Category \mathcal{C}

Definition (the "underlying graph" part)

- $\mathrm{Ob}(\mathcal{C})$: collection of objects
- $\operatorname{Mo}(\mathcal{C})$: collection of morphisms
- $\partial^{-}, \partial^{+}$: mappings source, target as follows

$$
\operatorname{Mo}(\mathcal{C}) \xrightarrow[\partial^{+}]{\stackrel{\partial^{-}}{\longrightarrow}} \mathrm{Ob}(\mathcal{C})
$$

- We define the homset $\mathcal{C}(x, y):=\left\{\gamma \in \operatorname{Mo}(\mathcal{C}) \mid \partial^{-} \gamma=x\right.$ and $\left.\partial^{+} \gamma=y\right\}$

Category \mathcal{C}

Definition (the "underlying local monoid" part)

- id : provides each object with an identity

$$
\mathrm{Mo}(\mathcal{C}) \underset{\partial^{+}}{\stackrel{\partial^{-}}{\leftarrow \mathrm{id}}} \mathrm{Ob}(\mathcal{C})
$$

- The binary composition is a partially defined and often denoted by \circ

$$
\left\{(\gamma, \delta) \mid \gamma, \delta \text { morphisms of } \mathcal{C} \text { s.t. } \partial^{-} \gamma=\partial^{+} \delta\right\} \xrightarrow{\text { composition }} \operatorname{Mo}(\mathcal{C})
$$

Category \mathcal{C}

Definition (the axioms)

- The composition law is associative
- For all objects x one has $\partial^{- \text {id }_{x}}=x=\partial^{+}$id $_{x}$

- For all morphisms γ one has id $_{\partial^{+} \gamma} \circ \gamma=\gamma=\gamma \circ \mathrm{id}_{\partial^{-}} \gamma$

Standard examples

- Set: the category of sets.
- Mon: the category of monoids
- Cmon: the category of commutative monoids
- Gr: the category of groups
- Pre: the category of preordered sets.
- Pos: the category of posets.
- Any preordered set can be seen as a category in which any homset has at most one element.
- Any monoid can be seen as a category with a single object.
- The opposite of a category is obtained by reversing all its arrows (i.e. by swapping the roles of the source and the target)

Some special kinds of morphisms

- f is an isomorphism when there exists g such that both $f \circ g$ and $g \circ f$ are identities.
- Two objects related by an isomorphism are said to be isomorphic.
- A groupoid is a category that only has isomorphisms.
- f is a monomorphism when it is left-cancellative i.e. for all $g_{1}, g_{2}, f \circ g_{1}=f \circ g_{2}$ implies $g_{1}=g_{2}$.
- f is a epimorphism when it is right-cancellative i.e. for all $g_{1}, g_{2}, g_{1} \circ f=g_{2} \circ f$ implies $g_{1}=g_{2}$.
- any isomorphism is both monomorphism and an epimorphism, the converse is false in general (e.g. Pos).
- if $r \circ s=$ id then r is called a retract/split epimorphism and s is called a section/split monomorphism.

The category of graphs ($g r p h$)

The elements of V are the vertices and those of A are the arrows In particular A and V are sets

The category of bases of topologies ($\mathcal{B a s}$)
A base of a topology is a collection of sets \mathcal{B} such that for all $U, V \in \mathcal{B}$, all $p \in U \cap V$, there exists $W \in \mathcal{B}$ such that $p \in W \subseteq U \cap V$.

The category of bases of topologies ($\mathcal{B a s}$)

A map $f: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$ is continuous when for every point p of \mathcal{B}, every $V \in \mathcal{B}^{\prime}$ with $f(p) \in V$, there exists $U \in \mathcal{B}$ with $p \in U$ such that $f(U) \subseteq V$.

The category of topological spaces (Top)

A topological space is a set X and a collection $\Omega_{X} \subseteq \mathcal{P}(X)$ s.t.

1) $\emptyset \in \Omega_{X}$ and $X \in \Omega_{X}$
2) Ω_{X} is stable under union
3) Ω_{X} is stable under finite intersection

Equivalently, a topological space is a base of a topology stable under union.
A continuous map $f:\left(X, \Omega_{X}\right) \rightarrow\left(Y, \Omega_{Y}\right)$ is a map $f: X \rightarrow Y$ s.t.

$$
\forall x \in X \forall V \in \Omega_{Y} \text { s.t. } f(x) \in V, \exists U \in \Omega_{X} \text { s.t. } x \in U \text { and } f(U) \subseteq V
$$

or equivalently

$$
\forall V \in \Omega_{Y} f^{-1}(V) \in \Omega_{X}
$$

The elements of Ω_{X} are called the open subsets of X.
The complement of an open subsets is said to be closed.

