systems Interface, X is a reference to Unix
1 / 49

Parallel Automata Meta Language Syntax

Paradigm
Cooperating sequential processes, E. W. Dijkstra, 1965.
System deadlocks, E. G. Coffman, M. J. Elphick, and A. Shoshani, 1971.
The geometry of semaphore programs, S. D. Carson and P. F. Reynolds, 1987.

- The Dijkstra’s language is a parallel extension of ALGOL60 with
P (lock/take), V (unlock/release), and parbegin ... parend

- Shared memory (e.g. Parallel RAM - Concurrent Read Exclusive Write)

- e.g. POSIX1 Threads

- Parallel compound can occur anywhere in a program e.g.

x:=0 ; y:=0 ; (x:=1 || y:=1)

- The Carson and Reynolds language is a restriction of Dijkstra’s language:
· Operator || in outermost position: only sequential processes are executed in parallel

· Neither branchings nor loops

1Portable Operating Systems Interface, X is a reference to Unix
1 / 49

Parallel Automata Meta Language Syntax

Paradigm
Cooperating sequential processes, E. W. Dijkstra, 1965.
System deadlocks, E. G. Coffman, M. J. Elphick, and A. Shoshani, 1971.
The geometry of semaphore programs, S. D. Carson and P. F. Reynolds, 1987.

- The Dijkstra’s language is a parallel extension of ALGOL60 with
P (lock/take), V (unlock/release), and parbegin ... parend

- Shared memory (e.g. Parallel RAM - Concurrent Read Exclusive Write)

- e.g. POSIX1 Threads

- Parallel compound can occur anywhere in a program e.g.

x:=0 ; y:=0 ; (x:=1 || y:=1)

- The Carson and Reynolds language is a restriction of Dijkstra’s language:
· Operator || in outermost position: only sequential processes are executed in parallel
· Neither branchings nor loops

1Portable Operating Systems Interface, X is a reference to Unix
1 / 49

Parallel Automata Meta Language Syntax

Features

- shared memory abstract machine (PRAM)
concurrent read exclusive write (CREW)

- Operator || in outermost position: only sequential processes are executed in parallel

- Branchings, loops, and synchronisation barriers W (wait) are allowed

- no pointer arithmetics

- no function call, only jumps

- no birth nor death of process at runtime

- tokens are owned by processes

- conservative processes

2 / 49

Parallel Automata Meta Language Syntax

Features

- shared memory abstract machine (PRAM)
concurrent read exclusive write (CREW)

- Operator || in outermost position: only sequential processes are executed in parallel

- Branchings, loops, and synchronisation barriers W (wait) are allowed

- no pointer arithmetics

- no function call, only jumps

- no birth nor death of process at runtime

- tokens are owned by processes

- conservative processes

2 / 49

Parallel Automata Meta Language Syntax

Features

- shared memory abstract machine (PRAM)
concurrent read exclusive write (CREW)

- Operator || in outermost position: only sequential processes are executed in parallel

- Branchings, loops, and synchronisation barriers W (wait) are allowed

- no pointer arithmetics

- no function call, only jumps

- no birth nor death of process at runtime

- tokens are owned by processes

- conservative processes

2 / 49

Parallel Automata Meta Language Syntax

Features

- shared memory abstract machine (PRAM)
concurrent read exclusive write (CREW)

- Operator || in outermost position: only sequential processes are executed in parallel

- Branchings, loops, and synchronisation barriers W (wait) are allowed

- no pointer arithmetics

- no function call, only jumps

- no birth nor death of process at runtime

- tokens are owned by processes

- conservative processes

2 / 49

Parallel Automata Meta Language Syntax

Features

- shared memory abstract machine (PRAM)
concurrent read exclusive write (CREW)

- Operator || in outermost position: only sequential processes are executed in parallel

- Branchings, loops, and synchronisation barriers W (wait) are allowed

- no pointer arithmetics

- no function call, only jumps

- no birth nor death of process at runtime

- tokens are owned by processes

- conservative processes

2 / 49

Parallel Automata Meta Language Syntax

Features

- shared memory abstract machine (PRAM)
concurrent read exclusive write (CREW)

- Operator || in outermost position: only sequential processes are executed in parallel

- Branchings, loops, and synchronisation barriers W (wait) are allowed

- no pointer arithmetics

- no function call, only jumps

- no birth nor death of process at runtime

- tokens are owned by processes

- conservative processes

2 / 49

Parallel Automata Meta Language Syntax

Features

- shared memory abstract machine (PRAM)
concurrent read exclusive write (CREW)

- Operator || in outermost position: only sequential processes are executed in parallel

- Branchings, loops, and synchronisation barriers W (wait) are allowed

- no pointer arithmetics

- no function call, only jumps

- no birth nor death of process at runtime

- tokens are owned by processes

- conservative processes

2 / 49

Parallel Automata Meta Language Syntax

Features

- shared memory abstract machine (PRAM)
concurrent read exclusive write (CREW)

- Operator || in outermost position: only sequential processes are executed in parallel

- Branchings, loops, and synchronisation barriers W (wait) are allowed

- no pointer arithmetics

- no function call, only jumps

- no birth nor death of process at runtime

- tokens are owned by processes

- conservative processes

2 / 49

Parallel Automata Meta Language Syntax

Features

- shared memory abstract machine (PRAM)
concurrent read exclusive write (CREW)

- Operator || in outermost position: only sequential processes are executed in parallel

- Branchings, loops, and synchronisation barriers W (wait) are allowed

- no pointer arithmetics

- no function call, only jumps

- no birth nor death of process at runtime

- tokens are owned by processes

- conservative processes

2 / 49

Parallel Automata Meta Language Syntax

Declarations

A basic block is defined as a (finite) sequence of instructions. A program is a list of declarations, the available
declarations are:

- sem <int> <set of identifiers>
e.g. sem 3 a b c d

- sync <int> <set of identifiers>
e.g. sync 3 a b c d

- mtx <set of identifiers>
e.g. mtx a b c d

- var <identifier> = <constant>
e.g. var x = 0

- proc <identifier> = <basic block>

- init <multiset of identifiers>
e.g. init a 2b 3c

3 / 49

Parallel Automata Meta Language Syntax

Declarations

A basic block is defined as a (finite) sequence of instructions. A program is a list of declarations, the available
declarations are:

- sem <int> <set of identifiers>
e.g. sem 3 a b c d

- sync <int> <set of identifiers>
e.g. sync 3 a b c d

- mtx <set of identifiers>
e.g. mtx a b c d

- var <identifier> = <constant>
e.g. var x = 0

- proc <identifier> = <basic block>

- init <multiset of identifiers>
e.g. init a 2b 3c

3 / 49

Parallel Automata Meta Language Syntax

Declarations

A basic block is defined as a (finite) sequence of instructions. A program is a list of declarations, the available
declarations are:

- sem <int> <set of identifiers>
e.g. sem 3 a b c d

- sync <int> <set of identifiers>
e.g. sync 3 a b c d

- mtx <set of identifiers>
e.g. mtx a b c d

- var <identifier> = <constant>
e.g. var x = 0

- proc <identifier> = <basic block>

- init <multiset of identifiers>
e.g. init a 2b 3c

3 / 49

Parallel Automata Meta Language Syntax

Declarations

A basic block is defined as a (finite) sequence of instructions. A program is a list of declarations, the available
declarations are:

- sem <int> <set of identifiers>
e.g. sem 3 a b c d

- sync <int> <set of identifiers>
e.g. sync 3 a b c d

- mtx <set of identifiers>
e.g. mtx a b c d

- var <identifier> = <constant>
e.g. var x = 0

- proc <identifier> = <basic block>

- init <multiset of identifiers>
e.g. init a 2b 3c

3 / 49

Parallel Automata Meta Language Syntax

Declarations

A basic block is defined as a (finite) sequence of instructions. A program is a list of declarations, the available
declarations are:

- sem <int> <set of identifiers>
e.g. sem 3 a b c d

- sync <int> <set of identifiers>
e.g. sync 3 a b c d

- mtx <set of identifiers>
e.g. mtx a b c d

- var <identifier> = <constant>
e.g. var x = 0

- proc <identifier> = <basic block>

- init <multiset of identifiers>
e.g. init a 2b 3c

3 / 49

Parallel Automata Meta Language Syntax

Declarations

A basic block is defined as a (finite) sequence of instructions. A program is a list of declarations, the available
declarations are:

- sem <int> <set of identifiers>
e.g. sem 3 a b c d

- sync <int> <set of identifiers>
e.g. sync 3 a b c d

- mtx <set of identifiers>
e.g. mtx a b c d

- var <identifier> = <constant>
e.g. var x = 0

- proc <identifier> = <basic block>

- init <multiset of identifiers>
e.g. init a 2b 3c

3 / 49

Parallel Automata Meta Language Syntax

Declarations

A basic block is defined as a (finite) sequence of instructions. A program is a list of declarations, the available
declarations are:

- sem <int> <set of identifiers>
e.g. sem 3 a b c d

- sync <int> <set of identifiers>
e.g. sync 3 a b c d

- mtx <set of identifiers>
e.g. mtx a b c d

- var <identifier> = <constant>
e.g. var x = 0

- proc <identifier> = <basic block>

- init <multiset of identifiers>
e.g. init a 2b 3c

3 / 49

Parallel Automata Meta Language Syntax

Declarations

A basic block is defined as a (finite) sequence of instructions. A program is a list of declarations, the available
declarations are:

- sem <int> <set of identifiers>
e.g. sem 3 a b c d

- sync <int> <set of identifiers>
e.g. sync 3 a b c d

- mtx <set of identifiers>
e.g. mtx a b c d

- var <identifier> = <constant>
e.g. var x = 0

- proc <identifier> = <basic block>

- init <multiset of identifiers>
e.g. init a 2b 3c

3 / 49

Parallel Automata Meta Language Syntax

Expressions and values

The set of expressions is inductively built on the set of identifiers and the following set of operators

v content of v ∈ V x ∈ R constant
∧ minimum ∨ maximum
+ addition − substraction
∗ multiplication / division
⩽ less or equal ⩾ greater of equal
< strictly less > strictly greater
= equal ̸= not equal
¬ complement % modulo
⊥ bottom

nullary unary
⊥, x ∈ R, v ∈ V ¬

binary
∧, ∨, +, −, ∗, /, <, >, ⩽, ⩾, =, ̸=, %

4 / 49

Parallel Automata Meta Language Syntax

Expressions and values

The set of expressions is inductively built on the set of identifiers and the following set of operators

v content of v ∈ V x ∈ R constant
∧ minimum ∨ maximum
+ addition − substraction
∗ multiplication / division
⩽ less or equal ⩾ greater of equal
< strictly less > strictly greater
= equal ̸= not equal
¬ complement % modulo
⊥ bottom

nullary unary
⊥, x ∈ R, v ∈ V ¬

binary
∧, ∨, +, −, ∗, /, <, >, ⩽, ⩾, =, ̸=, %

4 / 49

Parallel Automata Meta Language Syntax

Expressions and values

The set of expressions is inductively built on the set of identifiers and the following set of operators

v content of v ∈ V x ∈ R constant
∧ minimum ∨ maximum
+ addition − substraction
∗ multiplication / division
⩽ less or equal ⩾ greater of equal
< strictly less > strictly greater
= equal ̸= not equal
¬ complement % modulo
⊥ bottom

nullary unary
⊥, x ∈ R, v ∈ V ¬

binary
∧, ∨, +, −, ∗, /, <, >, ⩽, ⩾, =, ̸=, %

4 / 49

Parallel Automata Meta Language Syntax

Non branching instructions

- identifier:=expression the expression is evaluated then the result is stored in the identifier

- P(identifier) takes an occurence of the resource identifier (there are arity available tokens), stops the process
otherwise

- V(identifier) release an occurence of the resource identifier (if such an occurence is held by the process), ignored
otherwise

- W(identifier) stops the execution of the process until arity + 1 of them are stopped by the barrier identifier

- J(identifier) the execution of the process is stopped and the one of a copy of identifier starts. There is no return
mechanism.

- (L) enclose a list of instructions between parenthesis to make it a single instruction

5 / 49

Parallel Automata Meta Language Syntax

Non branching instructions

- identifier:=expression the expression is evaluated then the result is stored in the identifier

- P(identifier) takes an occurence of the resource identifier (there are arity available tokens), stops the process
otherwise

- V(identifier) release an occurence of the resource identifier (if such an occurence is held by the process), ignored
otherwise

- W(identifier) stops the execution of the process until arity + 1 of them are stopped by the barrier identifier

- J(identifier) the execution of the process is stopped and the one of a copy of identifier starts. There is no return
mechanism.

