Directed Algebraic Topology and Concurrency

Emmanuel Haucourt
MPRI : Concurrency (2.3)

Monday, the $30^{\text {th }}$ of January 2012

Control Flow Graph (CFG)

```
input x;
while x<>1
    do
    if }\textrm{x}\operatorname{mod}2=
    then x:=x/2
    else x:=3*x+1
    done
```


Control Flow Graph (CFG)

```
inputt x;
while x<>1
```

do
if $x \bmod 2=0$
then $x:=x / 2$
else $x:=3 * x+1$
done

Control Flow Graph (CFG)

An execution trace

$$
\alpha \delta \gamma \delta \gamma \delta
$$

An execution trace

$$
\alpha \delta \gamma \delta \gamma \delta(\gamma)
$$

An execution trace

$$
\alpha \delta \gamma \delta \gamma \delta \gamma \bigodot
$$

An execution trace

An execution trace

$$
\alpha \delta \gamma \delta \gamma \delta \gamma \gamma \delta \gamma
$$

An execution trace

$$
\alpha \delta \gamma \delta \gamma \delta \gamma \gamma \delta \gamma \oslash
$$

An execution trace

$$
\alpha \delta \gamma \delta \gamma \delta \gamma \gamma \delta \gamma \gamma \curlyvee
$$

An execution trace

$\alpha{ }^{\gamma} \gamma \delta \gamma \delta \gamma \gamma \delta \gamma \gamma \gamma$ ©

An execution trace

$$
\alpha \delta \gamma \delta \gamma \delta \gamma \gamma \delta \gamma \gamma \gamma \delta \gamma)
$$

An execution trace

$$
\alpha \delta \gamma \delta \gamma \delta \gamma \gamma \delta \gamma \gamma \gamma \delta \gamma \circlearrowleft
$$

An execution trace

An execution trace

$$
\alpha \delta \gamma \delta \gamma \delta \gamma \gamma \delta \gamma \gamma \gamma \delta \gamma \gamma \gamma \gamma
$$

An execution trace

Execution traces of a program

as paths over its CFG

- Any execution trace induces a path
- Some paths do not come from an execution trace

Execution traces of a program

as paths over its CFG

- Any execution trace induces a path
- Some paths do not come from an execution trace

Therefore the collection of path provides a (strict) overapproximation of the collection of execution traces

Execution traces of a program

as paths over its CFG

- Any execution trace induces a path
- Some paths do not come from an execution trace

Therefore the collection of path provides a (strict) overapproximation of the collection of execution traces

The (infinite) collection of paths is entirely determined by the (finite) CFG

The overall idea of static analysis

The model of a program should be the finite representation of an overapproximation of the collection of all its execution traces.

Category \mathcal{C}
 Definition (the "underlying graph" part)

$\mathrm{Ob}(\mathcal{C}):$ collection of objects
$\mathrm{Mo}(\mathcal{C}):$ collection of morphisms
s, t : mappings source, target as follows

$$
\mathrm{Mo}(\mathcal{C}) \xrightarrow{\stackrel{s}{\longrightarrow}} \mathrm{Ob}(\mathcal{C})
$$

We define the homset $\mathcal{C}[x, y]:=\{\gamma \in \operatorname{Mo}(\mathcal{C}) \mid \mathrm{s}(\gamma)=x$ and $\mathrm{t}(\gamma)=y\}$

Category \mathcal{C}
 Definition (the "underlying local monoid" part)

id : provides each object with an identity

$$
\mathrm{Mo}(\mathcal{C}) \underset{t}{\stackrel{s}{\leftrightarrows-\mathrm{id}}} \mathrm{Ob}(\mathcal{C})
$$

The (local) composition is a partially defined binary operation often denoted by \circ

$$
\{(\gamma, \delta) \mid \gamma, \delta \text { morphisms of } \mathcal{C} \text { s.t. } \mathrm{s}(\gamma)=\mathrm{t}(\delta)\} \xrightarrow{\text { composition }} \mathrm{Mo}(\mathcal{C})
$$

Category \mathcal{C}

Definition (the axioms)

