Directed Algebraic Topology and Concurrency

Emmanuel Haucourt
MPRI : Concurrency (2.3)

Thursday, the $4^{\text {th }}$ of February 2010
emmanuel.haucourt@cea.fr

Free monoid $W(\mathbb{A})$

- The set \mathbb{A} is called the alphabet, its elements are called the letters
- Given $n \in \mathbb{N}$, a n-word is a finite sequences of letters of length n i.e.

$$
w \in \operatorname{Set}[\{0, \ldots, n-1\}, \mathbb{A}]
$$

- The elements of $W(\mathbb{A})$ are all the words i.e.

$$
\bigcup_{n \in \mathbb{N}} \operatorname{Set}[\{0, \ldots, n-1\}, \mathbb{A}]
$$

- The internal law is the concatenation, given words w and w^{\prime} of lengths n and n^{\prime}

$$
\begin{aligned}
w \cdot w^{\prime}:\{0, \ldots, n+m-1\} & \longrightarrow \mathbb{A} \\
t & \longmapsto \begin{cases}w(t) & \text { if } 0 \leqslant t \leqslant n-1 \\
w^{\prime}(t-n) & \text { if } r \leqslant t \leqslant n+n^{\prime}-1\end{cases}
\end{aligned}
$$

- The neutral element is the empty word

The free monoid functor

Remark : if w is a word over the alphabet \mathbb{A} and $f \in \operatorname{Set}\left[\mathbb{A}, \mathbb{A}^{\prime}\right]$ then $f \circ w$ is a word over the alphabet \mathbb{A}^{\prime}

$$
W: \text { Set } \longrightarrow M o n
$$

with

$$
\begin{aligned}
W(f): W(\mathbb{A}) & \longrightarrow W\left(\mathbb{A}^{\prime}\right) \\
w & \longmapsto f \circ w
\end{aligned}
$$

Free commutative monoid $C(V)$

Linear combinations with coefficients in \mathbb{N} and variables in V

- Given $\varphi \in \operatorname{Set}[V, \mathbb{N}]$, the support of φ is $\{x \in V \mid \varphi(x) \neq 0\}$
- The elements of $C(V)$ are the linear combinations i.e. the elements of $\operatorname{Set}[V, \mathbb{N}]$ with finite support
- The internal law is the pointwise sum, given polynomials φ and φ^{\prime}

$$
\begin{aligned}
\varphi+\varphi^{\prime}: & V \longrightarrow \mathbb{N} \\
& x \longmapsto \varphi(x)+\varphi^{\prime}(x)
\end{aligned}
$$

- The neutral element is the null combination

The free commutative monoid functor $C(-)$

with

$$
C(f): C(V) \longrightarrow C\left(V^{\prime}\right)
$$

$$
\varphi \longmapsto\left\{\begin{array}{lll}
V^{\prime} & \longrightarrow \mathbb{N} \\
x^{\prime} & \longmapsto & \sum_{\substack{x \in V \\
f(x)=x^{\prime}}} \varphi(x)
\end{array}\right.
$$

An example

$V:=\{a, b, c\}$ and $V^{\prime}:=\{x, y, z\}$
$\varphi: V \longrightarrow \mathbb{N}$ with $\varphi(a)=1, \varphi(b)=2, \varphi(c)=3$
The element $\varphi \in C(V)$ can be denoted as a linear combination $a+2 b+3 c$
Consider $f: V \longrightarrow V^{\prime}$ with $f(a)=f(b)=x$ and $f(c)=z$ then
$C(f)(\varphi)=C(f)(a+2 b+3 c)=f(a)+2 f(b)+3 f(c)=x+2 x+3 z=3 x+3 z$
i.e. the mapping
$C(f)(\varphi): V^{\prime} \longrightarrow \mathbb{N}$ with
$C(f)(\varphi)(x)=\varphi(a)+\varphi(b)=3, C(f)(\varphi)(y)=0, C(f)(\varphi)(z)=\varphi(c)=3$

Assumption

From now on, all the monoids we consider are supposed to be commutative
unless otherwise stated