Functors f from \mathcal{C} to \mathcal{D}

Definition (preserving the "underlying graph")

A functor $f: \mathcal{C} \rightarrow \mathcal{D}$ is defined by two "mappings" $\operatorname{Ob}(f)$ and $\operatorname{Mo}(f)$ such that

with $\partial^{-1}(\operatorname{Mo}(f)(\alpha))=\mathrm{Ob}(f)\left(\partial^{-} \alpha\right)$ and $\partial^{+\prime}(\operatorname{Mo}(f)(\alpha))=\mathrm{Ob}(f)\left(\partial^{+} \alpha\right)$
Hence it is in particular a morphism of graphs.

Functors f from \mathcal{C} to \mathcal{D}

Definition (preserving the "underlying local monoid")

The "mappings" $\mathrm{Ob}(f)$ and $\mathrm{Mo}(f)$ also make the following diagram commute

and satisfies $\operatorname{Mo}(f)(\gamma \circ \delta)=\operatorname{Mo}(f)(\gamma) \circ \operatorname{Mo}(f)(\delta)$

Functors compose as morphisms of graphs do

Hence functors should be thought of as morphisms of categories
The small categories and their funtors form a (large) category denoted by Cat

Some forgetful functors

$(M, *, e) \in \operatorname{Mon} \mapsto M \in \operatorname{Set}$
$(X, \Omega) \in \mathcal{T}_{\text {op }} \mapsto X \in \operatorname{Set}$

$$
\mathcal{C} \in \mathcal{C a t} \mapsto \mathrm{Ob}(\mathcal{C}) \in \operatorname{Set}
$$

$(X, \sqsubseteq) \in$ Pos $\mapsto X \in$ Set

$$
\mathcal{C} \in \operatorname{Cat} \mapsto \operatorname{Mo}(\mathcal{C}) \in \operatorname{Set}
$$

$$
\mathcal{C} \in \operatorname{cat} \mapsto\left(\operatorname{Mo}(\mathcal{C}) \xrightarrow[\partial^{-}]{\stackrel{\partial^{+}}{\longrightarrow}} \mathrm{Ob}(\mathcal{C})\right) \in \operatorname{Grph}
$$

Some small functors

(functor between small categories)

The morphisms of monoids are the functors between small categories with a single object
The morphisms of preordered sets are the functors between small categories whose homsets contain at most one element
The actions of a monoid M over a set X are the functors from M to Set which sends the only element of M to X

Given a functor $f: \mathcal{C} \rightarrow \mathcal{D}$ and two objects x and y we have the mapping

$$
\begin{aligned}
f_{x, y}: \mathcal{C}[x, y] & \rightarrow \mathcal{D}[\operatorname{Ob}(f)(x), \operatorname{Ob}(f)(y)] \\
\alpha & \mapsto \operatorname{Mo}(f)(\alpha)
\end{aligned}
$$

- f is faithful when for all objects x and y the mapping $f_{x, y}$ is one-to-one (injective)
- f is full when for all objects x and y the mapping $f_{x, y}$ is onto (surjective)
- f is fully faithful when it is full and faithful
- f is an embedding when it is faithful and $\mathrm{Ob}(f)$ is one-to-one
- f is an equivalence when it is fully faithful and every object of \mathcal{D} is isomorphic to an object of the form $f(C)$ with $C \in \mathcal{C}$.