- (L) enclose a list of instructions between parenthesis to make it a single instruction

5 / 49

Parallel Automata Meta Language Syntax

Non branching instructions

- identifier:=expression the expression is evaluated then the result is stored in the identifier

- P(identifier) takes an occurence of the resource identifier (there are arity available tokens), stops the process
otherwise

- V(identifier) release an occurence of the resource identifier (if such an occurence is held by the process), ignored
otherwise

- W(identifier) stops the execution of the process until arity + 1 of them are stopped by the barrier identifier

- J(identifier) the execution of the process is stopped and the one of a copy of identifier starts. There is no return
mechanism.

- (L) enclose a list of instructions between parenthesis to make it a single instruction

5 / 49

Parallel Automata Meta Language Syntax

Non branching instructions

- identifier:=expression the expression is evaluated then the result is stored in the identifier

- P(identifier) takes an occurence of the resource identifier (there are arity available tokens), stops the process
otherwise

- V(identifier) release an occurence of the resource identifier (if such an occurence is held by the process), ignored
otherwise

- W(identifier) stops the execution of the process until arity + 1 of them are stopped by the barrier identifier

- J(identifier) the execution of the process is stopped and the one of a copy of identifier starts. There is no return
mechanism.

- (L) enclose a list of instructions between parenthesis to make it a single instruction

5 / 49

Parallel Automata Meta Language Syntax

Non branching instructions

- identifier:=expression the expression is evaluated then the result is stored in the identifier

- P(identifier) takes an occurence of the resource identifier (there are arity available tokens), stops the process
otherwise

- V(identifier) release an occurence of the resource identifier (if such an occurence is held by the process), ignored
otherwise

- W(identifier) stops the execution of the process until arity + 1 of them are stopped by the barrier identifier

- J(identifier) the execution of the process is stopped and the one of a copy of identifier starts. There is no return
mechanism.

- (L) enclose a list of instructions between parenthesis to make it a single instruction

5 / 49

Parallel Automata Meta Language Syntax

Non branching instructions

- identifier:=expression the expression is evaluated then the result is stored in the identifier

- P(identifier) takes an occurence of the resource identifier (there are arity available tokens), stops the process
otherwise

- V(identifier) release an occurence of the resource identifier (if such an occurence is held by the process), ignored
otherwise

- W(identifier) stops the execution of the process until arity + 1 of them are stopped by the barrier identifier

- J(identifier) the execution of the process is stopped and the one of a copy of identifier starts. There is no return
mechanism.

- (L) enclose a list of instructions between parenthesis to make it a single instruction

5 / 49

Parallel Automata Meta Language Syntax

Non branching instructions

- identifier:=expression the expression is evaluated then the result is stored in the identifier

- P(identifier) takes an occurence of the resource identifier (there are arity available tokens), stops the process
otherwise

- V(identifier) release an occurence of the resource identifier (if such an occurence is held by the process), ignored
otherwise

- W(identifier) stops the execution of the process until arity + 1 of them are stopped by the barrier identifier

- J(identifier) the execution of the process is stopped and the one of a copy of identifier starts. There is no return
mechanism.

- (L) enclose a list of instructions between parenthesis to make it a single instruction

5 / 49

Parallel Automata Meta Language Syntax

Branching

The branching is provided by a kind of “match case like” instruction

(L1)+[e1]+(L2)+[e2]+· · · +(Ln)+[en]+(Ln+1)

- Each Lk is a basic block

- Each ek is an expression

- The triggered branch is Lk with k being the first index such that ek evaluate to some nonzero value

- If all the expressions evaluate to zero, then Ln+1 is triggered.

6 / 49

Parallel Automata Meta Language Syntax

Branching

The branching is provided by a kind of “match case like” instruction

(L1)+[e1]+(L2)+[e2]+· · · +(Ln)+[en]+(Ln+1)

- Each Lk is a basic block

- Each ek is an expression

- The triggered branch is Lk with k being the first index such that ek evaluate to some nonzero value

- If all the expressions evaluate to zero, then Ln+1 is triggered.

6 / 49

Parallel Automata Meta Language Syntax

Branching

The branching is provided by a kind of “match case like” instruction

(L1)+[e1]+(L2)+[e2]+· · · +(Ln)+[en]+(Ln+1)

- Each Lk is a basic block

- Each ek is an expression

- The triggered branch is Lk with k being the first index such that ek evaluate to some nonzero value

- If all the expressions evaluate to zero, then Ln+1 is triggered.

6 / 49

Parallel Automata Meta Language Syntax

Branching

The branching is provided by a kind of “match case like” instruction

(L1)+[e1]+(L2)+[e2]+· · · +(Ln)+[en]+(Ln+1)

- Each Lk is a basic block

- Each ek is an expression

- The triggered branch is Lk with k being the first index such that ek evaluate to some nonzero value

- If all the expressions evaluate to zero, then Ln+1 is triggered.

6 / 49

Parallel Automata Meta Language Syntax

Branching

The branching is provided by a kind of “match case like” instruction

(L1)+[e1]+(L2)+[e2]+· · · +(Ln)+[en]+(Ln+1)

- Each Lk is a basic block

- Each ek is an expression

- The triggered branch is Lk with k being the first index such that ek evaluate to some nonzero value

- If all the expressions evaluate to zero, then Ln+1 is triggered.

6 / 49

Parallel Automata Meta Language Syntax

Branching

The branching is provided by a kind of “match case like” instruction

(L1)+[e1]+(L2)+[e2]+· · · +(Ln)+[en]+(Ln+1)

- Each Lk is a basic block

- Each ek is an expression

- The triggered branch is Lk with k being the first index such that ek evaluate to some nonzero value

- If all the expressions evaluate to zero, then Ln+1 is triggered.

6 / 49

Parallel Automata Meta Language Syntax

Describing a process

The body of a process is just a (possibly empty) sequence of intructions, i.e. a basic block, separated by semicolons
e.g. the Hasse/Syracuse algorithm with input value 7

proc p = x:=7;J(q)

proc q = J(r)+[x<>1]+()

proc r = (x:=x/2)+[x%2=0]+(x:=3*x+1) ; J(q)

init p

Due to the branchings, basic blocks are actually trees.

7 / 49

Parallel Automata Meta Language Syntax

Describing a process

The body of a process is just a (possibly empty) sequence of intructions, i.e. a basic block, separated by semicolons
e.g. the Hasse/Syracuse algorithm with input value 7

proc p = x:=7;J(q)

proc q = J(r)+[x<>1]+()

proc r = (x:=x/2)+[x%2=0]+(x:=3*x+1) ; J(q)

init p

Due to the branchings, basic blocks are actually trees.

7 / 49

Parallel Automata Meta Language Syntax

Describing a process

The body of a process is just a (possibly empty) sequence of intructions, i.e. a basic block, separated by semicolons
e.g. the Hasse/Syracuse algorithm with input value 7

proc p = x:=7;J(q)

proc q = J(r)+[x<>1]+()

proc r = (x:=x/2)+[x%2=0]+(x:=3*x+1) ; J(q)

init p

Due to the branchings, basic blocks are actually trees.

7 / 49

Parallel Automata Meta Language Syntax

Describing a process

The body of a process is just a (possibly empty) sequence of intructions, i.e. a basic block, separated by semicolons
e.g. the Hasse/Syracuse algorithm with input value 7

proc p = x:=7;J(q)

proc q = J(r)+[x<>1]+()

proc r = (x:=x/2)+[x%2=0]+(x:=3*x+1) ; J(q)

init p

Due to the branchings, basic blocks are actually trees.

7 / 49

Parallel Automata Meta Language Syntax

Describing a process

The body of a process is just a (possibly empty) sequence of intructions, i.e. a basic block, separated by semicolons
e.g. the Hasse/Syracuse algorithm with input value 7

proc p = x:=7;J(q)

proc q = J(r)+[x<>1]+()

proc r = (x:=x/2)+[x%2=0]+(x:=3*x+1) ; J(q)

init p

Due to the branchings, basic blocks are actually trees.

7 / 49

Parallel Automata Meta Language Syntax

Describing a process

The body of a process is just a (possibly empty) sequence of intructions, i.e. a basic block, separated by semicolons
e.g. the Hasse/Syracuse algorithm with input value 7

proc p = x:=7;J(q)

proc q = J(r)+[x<>1]+()

proc r = (x:=x/2)+[x%2=0]+(x:=3*x+1) ; J(q)

init p

Due to the branchings, basic blocks are actually trees.

7 / 49

Parallel Automata Meta Language Syntax

Describing a process

The body of a process is just a (possibly empty) sequence of intructions, i.e. a basic block, separated by semicolons
e.g. the Hasse/Syracuse algorithm with input value 7

proc p = x:=7;J(q)

proc q = J(r)+[x<>1]+()

proc r = (x:=x/2)+[x%2=0]+(x:=3*x+1) ; J(q)

init p

Due to the branchings, basic blocks are actually trees.

7 / 49

Control Flow Graphs

Parallel Automata Meta Language The control flow graphs

Control flow graphs and flowcharts
Control flow analysis, F. E. Allen, 1970
Assigning meanings to programs, R. W. Floyd, 1967

- Compilers and static analyzers internal representation of programs.

- No theoretical definition yet control flow graphs must be finite for practical reasons.

- At the core of many softwares dealing with source code
e.g. GCC (cf. “basic blocks”), LLVM, Frama-C.

- No such structure exist for parallel programs.

8 / 49

Parallel Automata Meta Language The control flow graphs

Control flow graphs and flowcharts
Control flow analysis, F. E. Allen, 1970
Assigning meanings to programs, R. W. Floyd, 1967

- Compilers and static analyzers internal representation of programs.

- No theoretical definition yet control flow graphs must be finite for practical reasons.

- At the core of many softwares dealing with source code
e.g. GCC (cf. “basic blocks”), LLVM, Frama-C.

- No such structure exist for parallel programs.

8 / 49

Parallel Automata Meta Language The control flow graphs

Control flow graphs and flowcharts
Control flow analysis, F. E. Allen, 1970
Assigning meanings to programs, R. W. Floyd, 1967

- Compilers and static analyzers internal representation of programs.

- No theoretical definition yet control flow graphs must be finite for practical reasons.

- At the core of many softwares dealing with source code
e.g. GCC (cf. “basic blocks”), LLVM, Frama-C.

- No such structure exist for parallel programs.

8 / 49

Parallel Automata Meta Language The control flow graphs

Control flow graphs and flowcharts
Control flow analysis, F. E. Allen, 1970
Assigning meanings to programs, R. W. Floyd, 1967

- Compilers and static analyzers internal representation of programs.

- No theoretical definition yet control flow graphs must be finite for practical reasons.

- At the core of many softwares dealing with source code
e.g. GCC (cf. “basic blocks”), LLVM, Frama-C.

- No such structure exist for parallel programs.

8 / 49

Parallel Automata Meta Language The control flow graphs

Control flow graphs and flowcharts
Control flow analysis, F. E. Allen, 1970
Assigning meanings to programs, R. W. Floyd, 1967

- Compilers and static analyzers internal representation of programs.

- No theoretical definition yet control flow graphs must be finite for practical reasons.

- At the core of many softwares dealing with source code
e.g. GCC (cf. “basic blocks”), LLVM, Frama-C.

- No such structure exist for parallel programs.

8 / 49

Parallel Automata Meta Language The control flow graphs

Generators

x := f

a1

b1

φ?