Divisibility relation
 in a commutative monoid ($M, *, e$)

Given $a, b \in M$ by $a \mid b$ we mean there exists $q \in M$ s.t. $b=a * q$
The divisibility relation | is a preorder

Prime vs Irreducible

Let $(M, *, e)$ be a commutative monoid
$u \in M$ is said to be a unit when there exists $x \in M$ such that $u * x=e$

$$
\begin{aligned}
& p \in M \text { is said to be prime when } p \text { is not a unit and } \\
& \text { for all } a, b \in M, p|(a * b) \Rightarrow p| a \text { or } p \mid b \\
& i \in M \text { is said to be irreducible when for all } a, b \in M \text {, } \\
& \text { if } i=a * b \text { then either } a \text { or } b \text { is a unit (not both) }
\end{aligned}
$$

Prime vs Irreducible
 Examples

- Denote by $\mathbb{N}[X]$ the collection of one indeterminate polynomials over \mathbb{N} we have

$$
1+X+X^{2}+X^{3}+X^{4}+X^{5}=\left(1+X^{3}\right)\left(1+X+X^{2}\right)=(1+X)\left(1+X^{2}+X^{4}\right)
$$

- $1+X$ is irreducible and not prime since $1+X$ does not divide $1+X^{3}$ in $\mathbb{N}[X]$

The preceding example is due to Junji Hashimoto

- In the monoid $(\{0,1\}, \vee, 0)$, the element 1 is prime but not irreducible
- In the monoid $\left(\mathbb{R}_{+},+, 0\right)$ there is neither prime element nor irreducible one
- An element φ of the free commutative monoid $C(V)$ is prime iff it is irreducible iff its support is a singleton $\{v\}$ and $\varphi(v)=1$ iff

$$
\int_{V} \varphi:=\sum_{v \in V} \varphi(v)=1
$$

Characterization
 of the free commutative monoids

Given a commutative monoid M, the following are equivalent

- M is free (i.e. $M \cong C(V)$ for some set V)
- $M \cong C(\mathcal{P})$ with \mathcal{P} the set of prime elements of M
- $M \cong C(\mathcal{I})$ with \mathcal{I} the set of irreducible elements of M
- for all $x \in M, x$ is irreducible iff x is prime and any element of M is a product of irreducible/prime elements
- any element of M can be written as a product of irreducible elements of M in a unique way (up to permutation)
- any element of M can be written as a product of prime elements of M in a unique way (up to permutation)

The commutative monoid
 of isomorphism classes of small categories

- We write $\mathcal{A} \cong \mathcal{B}$ to mean that \mathcal{A} and \mathcal{B} are isomorphic in Cat
- The relation \cong is an equivalence relation
- We denote the isomorphism class of \mathcal{C} by $[\mathcal{C}]$
- If $\mathcal{A} \cong \mathcal{A}^{\prime}$ and $\mathcal{B} \cong \mathcal{B}^{\prime}$ then $\mathcal{A} \times \mathcal{B} \cong \mathcal{A}^{\prime} \times \mathcal{B}^{\prime}$ so we can define

$$
[\mathcal{A}] \times[\mathcal{B}]:=[\mathcal{A} \times \mathcal{B}]
$$

- Since $\mathcal{A} \times \mathcal{B} \cong \mathcal{B} \times \mathcal{A}$ we have $[\mathcal{A}] \times[\mathcal{B}]=[\mathcal{B}] \times[\mathcal{A}]$
- If we denote the category with one object and one morphism by 1 then

$$
[1] \times[\mathcal{A}]=[\mathcal{A}] \times[1]=[\mathcal{A}]
$$

- Hence the collection of (isomorphism classes of) ${ }^{1}$ small categories forms a commutative monoid

[^0]
Size of an isomorphism class

- The size of small category \mathcal{A} is defined as the cardinal of the set $\operatorname{Mo}(\mathcal{A})$
- Given small categories \mathcal{A} and \mathcal{B} we have

$$
\operatorname{size}(\mathcal{A} \times \mathcal{B}):=\operatorname{size}(\mathcal{A}) \times \operatorname{size}(\mathcal{B})
$$

- If $\mathcal{A} \cong \mathcal{B}$ then $\operatorname{size}(\mathcal{A})=\operatorname{size}(\mathcal{B})$ so we can define

$$
\operatorname{size}([\mathcal{A}]):=\operatorname{size}(\mathcal{A})
$$

Connected categories

- Given two objects x and y of a category \mathcal{C}, write $x \leftrightarrow y$ when there exists a zigzag of morphisms between x and y i.e.