Some full embeddings in Cat

Remark : The full embeddings compose

$$
\begin{array}{ll}
\text { Pre } \hookrightarrow \text { Cat } & \text { Cmon } \hookrightarrow \text { Mon } \\
\text { Mon } \hookrightarrow \text { Cat } & \mathcal{A} b \hookrightarrow \text { Cmon } \\
\text { Pos } \hookrightarrow \text { Pre } & \mathcal{A} b \hookrightarrow \mathcal{G r} \\
\text { Gr } \hookrightarrow \text { Mon } & \text { Set } \hookrightarrow \text { Pos }
\end{array}
$$

Topological spaces and their bases

Full embedding I: $\mathcal{T}_{\text {op }} \rightarrow \mathcal{B a s}$.
Space functor $S_{p}: \mathcal{B a s} \rightarrow \mathcal{T}_{o p}$ sending \mathcal{B} to $\{\cup \mathcal{C} \mid \mathcal{C} \subseteq \mathcal{B}\}$.
Given $\mathcal{B} \in \mathcal{B a s}$, we denote by $\cup \mathcal{B}$ the underlying set of \mathcal{B}, i.e. the union of all the elements of \mathcal{B}. E.g.: bases of \mathbb{R}^{2}.

Given $\mathcal{B} \in \mathcal{B a s}$, the identity map on $\mathcal{U B}$ induces an isomorphism from \mathcal{B} to $s_{p}(\mathcal{B})$ which we denote by $\mathcal{B} \Rightarrow s_{p}(\mathcal{B})$; and an isomorphism from $S_{p}(\mathcal{B})$ to \mathcal{B} which we denote by $S_{p}(\mathcal{B}) \Rightarrow \mathcal{B}$. We have $\left(\mathcal{B} \Rightarrow S_{p}(\mathcal{B})\right)^{-1}=(S p(\mathcal{B}) \Rightarrow \mathcal{B})$

The functors I and $S p$ are equivalences of categories.

Natural Transformations

morphisms of functors from $f: \mathcal{C} \rightarrow \mathcal{D}$ to $g: \mathcal{C} \rightarrow \mathcal{D}$

A natural transformation $\eta: f \rightarrow g$ is a collection of morphisms $\left(\eta_{x}\right)_{x \in \mathrm{Ob}(\mathcal{C})}$ where $\eta_{x} \in \mathcal{D}[f(x), g(x)]$ and such that for all $\alpha \in \mathcal{C}[x, y]$ we have $\eta_{y} \circ f(\alpha)=g(\alpha) \circ \eta_{x}$ i.e. the following diagram commute

This description is summarized by the following diagram

If every η_{x} is an isomorphism of \mathcal{D}, then η is said to be a natural isomorphism, its inverse η^{-1} is $\left(\eta_{x}^{-1}\right)_{x \in \mathrm{Ob}(\mathcal{C})}$.

A functor $f: \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence iff there exists a functor $g: \mathcal{D} \rightarrow \mathcal{C}$ and natural isomorphisms id ${ }_{\mathcal{C}} \cong g \circ f$ and $\mathrm{id}_{\mathcal{D}} \cong f \circ g$.
E.g.: we have $\mathrm{id}_{\mathcal{T}_{\text {op }}}=I \circ S p$ and the collection $B \Rightarrow S p(B)$ for $B \in \mathcal{B a s}$ is a natural isomorphism from $\mathrm{id}_{\mathcal{S a s}}$ to $S p \circ I$.

The overall idea of algebraic topology

Every functor preserves the isomorphisms
Problem: prove the topological spaces X and Y are not the same Strategy: find a functor F defined over $\mathcal{T o p}_{\text {op }}$ such that $F(X) \neq F(Y)$

More topological notions

The interior of a subset A of X is the greatest open subset of X contained in A.
Then closure of a subset A of X is the least closed subset of X containing A.
A neighbourhood of a subset A of X is a subset of X whose interior contains A.
A topological space X is said to be Hausdorff when for all $x, x^{\prime} \in X$, if $x \neq x^{\prime}$ then x and x^{\prime} have disjoint neighbourhoods.
A subset Q of X is said to be saturated when

$$
Q=\bigcap\{U \mid U \text { open and } Q \subseteq U\}
$$

Every subset of a Hausdorff space is saturated.

Compactness and local compactness

Let X be a topological space.

- An open covering of X is a collection of open subsets of X whose union is X.
- X is said to be compact when every open covering of X admit a finite sub-covering.
- X is said to be locally compact when for every $x \in X$, every open neighbourhood U of x contains a saturated compact neighbourhood of x.
A Hausdorff space is locally compact iff each of its points admits a compact neighbourhood.

The connected component functor

1) A topological space X is said to be connected when its only closed-open subsets are \emptyset and X
2) A union of connected subspaces sharing a point is connected
3) The connected components of a topological space induce a partition of its underlying set
4) Any connected subset of X is contained in a connected component of X
5) Any continuous direct image of a connected subset of X is connected

An application

The continuous image of a connected space is connected

The image of the space B is entirely contained in a connected component of the space V.