Yes No

a1

b1 b2

a1 a2

b1

START

b1 HALT

a1

9 / 49

Parallel Automata Meta Language The control flow graphs

The Hasse-Syracuse algorithm in PAML

var x = 7

proc p = ()+[x=1]+J(q)

proc q = (x:=x/2) + [x%2=0] + (x:=3*x+1) ; J(p)

init p

10 / 49

Parallel Automata Meta Language The control flow graphs

Building the control flow graph
of the Hasse-Syracuse algorithm

11 / 49

Parallel Automata Meta Language The control flow graphs

Building the control flow graph
of the Hasse-Syracuse algorithm

entry point of the

basic block of p

x=1
x=1

J(q)

11 / 49

Parallel Automata Meta Language The control flow graphs

Building the control flow graph
of the Hasse-Syracuse algorithm

entry point of the

basic block of p

x=1
x=1

J(q)

entry point of the

basic block of q

x:=3*x+1

x:=x/2

x%
2=
0

x%
2=
0

J(p)

J(p)

11 / 49

Parallel Automata Meta Language The control flow graphs

Building the control flow graph
of the Hasse-Syracuse algorithm

entry point of the

basic block of p

x=1
x=1

J(q)

entry point of the

basic block of q

x:=3*x+1

x:=x/2

x%
2=
0

x%
2=
0

J(p)

J(p)

11 / 49

Parallel Automata Meta Language The control flow graphs

Building the control flow graph
of the Hasse-Syracuse algorithm

entry point of the

basic block of p

x=1
x=1

J(q)

entry point of the

basic block of q

x:=3*x+1

x:=x/2

x%
2=
0

x%
2=
0

J(p)

J(p)

11 / 49

Parallel Automata Meta Language The control flow graphs

Building the control flow graph
of the Hasse-Syracuse algorithm

entry point of the

basic block of p

x=1
x=1

J(q)

entry point of the

basic block of q

x:=3*x+1

x:=x/2

x%
2=
0

x%
2=
0

J(p)

J(p)

11 / 49

Parallel Automata Meta Language The control flow graphs

Building the control flow graph
of the Hasse-Syracuse algorithm

entry point of the

basic block of p

x=1
x=1

entry point of the

basic block of q

x:=3*x+1

x:=x/2

x%
2=
0

x%
2=
0

11 / 49

Parallel Automata Meta Language The control flow graphs

Reducing the Control Flow Graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%2=0

x%2=0

x=1x=1

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x%
2=
0

x=1x=1

the current value of x is 7

12 / 49

Parallel Automata Meta Language The control flow graphs

Reducing the Control Flow Graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%2=0

x%2=0

x=1x=1

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x%
2=
0

x=1x=1

the current value of x is 7

12 / 49

Parallel Automata Meta Language The control flow graphs

Reducing the Control Flow Graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%2=0

x%2=0

x=1x=1

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x%
2=
0

x=1x=1

the current value of x is 7

12 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 7

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 7

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 22

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 22

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 22

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 22

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 11

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 11

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 11

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 11

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 34

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 34

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 34

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 34

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 17

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 17

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 17

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 17

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 52

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 52

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 52

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 52

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 26

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 26

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 26

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 26

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 13

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 13

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 13

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 13

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 40

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 40

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 40

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 40

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 20

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 20

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 20

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 20

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 10

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 10

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 10

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 10

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 5

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 5

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 5

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 5

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 16

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 16

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 16

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 16

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 8

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 8

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 8

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 8

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 4

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 4

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 4

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 4

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 2

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 2

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 2

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 2

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

13 / 49

Parallel Automata Meta Language The control flow graphs

An execution trace on a control flow graph
of the Hasse-Syracuse algorithm

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

13 / 49

Parallel Automata Meta Language The control flow graphs

Execution traces as paths over a control flow graph

- Any execution trace induces a path

- Some paths do not come from an execution trace

- Therefore the collection of path provides a (strict) overapproximation of the collection of execution traces

- The (infinite) collection of paths is entirely determined by the (finite) control flow graph

14 / 49

Parallel Automata Meta Language The control flow graphs

Execution traces as paths over a control flow graph

- Any execution trace induces a path

- Some paths do not come from an execution trace

- Therefore the collection of path provides a (strict) overapproximation of the collection of execution traces

- The (infinite) collection of paths is entirely determined by the (finite) control flow graph

14 / 49

Parallel Automata Meta Language The control flow graphs

Execution traces as paths over a control flow graph

- Any execution trace induces a path

- Some paths do not come from an execution trace

- Therefore the collection of path provides a (strict) overapproximation of the collection of execution traces

- The (infinite) collection of paths is entirely determined by the (finite) control flow graph

14 / 49

Parallel Automata Meta Language The control flow graphs

Execution traces as paths over a control flow graph

- Any execution trace induces a path

- Some paths do not come from an execution trace

- Therefore the collection of path provides a (strict) overapproximation of the collection of execution traces

- The (infinite) collection of paths is entirely determined by the (finite) control flow graph

14 / 49

Parallel Automata Meta Language The control flow graphs

Execution traces as paths over a control flow graph

- Any execution trace induces a path

- Some paths do not come from an execution trace

- Therefore the collection of path provides a (strict) overapproximation of the collection of execution traces

- The (infinite) collection of paths is entirely determined by the (finite) control flow graph

14 / 49

Parallel Automata Meta Language The control flow graphs

The overall idea of static analysis

Any model of a program should contain a finite representation of an overapproximation of the collection of all its
execution traces.

One of the goal of the course it to provide such a structure for a large class of PAML programs.

15 / 49

Parallel Automata Meta Language The control flow graphs

The overall idea of static analysis

Any model of a program should contain a finite representation of an overapproximation of the collection of all its
execution traces.

One of the goal of the course it to provide such a structure for a large class of PAML programs.

15 / 49

Parallel Automata Meta Language The control flow graphs

The overall idea of static analysis

Any model of a program should contain a finite representation of an overapproximation of the collection of all its
execution traces.

One of the goal of the course it to provide such a structure for a large class of PAML programs.

15 / 49

Parallel Automata Meta Language The control flow graphs

Restrictions from the PAML syntax

By construction the PAML language enforces the following restrictions

- There is neither birth nor death of processes at runtime

- The arity of resources cannot by changed at runtime

- There is no pointer arithmetics

16 / 49

Parallel Automata Meta Language The control flow graphs

Restrictions from the PAML syntax

By construction the PAML language enforces the following restrictions

- There is neither birth nor death of processes at runtime

- The arity of resources cannot by changed at runtime

- There is no pointer arithmetics

16 / 49

Parallel Automata Meta Language The control flow graphs

Restrictions from the PAML syntax

By construction the PAML language enforces the following restrictions

- There is neither birth nor death of processes at runtime

- The arity of resources cannot by changed at runtime

- There is no pointer arithmetics

16 / 49

Parallel Automata Meta Language The control flow graphs

Restrictions from the PAML syntax

By construction the PAML language enforces the following restrictions

- There is neither birth nor death of processes at runtime

- The arity of resources cannot by changed at runtime

- There is no pointer arithmetics

16 / 49

Parallel Automata Meta Language The control flow graphs

Restrictions from the PAML syntax

By construction the PAML language enforces the following restrictions

- There is neither birth nor death of processes at runtime

- The arity of resources cannot by changed at runtime

- There is no pointer arithmetics

16 / 49

Abstract Machine

Parallel Automata Meta Language The abstract machine

Abstract expressions

- The set of variables of a program is X .

- A valuation or memory state is a mapping ν : X → R⊥ = R ∪ {⊥}.
- An expression is a mapping ε : {valuations} → R with a finite set F(ε) ⊆ X

such that if the valuations ν and ν′ match on F(ε) then ε(ν) = ε(ν′).

- The set of expressions occuring in the program is denoted by E.

17 / 49

Parallel Automata Meta Language The abstract machine

Abstract expressions

- The set of variables of a program is X .

- A valuation or memory state is a mapping ν : X → R⊥ = R ∪ {⊥}.
- An expression is a mapping ε : {valuations} → R with a finite set F(ε) ⊆ X

such that if the valuations ν and ν′ match on F(ε) then ε(ν) = ε(ν′).

- The set of expressions occuring in the program is denoted by E.

17 / 49

Parallel Automata Meta Language The abstract machine

Abstract expressions

- The set of variables of a program is X .

- A valuation or memory state is a mapping ν : X → R⊥ = R ∪ {⊥}.

- An expression is a mapping ε : {valuations} → R with a finite set F(ε) ⊆ X
such that if the valuations ν and ν′ match on F(ε) then ε(ν) = ε(ν′).

- The set of expressions occuring in the program is denoted by E.

17 / 49

Parallel Automata Meta Language The abstract machine

Abstract expressions

- The set of variables of a program is X .

- A valuation or memory state is a mapping ν : X → R⊥ = R ∪ {⊥}.
- An expression is a mapping ε : {valuations} → R with a finite set F(ε) ⊆ X

such that if the valuations ν and ν′ match on F(ε) then ε(ν) = ε(ν′).

- The set of expressions occuring in the program is denoted by E.

17 / 49

Parallel Automata Meta Language The abstract machine

Abstract expressions

- The set of variables of a program is X .

- A valuation or memory state is a mapping ν : X → R⊥ = R ∪ {⊥}.
- An expression is a mapping ε : {valuations} → R with a finite set F(ε) ⊆ X

such that if the valuations ν and ν′ match on F(ε) then ε(ν) = ε(ν′).

- The set of expressions occuring in the program is denoted by E.

17 / 49

Parallel Automata Meta Language The abstract machine

Interpretation of expressions
only depends on the current memory state

- JxKν = ν(x) for all x ∈ X
- Any value in R \ {0} stands for true while 0 stands for false

- J¬K : R⊥ → R⊥,
J¬K(0) = 1,
J¬K(⊥) = ⊥, and
J¬K(x) = 0 for all x ∈ R \ {0}

- JeK = ⊥ for all expression e in which ⊥ occurs

- the other operators are interpreted as expected

18 / 49

Parallel Automata Meta Language The abstract machine

Interpretation of expressions
only depends on the current memory state

- JxKν = ν(x) for all x ∈ X

- Any value in R \ {0} stands for true while 0 stands for false

- J¬K : R⊥ → R⊥,
J¬K(0) = 1,
J¬K(⊥) = ⊥, and
J¬K(x) = 0 for all x ∈ R \ {0}

- JeK = ⊥ for all expression e in which ⊥ occurs

- the other operators are interpreted as expected

18 / 49

Parallel Automata Meta Language The abstract machine

Interpretation of expressions
only depends on the current memory state

- JxKν = ν(x) for all x ∈ X
- Any value in R \ {0} stands for true while 0 stands for false

- J¬K : R⊥ → R⊥,
J¬K(0) = 1,
J¬K(⊥) = ⊥, and
J¬K(x) = 0 for all x ∈ R \ {0}

- JeK = ⊥ for all expression e in which ⊥ occurs

- the other operators are interpreted as expected

18 / 49

Parallel Automata Meta Language The abstract machine

Interpretation of expressions
only depends on the current memory state

- JxKν = ν(x) for all x ∈ X
- Any value in R \ {0} stands for true while 0 stands for false

- J¬K : R⊥ → R⊥,

J¬K(0) = 1,
J¬K(⊥) = ⊥, and
J¬K(x) = 0 for all x ∈ R \ {0}

- JeK = ⊥ for all expression e in which ⊥ occurs

- the other operators are interpreted as expected

18 / 49

Parallel Automata Meta Language The abstract machine

Interpretation of expressions
only depends on the current memory state

- JxKν = ν(x) for all x ∈ X
- Any value in R \ {0} stands for true while 0 stands for false

- J¬K : R⊥ → R⊥,
J¬K(0) = 1,

J¬K(⊥) = ⊥, and
J¬K(x) = 0 for all x ∈ R \ {0}

- JeK = ⊥ for all expression e in which ⊥ occurs

- the other operators are interpreted as expected

18 / 49

Parallel Automata Meta Language The abstract machine

Interpretation of expressions
only depends on the current memory state

- JxKν = ν(x) for all x ∈ X
- Any value in R \ {0} stands for true while 0 stands for false

- J¬K : R⊥ → R⊥,
J¬K(0) = 1,
J¬K(⊥) = ⊥, and

J¬K(x) = 0 for all x ∈ R \ {0}
- JeK = ⊥ for all expression e in which ⊥ occurs

- the other operators are interpreted as expected

18 / 49

Parallel Automata Meta Language The abstract machine

Interpretation of expressions
only depends on the current memory state

- JxKν = ν(x) for all x ∈ X
- Any value in R \ {0} stands for true while 0 stands for false

- J¬K : R⊥ → R⊥,
J¬K(0) = 1,
J¬K(⊥) = ⊥, and
J¬K(x) = 0 for all x ∈ R \ {0}

- JeK = ⊥ for all expression e in which ⊥ occurs

- the other operators are interpreted as expected

18 / 49

Parallel Automata Meta Language The abstract machine

Interpretation of expressions
only depends on the current memory state

- JxKν = ν(x) for all x ∈ X
- Any value in R \ {0} stands for true while 0 stands for false

- J¬K : R⊥ → R⊥,
J¬K(0) = 1,
J¬K(⊥) = ⊥, and
J¬K(x) = 0 for all x ∈ R \ {0}

- JeK = ⊥ for all expression e in which ⊥ occurs

- the other operators are interpreted as expected

18 / 49

Parallel Automata Meta Language The abstract machine

Interpretation of expressions
only depends on the current memory state

- JxKν = ν(x) for all x ∈ X
- Any value in R \ {0} stands for true while 0 stands for false

- J¬K : R⊥ → R⊥,
J¬K(0) = 1,
J¬K(⊥) = ⊥, and
J¬K(x) = 0 for all x ∈ R \ {0}

- JeK = ⊥ for all expression e in which ⊥ occurs

- the other operators are interpreted as expected

18 / 49

Parallel Automata Meta Language The abstract machine

Abstract instructions

The sets of semaphores, and barriers of a program are respectively S and B.
- An assignment is an element of X × E yet we write x := ε instead of (x , ε). By extension F(x := ε) = F(ε).