- The relation \leftrightarrow is a preorder
- A category \mathcal{C} is said to be connected when the preorder \leftrightarrow is chaotic i.e. for all objects x and y we have $x \leftrightarrow y$

Loop-free categories

This notion has been introduced by André Haefliger

A category \mathcal{C} is said to be loop-free when for all objects x and y
$\mathcal{C}[x, y] \neq \emptyset$ and $\mathcal{C}[y, x] \neq \emptyset$ implies $x=y$ and $\mathcal{C}[x, x]=\left\{\operatorname{id}_{x}\right\}$
The fundamental category of any pospace is loop-free

Some properties
 preserved under isomorphisms

Let \mathcal{A} and \mathcal{B} be isomorphic categories

- \mathcal{A} is finite iff so is \mathcal{B}
- \mathcal{A} is loop-free iff so is \mathcal{B}
- \mathcal{A} is connected iff so is \mathcal{B}

So we can say that an isomorphism class of categories is
finite/loop-free/connected
when any of its representative is so

Some properties

 preserved and reflected by Cartesian productLet \mathcal{A} and \mathcal{B} be non empty categories

- $\mathcal{A} \times \mathcal{B}$ is finite iff \mathcal{A} and \mathcal{B} are so
- $\mathcal{A} \times \mathcal{B}$ is loop-free iff \mathcal{A} and \mathcal{B} are so
- $\mathcal{A} \times \mathcal{B}$ is connected iff \mathcal{A} and \mathcal{B} are so

The monoid \mathbb{M}

The collection of non-empty connected loop-free finite categories forms a sub-monoid \mathbb{M} of the monoid of small categories
\mathbb{M} is pure ${ }^{2}$ which means that for all small categories \mathcal{A} and \mathcal{B}, if $[\mathcal{A}] \times[\mathcal{B}] \in \mathbb{M}$ then $[\mathcal{A}] \in \mathbb{M}$ and $[\mathcal{B}] \in \mathbb{M}$

The size function induces a morphism of monoids from \mathbb{M} to $(\mathbb{N} \backslash\{0\}, \times, 1)$

Theorem

\mathbb{M} is a free commutative monoid.
The set of prime/irreducible elements of \mathbb{M} is countable and infinite.

[^1]
Prime elements of \mathbb{M}
 of size at most 7 (up to opposite)

The motivating example

\#mutex a b
$p=P(a) \cdot V(a)$
$q=P(b) \cdot V(b)$

$$
\begin{aligned}
& {[0,1[*[0,-[*[0,-[} \\
\text { I } & {[2,-[*[0,-[*[0,-]} \\
\text { I } & {[0,-[*[0,-[*[0,1[} \\
\text { । } & {[0,-[*[0,-[*[2,-[}
\end{aligned}
$$

init: p q p
\#mutex a b
$p=P(a) \cdot V(a)$
$q=P(b) . V(b)$

$$
\begin{array}{ll}
& {[0,1[*[0,-[*[0,-[} \\
\text { I } & {[2,-[*[0,-[*[0,-[} \\
\text { I } & {[0,-[*[0,1[*[0,-[} \\
\text { । } & {[0,-[*[2,-[*[0,-[}
\end{array}
$$

init: p p q

Semi-lattice of Intervals of \mathbb{R}^{+}

\emptyset
empty interval
$\left.\begin{array}{ll}\{a\} & \begin{array}{l}\text { ingleton } \\ {[a,+\infty[} \\ \text { closed unbounded } \\] a,+\infty[\end{array} \\ \text { open unbounded }\end{array}\right\}$ for $a \in \mathbb{R}_{+}$
[a,b] closed bounded (compact)
] $a, b[$ open bounded
$[a, b[$ half-open of the right bounded
] a, b] half-open of the left bounded

$$
\text { for } a, b \in \mathbb{R}_{+} \text {and } a<b
$$

This collection forms a semi-lattice with \bigcap as product and $[0,+\infty[$ as neutral element