This situation is abstracted by classifying continuous maps from B to V according to which connected component (V_{1} or V_{2}) the single connected components of B (namely B itself) is sent to. There are exactly two set theoretic maps from the singleton $\{B\}$ to the pair $\left\{V_{1}, V_{2}\right\}$ hence there is at most (in fact exactly) two kinds of continuous maps from B to V.

$$
\{B\} \longrightarrow\left\{V_{1}, V_{2}\right\}
$$

In particular B and V are not homeomorphic.

Application

The compact interval and the circle are not homeomorphic

Let $\mathbb{S}^{1}:=\{z \in \mathbb{C}| | z \mid=1\}$ be the Euclidean circle and suppose $\varphi:[0,1] \rightarrow \mathbb{S}^{1}$ is a homeomorphism.

Then φ induces a homeomorphism
$\left[0, \frac{1}{2}[\cup] \frac{1}{2}, 1\right] \rightarrow \mathbb{S}^{1} \backslash\left\{\varphi\left(\frac{1}{2}\right)\right\}$
which does not exist!

Generalization

These topological spaces are pairwise not homeomorphic. Why ?

Metric spaces

A metric space is a set X together with a mapping $d: X \times X \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ such that:

- $d(x, y)=0 \Leftrightarrow x=y$
- $d(x, y)=d(y, x)$
$-d(x, z) \leqslant d(x, y)+d(y, z)$

The open balls $B(c, r)=\{x \in X \mid d(c, x)<r\}$ with $x \in X$ and $r>0$ form a base of a topology.

Goal: turn any graph into metric space in a functorial way.

Metric space morphisms

- $\operatorname{Met}_{\text {emb }} f: X \rightarrow Y$ s.t. $\forall x, x^{\prime} \in X, d_{Y}\left(f(x), f\left(x^{\prime}\right)\right)=d_{X}\left(x, x^{\prime}\right)$
- $\operatorname{Met}_{c t r} f: X \rightarrow Y$ s.t. $\forall x, x^{\prime} \in X, d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leqslant d_{X}\left(x, x^{\prime}\right)$
- Met $f: X \rightarrow Y$ s.t. $\exists r \in] 0, \infty\left[\forall x, x^{\prime} \in X, d_{Y}\left(f(x), f\left(x^{\prime}\right)\right) \leqslant r \cdot d_{X}\left(x, x^{\prime}\right)\right.$
- $\operatorname{Met}_{\text {top }} f: X \rightarrow Y$ s.t. $\forall x \in X \forall \varepsilon>0 \exists \eta>0, f(B(x, \eta)) \subseteq B(f(x), \varepsilon)$

$$
\mathcal{M e t}_{\text {emb }} \hookrightarrow \operatorname{Met}_{\text {ctr }} \hookrightarrow \operatorname{Met} \hookrightarrow \operatorname{Met}_{\text {top }} \stackrel{\text { full }}{\hookrightarrow} \mathcal{T} o p
$$

Length spaces

The length $\ell(\gamma)$ of a path $\gamma:[0, r] \rightarrow(X, d)$ is the least upper bound of the collection of sums

$$
\sum_{i=0}^{n} d\left(\gamma\left(t_{i+1}\right), \gamma\left(t_{i}\right)\right)
$$

where $n \in \mathbb{N}$ and $0=t_{0} \leqslant \cdots \leqslant t_{n}=r$.
The metric space (X, d) is a length space when the distance between two points $x, x^{\prime} \in X$ is the following greatest lower bound

$$
\inf \left\{\ell(\gamma) \mid \gamma \text { is a path from } x \text { to } x^{\prime}\right\}
$$

A path γ from x to x^{\prime} such that $\ell(\gamma)=d\left(x, x^{\prime}\right)$ is said to be geodesic.
The space is said to be geodesic when any two points are related by a geodesic path.

The Hopf-Rinow theorem

Metric Spaces of Non-Positive Curvature, M. R. Bridson, and A. Haefliger, 1999

A metric space is said to be complete when all its Cauchy sequences admit a limit.
Let X be a length space.
If X is complete and locally compact, then

- every closed bounded subset of X is compact, and
- X is a geodesic space.