- Given a graph

G : A
∂-
//

∂+

// V

a conditional branching at vertex v ∈ V is a mapping

β : {valuations} → {a ∈ A | ∂-a = v}

together with a subset F(β) ⊆ X such that if the valuations ν and ν′ match on F(β) then β(ν) = β(ν′).

- The synchronisation primitives P(s), V (s), and W (b) for s ∈ S and b ∈ B

19 / 49

Parallel Automata Meta Language The abstract machine

Abstract instructions

The sets of semaphores, and barriers of a program are respectively S and B.

- An assignment is an element of X × E yet we write x := ε instead of (x , ε). By extension F(x := ε) = F(ε).

- Given a graph

G : A
∂-
//

∂+

// V

a conditional branching at vertex v ∈ V is a mapping

β : {valuations} → {a ∈ A | ∂-a = v}

together with a subset F(β) ⊆ X such that if the valuations ν and ν′ match on F(β) then β(ν) = β(ν′).

- The synchronisation primitives P(s), V (s), and W (b) for s ∈ S and b ∈ B

19 / 49

Parallel Automata Meta Language The abstract machine

Abstract instructions

The sets of semaphores, and barriers of a program are respectively S and B.
- An assignment is an element of X × E yet we write x := ε instead of (x , ε). By extension F(x := ε) = F(ε).

- Given a graph

G : A
∂-
//

∂+

// V

a conditional branching at vertex v ∈ V is a mapping

β : {valuations} → {a ∈ A | ∂-a = v}

together with a subset F(β) ⊆ X such that if the valuations ν and ν′ match on F(β) then β(ν) = β(ν′).

- The synchronisation primitives P(s), V (s), and W (b) for s ∈ S and b ∈ B

19 / 49

Parallel Automata Meta Language The abstract machine

Abstract instructions

The sets of semaphores, and barriers of a program are respectively S and B.
- An assignment is an element of X × E yet we write x := ε instead of (x , ε). By extension F(x := ε) = F(ε).

- Given a graph

G : A
∂-
//

∂+

// V

a conditional branching at vertex v ∈ V is a mapping

β : {valuations} → {a ∈ A | ∂-a = v}

together with a subset F(β) ⊆ X such that if the valuations ν and ν′ match on F(β) then β(ν) = β(ν′).

- The synchronisation primitives P(s), V (s), and W (b) for s ∈ S and b ∈ B

19 / 49

Parallel Automata Meta Language The abstract machine

Abstract instructions

The sets of semaphores, and barriers of a program are respectively S and B.
- An assignment is an element of X × E yet we write x := ε instead of (x , ε). By extension F(x := ε) = F(ε).

- Given a graph

G : A
∂-
//

∂+

// V

a conditional branching at vertex v ∈ V is a mapping

β : {valuations} → {a ∈ A | ∂-a = v}

together with a subset F(β) ⊆ X such that if the valuations ν and ν′ match on F(β) then β(ν) = β(ν′).

- The synchronisation primitives P(s), V (s), and W (b) for s ∈ S and b ∈ B

19 / 49

Parallel Automata Meta Language The abstract machine

Abstract processes as control flow graphs

G : A
∂-
//

∂+

// V and λ : V → {instructions}

- An entry point v0 ∈ V such that λ(v0) = Skip.

- If λ(v) ̸= Skip, then v has at least one outgoing arrow.

- If λ(v) is not a branching, then v has at most one outgoing arrow.

The arrows are interpreted as intermediate positions of the instruction pointer so a point on a control flow graph is either
a vertex or an arrow.

20 / 49

Parallel Automata Meta Language The abstract machine

Abstract processes as control flow graphs

G : A
∂-
//

∂+

// V and λ : V → {instructions}

- An entry point v0 ∈ V such that λ(v0) = Skip.

- If λ(v) ̸= Skip, then v has at least one outgoing arrow.

- If λ(v) is not a branching, then v has at most one outgoing arrow.

The arrows are interpreted as intermediate positions of the instruction pointer so a point on a control flow graph is either
a vertex or an arrow.

20 / 49

Parallel Automata Meta Language The abstract machine

Abstract processes as control flow graphs

G : A
∂-
//

∂+

// V and λ : V → {instructions}

- An entry point v0 ∈ V such that λ(v0) = Skip.

- If λ(v) ̸= Skip, then v has at least one outgoing arrow.

- If λ(v) is not a branching, then v has at most one outgoing arrow.

The arrows are interpreted as intermediate positions of the instruction pointer so a point on a control flow graph is either
a vertex or an arrow.

20 / 49

Parallel Automata Meta Language The abstract machine

Abstract processes as control flow graphs

G : A
∂-
//

∂+

// V and λ : V → {instructions}

- An entry point v0 ∈ V such that λ(v0) = Skip.

- If λ(v) ̸= Skip, then v has at least one outgoing arrow.

- If λ(v) is not a branching, then v has at most one outgoing arrow.

The arrows are interpreted as intermediate positions of the instruction pointer so a point on a control flow graph is either
a vertex or an arrow.

20 / 49

Parallel Automata Meta Language The abstract machine

Abstract processes as control flow graphs

G : A
∂-
//

∂+

// V and λ : V → {instructions}

- An entry point v0 ∈ V such that λ(v0) = Skip.

- If λ(v) ̸= Skip, then v has at least one outgoing arrow.

- If λ(v) is not a branching, then v has at most one outgoing arrow.

The arrows are interpreted as intermediate positions of the instruction pointer so a point on a control flow graph is either
a vertex or an arrow.

20 / 49

Parallel Automata Meta Language The abstract machine

Abstract processes as control flow graphs

G : A
∂-
//

∂+

// V and λ : V → {instructions}

- An entry point v0 ∈ V such that λ(v0) = Skip.

- If λ(v) ̸= Skip, then v has at least one outgoing arrow.

- If λ(v) is not a branching, then v has at most one outgoing arrow.

The arrows are interpreted as intermediate positions of the instruction pointer so a point on a control flow graph is either
a vertex or an arrow.

20 / 49

Parallel Automata Meta Language The abstract machine

Abstract program

- The initial valuation ν : X → R which provides the values of the variables at the beginning of each execution of the
program.

- The arity map α : S ⊔ B → N ∪ {∞}.
- The tuple (G1, . . . ,Gn) of processes which are launched simultaneously at the beginning of each execution of the

program.

21 / 49

Parallel Automata Meta Language The abstract machine

Abstract program

- The initial valuation ν : X → R which provides the values of the variables at the beginning of each execution of the
program.

- The arity map α : S ⊔ B → N ∪ {∞}.
- The tuple (G1, . . . ,Gn) of processes which are launched simultaneously at the beginning of each execution of the

program.

21 / 49

Parallel Automata Meta Language The abstract machine

Abstract program

- The initial valuation ν : X → R which provides the values of the variables at the beginning of each execution of the
program.

- The arity map α : S ⊔ B → N ∪ {∞}.

- The tuple (G1, . . . ,Gn) of processes which are launched simultaneously at the beginning of each execution of the
program.

21 / 49

Parallel Automata Meta Language The abstract machine

Abstract program

- The initial valuation ν : X → R which provides the values of the variables at the beginning of each execution of the
program.

- The arity map α : S ⊔ B → N ∪ {∞}.
- The tuple (G1, . . . ,Gn) of processes which are launched simultaneously at the beginning of each execution of the

program.

21 / 49

Parallel Automata Meta Language The abstract machine

Points and multi-instructions
Higher Dimensional Transition Systems, G. L. Cattani and V. Sassone, 1996

- A point of (G1, . . . ,Gn) is an n-tuple p whose i th component, namely pi , is a point of Gi .

- A multi-instruction is a partial map µ : {1, . . . , n} → {instructions}.

22 / 49

Parallel Automata Meta Language The abstract machine

Points and multi-instructions
Higher Dimensional Transition Systems, G. L. Cattani and V. Sassone, 1996

- A point of (G1, . . . ,Gn) is an n-tuple p whose i th component, namely pi , is a point of Gi .

- A multi-instruction is a partial map µ : {1, . . . , n} → {instructions}.

22 / 49

Parallel Automata Meta Language The abstract machine

Points and multi-instructions
Higher Dimensional Transition Systems, G. L. Cattani and V. Sassone, 1996

- A point of (G1, . . . ,Gn) is an n-tuple p whose i th component, namely pi , is a point of Gi .

- A multi-instruction is a partial map µ : {1, . . . , n} → {instructions}.

22 / 49

Parallel Automata Meta Language The abstract machine

The internal states of the abstract machine

A state is a mapping σ defined over the disjoint union X ⊔ S such that:

- for all x ∈ X , σ(x) ∈ R⊥, and

- for all s ∈ S, σ(s) is a multiset over {1, . . . , n}.

23 / 49

Parallel Automata Meta Language The abstract machine

The internal states of the abstract machine

A state is a mapping σ defined over the disjoint union X ⊔ S such that:

- for all x ∈ X , σ(x) ∈ R⊥, and

- for all s ∈ S, σ(s) is a multiset over {1, . . . , n}.

23 / 49

Parallel Automata Meta Language The abstract machine

The internal states of the abstract machine

A state is a mapping σ defined over the disjoint union X ⊔ S such that:

- for all x ∈ X , σ(x) ∈ R⊥, and

- for all s ∈ S, σ(s) is a multiset over {1, . . . , n}.

23 / 49

Parallel Automata Meta Language The abstract machine

The internal states of the abstract machine

A state is a mapping σ defined over the disjoint union X ⊔ S such that:

- for all x ∈ X , σ(x) ∈ R⊥, and

- for all s ∈ S, σ(s) is a multiset over {1, . . . , n}.

23 / 49

Parallel Automata Meta Language The abstract machine

Admissible multi-instructions

The possible conflicts are:

- write-write : x := ε vs x := ε′

- read-write : x := ε vs an instruction in which x is free

A multi-instruction µ is said to be admissible at state σ when:

- for i , j ∈ dom(µ) with i ̸= j , µ(i) and µ(j) do not conflict,

- for all s ∈ S, 0 ⩽ ϕ(s) ⩽ α(s) where

ϕ(s) = |σ(s)|
+ card{i ∈ dom(µ) | µ(i) = P(s)}
− card{i ∈ dom(µ) | µ(i) = V(s)}

- for all b ∈ B, card{i ∈ dom(µ) | µ(i) = W(b)} ̸∈ {1, . . . , α(b)}

24 / 49

Parallel Automata Meta Language The abstract machine

Admissible multi-instructions

The possible conflicts are:

- write-write : x := ε vs x := ε′

- read-write : x := ε vs an instruction in which x is free

A multi-instruction µ is said to be admissible at state σ when:

- for i , j ∈ dom(µ) with i ̸= j , µ(i) and µ(j) do not conflict,

- for all s ∈ S, 0 ⩽ ϕ(s) ⩽ α(s) where

ϕ(s) = |σ(s)|
+ card{i ∈ dom(µ) | µ(i) = P(s)}
− card{i ∈ dom(µ) | µ(i) = V(s)}

- for all b ∈ B, card{i ∈ dom(µ) | µ(i) = W(b)} ̸∈ {1, . . . , α(b)}

24 / 49

Parallel Automata Meta Language The abstract machine

Admissible multi-instructions

The possible conflicts are:

- write-write : x := ε vs x := ε′

- read-write : x := ε vs an instruction in which x is free

A multi-instruction µ is said to be admissible at state σ when:

- for i , j ∈ dom(µ) with i ̸= j , µ(i) and µ(j) do not conflict,

- for all s ∈ S, 0 ⩽ ϕ(s) ⩽ α(s) where

ϕ(s) = |σ(s)|
+ card{i ∈ dom(µ) | µ(i) = P(s)}
− card{i ∈ dom(µ) | µ(i) = V(s)}

- for all b ∈ B, card{i ∈ dom(µ) | µ(i) = W(b)} ̸∈ {1, . . . , α(b)}

24 / 49

Parallel Automata Meta Language The abstract machine

Admissible multi-instructions

The possible conflicts are:

- write-write : x := ε vs x := ε′

- read-write : x := ε vs an instruction in which x is free

A multi-instruction µ is said to be admissible at state σ when:

- for i , j ∈ dom(µ) with i ̸= j , µ(i) and µ(j) do not conflict,

- for all s ∈ S, 0 ⩽ ϕ(s) ⩽ α(s) where

ϕ(s) = |σ(s)|
+ card{i ∈ dom(µ) | µ(i) = P(s)}
− card{i ∈ dom(µ) | µ(i) = V(s)}

- for all b ∈ B, card{i ∈ dom(µ) | µ(i) = W(b)} ̸∈ {1, . . . , α(b)}

24 / 49

Parallel Automata Meta Language The abstract machine

Admissible multi-instructions

The possible conflicts are:

- write-write : x := ε vs x := ε′

- read-write : x := ε vs an instruction in which x is free

A multi-instruction µ is said to be admissible at state σ when:

- for i , j ∈ dom(µ) with i ̸= j , µ(i) and µ(j) do not conflict,

- for all s ∈ S, 0 ⩽ ϕ(s) ⩽ α(s) where

ϕ(s) = |σ(s)|
+ card{i ∈ dom(µ) | µ(i) = P(s)}
− card{i ∈ dom(µ) | µ(i) = V(s)}

- for all b ∈ B, card{i ∈ dom(µ) | µ(i) = W(b)} ̸∈ {1, . . . , α(b)}

24 / 49

Parallel Automata Meta Language The abstract machine

Admissible multi-instructions

The possible conflicts are:

- write-write : x := ε vs x := ε′

- read-write : x := ε vs an instruction in which x is free

A multi-instruction µ is said to be admissible at state σ when:

- for i , j ∈ dom(µ) with i ̸= j , µ(i) and µ(j) do not conflict,

- for all s ∈ S, 0 ⩽ ϕ(s) ⩽ α(s) where

ϕ(s) = |σ(s)|
+ card{i ∈ dom(µ) | µ(i) = P(s)}
− card{i ∈ dom(µ) | µ(i) = V(s)}

- for all b ∈ B, card{i ∈ dom(µ) | µ(i) = W(b)} ̸∈ {1, . . . , α(b)}

24 / 49

Parallel Automata Meta Language The abstract machine

Admissible multi-instructions

The possible conflicts are:

- write-write : x := ε vs x := ε′

- read-write : x := ε vs an instruction in which x is free

A multi-instruction µ is said to be admissible at state σ when:

- for i , j ∈ dom(µ) with i ̸= j , µ(i) and µ(j) do not conflict,

- for all s ∈ S, 0 ⩽ ϕ(s) ⩽ α(s) where

ϕ(s) = |σ(s)|
+ card{i ∈ dom(µ) | µ(i) = P(s)}
− card{i ∈ dom(µ) | µ(i) = V(s)}

- for all b ∈ B, card{i ∈ dom(µ) | µ(i) = W(b)} ̸∈ {1, . . . , α(b)}

24 / 49

Parallel Automata Meta Language The abstract machine

Admissible multi-instructions

The possible conflicts are:

- write-write : x := ε vs x := ε′

- read-write : x := ε vs an instruction in which x is free

A multi-instruction µ is said to be admissible at state σ when:

- for i , j ∈ dom(µ) with i ̸= j , µ(i) and µ(j) do not conflict,

- for all s ∈ S, 0 ⩽ ϕ(s) ⩽ α(s) where

ϕ(s) = |σ(s)|
+ card{i ∈ dom(µ) | µ(i) = P(s)}
− card{i ∈ dom(µ) | µ(i) = V(s)}

- for all b ∈ B, card{i ∈ dom(µ) | µ(i) = W(b)} ̸∈ {1, . . . , α(b)}

24 / 49

Parallel Automata Meta Language The abstract machine

Action of a multi-instruction on a state
Assuming that µ is admissible at σ

The state σ · µ is defined as follows.

- For every x ∈ X , if there exists i ∈ {1, . . . , n} s.t. µ(i) is x := ε, then one has

(σ · µ)(x) = ε(σ|X)

Otherwise one has (σ · µ)(x) = σ(x).

- For all s ∈ S the multiset (σ · µ)(s), seen as a mapping from {1, . . . , n} to N, is given by

i 7→

σ(s)(i) + 1 if i ∈ dom(µ) and µ(i) = P(s)

σ(s)(i)− 1 if i ∈ dom(µ) and µ(i) = V (s)

σ(s)(i) in all other cases

A sequence µ0, . . . , µq−1 of multi-intructions is said to be admissible at state σ when for all k ∈ {0, . . . , q − 1} the
multi-instruction µk is admissible at state σ · µ0 · · ·µk−1.

25 / 49

Parallel Automata Meta Language The abstract machine

Action of a multi-instruction on a state
Assuming that µ is admissible at σ

The state σ · µ is defined as follows.

- For every x ∈ X , if there exists i ∈ {1, . . . , n} s.t. µ(i) is x := ε, then one has

(σ · µ)(x) = ε(σ|X)

Otherwise one has (σ · µ)(x) = σ(x).

- For all s ∈ S the multiset (σ · µ)(s), seen as a mapping from {1, . . . , n} to N, is given by

i 7→

σ(s)(i) + 1 if i ∈ dom(µ) and µ(i) = P(s)

σ(s)(i)− 1 if i ∈ dom(µ) and µ(i) = V (s)

σ(s)(i) in all other cases

A sequence µ0, . . . , µq−1 of multi-intructions is said to be admissible at state σ when for all k ∈ {0, . . . , q − 1} the
multi-instruction µk is admissible at state σ · µ0 · · ·µk−1.

25 / 49

Parallel Automata Meta Language The abstract machine

Action of a multi-instruction on a state
Assuming that µ is admissible at σ

The state σ · µ is defined as follows.

- For every x ∈ X , if there exists i ∈ {1, . . . , n} s.t. µ(i) is x := ε, then one has

(σ · µ)(x) = ε(σ|X)

Otherwise one has (σ · µ)(x) = σ(x).

- For all s ∈ S the multiset (σ · µ)(s), seen as a mapping from {1, . . . , n} to N, is given by

i 7→

σ(s)(i) + 1 if i ∈ dom(µ) and µ(i) = P(s)

σ(s)(i)− 1 if i ∈ dom(µ) and µ(i) = V (s)

σ(s)(i) in all other cases

A sequence µ0, . . . , µq−1 of multi-intructions is said to be admissible at state σ when for all k ∈ {0, . . . , q − 1} the
multi-instruction µk is admissible at state σ · µ0 · · ·µk−1.

25 / 49

Parallel Automata Meta Language The abstract machine

Action of a multi-instruction on a state
Assuming that µ is admissible at σ

The state σ · µ is defined as follows.

- For every x ∈ X , if there exists i ∈ {1, . . . , n} s.t. µ(i) is x := ε, then one has

(σ · µ)(x) = ε(σ|X)

Otherwise one has (σ · µ)(x) = σ(x).

- For all s ∈ S the multiset (σ · µ)(s), seen as a mapping from {1, . . . , n} to N, is given by

i 7→

σ(s)(i) + 1 if i ∈ dom(µ) and µ(i) = P(s)

σ(s)(i)− 1 if i ∈ dom(µ) and µ(i) = V (s)

σ(s)(i) in all other cases

A sequence µ0, . . . , µq−1 of multi-intructions is said to be admissible at state σ when for all k ∈ {0, . . . , q − 1} the
multi-instruction µk is admissible at state σ · µ0 · · ·µk−1.

25 / 49

Parallel Automata Meta Language The abstract machine

Action of a multi-instruction on a state
Assuming that µ is admissible at σ

The state σ · µ is defined as follows.

- For every x ∈ X , if there exists i ∈ {1, . . . , n} s.t. µ(i) is x := ε, then one has

(σ · µ)(x) = ε(σ|X)

Otherwise one has (σ · µ)(x) = σ(x).

- For all s ∈ S the multiset (σ · µ)(s), seen as a mapping from {1, . . . , n} to N, is given by

i 7→

σ(s)(i) + 1 if i ∈ dom(µ) and µ(i) = P(s)

σ(s)(i)− 1 if i ∈ dom(µ) and µ(i) = V (s)

σ(s)(i) in all other cases

A sequence µ0, . . . , µq−1 of multi-intructions is said to be admissible at state σ when for all k ∈ {0, . . . , q − 1} the
multi-instruction µk is admissible at state σ · µ0 · · ·µk−1.

25 / 49

Parallel Automata Meta Language The abstract machine

Action of a multi-instruction on a state
Assuming that µ is admissible at σ

The state σ · µ is defined as follows.

- For every x ∈ X , if there exists i ∈ {1, . . . , n} s.t. µ(i) is x := ε, then one has

(σ · µ)(x) = ε(σ|X)

Otherwise one has (σ · µ)(x) = σ(x).

- For all s ∈ S the multiset (σ · µ)(s), seen as a mapping from {1, . . . , n} to N, is given by

i 7→

σ(s)(i) + 1 if i ∈ dom(µ) and µ(i) = P(s)

σ(s)(i)− 1 if i ∈ dom(µ) and µ(i) = V (s)

σ(s)(i) in all other cases

A sequence µ0, . . . , µq−1 of multi-intructions is said to be admissible at state σ when for all k ∈ {0, . . . , q − 1} the
multi-instruction µk is admissible at state σ · µ0 · · ·µk−1.

25 / 49

Parallel Automata Meta Language The abstract machine

Directed paths and sequences of multi-instructions

A directed path γ on (G1, . . . ,Gn) is a sequence (γ(k))k∈{0,...,q} of points such that for all k ∈ {0, . . . , q − 1} we have

- γi (k) = γi (k + 1) or γi (k) = ∂-γi (k + 1) for all i ∈ {1, . . . , n}, or

- γi (k) = γi (k + 1) or ∂+γi (k) = γi (k + 1) for all i ∈ {1, . . . , n}.

Then γ is associated with a sequence of multi-instructions (µk)k∈{0,...,q−1} defined for k ∈ {0, . . . , q − 1} by

- dom(µk) =
{
i ∈ {1, . . . , n} | γi (k + 1) = ∂+γi (k) or λi (γi (k + 1)) = W ()

}
- µk (i) = λi (γi (k + 1)) for all k ∈ {0, . . . , q − 1} and all i ∈ dom(µk)

26 / 49

Parallel Automata Meta Language The abstract machine

Directed paths and sequences of multi-instructions

A directed path γ on (G1, . . . ,Gn) is a sequence (γ(k))k∈{0,...,q} of points such that for all k ∈ {0, . . . , q − 1} we have

- γi (k) = γi (k + 1) or γi (k) = ∂-γi (k + 1) for all i ∈ {1, . . . , n}, or

- γi (k) = γi (k + 1) or ∂+γi (k) = γi (k + 1) for all i ∈ {1, . . . , n}.

Then γ is associated with a sequence of multi-instructions (µk)k∈{0,...,q−1} defined for k ∈ {0, . . . , q − 1} by

- dom(µk) =
{
i ∈ {1, . . . , n} | γi (k + 1) = ∂+γi (k) or λi (γi (k + 1)) = W ()

}
- µk (i) = λi (γi (k + 1)) for all k ∈ {0, . . . , q − 1} and all i ∈ dom(µk)

26 / 49

Parallel Automata Meta Language The abstract machine

Directed paths and sequences of multi-instructions

A directed path γ on (G1, . . . ,Gn) is a sequence (γ(k))k∈{0,...,q} of points such that for all k ∈ {0, . . . , q − 1} we have

- γi (k) = γi (k + 1) or γi (k) = ∂-γi (k + 1) for all i ∈ {1, . . . , n}, or

- γi (k) = γi (k + 1) or ∂+γi (k) = γi (k + 1) for all i ∈ {1, . . . , n}.

Then γ is associated with a sequence of multi-instructions (µk)k∈{0,...,q−1} defined for k ∈ {0, . . . , q − 1} by

- dom(µk) =
{
i ∈ {1, . . . , n} | γi (k + 1) = ∂+γi (k) or λi (γi (k + 1)) = W ()

}
- µk (i) = λi (γi (k + 1)) for all k ∈ {0, . . . , q − 1} and all i ∈ dom(µk)

26 / 49

Parallel Automata Meta Language The abstract machine

Directed paths and sequences of multi-instructions

A directed path γ on (G1, . . . ,Gn) is a sequence (γ(k))k∈{0,...,q} of points such that for all k ∈ {0, . . . , q − 1} we have

- γi (k) = γi (k + 1) or γi (k) = ∂-γi (k + 1) for all i ∈ {1, . . . , n}, or

- γi (k) = γi (k + 1) or ∂+γi (k) = γi (k + 1) for all i ∈ {1, . . . , n}.