The composition law is associative For all morphisms γ one has $\mathrm{id}_{\mathrm{t}(\gamma)} \circ \gamma=\gamma=\gamma \circ \mathrm{id}_{\mathrm{s}(\gamma)}$

For all objects x one has $s\left(i d_{x}\right)=x=t\left(\mathrm{id}_{x}\right)$

Category of paths (1)

freely generated by a graph

- I_{n} is the finite linear order with $n+1$ elements

- A path γ on G is a morphism of graphs from I_{n} to G
- The source and the target of γ are $\gamma(0)$ and $\gamma(n)$

Category of paths (2)

freely generated by a graph

- Given two paths $\gamma\left(\right.$ over $\left.I_{n}\right)$ and $\delta\left(\right.$ over $\left.I_{m}\right)$ such that $\operatorname{tgt}(\delta)=\operatorname{src}(\gamma)$ we can define the concatenation $\delta \cdot \gamma$ as the following path

$$
\begin{aligned}
I_{n+m} & \longrightarrow G \\
& k \longmapsto \begin{cases}\delta(\vec{k}) & \text { if } 0 \leqslant k<n \\
\gamma(\overrightarrow{k-n}) & \text { if } n \leqslant k<n+m\end{cases}
\end{aligned}
$$

where \vec{k} stands for the arrow $(k, k+1)$ of I_{n}

- The concatenation is associative
- If $\gamma\left(\right.$ resp. δ) is defined over I_{0} then $\delta \cdot \gamma=\delta$ (resp. γ)

We defined $\mathrm{F}(\mathrm{G})$ also called the Free Category over G.

Model of a sequential program P with G_{P} the control flow graph of P

The model of the program is defined as the category of paths over its control flow graph

$$
\llbracket P \rrbracket:=F\left(G_{p}\right)
$$

Cartesian product
 in Set

$$
A \times B:=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

There exist two mappings π_{A} and π_{B}

$$
\begin{aligned}
\pi_{A}: A \times B & \longrightarrow A & \pi_{B}: A \times B & \longrightarrow B \\
(a, b) & \longmapsto a & & (a, b)
\end{aligned}>b
$$

such that for all sets X the following map is a bijection

$$
\begin{aligned}
\operatorname{Set}[X, A \times B] & \longrightarrow \operatorname{Set}[X, A] \times \operatorname{Set}[X, B] \\
h & \longmapsto\left(\pi_{A} \circ h, \pi_{B} \circ h\right)
\end{aligned}
$$

Cartesian product
 in a category C

The object c is the Cartesian product (in \mathcal{C}) of a and b when there exist two morphisms $\pi_{a}: c \rightarrow a$ and $\pi_{b}: c \rightarrow b$ such that for all objects x of \mathcal{C} the following map is a bijection

$$
\begin{aligned}
\mathcal{C}[x, c] & \longrightarrow \mathcal{C}[x, a] \times \mathcal{C}[x, b] \\
h & \longmapsto\left(\pi_{a} \circ h, \pi_{b} \circ h\right)
\end{aligned}
$$

When such an object c exists we write $c=a \times b$

Cartesian products
 modelling Concurrency

A family P_{1}, \ldots, P_{n} of programs is independent if

$$
\llbracket P_{1}|\cdots| P_{n} \rrbracket \cong \llbracket P_{1} \rrbracket \times \cdots \times \llbracket P_{n} \rrbracket
$$

Example

Cartesian product in the category of graphs (Grph)

The elements of V are the vertices and those of A are the arrows In particular A and V are sets

Objects Morphisms Composition

with $\mathrm{s}^{\prime}\left(\phi_{1}(\alpha)\right)=\phi_{0}(\mathrm{~s}(\alpha))$ and $\mathrm{t}^{\prime}\left(\phi_{1}(\alpha)\right)=\phi_{0}(\mathrm{t}(\alpha)$

Example

Cartesian product in the category of graphs (Grph)