Isometric embedding in \mathbb{R}^{n}

- \mathbb{R}^{n} is a geodesic space
- $\mathbb{R}^{n} \backslash\{0\}$ with the distance inherited from \mathbb{R}^{n} is a length space, not a geodesic one.
- $\mathbb{R}^{n} \backslash[0,1]^{n}$ with the distance inherited from \mathbb{R}^{n} is not a length space.
- Any metric space (X, d) is associated to a length space $\left(X, d_{\ell}\right)$ with

$$
d_{\ell}\left(x, x^{\prime}\right)=\inf \left\{\ell(\gamma) \mid \gamma \text { is a path from } x \text { to } x^{\prime}\right\}
$$

Neighbours

$$
G: A \xrightarrow[\partial^{+}]{\stackrel{\partial^{-}}{\longrightarrow}} V
$$

- The underlying set of the metric graph is $A \times] 0,1[\sqcup V$
- Two points p, p^{\prime} are said to be neighbours when there is an arrow a such that $\left.p, p^{\prime} \in\{a\} \times\right] 0,1\left[\sqcup^{\prime}\left\{\partial^{\circ} a, \partial^{+} a\right\}\right.$

Distance between two neighbours

- If $\partial^{-} a \neq \partial^{+} a$ there is a canonical bijection

$$
\phi:\{a\} \times] 0,1\left[\sqcup\left\{\partial^{-} a, \partial^{+} a\right\} \rightarrow[0,1]\right.
$$

In that case $d\left(p, p^{\prime}\right)=\left|t-t^{\prime}\right|$ with $t=\phi(p)$ and $t^{\prime}=\phi\left(p^{\prime}\right)$.

- If $\partial^{-} a=\partial^{+} a$ there is a canonical bijection

$$
\phi:\{a\} \times] 0,1\left[\sqcup\left\{\partial^{-} a, \partial^{+} a\right\} \rightarrow[0,1[\right.
$$

In that case

$$
d\left(p, p^{\prime}\right)=\min \left\{\left|t-t^{\prime}\right|, 1-\left|t-t^{\prime}\right|\right\}
$$

with $t=\phi(p)$ and $t^{\prime}=\phi\left(p^{\prime}\right)$.

Itinerary

An itinerary on $A \times] 0,1\left[\sqcup V\right.$ is a (finite) sequence p_{0}, \ldots, p_{q} of points such that p_{k} and p_{k+1} are neighbours for $k \in\{0, \ldots, q-1\}$.

The length of that itinerary is

$$
\ell\left(p_{0}, \ldots, p_{q}\right)=\sum_{k=0}^{q-1} d\left(p_{k}, p_{k+1}\right)
$$

The distance between two points p and p^{\prime} of $\left.A \times\right] 0,1[\sqcup V$ is

$$
d\left(p, p^{\prime}\right)=\inf \left\{\ell\left(p_{0}, \ldots, p_{q}\right) \mid p_{0}, \ldots, p_{q} \text { is a itinerary from } p \text { to } p^{\prime}\right\}
$$

The metric graph associated with G is the metric space

$$
(A \times] 0,1[\sqcup V, d)
$$

Open balls

The open ball of radius $r<1$ centered at the vertex v is the set

$$
\left.\{v\} \quad \cup \quad\left\{a \mid \partial^{-} a=v\right\} \times\right] 0, r\left[\quad \cup \quad\left\{a \mid \partial^{+} a=v\right\} \times\right] 1-r, 1[
$$

For $(a, t) \in\{a\} \times] 0,1[$ the open ball of radius $r \leqslant \min \{t, 1-t\}$ centered at the vertex (a, t) is the set

$$
\{a\} \times] t-r, t+r[
$$

That collection of open balls forms a base of open sets.
If $r \leqslant \frac{1}{4}$ then $B(c, r)$ is geodesically stable, i.e. for all $p, q \in B(c, r)$

$$
\{p, q\} \subseteq \bigcup\{\operatorname{im}(\gamma) \mid \gamma \text { geodesic from } p \text { to } q\} \subseteq B(c, r) .
$$

The metric graph construction is functorial from $\mathcal{G r p f}$ to $\mathcal{M e t}_{\text {ctr }}$
Every finite graph with weighted arrows (in $\mathbb{R}_{+} \backslash\{0\}$) with can be embedded in \mathbb{R}^{3}.

