Directed Algebraic Topology and Concurrency

Emmanuel Haucourt
MPRI : Concurrency (2.3)

Thursday, the $28^{\text {th }}$ of January 2010

From discrete to continuous

The discrete semantic of $P(a) \cdot P(b) \cdot V(b) \cdot V(a) \mid P(b) \cdot P(a) \cdot V(a) \cdot V(b)$

By construction, time is "discrete"

An execution trace consists on an interlacing of "atomic" actions. This model does not allow "true concurrency".

From discrete to continuous

The discrete semantic of $P(a) \cdot P(b) \cdot V(b) \cdot V(a) \mid P(b) \cdot P(a) \cdot V(a) \cdot V(b)$

We can locally permute some actions of the given path and thus yield another path which is seen as "equivalent"

But identifying two paths may require many permutations. From a combinatorial point of view, this approach is not efficient.

From discrete to continuous

The discrete semantic of $P(a) . P(b) . V(b) . V(a) \mid P(b) . P(a) . V(a) \cdot V(b)$

Using topology we define a continuous model

The resulting model allows "true concurrency".
The execution traces are represented by the directed paths.

The local permutation of actions are then replaced by (directed) homotopies

The (directed) homotopies actually allow "global" permutation of actions
so they could be combinatorially more efficient provided we find a handy representation

From discrete to continuous

The discrete semantic of $P(a) . P(b) . V(b) . V(a) \mid P(b) . P(a) . V(a) \cdot V(b)$

In fact all equivalent paths between two given points can be easily described as a union of "rectangles" $[0,1] \times[0,5] \cup[0,3] \times[2,5] \cup[0,5] \times[4,5]$

Directed homotopy between directed paths

Usual formal definition

Let X be a pospace and $r, \rho \in \mathbb{R}_{+}$
A directed homotopy is a morphism of pospaces $h \in \mathscr{P}_{o}[[0, r] \times[0, \rho], X]$ such that the mappings

$$
h(0,-): s \in[0, \rho] \mapsto h(0, s) \text { and } h(r,-): s \in[0, \rho] \mapsto h(r, s)
$$

are constant

Directed homotopy between directed paths

h is also a path on the pospace $X^{[0, r]}$ since

$$
h \in \mathcal{P}_{o}[[0, r] \times[0, \rho], X] \cong \mathcal{P}_{o}\left[[0, \rho], X^{[0, r]}\right]
$$

Defining $\gamma:=h(-, \rho)$ and $\delta:=h(-, 0)$, the second point of view leads us to introduce the following notation

Directed Homotopies and Natural Transformations

The directed homotopies formally have the same properties as the natural transformations replacing

> "category" by "point"
> "functor" by "path"
and
"natural transformation" by "directed homotopy"

Congruence over a small category \mathcal{C}

A congruence over \mathcal{C} is an equivalence relation \sim over $\operatorname{Mo}(\mathcal{C})$ such that

1) $\gamma \sim \delta$ implies $\mathrm{s}(\gamma)=\mathrm{s}(\delta)$ and $\mathrm{t}(\gamma)=\mathrm{t}(\delta)$
2) $\gamma \sim \delta, \gamma^{\prime} \sim \delta^{\prime}$ and $\mathrm{s}\left(\gamma^{\prime}\right)=\mathrm{t}(\gamma)$ implies $\gamma^{\prime} \circ \gamma \sim \delta^{\prime} \circ \delta$

Then the we can define the quotient category \mathcal{C} / \sim defining $[\gamma] \circ[\delta]=[\gamma \circ \delta]$ and we have the quotient functor $q: \mathcal{C} \rightarrow \mathcal{C} / \sim$ defining $q(\gamma)=[\gamma]$

The underlying preorder of a small category \mathcal{C}

Comparing paths defined on distinct segments

$$
\begin{aligned}
& \text { Given } \gamma \in \mathcal{P}_{o}[[0, r], X] \text { and } \delta \in \mathcal{P}_{o}\left[\left[0, r^{\prime}\right], X\right] \text { put } \gamma \preccurlyeq \delta \text { when there exist } \\
& \theta \in \mathcal{P}_{O}[[0,1],[0, r]] \text { and } \theta^{\prime} \in \mathcal{P}_{o}\left[[0,1],\left[0, r^{\prime}\right]\right] \text { and a directed homotopy } \\
& \text { from } \gamma \circ \theta \text { to } \delta \circ \theta^{\prime} .
\end{aligned}
$$