Semi-lattice of cubes

of dimension $n \in \mathbb{N}$

Case $n=0$: semi-lattice $(\{0,1\}, \wedge, 1)$
Case $n \neq 0$: semi-lattice of Cartesian products

$$
\prod_{k=1}^{n} \mathbb{I}_{k}
$$

where \mathbb{I}_{k} is an interval for all k in $\{1, \ldots, n\}$.

$$
\left(\prod_{k=1}^{n} \mathbb{I}_{k}\right) \cap\left(\prod_{k=1}^{n} \mathbb{I}_{k}^{\prime}\right)=\prod_{k=1}^{n}\left(\mathbb{I}_{k} \cap \mathbb{I}_{k}^{\prime}\right)
$$

This collection forms a semi-lattice with \bigcap as product and $\left[0,+\infty\left[^{n}\right.\right.$ as neutral element

$$
\left(\prod_{k=1}^{n} \mathbb{I}_{k}\right) \times\left(\prod_{k=n+1}^{n+p} \mathbb{I}_{k}\right)=\prod_{k=1}^{n+p} \mathbb{I}_{k}
$$

Boolean algebra of cubical areas

Cas $n=0$: Boolean algebra $\{0,1\}$
Cas $n \neq 0$: Boolean algebra of sets $X \subseteq \mathbb{R}_{+}^{n}$ which can be written as

$$
\bigcup_{i=1}^{p} C_{i}
$$

where $p \in \mathbb{N}$ and for all i in $\{1, \ldots, p\}$, the cube C_{i} is n-dimensional.

$$
\begin{gathered}
\left(\bigcup_{i=1}^{p} C_{i}\right) \cap\left(\bigcup_{j=1}^{p^{\prime}} C_{j}^{\prime}\right)=\bigcup_{i=1}^{p} \bigcup_{j=1}^{p^{\prime}}\left(C_{i} \cap C_{j}^{\prime}\right) \\
\left(\bigcup_{i=1}^{p} C_{i}\right)^{c}=\bigcap_{i=1}^{p} C_{i}^{c} \\
C_{i}^{c}=\left(\prod_{k=1}^{n} \mathbb{I}_{k}\right)^{c}=\bigcup_{k=1}^{n} \underbrace{\mathbb{R}^{+} \times \cdots \times \mathbb{R}^{+}}_{k-1 \text { times }} \times \mathbb{I}_{k}^{c} \times \underbrace{\mathbb{R}^{+} \times \cdots \times \mathbb{R}^{+}}_{n-k \text { times }} \\
\left(\bigcup_{i=1}^{p} C_{i}\right) \times\left(\bigcup_{j=1}^{p^{\prime}} C_{j}^{\prime}\right)=\bigcup_{i=1}^{p} \bigcup_{j=1}^{p^{\prime}}\left(C_{i} \times C_{j}^{\prime}\right)
\end{gathered}
$$

Semi-lattice of cubical coverings

A cubical covering \mathcal{C} of dimension n is a finite set of n-dimensional cubes

$$
\mathcal{C} \sqsubseteq \mathcal{C}^{\prime} \quad \text { iff } \quad \forall x \in \mathcal{C} \exists x^{\prime} \in \mathcal{C}^{\prime} \text { s.t. } x \subseteq x^{\prime}
$$

$$
\begin{aligned}
& \mathcal{C} \wedge \mathcal{C}^{\prime}=\left\{x \cap x^{\prime} \mid x \in \mathcal{C} ; x^{\prime} \in \mathcal{C}^{\prime}\right\} \\
& \mathcal{C} \times \mathcal{C}^{\prime}=\left\{x \times x^{\prime} \mid x \in \mathcal{C} ; x^{\prime} \in \mathcal{C}^{\prime}\right\}
\end{aligned}
$$