The category of ordered bases ($O \mathcal{B}$)

We write that $\left(X, \leqslant_{x}\right)$ is a subposet of $\left(Y, \leqslant_{y}\right)$, or $\left(X, \leqslant_{x}\right) \hookrightarrow\left(Y, \leqslant_{\gamma}\right)$, when $X \subseteq Y$ and $a \leqslant_{x} b \Leftrightarrow a \leqslant_{y} b$ for all $a, b \in X$. An ordered base is a collection of posets \mathcal{B} such that for all $\left(U, \leqslant_{u}\right),\left(V, \leqslant_{v}\right) \in \mathcal{B}$, every $p \in U \cap V$, there exists $\left(W, \leqslant_{w}\right) \in \mathcal{B}$ such that $p \in\left(W, \leqslant_{w}\right) \hookrightarrow\left(U, \leqslant_{u}\right),\left(V, \leqslant_{v}\right)$.

The category of ordered bases ($O \mathcal{B}$)

A map $f: \mathcal{U} \rightarrow \mathcal{V}$ is locally order-preserving when for every point p of \mathcal{U}, every $\left(V, \leqslant_{v}\right) \in \mathcal{V}$ with $f(p) \in V$, there exists $\left(U, \leqslant_{u}\right) \in \mathcal{U}$ with $p \in U$ such that $f(U) \subseteq V$ and f is order-preserving from $\left(U, \leqslant_{u}\right)$ to $\left(V, \leqslant_{v}\right)$.

Ordered bases and locally order-preserving maps form the category $O \mathcal{B}$.

The underling topology of an ordered base

If \mathcal{B} is an ordered base, then $U \mathcal{B}=\{U B \mid B \in \mathcal{B}\}$ is a base of a topology ($U B$ denotes the underlying set of the poset B).

If $f: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$ is locally order-preserving, then $U f: U \mathcal{B} \rightarrow U \mathcal{B}^{\prime}$ is continuous; we have a forgetful functor $O \mathcal{B} \rightarrow \mathcal{B a s}$.

We have a functor $U: O \mathcal{B} \rightarrow \operatorname{Set}$ obtained as the composite $O \mathcal{B} \rightarrow \mathcal{B a s} \rightarrow$ Set .

The underlying space functor $S p: O \mathcal{B} \rightarrow \mathcal{T o p}$ is the composite $O \mathcal{B} \rightarrow \mathcal{B a s} \rightarrow \mathcal{T o p}$.

We write $\mathcal{B} \sim \mathcal{B}^{\prime}$ when $\operatorname{Sp}(\mathcal{B})=\operatorname{Sp}\left(\mathcal{B}^{\prime}\right)$ and $\mathcal{B} \cup \mathcal{B}^{\prime}$ is still an ordered base; and we say that \mathcal{B} and \mathcal{B}^{\prime} are equivalent.

The relation \sim is an equivalence relation on the collection of ordered bases over a given set.

If $\mathcal{A} \sim \mathcal{A}^{\prime}$ and $\mathcal{B} \sim \mathcal{B}^{\prime}$, then any map $f: U \mathcal{A} \rightarrow U \mathcal{B}$ is locally order-preserving from \mathcal{A} to \mathcal{B} iff it is so from \mathcal{A}^{\prime} to \mathcal{B}^{\prime}.

Locally ordered spaces

An ordered base \mathcal{B} is said to be maximal when for every poset X, if $U X$ is open in $\operatorname{Sp}(\mathcal{B})$ and $\mathcal{B} \cup\{X\}$ is still an ordered base, then $X \in \mathcal{B}$.

A locally ordered space is a maximal ordered base.
We denote by $\operatorname{LoS} p$ the full subcategory of $O \mathcal{B}$ whose objects are the locally ordered spaces.

Lemma: Every ordered base is contained in a unique maximal ordered base.
Proposition: the full embedding $\operatorname{LoS} p \rightarrow O \mathcal{B}$ is an equivalence of categories whose quasi-inverse is the functor that assigns its locally ordered space to every ordered base.