The elements of V are the vertices and those of A are the arrows In particular A and V are sets

$$
\begin{aligned}
& \text { Objects Morphisms Composition }
\end{aligned}
$$

$$
\begin{aligned}
& \text { with } \mathrm{s}^{\prime}\left(\phi_{1}(\alpha)\right)=\phi_{0}(\mathrm{~s}(\alpha)) \text { and } \mathrm{t}^{\prime}\left(\phi_{1}(\alpha)\right)=\phi_{0}(\mathrm{t}(\alpha) \\
& \left(\begin{array}{c}
A \\
\mathrm{t} \| \\
\forall \downarrow \\
V
\end{array}\right) \times\left(\begin{array}{c}
A^{\prime} \\
\mathrm{t}^{\prime} \downarrow{ }^{\prime} \downarrow \mathrm{s}^{\prime} \\
V V^{\prime} \\
V^{\prime}
\end{array}\right) \cong\left(\begin{array}{c}
A \times A^{\prime} \\
\mathrm{t} \times \mathrm{t}^{\prime} \downarrow \downarrow \mathrm{s} \times \mathrm{s}^{\prime} \\
V \times V^{\prime}
\end{array}\right)
\end{aligned}
$$

The Cartesian product in Grph is deduced form the Cartesian product in Set

Two simple sequential programs

Two simple sequential processes running concurrently What goes wrong with the graphs

What we have
product in Grph

What we expect product in Cat

Two simple sequential processes running concurrently What goes wrong with the graphs

What we have
product in Grph
What we expect product in Cat

Given two graphs G and G^{\prime} we have

$$
F\left(G \times G^{\prime}\right) \not \not F F(G) \times F\left(G^{\prime}\right)
$$

Topological spaces

reminder

A topological space is a set X and a collection $\Omega_{X} \subseteq \mathcal{P}(X)$ s.t.

Topological spaces

reminder

A topological space is a set X and a collection $\Omega_{X} \subseteq \mathcal{P}(X)$ s.t.

1) $\emptyset \in \Omega_{X}$ and $X \in \Omega_{X}$

Topological spaces

reminder

A topological space is a set X and a collection $\Omega_{X} \subseteq \mathcal{P}(X)$ s.t.

1) $\emptyset \in \Omega_{X}$ and $X \in \Omega_{X}$
2) Ω_{X} is stable under union

Topological spaces

reminder

A topological space is a set X and a collection $\Omega_{X} \subseteq \mathcal{P}(X)$ s.t.

1) $\emptyset \in \Omega_{X}$ and $X \in \Omega_{X}$
2) Ω_{X} is stable under union
3) Ω_{X} is stable under finite intersection

Topological spaces

reminder

A topological space is a set X and a collection $\Omega_{X} \subseteq \mathcal{P}(X)$ s.t.

1) $\emptyset \in \Omega_{X}$ and $X \in \Omega_{X}$
2) Ω_{X} is stable under union
3) Ω_{X} is stable under finite intersection

A continuous map $f:\left(X, \Omega_{X}\right) \rightarrow\left(Y, \Omega_{Y}\right)$ is a map $f: X \rightarrow Y$ s.t.

$$
\forall U \in \Omega_{Y} f^{-1}(U) \in \Omega_{X}
$$

Topological spaces

reminder

A topological space is a set X and a collection $\Omega_{X} \subseteq \mathcal{P}(X)$ s.t.

1) $\emptyset \in \Omega_{X}$ and $X \in \Omega_{X}$
2) Ω_{X} is stable under union
3) Ω_{X} is stable under finite intersection

A continuous map $f:\left(X, \Omega_{X}\right) \rightarrow\left(Y, \Omega_{Y}\right)$ is a map $f: X \rightarrow Y$ s.t.

$$
\forall U \in \Omega_{Y} f^{-1}(U) \in \Omega_{X}
$$

Topological spaces and continuous maps form the category $\mathcal{T}_{\text {op }}$

Two simple sequential processes running concurrently The topological model

Working in Top instead of Grpf we have

Functors f from \mathcal{C} to \mathcal{D}
 Definition (preserving the "underlying graph")

A functor $f: \mathcal{C} \rightarrow \mathcal{D}$ is defined by two "mappings" $\mathrm{Ob}(f)$ and $\operatorname{Mo}(f)$ such that

$$
\text { with } \mathrm{s}^{\prime}(\operatorname{Mo}(f)(\alpha))=\mathrm{Ob}(f)(\mathrm{s}(\alpha)) \text { and } \mathrm{t}^{\prime}(\operatorname{Mo}(f)(\alpha))=\operatorname{Ob}(f)(\mathrm{t}(\alpha))
$$

Hence it is in particular a morphism of graphs.