CPO of sub-cubes of a cubical area

Maximal sub-cubes of a cubical area

A cubical area is the union of its maximal sub-cubes

Cubique areas vs Cubique coverings

A Galois connection

\{Cubical coverings $\} \underset{\gamma}{\stackrel{\alpha}{\rightleftarrows}}\{$ Cubical areas $\}$

$$
\begin{aligned}
\alpha(\mathcal{C}) & :=\bigcup_{X \in \mathcal{C}} X \\
\gamma(\boldsymbol{X}) & :=\{\text { maximal sub-cubes of } \boldsymbol{X}\} \\
& \alpha \circ \gamma=\text { id } \quad \text { and } \quad \text { id } \sqsubseteq \gamma \circ \alpha
\end{aligned}
$$

If the cubical coverings \mathcal{C}_{1} and \mathcal{C}_{2} contain all the maximal sub-cubes of $\alpha\left(\mathcal{C}_{1}\right)$ and $\alpha\left(\mathcal{C}_{2}\right)$, then $\mathcal{C}_{1} \wedge \mathcal{C}_{2}$ contains all the maximal sub-cubes of $\alpha\left(\mathcal{C}_{1}\right) \cap \alpha\left(\mathcal{C}_{2}\right)$

Implementation of the graded Boolean structure

 of the cubical areas of all dimensionsThe Boolean algebra of cubical areas is isomorphic to collection of cubical coverings whose elements are maximal sub-cubes of the area it covers. Concretely, the non-empty n-cubes are words of non-empty intervals of length n. If C and C^{\prime} are two non-empty cubes of dimension n and m, then their Cartesian product $C \times C^{\prime}$ is given by the concatenation of words of intervals. Since we gather all the Boolean algebras of n-cubical areas in a single graded one, we need to pay some attention to the empty sets! Indeed, the empty set \emptyset_{n} of dimension n differs from the empty set \emptyset_{m} of dimension m as soon as $n \neq m$ since their complements (respectively \mathbb{R}_{+}^{n} and \mathbb{R}_{+}^{m}) do. In particular if C is a m-cube, then $\emptyset_{n} \times C=\emptyset_{n+m}$.

Yet, recall that the Boolean algebra of 0 -dimensional cubical areas is $\{0,1\}$. Then 1 is the neutral element of the Cartesian product, this fact comes naturally if we represent it by the singleton whose unique element is the empty word $\{()\}$.

This product obviously extends to cubical area which are represented by sets of cubes. Intersection and Cartesian product are easily computed. The union requires we apply the operator $\gamma \circ \alpha$: if \mathcal{C} and \mathcal{C}^{\prime} represent the cubical areas X and X^{\prime}, then $X \cup X^{\prime}$ is represented by $\gamma \circ \alpha\left(\mathcal{C} \cup \mathcal{C}^{\prime}\right)$.

Complement of a cubical area

a planar example

Complement of a cubical area
 a spatial example

forbidden area

state space

the four "vertical" maximal cubes

Examples

of functions implemented in the OCaml library area.ml

futur_cone

might_go_infinity

Graded action

of the symmetrical groups \mathfrak{S}_{n} for $n \in \mathbb{N}$ over cubical algebra