The locally ordered line

Examples of equivalent ordered bases on \mathbb{R}

- $\{(I, \leqslant) \mid I$ open interval of $\mathbb{R}\}$,
- $\{(U, \leqslant) \mid U$ open subset of $\mathbb{R}\}$,
- $\{(U, \sqsubseteq U) \mid U$ open subset of $\mathbb{R}\}$ where $x \sqsubseteq u y$ stands for $x \leqslant y$ and $[x, y] \subseteq U$,
- $\left\{\left(U, \sqsubseteq_{U}^{\prime}\right) \mid U\right.$ open subset of $\left.\mathbb{R}\right\}$ where $x \sqsubseteq_{U}^{\prime} y$ is any extension of $\sqsubseteq u$.

Suppose that $[0,1] \cup[2,3]$ is a locally ordered subspace of \mathbb{R}, the map $t \in[0,1] \cup[2,3] \mapsto t+2(\bmod 4) \in[0,1] \cup[2,3]$ is locally order-preserving. A directed path on an ordered base \mathcal{B} is a locally order-preserving map defined over some compact interval equipped with the ordered base inherited from \mathbb{R}.

The locally ordered circle

Examples of equivalent ordered bases on \mathbb{S}^{1}

- $\{(A, \leqslant) \mid A$ open arc $\}$ where \leqslant is the order induced by \mathbb{R} and the restriction of the exponential map to an open subinterval of $\left\{t \in \mathbb{R} \mid e^{i t} \in A\right\}$ of length at most 2π,
- $\left\{(U, \sqsubseteq U) \mid U\right.$ proper open subset of $\left.\mathbb{S}^{1}\right\}$ where $x \sqsubseteq U y$ means that the anticlockwise compact arc from x to y is included in U,
- $\left\{\left(U, \sqsubseteq_{U}^{\prime}\right) \mid U\right.$ proper open subset of $\left.\mathbb{S}^{1}\right\}$ where \sqsubseteq_{U}^{\prime} is any extension of the partial order $\sqsubseteq U$.

Ordered spaces

Topology and Order, L. Nachbin, 1965

An ordered space is a topological space X together with a partial order \sqsubseteq on (the underlying set of) X. If the relation \sqsubseteq is closed in the sense that

$$
\{(a, b) \in X \times X \mid a \sqsubseteq b\}
$$

is a closed subset of $X \times X$, then X is said to be a partially ordered space (or pospace).
A ordered space morphism is an order-preserving continuous map.
Ordered spaces and their morphisms form the category Ord.
The underlying space of a pospace is Hausdorff.

Examples

- The real line with standard topology and order.
- Any subset of a pospace with the induced topology and order.
- The collection of compact subsets of a metric space equipped with the Hausdorff distance is a metric space.

$$
\begin{gathered}
d_{H}\left(K, K^{\prime}\right)=\sup \left\{d\left(x, K^{\prime}\right), d\left(x^{\prime}, K\right) \mid x \in K ; x^{\prime} \in K^{\prime}\right\} \\
d(x, K)=\inf \{d(x, k) \mid k \in K\}
\end{gathered}
$$

The induced topological space ordered by inclusion is a pospace.

- Problem: there is no pospace on the circle whose collection of directed paths is

$$
\left\{e^{i \theta(t)} \mid \theta:[0, r] \rightarrow \mathbb{R} \text { increasing }\right\}
$$

Ordered spaces as locally ordered spaces

Each ordered space (X, \sqsubseteq) can be seen as a locally ordered space

$$
\left(X,\left\{\left(U, \sqsubseteq_{\mid U}\right) \mid U \text { open subset of } X\right\}\right)
$$

The resulting functor is:

- faithful
- not injective on object (hence not an embedding)
- not full

Directed loops on locally ordered spaces

A locally order-preserving map $\delta:[a, b] \rightarrow \mathcal{X}$ whose image is contained in $C \in \mathcal{X}$ induces an order-preserving map from $[a, b]$ to C.

A directed path δ on a local pospace X is constant iff its extremities are equal and there exists $C \in \mathcal{X}$ that contains the image of δ.

A vortex is a point every neighbourhood of which contains a non-constant directed loop.
A local pospace has no vortex.

A convenient open covering

Let \mathcal{B} be the collection of open balls B of $|G|$ such that

- B is centred at a vertex and its radius is $\leqslant \frac{1}{3}$, or
- $B=\{a\} \times U$ for some arrow a and some open interval $U \subseteq] 0,1\left[\right.$ of length $\leqslant \frac{1}{3}$. Given $B, B^{\prime} \in \mathcal{B}$ if B is of the second kind, then so is $B \cap B^{\prime}$.