Then γ is associated with a sequence of multi-instructions (µk)k∈{0,...,q−1} defined for k ∈ {0, . . . , q − 1} by

- dom(µk) =
{
i ∈ {1, . . . , n} | γi (k + 1) = ∂+γi (k) or λi (γi (k + 1)) = W ()

}
- µk (i) = λi (γi (k + 1)) for all k ∈ {0, . . . , q − 1} and all i ∈ dom(µk)

26 / 49

Parallel Automata Meta Language The abstract machine

Directed paths and sequences of multi-instructions

A directed path γ on (G1, . . . ,Gn) is a sequence (γ(k))k∈{0,...,q} of points such that for all k ∈ {0, . . . , q − 1} we have

- γi (k) = γi (k + 1) or γi (k) = ∂-γi (k + 1) for all i ∈ {1, . . . , n}, or

- γi (k) = γi (k + 1) or ∂+γi (k) = γi (k + 1) for all i ∈ {1, . . . , n}.

Then γ is associated with a sequence of multi-instructions (µk)k∈{0,...,q−1} defined for k ∈ {0, . . . , q − 1} by

- dom(µk) =
{
i ∈ {1, . . . , n} | γi (k + 1) = ∂+γi (k) or λi (γi (k + 1)) = W ()

}
- µk (i) = λi (γi (k + 1)) for all k ∈ {0, . . . , q − 1} and all i ∈ dom(µk)

26 / 49

Parallel Automata Meta Language The abstract machine

Directed paths and sequences of multi-instructions

A directed path γ on (G1, . . . ,Gn) is a sequence (γ(k))k∈{0,...,q} of points such that for all k ∈ {0, . . . , q − 1} we have

- γi (k) = γi (k + 1) or γi (k) = ∂-γi (k + 1) for all i ∈ {1, . . . , n}, or

- γi (k) = γi (k + 1) or ∂+γi (k) = γi (k + 1) for all i ∈ {1, . . . , n}.

Then γ is associated with a sequence of multi-instructions (µk)k∈{0,...,q−1} defined for k ∈ {0, . . . , q − 1} by

- dom(µk) =
{
i ∈ {1, . . . , n} | γi (k + 1) = ∂+γi (k) or λi (γi (k + 1)) = W ()

}

- µk (i) = λi (γi (k + 1)) for all k ∈ {0, . . . , q − 1} and all i ∈ dom(µk)

26 / 49

Parallel Automata Meta Language The abstract machine

Directed paths and sequences of multi-instructions

A directed path γ on (G1, . . . ,Gn) is a sequence (γ(k))k∈{0,...,q} of points such that for all k ∈ {0, . . . , q − 1} we have

- γi (k) = γi (k + 1) or γi (k) = ∂-γi (k + 1) for all i ∈ {1, . . . , n}, or

- γi (k) = γi (k + 1) or ∂+γi (k) = γi (k + 1) for all i ∈ {1, . . . , n}.

Then γ is associated with a sequence of multi-instructions (µk)k∈{0,...,q−1} defined for k ∈ {0, . . . , q − 1} by

- dom(µk) =
{
i ∈ {1, . . . , n} | γi (k + 1) = ∂+γi (k) or λi (γi (k + 1)) = W ()

}
- µk (i) = λi (γi (k + 1)) for all k ∈ {0, . . . , q − 1} and all i ∈ dom(µk)

26 / 49

Parallel Automata Meta Language The abstract machine

Discrete paths are “continuous”

⊗

27 / 49

Parallel Automata Meta Language The abstract machine

Discrete paths are “continuous”

⊗

27 / 49

Parallel Automata Meta Language The abstract machine

Discrete paths are “continuous”

⊗

27 / 49

Parallel Automata Meta Language The abstract machine

Discrete paths are “continuous”

⊗

27 / 49

Parallel Automata Meta Language The abstract machine

Discrete paths are “continuous”

⊗

27 / 49

Parallel Automata Meta Language The abstract machine

Discrete paths are “continuous”

⊗

27 / 49

Parallel Automata Meta Language The abstract machine

Discrete paths are “continuous”

⊗

27 / 49

Parallel Automata Meta Language The abstract machine

Discrete paths are “continuous”

⊗

27 / 49

Parallel Automata Meta Language The abstract machine

Discrete paths are “continuous”

⊗

27 / 49

Parallel Automata Meta Language The abstract machine

Discrete paths are “continuous”

⊗

27 / 49

Parallel Automata Meta Language The abstract machine

Discrete paths are “continuous”

⊗

27 / 49

Parallel Automata Meta Language The abstract machine

Discrete paths are “continuous”

⊗

27 / 49

Parallel Automata Meta Language The abstract machine

Discrete paths are “continuous”

⊗

27 / 49

Parallel Automata Meta Language The abstract machine

Admissible paths and execution traces

Given σ a state of the program, a directed path is said to be admissible at σ when so is its associated sequence of
multi-instructions at state σ. In this case we define the action of γ on the right of σ as follows.

σ · γ = σ · µ0 · · ·µq−1

An admissible path is an execution trace when all the conditional branchings met along the way are respected: for all
k ∈ {0, . . . , q − 2} and all i ∈ {1, . . . , n} such that µk (i), which is by definition λi (γi (k + 1)), is a branching, we have(

µk (i)
)
(σ · µ0 · · ·µk−1) = γi (k + 2)

28 / 49

Parallel Automata Meta Language The abstract machine

Admissible paths and execution traces

Given σ a state of the program, a directed path is said to be admissible at σ when so is its associated sequence of
multi-instructions at state σ. In this case we define the action of γ on the right of σ as follows.

σ · γ = σ · µ0 · · ·µq−1

An admissible path is an execution trace when all the conditional branchings met along the way are respected: for all
k ∈ {0, . . . , q − 2} and all i ∈ {1, . . . , n} such that µk (i), which is by definition λi (γi (k + 1)), is a branching, we have(

µk (i)
)
(σ · µ0 · · ·µk−1) = γi (k + 2)

28 / 49

Parallel Automata Meta Language The abstract machine

Admissible paths and execution traces

Given σ a state of the program, a directed path is said to be admissible at σ when so is its associated sequence of
multi-instructions at state σ. In this case we define the action of γ on the right of σ as follows.

σ · γ = σ · µ0 · · ·µq−1

An admissible path is an execution trace when all the conditional branchings met along the way are respected: for all
k ∈ {0, . . . , q − 2} and all i ∈ {1, . . . , n} such that µk (i), which is by definition λi (γi (k + 1)), is a branching, we have(

µk (i)
)
(σ · µ0 · · ·µk−1) = γi (k + 2)

28 / 49

Parallel Automata Meta Language The abstract machine

Concurrent access

var x = 0

proc p = x:=1

proc q = x:=2

init p q

29 / 49

Parallel Automata Meta Language The abstract machine

Admissible execution trace

the value of x is 0
x
:
=
1

x:=2

⊗

30 / 49

Parallel Automata Meta Language The abstract machine

Admissible execution trace

the value of x is 0
x
:
=
1

x:=2

⊗

30 / 49

Parallel Automata Meta Language The abstract machine

Admissible execution trace

the value of x is 0
x
:
=
1

x:=2

⊗

30 / 49

Parallel Automata Meta Language The abstract machine

Admissible execution trace

the value of x is 1
x
:
=
1

x:=2

⊗

30 / 49

Parallel Automata Meta Language The abstract machine

Admissible execution trace

the value of x is 2
x
:
=
1

x:=2

⊗

30 / 49

Parallel Automata Meta Language The abstract machine

Admissible execution trace

the value of x is 2
x
:
=
1

x:=2

⊗

30 / 49

Parallel Automata Meta Language The abstract machine

Admissible execution trace

the value of x is 2
x
:
=
1

x:=2

⊗

30 / 49

Parallel Automata Meta Language The abstract machine

Admissible execution trace

the value of x is 2
x
:
=
1

x:=2

⊗

30 / 49

Parallel Automata Meta Language The abstract machine

Not admissible execution trace

the value of x is 0
x
:
=
1

x:=2

⊗

31 / 49

Parallel Automata Meta Language The abstract machine

Not admissible execution trace

the value of x is 0
x
:
=
1

x:=2

⊗

31 / 49

Parallel Automata Meta Language The abstract machine

Not admissible execution trace

the value of x is 0
x
:
=
1

x:=2

⊗

31 / 49

Parallel Automata Meta Language The abstract machine

Not admissible execution trace

the value of x is ?
x
:
=
1

x:=2

⊗

31 / 49

Parallel Automata Meta Language The abstract machine

Lack of resources

sem 1 a

proc p = P(a);V(a)

init 2p

32 / 49

Parallel Automata Meta Language The abstract machine

Admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

33 / 49

Parallel Automata Meta Language The abstract machine

Admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

33 / 49

Parallel Automata Meta Language The abstract machine

Admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

33 / 49

Parallel Automata Meta Language The abstract machine

Admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

a

33 / 49

Parallel Automata Meta Language The abstract machine

Admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

a

33 / 49

Parallel Automata Meta Language The abstract machine

Admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

33 / 49

Parallel Automata Meta Language The abstract machine

Admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

33 / 49

Parallel Automata Meta Language The abstract machine

Admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

a

33 / 49

Parallel Automata Meta Language The abstract machine

Admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

a

33 / 49

Parallel Automata Meta Language The abstract machine

Admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

33 / 49

Parallel Automata Meta Language The abstract machine

Admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

33 / 49

Parallel Automata Meta Language The abstract machine

Admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

33 / 49

Parallel Automata Meta Language The abstract machine

Not admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

34 / 49

Parallel Automata Meta Language The abstract machine

Not admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

34 / 49

Parallel Automata Meta Language The abstract machine

Not admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

34 / 49

Parallel Automata Meta Language The abstract machine

Not admissible concurrent execution trace
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

a

a

34 / 49

Parallel Automata Meta Language The abstract machine

Synchronisation

sync 1 b

proc p = W(b)

init 2p

35 / 49

Parallel Automata Meta Language The abstract machine

Concurrent execution trace
sync 1 b

W
(
b
)

W(b)

⊗

36 / 49

Parallel Automata Meta Language The abstract machine

Concurrent execution trace
sync 1 b

W
(
b
)

W(b)

⊗

36 / 49

Parallel Automata Meta Language The abstract machine

Concurrent execution trace
sync 1 b

W
(
b
)

W(b)

⊗

36 / 49

Parallel Automata Meta Language The abstract machine

Concurrent execution trace
sync 1 b

W
(
b
)

W(b)

⊗

36 / 49

Parallel Automata Meta Language The abstract machine

Concurrent execution trace
sync 1 b

W
(
b
)

W(b)

⊗

36 / 49

Parallel Automata Meta Language The abstract machine

Concurrent execution trace
sync 1 b

W
(
b
)

W(b)

⊗

36 / 49

Parallel Automata Meta Language The abstract machine

Concurrent execution trace
sync 1 b

W
(
b
)

W(b)

⊗

36 / 49

Parallel Automata Meta Language The abstract machine

Concurrent execution trace
sync 1 b

W
(
b
)

W(b)

⊗

36 / 49

Parallel Automata Meta Language The abstract machine

Not admissible concurrent execution trace
sync 1 b

W
(
b
)

W(b)

⊗

37 / 49

Parallel Automata Meta Language The abstract machine

Not admissible concurrent execution trace
sync 1 b

W
(
b
)

W(b)

⊗

37 / 49

Parallel Automata Meta Language The abstract machine

Not admissible concurrent execution trace
sync 1 b

W
(
b
)

W(b)

⊗

37 / 49

Parallel Automata Meta Language The abstract machine

Not admissible concurrent execution trace
sync 1 b

W
(
b
)

W(b)

⊗

37 / 49

Parallel Automata Meta Language The abstract machine

Next goal

Encode admissibility into a model.

38 / 49

CONSERVATIVE PROGRAMS

Potential Functions

Conservative programs Potential functions

The potential functions of processes and programs

A program Π = (G1, . . . ,Gn) is conservative when for all directed paths starting at the origin, the amount of semaphores
held by the program at the end of the path only depends on its arrival point.

For all initial states σ, for all directed paths γ, γ′ starting at the origin,

∂+γ = ∂+γ′ ⇒ σ · γ|S = σ · γ′|S

In particular, the program Π comes with a potential function

FΠ : {semaphores} × {points} → N ∼= {points} → {multisets over S}

Proposition: The program Π is conservative if and only if so are its processes G1, . . . ,Gn and its potential function is
given by

FΠ(p1, . . . , pn) =
n∑

k=1

FGk
(pk)

39 / 49

Conservative programs Potential functions

The potential functions of processes and programs

A program Π = (G1, . . . ,Gn) is conservative when for all directed paths starting at the origin, the amount of semaphores
held by the program at the end of the path only depends on its arrival point.