- Given an n-cube $x=\mathbb{I}_{1} \times \cdots \times \mathbb{I}_{n}$ and a permutation $\sigma \in \mathfrak{S}_{n}$ we define $\sigma \cdot x=\sigma \cdot\left(\mathbb{I}_{1} \times \cdots \times \mathbb{I}_{n}\right):=\mathbb{I}_{\sigma(1)} \times \cdots \times \mathbb{I}_{\sigma(n)}$
- The preceding definition extends to cubical covering $\sigma \cdot \mathcal{C}:=\{\sigma \cdot x \mid x \in \mathcal{C}\}$
- If $\mathcal{C} \sqsubseteq \mathcal{C}^{\prime}$ then $\sigma \cdot \mathcal{C} \sqsubseteq \sigma \cdot \mathcal{C}^{\prime}$
- Given two cubical coverings \mathcal{C}_{1} and \mathcal{C}_{2}, if $\alpha\left(\mathcal{C}_{1}\right)=\alpha\left(\mathcal{C}_{2}\right)$ then $\alpha\left(\sigma \cdot \mathcal{C}_{1}\right)=\alpha\left(\sigma \cdot \mathcal{C}_{2}\right)$ therefore we can define $\sigma \cdot X=\alpha(\sigma \cdot \mathcal{C})$ where \mathcal{C} is any cubical covering such that $\alpha(\mathcal{C})=X$

The monoid of cubical areas

- We identify each cubical area X with is set of maximal sub-cubes since $\gamma(X \times Y)=\gamma(X) \times \gamma(Y)$
- The non-empty cubical areas with Cartesian product forms a free monoid (it is not commutative)

The commutative monoid of cubical areas

- Given n-cubical areas X and Y, write $X \sim Y$ when there exists $\sigma \in \mathfrak{S}_{n}$ s.t. $\sigma \cdot X=Y$
- \sim is a congruence over the monoid of cubical areas i.e. \sim is an equivalence relation and $X \sim X^{\prime}$ and $Y \sim Y^{\prime}$ implies $X \times X^{\prime} \sim Y \times Y$
- The quotient of the monoid of cubical areas by \sim is commutative free

The motivating example

\#mtx a b
\#sem c 3
$\mathrm{pa}=P(\mathrm{a}) \cdot \mathrm{P}(\mathrm{c}) \cdot \mathrm{V}(\mathrm{c}) \cdot \mathrm{V}(\mathrm{a})$
$\mathrm{pb}=P(\mathrm{~b}) \cdot \mathrm{P}(\mathrm{c}) \cdot \mathrm{V}(\mathrm{c}) \cdot \mathrm{V}(\mathrm{b})$
init: pa pb pa pb

$$
\begin{aligned}
& \text { [0,1[*[0,1[*[0,-[*[0,-[} \\
& \text { | [0,1[*[4,-[*[0,-[*[0,-[} \\
& \text { | [0,1[*[0,-[*[0,-[*[0,1[} \\
& \text { | [0,1[*[0,-[*[0,-[*[4,-[} \\
& \text { | [4,-[}{ }^{[}[0,1[*[0,-[*[0,-[\\
& \text { | [4,-[*[4,-[*[0,-[*[0,-[} \\
& \text { | [4,-[*[0,-[*[0,-[*[0,1[} \\
& \text { | [4,-[*[0,-[*[0,-[*[4,-[} \\
& \text { [0,- [*[0,1[*[0,1[*[0,-[} \\
& \text { [0,-[*[0,1[*[4,-[*[0,-[} \\
& \text { [0,-[*[4,-[*[0,1[*[0,-[} \\
& \text { [0,- [*[4,- [*[4,- [*[0,- [} \\
& \text { | [0,-[*[0,-[*[0,1[*[0,1[} \\
& \text { | [0,-[*[0,-[*[0,1[*[4,-[} \\
& \text { | [0,-[}{ }^{[}[0,-[*[4,-[*[0,1[
\end{aligned}
$$

The motivating example

\#mtx a b
\#sem c 3
$\mathrm{pa}=P(\mathrm{a}) \cdot \mathrm{P}(\mathrm{c}) \cdot \mathrm{V}(\mathrm{c}) \cdot \mathrm{V}(\mathrm{a})$
$\mathrm{pb}=P(\mathrm{~b}) \cdot \mathrm{P}(\mathrm{c}) \cdot \mathrm{V}(\mathrm{c}) \cdot \mathrm{V}(\mathrm{b})$
init: pa pa pb pb

[^0]: ${ }^{1}$ in the sequel we identify a small category with its isomorphism class, therefore omit to write "isomorphism classes of"

[^1]: ${ }^{2}$ in the monoid of small categories