Functors f from \mathcal{C} to \mathcal{D}

Definition (preserving the "underlying local monoid")

The "mappings" $\mathrm{Ob}(f)$ and $\mathrm{Mo}(f)$ also make the following diagram commute

and satisfies $\operatorname{Mo}(f)(\gamma \circ \delta)=\operatorname{Mo}(f)(\gamma) \circ \operatorname{Mo}(f)(\delta)$

Functors compose as morphisms of graphs do

Hence the functors should be thought of as the morphisms of categories
The small categories and their funtors form a (large) category denoted by Cat

Isomorphisms

of a category \mathcal{C}

A morphism $\gamma \in \mathcal{C}[x, y]$ is an isomorphism when there exists $\delta \in \mathcal{C}[y, x]$ s.t.

$$
\gamma \circ \delta=\mathrm{id}_{\mathrm{t}(\gamma)} \text { and } \delta \circ \gamma=\mathrm{id}_{\mathrm{s}(\gamma)}
$$

In this case δ is unique and we write $\delta=\gamma^{-1}$

$$
x \underset{\delta=\gamma^{-1}}{<} y
$$

We also say that x and y are isomorphic which is denoted by $x \cong y$ A category in which every morphism is an isomorphism is called a groupoid

The overall idea of Algebraic Topology

Any functor preserve the isomorphisms

Problem: prove the topological spaces X and Y are not the same Strategy: find a functor F defined over \mathcal{T} op such that $F(X) \neq F(Y)$

In this case, if $X=\llbracket P \rrbracket$ and $Y=\llbracket Q \rrbracket$ then the programs P and Q do not have the same behaviour.

The connected component functor

from Top to Set

1) A topologcial space X is the disjoint sum of its connected components
2) Any connected subset of X is contained in a connected component of X
3) Any continuous direct image of a connected subset of X is connected

Moreover we have $\pi_{0}(g \circ f)=\pi_{0}(g) \circ \pi_{0}(f)$

An application involving basic (algebraic) topology

The continuous image of a connected space is connected

The image of the space B is entirely contained in a connected component of the space V .

The set of connected components

is a functorial construction

This situation is abstracted by classifying continuous maps from B to V according to which connected component (V_{1} or V_{2}) the single connected components of B (namely B itself) is sent to. There are exactly two set theoretic maps from the singleton $\{B\}$ to the pair $\left\{V_{1}, V_{2}\right\}$ hence there is at most (in fact exactly) two kinds of continuous maps from B to V.

$$
\{B\} \Longrightarrow\left\{V_{1}, V_{2}\right\}
$$

In particular B and V are not homeomorphic.

Application

The compact interval and the circle are not homeomorphic

Let $\mathbb{S}^{1}:=\{z \in \mathbb{C}| | z \mid=1\}$ be the Euclidean circle.
Suppose $\varphi:[0,1] \rightarrow \mathbb{S}^{1}$ is a homeomorphism. Then φ induces a homeomorphism

$$
\left[0, \frac{1}{2}[\cup] \frac{1}{2}, 1\right] \rightarrow \mathbb{S}^{1} \backslash\left\{\varphi\left(\frac{1}{2}\right)\right\}
$$

which does not exist!

Generalization

These topological spaces are pairwise not homeomorphic. Why ?