For all initial states σ, for all directed paths γ, γ′ starting at the origin,

∂+γ = ∂+γ′ ⇒ σ · γ|S = σ · γ′|S

In particular, the program Π comes with a potential function

FΠ : {semaphores} × {points} → N ∼= {points} → {multisets over S}

Proposition: The program Π is conservative if and only if so are its processes G1, . . . ,Gn and its potential function is
given by

FΠ(p1, . . . , pn) =
n∑

k=1

FGk
(pk)

39 / 49

Conservative programs Potential functions

The potential functions of processes and programs

A program Π = (G1, . . . ,Gn) is conservative when for all directed paths starting at the origin, the amount of semaphores
held by the program at the end of the path only depends on its arrival point.

For all initial states σ, for all directed paths γ, γ′ starting at the origin,

∂+γ = ∂+γ′ ⇒ σ · γ|S = σ · γ′|S

In particular, the program Π comes with a potential function

FΠ : {semaphores} × {points} → N ∼= {points} → {multisets over S}

Proposition: The program Π is conservative if and only if so are its processes G1, . . . ,Gn and its potential function is
given by

FΠ(p1, . . . , pn) =
n∑

k=1

FGk
(pk)

39 / 49

Conservative programs Potential functions

The potential functions of processes and programs

A program Π = (G1, . . . ,Gn) is conservative when for all directed paths starting at the origin, the amount of semaphores
held by the program at the end of the path only depends on its arrival point.

For all initial states σ, for all directed paths γ, γ′ starting at the origin,

∂+γ = ∂+γ′ ⇒ σ · γ|S = σ · γ′|S

In particular, the program Π comes with a potential function

FΠ : {semaphores} × {points} → N ∼= {points} → {multisets over S}

Proposition: The program Π is conservative if and only if

so are its processes G1, . . . ,Gn and its potential function is
given by

FΠ(p1, . . . , pn) =
n∑

k=1

FGk
(pk)

39 / 49

Conservative programs Potential functions

The potential functions of processes and programs

A program Π = (G1, . . . ,Gn) is conservative when for all directed paths starting at the origin, the amount of semaphores
held by the program at the end of the path only depends on its arrival point.

For all initial states σ, for all directed paths γ, γ′ starting at the origin,

∂+γ = ∂+γ′ ⇒ σ · γ|S = σ · γ′|S

In particular, the program Π comes with a potential function

FΠ : {semaphores} × {points} → N ∼= {points} → {multisets over S}

Proposition: The program Π is conservative if and only if so are its processes G1, . . . ,Gn

and its potential function is
given by

FΠ(p1, . . . , pn) =
n∑

k=1

FGk
(pk)

39 / 49

Conservative programs Potential functions

The potential functions of processes and programs

A program Π = (G1, . . . ,Gn) is conservative when for all directed paths starting at the origin, the amount of semaphores
held by the program at the end of the path only depends on its arrival point.

For all initial states σ, for all directed paths γ, γ′ starting at the origin,

∂+γ = ∂+γ′ ⇒ σ · γ|S = σ · γ′|S

In particular, the program Π comes with a potential function

FΠ : {semaphores} × {points} → N ∼= {points} → {multisets over S}

Proposition: The program Π is conservative if and only if so are its processes G1, . . . ,Gn and its potential function is
given by

FΠ(p1, . . . , pn) =

n∑
k=1

FGk
(pk)

39 / 49

Conservative programs Potential functions

The potential functions of processes and programs

A program Π = (G1, . . . ,Gn) is conservative when for all directed paths starting at the origin, the amount of semaphores
held by the program at the end of the path only depends on its arrival point.

For all initial states σ, for all directed paths γ, γ′ starting at the origin,

∂+γ = ∂+γ′ ⇒ σ · γ|S = σ · γ′|S

In particular, the program Π comes with a potential function

FΠ : {semaphores} × {points} → N ∼= {points} → {multisets over S}

Proposition: The program Π is conservative if and only if so are its processes G1, . . . ,Gn and its potential function is
given by

FΠ(p1, . . . , pn) =
n∑

k=1

FGk
(pk)

39 / 49

Conservative programs Potential functions

Conservative process
example

x:=0

P(s)

V
(
s
)

x+
+

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Conservative process
example

P(s)

V
(
s
)

40 / 49

Conservative programs Potential functions

Not conservative process
example

x:=0

P(s)

x
+
+

x+
+

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

41 / 49

Conservative programs Potential functions

Not conservative process
example

P(s)

conflict

41 / 49

Conservative programs Potential functions

Conservativity is decidable

We inductively define a sequence of partial functions πn : {points} → NS .

- The first term π0 is only defined at the origin and π0(origin) is the empty

- Assuming that πn is defined, for all pairs of points (p, p′) such that:
· πn(p) is defined but not πn(p′), and
· ∂-p′ = p or p′ = ∂+p,

we define a strict extension of πn, by setting:

p′ 7→
{

πn(p) if ∂-p′ = p
πn(p) · λ(p′) if p′ = ∂+p

- If all these extensions are compatible, then πn+1 is their union.
Otherwise the induction stops and the graph is not conservative.

- If all the points have been “visited” we have a finite chain of strict extensions

π0 ⊆ · · · ⊆ πn ⊆ πn+1 = π

whose last element is denoted by π.
- If the following holds for all ordered pairs of points (p, p′) such that ∂-p′ = p or p′ = ∂+p, then G is conservative,

otherwise it is not.

π(p′) =

{
π(p) if ∂-p′ = p
π(p) · λ(p′) if p′ = ∂+p

42 / 49

Conservative programs Potential functions

Conservativity is decidable

We inductively define a sequence of partial functions πn : {points} → NS .

- The first term π0 is only defined at the origin and π0(origin) is the empty

- Assuming that πn is defined, for all pairs of points (p, p′) such that:
· πn(p) is defined but not πn(p′), and
· ∂-p′ = p or p′ = ∂+p,

we define a strict extension of πn, by setting:

p′ 7→
{

πn(p) if ∂-p′ = p
πn(p) · λ(p′) if p′ = ∂+p

- If all these extensions are compatible, then πn+1 is their union.
Otherwise the induction stops and the graph is not conservative.

- If all the points have been “visited” we have a finite chain of strict extensions

π0 ⊆ · · · ⊆ πn ⊆ πn+1 = π

whose last element is denoted by π.
- If the following holds for all ordered pairs of points (p, p′) such that ∂-p′ = p or p′ = ∂+p, then G is conservative,

otherwise it is not.

π(p′) =

{
π(p) if ∂-p′ = p
π(p) · λ(p′) if p′ = ∂+p

42 / 49

Conservative programs Potential functions

Conservativity is decidable

We inductively define a sequence of partial functions πn : {points} → NS .

- The first term π0 is only defined at the origin and π0(origin) is the empty

- Assuming that πn is defined, for all pairs of points (p, p′) such that:
· πn(p) is defined but not πn(p′), and
· ∂-p′ = p or p′ = ∂+p,

we define a strict extension of πn, by setting:

p′ 7→
{

πn(p) if ∂-p′ = p
πn(p) · λ(p′) if p′ = ∂+p

- If all these extensions are compatible, then πn+1 is their union.
Otherwise the induction stops and the graph is not conservative.

- If all the points have been “visited” we have a finite chain of strict extensions

π0 ⊆ · · · ⊆ πn ⊆ πn+1 = π

whose last element is denoted by π.
- If the following holds for all ordered pairs of points (p, p′) such that ∂-p′ = p or p′ = ∂+p, then G is conservative,

otherwise it is not.

π(p′) =

{
π(p) if ∂-p′ = p
π(p) · λ(p′) if p′ = ∂+p

42 / 49

Conservative programs Potential functions

Conservativity is decidable

We inductively define a sequence of partial functions πn : {points} → NS .

- The first term π0 is only defined at the origin and π0(origin) is the empty

- Assuming that πn is defined, for all pairs of points (p, p′) such that:
· πn(p) is defined but not πn(p′),

and
· ∂-p′ = p or p′ = ∂+p,

we define a strict extension of πn, by setting:

p′ 7→
{

πn(p) if ∂-p′ = p
πn(p) · λ(p′) if p′ = ∂+p

- If all these extensions are compatible, then πn+1 is their union.
Otherwise the induction stops and the graph is not conservative.

- If all the points have been “visited” we have a finite chain of strict extensions

π0 ⊆ · · · ⊆ πn ⊆ πn+1 = π

whose last element is denoted by π.
- If the following holds for all ordered pairs of points (p, p′) such that ∂-p′ = p or p′ = ∂+p, then G is conservative,

otherwise it is not.

π(p′) =

{
π(p) if ∂-p′ = p
π(p) · λ(p′) if p′ = ∂+p

42 / 49

Conservative programs Potential functions

Conservativity is decidable

We inductively define a sequence of partial functions πn : {points} → NS .

- The first term π0 is only defined at the origin and π0(origin) is the empty

- Assuming that πn is defined, for all pairs of points (p, p′) such that:
· πn(p) is defined but not πn(p′), and
· ∂-p′ = p or p′ = ∂+p,

we define a strict extension of πn, by setting:

p′ 7→
{

πn(p) if ∂-p′ = p
πn(p) · λ(p′) if p′ = ∂+p

- If all these extensions are compatible, then πn+1 is their union.
Otherwise the induction stops and the graph is not conservative.

- If all the points have been “visited” we have a finite chain of strict extensions

π0 ⊆ · · · ⊆ πn ⊆ πn+1 = π

whose last element is denoted by π.
- If the following holds for all ordered pairs of points (p, p′) such that ∂-p′ = p or p′ = ∂+p, then G is conservative,

otherwise it is not.

π(p′) =

{
π(p) if ∂-p′ = p
π(p) · λ(p′) if p′ = ∂+p

42 / 49

Conservative programs Potential functions

Conservativity is decidable

We inductively define a sequence of partial functions πn : {points} → NS .

- The first term π0 is only defined at the origin and π0(origin) is the empty

- Assuming that πn is defined, for all pairs of points (p, p′) such that:
· πn(p) is defined but not πn(p′), and
· ∂-p′ = p or p′ = ∂+p,

we define a strict extension of πn, by setting:

p′ 7→
{

πn(p) if ∂-p′ = p
πn(p) · λ(p′) if p′ = ∂+p

- If all these extensions are compatible, then πn+1 is their union.
Otherwise the induction stops and the graph is not conservative.

- If all the points have been “visited” we have a finite chain of strict extensions

π0 ⊆ · · · ⊆ πn ⊆ πn+1 = π

whose last element is denoted by π.
- If the following holds for all ordered pairs of points (p, p′) such that ∂-p′ = p or p′ = ∂+p, then G is conservative,

otherwise it is not.

π(p′) =

{
π(p) if ∂-p′ = p
π(p) · λ(p′) if p′ = ∂+p

42 / 49

Conservative programs Potential functions

Conservativity is decidable

We inductively define a sequence of partial functions πn : {points} → NS .

- The first term π0 is only defined at the origin and π0(origin) is the empty

- Assuming that πn is defined, for all pairs of points (p, p′) such that:
· πn(p) is defined but not πn(p′), and
· ∂-p′ = p or p′ = ∂+p,

we define a strict extension of πn, by setting:

p′ 7→
{

πn(p) if ∂-p′ = p
πn(p) · λ(p′) if p′ = ∂+p

- If all these extensions are compatible, then πn+1 is their union.
Otherwise the induction stops and the graph is not conservative.

- If all the points have been “visited” we have a finite chain of strict extensions

π0 ⊆ · · · ⊆ πn ⊆ πn+1 = π

whose last element is denoted by π.
- If the following holds for all ordered pairs of points (p, p′) such that ∂-p′ = p or p′ = ∂+p, then G is conservative,

otherwise it is not.

π(p′) =

{
π(p) if ∂-p′ = p
π(p) · λ(p′) if p′ = ∂+p

42 / 49

Conservative programs Potential functions

Conservativity is decidable

We inductively define a sequence of partial functions πn : {points} → NS .

- The first term π0 is only defined at the origin and π0(origin) is the empty

- Assuming that πn is defined, for all pairs of points (p, p′) such that:
· πn(p) is defined but not πn(p′), and
· ∂-p′ = p or p′ = ∂+p,

we define a strict extension of πn, by setting:

p′ 7→
{

πn(p) if ∂-p′ = p
πn(p) · λ(p′) if p′ = ∂+p

- If all these extensions are compatible, then πn+1 is their union.
Otherwise the induction stops and the graph is not conservative.

- If all the points have been “visited” we have a finite chain of strict extensions

π0 ⊆ · · · ⊆ πn ⊆ πn+1 = π

whose last element is denoted by π.