Loop-free paths and Regular paths

Let X be a Hausdorff space and $\gamma \in \mathcal{T o p}^{\prime}[[0, r], X]$

- γ is said to be loop-free when $\gamma(t)=\gamma\left(t^{\prime}\right) \Rightarrow \gamma$ is constant on [t, t^{\prime}]
- If X Hausdorff and $\gamma \in \mathcal{T o p}_{o p}[[0, r], X]$ loop-free then $\operatorname{im}(\gamma) \cong[0,1]$ or $\operatorname{im}(\gamma) \cong\{0\}$
- γ is said to be regular when γ constant on $\left[t, t^{\prime}\right] \neq \emptyset$ implies that $t=t^{\prime}$ or $\left[t, t^{\prime}\right]=[0, r]$
- there exist θ_{0}, θ_{1} s.t. $\gamma \circ \theta_{0}=\delta \circ \theta_{1}$ iff there exist $\xi, \theta_{2}, \theta_{3}$ such that $\gamma=\xi \circ \theta_{2}$ and $\delta=\xi \circ \theta_{3}$
- for all γ there exists a regular path γ^{\prime} and θ such that $\gamma=\gamma^{\prime} \circ \theta$
- if $\gamma \circ \theta_{0}=\delta \circ \theta_{1}$ with γ and δ regular, then there exists an φ iso s.t. $\delta=\gamma \circ \varphi$

Reparametrizations and Directed Homotopies

- Let $\gamma \in \mathcal{P}_{O}[[0, r], X]$ then $h(s, t)=\gamma(t)$ is a directed homotopy
- If $\gamma, \delta \in \mathscr{P}_{o}[[0, r], X], \operatorname{im}(\gamma)=\operatorname{im}(\delta)$ and $\gamma \sqsubseteq \delta$ then

$$
h(t, s):=\varphi\left(\varphi^{-1} \circ \gamma(t)+s \cdot\left(\varphi^{-1} \circ \delta(t)-\varphi^{-1} \circ \gamma(t)\right)\right)
$$

is a directed homotopy from γ to δ with $\varphi:[0,1] \xrightarrow{\cong} X$

- If $\gamma, \delta \in \mathscr{P}_{o}[[0, r], X], \operatorname{im}(\gamma)=\operatorname{im}(\delta)$ then we can define the directed path

$$
\gamma \vee \delta: t \in[0, r] \mapsto \max (\gamma(t), \delta(t))
$$

Comparing paths defined on distinct segments

- The relation \preccurlyeq is a preorder (but it is not so easy to prove)
- We denote by \sim the equivalence relation generated by \preccurlyeq i.e. $\gamma \sim \delta$ iff there is a "zigzag" of directed homotopies

- The relation \sim is actually a congruence over $\vec{P}(X)$ as a consequence of the "Godement product" construction

The Fundamental Category functor over Po

The preceding construction gives rise to a functor $\overrightarrow{\pi_{\mathrm{I}}}$ from $P o$ to Cat since for all $f \in \mathcal{P}_{\circ}[X, Y]$ and all directed homotopies h between paths on X, the composite $f \circ h$ is a directed homotopy between paths on Y.

The Fundamental Category functor over Po

The preceding construction gives rise to a functor $\overrightarrow{\pi_{\mathrm{I}}}$ from $P o$ to Cat since for all $f \in \mathcal{P}_{\circ}[X, Y]$ and all directed homotopies h between paths on X, the composite $f \circ h$ is a directed homotopy between paths on Y.

with

$$
\overrightarrow{\pi_{1}}(f): \overrightarrow{\pi_{1}}(X) \longrightarrow \overrightarrow{\pi_{1}}(Y)
$$

The fundamental category of the directed real line $\overrightarrow{\mathbb{R}}$ is the poset (\mathbb{R}, \leqslant) seen as a small category

The fundamental category of the directed real plane $\overrightarrow{\mathbb{R}} \times \overrightarrow{\mathbb{R}}$ is the poset $(\mathbb{R}, \leqslant) \times(\mathbb{R}, \leqslant)$ seen as a small category.
Indeed, given γ and δ sharing the same extremities we define $\gamma \vee \delta$ so
$h(t, s)=(1-s) \cdot \gamma(t)+s \cdot(\gamma \vee \delta)(t)$ and $h^{\prime}(t, s)=(1-s) \cdot \delta(t)+s \cdot(\gamma \vee \delta)(t)$
are directed homotopies
In general we have $\overrightarrow{\pi_{\mathrm{I}}}(X \times Y) \cong \vec{\pi}_{\mathrm{I}}(X) \times \overrightarrow{\pi_{\mathrm{I}}}(Y)$

Two squares on the antidiagonal

One has 9 "components"
In dimension 2 it suffices to draw the "past cones" from bottom left corners and the "future cones" from upper right ones

Holes cast shadows

Holes cast shadows

One has 7 "components"

Corners in holes do not shed any light

Corners in holes do not shed any light

Corners in holes do not shed any light

Corners in holes do not shed any light

Corners in holes do not shed any light

Corners in holes do not shed any light

One has 4 "components"

The floating cube

Up to directed homotopy equivalence, there is a unique directed path from $(0,0,0)$ to $(3,3,3)$

The floating cube
ss the picture suggests, there are 26 "components"