Examples of large categories
 used in (directed) algebraic topology

Set : sets and mappings
Top : topological spaces and continuous maps
$\mathcal{P}_{\text {re }}$: preordered sets and preorder preserving maps
Pos : partially ordered sets and order preserving maps
Mon : Monoids and their morphisms
Cmon: Commutative monoids and their morphisms
$G r$: Groups and their morphisms
$\mathfrak{A b}$: Abelian groups and their morphisms

Example of small categories

(\mathbb{N}, \leqslant) : set of objects \mathbb{N} (guess the remaining)
$(\mathbb{N},+, 0)$: set of morphisms \mathbb{N}
(guess the remaining)
The same way, any poset or monoid can be seen as a small category
$F(G)$: The category freely generated by the graph G

The Prolaag-Verhogen language

Edsger Wybe Dijkstra (1968)
\mathcal{S} : set of semaphores and $\alpha: \mathcal{S} \rightarrow \mathbb{N} \backslash\{0,1\}$ associates each semaphore s with its arity $\alpha_{\mathrm{s}} \geq 2$.
Hypothesis: For all $\alpha \geq 2$, there exist infinitely many semaphores whose arity is α. $P(s)$ and $V(s)$ are the only instructions (where $s \in \mathcal{S}$) of the language.
A processes P is a finite sequence of instructions, $P(j)$ the $j^{\text {th }}$ instruction with $j \geqslant 1$.

$$
P(a) \cdot V(a) \quad \text { and } \quad P(a) \cdot P(b) \cdot V(a) \cdot V(b)
$$

A PV program is a finite sequence of processes

$$
\begin{gathered}
P(a) \cdot V(a) \mid P(a) \cdot V(a) \\
P(a) \cdot P(b) \cdot V(a) \cdot V(b) \mid P(b) \cdot P(a) \cdot V(b) \cdot V(a)
\end{gathered}
$$

Therefore a PV program can be seen as a matrix of instructions each line of which being a process. The operator . bounds tighter that the operator I

PV Programs as heterogeneous matrices of instructions

PV program $=$ vector of processes \vec{P}
$\vec{P}_{i}=i^{\text {th }}$ process of the program
$\vec{P}_{i}(j)=j^{\text {th }}$ instruction of the $i^{\text {th }}$ process.
$l_{i}=$ number of instructions of the process \vec{P}_{i} (indexed from 1 to l_{i})

$$
\operatorname{dom}(\vec{P}):=\left\{0, \ldots, l_{1}\right\} \times \cdots \times\left\{0, \ldots, I_{n}\right\}
$$

One has intentionally included 0

Intuition

- P stands for "prolaag" (short for "probeer te verlagen" i.e. "try to reduce" in Dutch) and $\mathrm{P}(\mathrm{s})$ means: take an occurence of the semaphore s from the pool of resources, but wait if none is available.
- V stands for "verhogen" ("increase" in Dutch) and V (s) means: release an occurence of the semaphore s, if the process trying to perform this action does not hold any occurence of s then the instruction is just ignored and the process keeps on running.

An example of trace

T_{1}	$\mathrm{~T}_{2}$
Pa	-
Pb	-
Va	-
Vb	-
-	Pb
-	Pa
-	Vb
-	Va

Another example of trace

T_{1}	$\mathrm{~T}_{2}$
Pa	-
-	Pb

Semaphore held by a process

The real positive half-line is $\mathbb{R}_{+}=[0,+\infty[$
For each process P, each semaphore s and each point $x \in \mathbb{R}_{+}$, we define

$$
\begin{aligned}
& a_{x}:=\max \{k \in \mathbb{N} \mid k \leq x \text { et } P(k)=\mathrm{P}(\mathrm{~s})\} \\
& a_{x}:=\min \left\{k \in \mathbb{N} \mid a_{x} \leq k \text { et } P(k)=\mathrm{V}(\mathrm{~s})\right\}
\end{aligned}
$$

with the (unusual) convention that $\max \emptyset=\min \emptyset=\infty$.
The occupied/held part of s is

$$
B_{\mathbf{s}}(P):=\left\{x \in \mathbb{R}_{+} \mid x \in\left[a_{x}, b_{x}[\}\right.\right.
$$

Example

The forbidden area generated by a semaphore s of a PV program $\vec{P}=P_{1}|\ldots| P_{n}$