- If the following holds for all ordered pairs of points (p, p′) such that ∂-p′ = p or p′ = ∂+p, then G is conservative,
otherwise it is not.

π(p′) =

{
π(p) if ∂-p′ = p
π(p) · λ(p′) if p′ = ∂+p

42 / 49

Conservative programs Potential functions

Conservativity is decidable

We inductively define a sequence of partial functions πn : {points} → NS .

- The first term π0 is only defined at the origin and π0(origin) is the empty

- Assuming that πn is defined, for all pairs of points (p, p′) such that:
· πn(p) is defined but not πn(p′), and
· ∂-p′ = p or p′ = ∂+p,

we define a strict extension of πn, by setting:

p′ 7→
{

πn(p) if ∂-p′ = p
πn(p) · λ(p′) if p′ = ∂+p

- If all these extensions are compatible, then πn+1 is their union.
Otherwise the induction stops and the graph is not conservative.

- If all the points have been “visited” we have a finite chain of strict extensions

π0 ⊆ · · · ⊆ πn ⊆ πn+1 = π

whose last element is denoted by π.
- If the following holds for all ordered pairs of points (p, p′) such that ∂-p′ = p or p′ = ∂+p, then G is conservative,

otherwise it is not.

π(p′) =

{
π(p) if ∂-p′ = p
π(p) · λ(p′) if p′ = ∂+p

42 / 49

Discrete Models

Conservative programs Discrete models

The discrete model of a conservative program

A point p = (p1, . . . , pn) of the conservative program is said to be:

- conflicting when λi (pi) and λj (pj) conflict for some i ̸= j ,

- exhausting when there is some semaphore s ∈ S such that

F (p1, . . . , pn, s) > arity(s) ,

- desynchronizing when there is some synchronization barrier b ∈ B such that

0 < card
{
i ∈ {1, . . . , n} | λi(pi) = W(b)

}
⩽ arity(b) ,

The forbidden set gathers all the conflicting, exhausting, and desynchronizing points.

{fobidden} = {conflicting} ∪ {exhausting} ∪ {desynchronizing}

The discrete model is the complement of its forbidden set.

{points of the program} \ {forbidden points}

43 / 49

Conservative programs Discrete models

The discrete model of a conservative program

A point p = (p1, . . . , pn) of the conservative program is said to be:

- conflicting when λi (pi) and λj (pj) conflict for some i ̸= j ,

- exhausting when there is some semaphore s ∈ S such that

F (p1, . . . , pn, s) > arity(s) ,

- desynchronizing when there is some synchronization barrier b ∈ B such that

0 < card
{
i ∈ {1, . . . , n} | λi(pi) = W(b)

}
⩽ arity(b) ,

The forbidden set gathers all the conflicting, exhausting, and desynchronizing points.

{fobidden} = {conflicting} ∪ {exhausting} ∪ {desynchronizing}

The discrete model is the complement of its forbidden set.

{points of the program} \ {forbidden points}

43 / 49

Conservative programs Discrete models

The discrete model of a conservative program

A point p = (p1, . . . , pn) of the conservative program is said to be:

- conflicting when λi (pi) and λj (pj) conflict for some i ̸= j ,

- exhausting when there is some semaphore s ∈ S such that

F (p1, . . . , pn, s) > arity(s) ,

- desynchronizing when there is some synchronization barrier b ∈ B such that

0 < card
{
i ∈ {1, . . . , n} | λi(pi) = W(b)

}
⩽ arity(b) ,

The forbidden set gathers all the conflicting, exhausting, and desynchronizing points.

{fobidden} = {conflicting} ∪ {exhausting} ∪ {desynchronizing}

The discrete model is the complement of its forbidden set.

{points of the program} \ {forbidden points}

43 / 49

Conservative programs Discrete models

The discrete model of a conservative program

A point p = (p1, . . . , pn) of the conservative program is said to be:

- conflicting when λi (pi) and λj (pj) conflict for some i ̸= j ,

- exhausting when there is some semaphore s ∈ S such that

F (p1, . . . , pn, s) > arity(s) ,

- desynchronizing when there is some synchronization barrier b ∈ B such that

0 < card
{
i ∈ {1, . . . , n} | λi(pi) = W(b)

}
⩽ arity(b) ,

The forbidden set gathers all the conflicting, exhausting, and desynchronizing points.

{fobidden} = {conflicting} ∪ {exhausting} ∪ {desynchronizing}

The discrete model is the complement of its forbidden set.

{points of the program} \ {forbidden points}

43 / 49

Conservative programs Discrete models

The discrete model of a conservative program

A point p = (p1, . . . , pn) of the conservative program is said to be:

- conflicting when λi (pi) and λj (pj) conflict for some i ̸= j ,

- exhausting when there is some semaphore s ∈ S such that

F (p1, . . . , pn, s) > arity(s) ,

- desynchronizing when there is some synchronization barrier b ∈ B such that

0 < card
{
i ∈ {1, . . . , n} | λi(pi) = W(b)

}
⩽ arity(b) ,

The forbidden set gathers all the conflicting, exhausting, and desynchronizing points.

{fobidden} = {conflicting} ∪ {exhausting} ∪ {desynchronizing}

The discrete model is the complement of its forbidden set.

{points of the program} \ {forbidden points}

43 / 49

Conservative programs Discrete models

The discrete model of a conservative program

A point p = (p1, . . . , pn) of the conservative program is said to be:

- conflicting when λi (pi) and λj (pj) conflict for some i ̸= j ,

- exhausting when there is some semaphore s ∈ S such that

F (p1, . . . , pn, s) > arity(s) ,

- desynchronizing when there is some synchronization barrier b ∈ B such that

0 < card
{
i ∈ {1, . . . , n} | λi(pi) = W(b)

}
⩽ arity(b) ,

The forbidden set gathers all the conflicting, exhausting, and desynchronizing points.

{fobidden} = {conflicting} ∪ {exhausting} ∪ {desynchronizing}

The discrete model is the complement of its forbidden set.

{points of the program} \ {forbidden points}

43 / 49

Conservative programs Discrete models

The discrete model of a conservative program

A point p = (p1, . . . , pn) of the conservative program is said to be:

- conflicting when λi (pi) and λj (pj) conflict for some i ̸= j ,

- exhausting when there is some semaphore s ∈ S such that

F (p1, . . . , pn, s) > arity(s) ,

- desynchronizing when there is some synchronization barrier b ∈ B such that

0 < card
{
i ∈ {1, . . . , n} | λi(pi) = W(b)

}
⩽ arity(b) ,

The forbidden set gathers all the conflicting, exhausting, and desynchronizing points.

{fobidden} = {conflicting} ∪ {exhausting} ∪ {desynchronizing}

The discrete model is the complement of its forbidden set.

{points of the program} \ {forbidden points}

43 / 49

Conservative programs Discrete models

Discrete model
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

44 / 49

Conservative programs Discrete models

Discrete model
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

44 / 49

Conservative programs Discrete models

Discrete model
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

44 / 49

Conservative programs Discrete models

Discrete model
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

44 / 49

Conservative programs Discrete models

Discrete model
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

44 / 49

Conservative programs Discrete models

Discrete model
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

44 / 49

Conservative programs Discrete models

Discrete model
sem 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

44 / 49

Conservative programs Discrete models

Discrete Model
sync 1 b

W
(
b
)

W(b)

⊗

0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

45 / 49

Conservative programs Discrete models

Discrete Model
sync 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

45 / 49

Conservative programs Discrete models

Discrete Model
sync 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

45 / 49

Conservative programs Discrete models

Discrete Model
sync 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

45 / 49

Conservative programs Discrete models

Discrete Model
sync 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

45 / 49

Conservative programs Discrete models

Discrete Model
sync 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

45 / 49

Conservative programs Discrete models

Discrete Model
sync 1 b

W
(
b
)

W(b)

⊗

0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

45 / 49

Conservative programs Discrete models

Main theorem of discrete models

– Soundness: any directed path on a discrete model (i.e. which does not meet any forbidden point) is admissible.

– Completeness: for each admissible path which meets a forbidden point there exists a directed path which avoids
them and such that both directed paths induce the same sequence of multi-instructions.

46 / 49

Conservative programs Discrete models

Main theorem of discrete models

– Soundness:

any directed path on a discrete model (i.e. which does not meet any forbidden point) is admissible.

– Completeness: for each admissible path which meets a forbidden point there exists a directed path which avoids
them and such that both directed paths induce the same sequence of multi-instructions.

46 / 49

Conservative programs Discrete models

Main theorem of discrete models

– Soundness: any directed path on a discrete model (i.e. which does not meet any forbidden point) is ...

admissible.

– Completeness: for each admissible path which meets a forbidden point there exists a directed path which avoids
them and such that both directed paths induce the same sequence of multi-instructions.

46 / 49

Conservative programs Discrete models

Main theorem of discrete models

– Soundness: any directed path on a discrete model (i.e. which does not meet any forbidden point) is admissible.

– Completeness: for each admissible path which meets a forbidden point there exists a directed path which avoids
them and such that both directed paths induce the same sequence of multi-instructions.

46 / 49

Conservative programs Discrete models

Main theorem of discrete models

– Soundness: any directed path on a discrete model (i.e. which does not meet any forbidden point) is admissible.

– Completeness:

for each admissible path which meets a forbidden point there exists a directed path which avoids
them and such that both directed paths induce the same sequence of multi-instructions.

46 / 49

Conservative programs Discrete models

Main theorem of discrete models

– Soundness: any directed path on a discrete model (i.e. which does not meet any forbidden point) is admissible.

– Completeness: for each admissible path which meets a forbidden point ...

there exists a directed path which avoids
them and such that both directed paths induce the same sequence of multi-instructions.

46 / 49

Conservative programs Discrete models

Main theorem of discrete models

– Soundness: any directed path on a discrete model (i.e. which does not meet any forbidden point) is admissible.

– Completeness: for each admissible path which meets a forbidden point there exists a directed path which avoids
them and such that both directed paths induce the same sequence of multi-instructions.

46 / 49

Conservative programs Discrete models

Admissible execution trace

the value of x is 0
x
:
=
1

x:=2

⊗

47 / 49

Conservative programs Discrete models

Admissible execution trace

the value of x is 0
x
:
=
1

x:=2

⊗

47 / 49

Conservative programs Discrete models

Admissible execution trace

the value of x is 0
x
:
=
1

x:=2

⊗

47 / 49

Conservative programs Discrete models

Admissible execution trace

the value of x is 1
x
:
=
1

x:=2

⊗

47 / 49

Conservative programs Discrete models

Admissible execution trace

the value of x is 2
x
:
=
1

x:=2

⊗

47 / 49

Conservative programs Discrete models

Admissible execution trace

the value of x is 2
x
:
=
1

x:=2

⊗

47 / 49

Conservative programs Discrete models

Admissible execution trace

the value of x is 2
x
:
=
1

x:=2

⊗

47 / 49

Conservative programs Discrete models

Admissible execution trace

the value of x is 2
x
:
=
1

x:=2

⊗

47 / 49

Conservative programs Discrete models

Admissible execution trace avoiding forbidden points

the value of x is 0
x
:
=
1

x:=2

⊗

48 / 49

Conservative programs Discrete models

Admissible execution trace avoiding forbidden points

the value of x is 0
x
:
=
1

x:=2

⊗

48 / 49

Conservative programs Discrete models

Admissible execution trace avoiding forbidden points

the value of x is 0
x
:
=
1

x:=2

⊗

48 / 49

Conservative programs Discrete models

Admissible execution trace avoiding forbidden points

the value of x is 1
x
:
=
1

x:=2

⊗

48 / 49

Conservative programs Discrete models

Admissible execution trace avoiding forbidden points

the value of x is 1
x
:
=
1

x:=2

⊗

48 / 49

Conservative programs Discrete models

Admissible execution trace avoiding forbidden points

the value of x is 2
x
:
=
1

x:=2

⊗

48 / 49

Conservative programs Discrete models

Admissible execution trace avoiding forbidden points

the value of x is 2
x
:
=
1

x:=2

⊗

48 / 49

Conservative programs Discrete models

Admissible execution trace avoiding forbidden points

the value of x is 2
x
:
=
1

x:=2

⊗

48 / 49

Conservative programs Discrete models

Admissible execution trace avoiding forbidden points

the value of x is 2
x
:
=
1

x:=2

⊗

48 / 49

Conservative programs Discrete models

Replacement

x:=2
x
:
=
1

× × ×

49 / 49

	A quick overview
	of concurrency theory

	Parallel Automata Meta Language
	Syntax
	The control flow graphs
	The abstract machine

	Conservative programs
	Potential functions
	Discrete models