If B, B^{\prime} are centred at v and v^{\prime} we have

- $v \neq v^{\prime} \Rightarrow B \cap B^{\prime}=\emptyset$ and
- $v=v^{\prime} \Rightarrow B \subseteq B^{\prime}$ or $B^{\prime} \subseteq B$

Ordered open stars

An element B of \mathcal{B} centred at v of radius $r \leqslant \frac{1}{3}$ is the disjoint union of $\{v\}$ together with

- $\{a\} \times] 0, r\left[\right.$ for each arrow a such that $\partial^{-} a=v$
- $\{a\} \times] 1-r, 1\left[\right.$ for each arrow a such that $\partial^{+} a=v$

The partial order on B is characterized by the following constraints:

- each branch $\{a\} \times] 1-r, 1[$ and $\{a\} \times] 0, r[$ inherits its order from \mathbb{R}
- $\{v\} \sqsubseteq\{a\} \times] 0, r\left[\right.$ for each arrow a such that $\partial^{-} a=v$
- $\{a\} \times] 1-r, 1\left[\sqsubseteq\{v\}\right.$ for each arrow a such that $\partial^{+} a=v$

We have $B \cap B^{\prime} \neq \emptyset \Rightarrow B \cap B^{\prime} \in \mathcal{B}$ and

$$
\sqsubseteq_{B_{\left.\right|_{B \cap B^{\prime}}}=\sqsubseteq_{B \cap B^{\prime}}=\sqsubseteq_{\left.B\right|_{B \cap B^{\prime}} ^{\prime}} \text { }}
$$

The metric graph of $|G|$ thus becomes a local pospace.
The locally ordered metric graph construction is functorial.

Description

There exists a (unique) intrinsic metric d_{G} on $|G|$ such that the open balls of radii $\varepsilon>0$ about (a, t) and v are $\{a\} \times] t-\varepsilon, t+\varepsilon[$ if $\varepsilon \leqslant \min (t, 1-t)$, and
$\left.\left\{a \in G^{(1)} \mid \operatorname{tgt}(a)=v\right\} \times\right] 1-\varepsilon, 1\left[\cup\{v\} \cup\left\{a \in G^{(1)} \mid \operatorname{src}(a)=v\right\} \times\right] 0, \varepsilon\left[\right.$ if $\varepsilon \leqslant \frac{1}{2}$.
The partial order \sqsubseteq and the metric d_{G} on the ball centered at v of radius ε are characterized by the following properties:

$$
\begin{array}{lll}
d_{G}((a, t), v)=1-t & (a, t) \sqsubseteq v & \text { if } t \in] 1-\varepsilon, 1[\\
d_{G}(v,(a, t))=t & v \sqsubseteq(a, t) & \text { if } t \in] 0, \varepsilon[\\
d_{G}\left((a, t),\left(a, t^{\prime}\right)\right)=t^{\prime}-t & (a, t) \sqsubseteq\left(a, t^{\prime}\right) & \text { if } t \leqslant t^{\prime} \text { and }\left(t, t^{\prime} \in\right] 0, \varepsilon\left[\text { or } t, t^{\prime} \in\right] 1-\varepsilon, 1[) \\
d_{G}\left((a, t),\left(a, t^{\prime}\right)\right)=\min \left\{t^{\prime}-t, 1-\left(t^{\prime}-t\right)\right\} & \left(a, t^{\prime}\right) \sqsubseteq(a, t) & \text { if } t \in] 0, \varepsilon\left[\text { and } t^{\prime} \in\right] 1-\varepsilon, 1[\\
d_{G}\left((a, t),\left(b, t^{\prime}\right)\right)=d_{G}((a, t), v)+d_{G}\left(v,\left(b, t^{\prime}\right)\right) & & \text { if } a \neq b \\
& (a, t) \sqsubseteq\left(b, t^{\prime}\right) & \text { if } t \in] 1-\varepsilon, 1\left[\text { and } t^{\prime} \in\right] 0, \varepsilon[
\end{array}
$$

If $\varepsilon \leqslant \frac{1}{4}$ then the ball centered at v of radius ε, say B, is geodesically stable: for all $p, q \in B$, the union of the images of the geodesics from p to q is nonempty and contained in B.

The standard ordered base of G is the collection of ordered open balls of radii $\varepsilon \leqslant \frac{1}{2}$ with their 'canonical' partial order.