The indicator function of the set $B_{\mathrm{s}}(P)$

$$
\begin{aligned}
\chi_{P}^{\mathbf{s}}: & \mathbb{R}_{+} \\
& x \\
x & \longmapsto 0,1\} \\
& \longmapsto \begin{cases}1 & \text { if } x \in B_{\mathrm{s}}(P) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

For $\vec{f}:=\left(f_{1}, \ldots, f_{n}\right) n$-uple of functions $\mathbb{R}_{+} \rightarrow \mathbb{R}$ and $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n}$

$$
\vec{f} \cdot \vec{x}:=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)
$$

Let $\vec{\chi}$ be the n-uple ($\chi_{P_{1}}^{\mathbf{s}}, \ldots, \chi_{P_{n}}^{\mathbf{s}}$) of indicators of the sets $B_{\mathbf{s}}\left(P_{1}\right), \ldots, B_{\mathbf{s}}\left(P_{n}\right)$ The forbidden region generated by s of arity α is

$$
F_{\mathrm{s}}:=\left\{\vec{x} \in \mathbb{R}_{+}^{n} \mid \vec{\chi} \cdot \vec{x} \geq \alpha\right\}
$$

Forbidden area and Model of a PV program $\vec{P}=P_{1}|\ldots| P_{n}$

The forbidden area of the program \vec{P} is

$$
F:=\bigcup_{\mathrm{s} \in \mathcal{S}} F_{\mathrm{s}}
$$

The model is the set theoretic complement (relatively to \mathbb{R}_{+}^{n}) of its forbidden area.

$$
\llbracket P_{1}|\ldots| P_{n} \rrbracket:=\mathbb{R}_{+}^{n} \backslash F
$$

Example

If we were working in $\mathbb{R}_{+} \times \mathbb{R}_{+}$then all the points of the grey square should be removed.

Why topology is not enough

Taking direction into account

The following spaces are homeomorphic though the first one has no local maximum

Why topology is not enough

Topological spaces

The homset $\mathcal{T o p}_{\text {op }}[[0,1], \llbracket \vec{P} \rrbracket]$ still contains elements which do not correspond to any execution trace

Partially Ordered Spaces or Pospaces
 Leopoldo Nachbin (1968)

A pospace is a topological space X and a partial order \sqsubseteq over the underling set of X s.t.

$$
\{(x, y) \in X \times X \mid x \sqsubseteq y\} \text { is closed in } X \times X
$$

The morphisms of pospaces are the continuous order preserving maps
The pospaces and their morphisms form the category P_{O}
The real line \mathbb{R} (with its standard topology and order) provides a pospace
The products \mathbb{R}^{n} with the product topology and product order are pospaces
Any subset of a pospace inherits a pospace structure

Models of PV program

The previous topological model $\llbracket \vec{P} \rrbracket$ inherits a pospace structures as a subset of \mathbb{R}^{n}
The paths on a pospace X are the elements of the homset

$$
\mathcal{P}_{o}[[0,1], X]
$$

$\forall \gamma \in \mathscr{P}_{o}[[0,1], X], \gamma$ is constant iff $\gamma(0)=\gamma(1)$
$\forall \gamma \in \mathscr{P}_{o}[[0,1],[0,1]], \gamma$ is onto (surjective) iff $\gamma(0)=0$ and $\gamma(1)=1$

Paths and Execution traces

Theorem

Given a $P V$ program \vec{P}, any element of $P_{o}[[0,1], \llbracket \vec{P} \rrbracket]$ induces an execution trace of \vec{P} and conversely, any execution trace of \vec{P} is induced by some element of $P_{o}[[0,1], \llbracket \vec{P} \rrbracket]$

Direct image of paths on a pospaces

Characterization

The direct image $\operatorname{im}(f)$ of any $f \in \mathcal{P}_{\rho}[X, Y]$ inherits a pospace struture still denoted by $\operatorname{im}(f)$

Theorem

Given a pospace X and $\gamma \in \mathcal{P}_{o}[[0,1], X]$, we have $\operatorname{im}(\gamma) \cong\{*\}$ or $\operatorname{im}(\gamma) \cong[0,1]$

