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Introducing Direction
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The algebraic topologist way

Control Flow Graph (CFG)

input x;

while x<>1

do

if x mod 2 = 0

then x:=x/2

else x:=3*x+1

done
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x = 1

input x;

while x<>1

do

if x mod 2 = 0

then x:=x/2

else x:=3*x+1

done
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input x;

while x<>1

x 6= 1

do

if x mod 2 = 0

then x:=x/2

else x:=3*x+1

done
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Introduction
The PV language

Introducing Direction

Discrete vs Topological
The algebraic topologist way

Control Flow Graph (CFG)

input x;

while x<>1

do

if x mod 2 = 0

x is even

then x:=x/2

else x:=3*x+1

done
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Control Flow Graph (CFG)

input x;

while x<>1

do

if x mod 2 = 0

x is odd

then x:=x/2

else x:=3*x+1

done
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Introduction
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Introducing Direction

Discrete vs Topological
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Control Flow Graph (CFG)

input x;

while x<>1

do

if x mod 2 = 0

then x:=x/2

else x:=3*x+1

done

ω

α

γ δ

α stands for input x

ω stands for “exit”

γ stands for x:=x/2

δ stands for x:=3*x+1
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

then x:=x/2

else x:=3*x+1

done

ω

α

γ δ
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Introducing Direction
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An execution trace

input x; x = 7

while x<>1

do

if x mod 2 = 0

then x:=x/2

else x:=3*x+1

done

ω

αα

γ δ

αα
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Introducing Direction

Discrete vs Topological
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 22

then x:=x/2

else x:=3*x+1

done

ω

α

γ δδ

α δδ
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 11

then x:=x/2

else x:=3*x+1

done

ω

α

γγ δ

α δ γγ
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 34

then x:=x/2

else x:=3*x+1

done

ω

α

γ δδ

α δ γ δδ
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 17

then x:=x/2

else x:=3*x+1

done

ω

α

γγ δ

α δ γ δ γγ
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 52

then x:=x/2

else x:=3*x+1

done

ω

α

γ δδ

α δ γ δ γ δδ
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 26

then x:=x/2

else x:=3*x+1

done

ω

α

γγ δ

α δ γ δ γ δ γγ
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 13

then x:=x/2

else x:=3*x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γγ
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 40

then x:=x/2

else x:=3*x+1

done

ω

α

γ δδ

α δ γ δ γ δ γ γ δδ
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 20

then x:=x/2

else x:=3*x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γγ
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 10

then x:=x/2

else x:=3*x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γ γγ
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 5

then x:=x/2

else x:=3*x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γ γ γγ
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 16

then x:=x/2

else x:=3*x+1

done

ω

α

γ δδ

α δ γ δ γ δ γ γ δ γ γ γ δδ
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 8

then x:=x/2

else x:=3*x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γ γ γ δ γγ
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The algebraic topologist way

An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 4

then x:=x/2

else x:=3*x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γ γ γ δ γ γγ
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Introducing Direction
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

x = 2

then x:=x/2

else x:=3*x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γ γ γ δ γ γ γγ
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An execution trace

input x;

while x<>1

x = 1

do

if x mod 2 = 0

then x:=x/2

else x:=3*x+1

done

ω

α

γγ δ

α δ γ δ γ δ γ γ δ γ γ γ δ γ γ γ γγ
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An execution trace

input x;

while x<>1

do

if x mod 2 = 0

then x:=x/2

else x:=3*x+1

done

ωω

α

γ δ

α δ γ δ γ δ γ γ δ γ γ γ δ γ γ γ γ ωω
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Execution traces of a program
as paths over its CFG

- Any execution trace induces a path
- Some paths do not come from an execution trace

Therefore the collection of path provides a (strict) overapproximation of
the collection of execution traces

The (infinite) collection of paths is entirely determined by the (finite)

CFG
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Execution traces of a program
as paths over its CFG

- Any execution trace induces a path
- Some paths do not come from an execution trace

Therefore the collection of path provides a (strict) overapproximation of
the collection of execution traces

The (infinite) collection of paths is entirely determined by the (finite)

CFG
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The overall idea
of static analysis

The model of a program should be the finite representation of an

overapproximation of the collection of all its execution traces.
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Category C
Definition (the “underlying graph” part)

Ob(C) : collection of objects

Mo(C) : collection of morphisms

s, t : mappings source, target as follows

Mo(C)
s //

t
// Ob(C)

We define the homset C[x , y ] :=
{
γ ∈ Mo(C)

∣∣∣ s(γ) = x and t(γ) = y
}
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Category C
Definition (the “underlying local monoid” part)

id : provides each object with an identity

Mo(C)
s //

t
// Ob(C)idoo

The (local) composition is a partially defined binary operation often denoted by ◦

{
(γ, δ)

∣∣ γ, δ morphisms of C s.t. s(γ) = t(δ)
} composition // Mo(C)
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Category C
Definition (the axioms)

t(δ) = s(γ)

γ

$$JJJJJJJJJ

s(δ)

δ

::ttttttttt

γ◦δ
// t(γ)

The composition law is associative
For all morphisms γ one has idt(γ) ◦ γ = γ = γ ◦ ids(γ)

idx
x

For all objects x one has s(idx ) = x = t(idx )
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Category of paths (1)
freely generated by a graph

- In is the finite linear order with n + 1 elements

0 1 2 3
. . .

n

- A path γ on G is a morphism of graphs from In to G

- The source and the target of γ are γ(0) and γ(n)
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Category of paths (2)
freely generated by a graph

- Given two paths γ (over In) and δ (over Im) such that tgt(δ) = src(γ)
we can define the concatenation δ · γ as the following path

In+m
// G XXXXXXXXXXXXXXXXXX

k
� //

{
δ(−→k ) if 0 6 k < n
γ(−−−→k − n) if n 6 k < n + m

where
−→
k stands for the arrow (k , k + 1) of In

- The concatenation is associative

- If γ (resp. δ) is defined over I0 then δ · γ = δ (resp. γ)

We defined F(G) also called the Free Category over G .
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Model of a sequential program P
with GP the control flow graph of P

The model of the program is defined as the category of paths over
its control flow graph

JPK := F (Gp)
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Cartesian product
in Set

A× B :=
{

(a, b)
∣∣ a ∈ A and b ∈ B

}

There exist two mappings πA and πB

πA : A× B // A

(a, b)
� // a

XXXXXXπB : A× B // B

(a, b)
� // b

such that for all sets X the following map is a bijection

Set [X ,A×B] // Set [X ,A]×Set [X ,B]

h
� // ( πA◦h , πB◦h )
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Cartesian product
in a category C

The object c is the Cartesian product (in C) of a and b when there exist two
morphisms πa : c → a and πb : c → b such that for all objects x of C the following

map is a bijection

C[x , c] // C[x , a]×C[x , b]

h
� // ( πa◦h , πb◦h )

When such an object c exists we write c = a× b
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Cartesian products
modelling Concurrency

A family P1, . . . ,Pn of programs is independent if

JP1| · · · |PnK ∼= JP1K× · · · × JPnK
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Example
Cartesian product in the category of graphs (Grph)

The elements of V are the vertices and those of A are the arrows
In particular A and V are sets

ObjectsXXXXMorphismsXXXXXXXXXXCompositionXXXXXX

A

t

��
s

��

A

t

��
s

��

φ1 // A′

t′

��
s′

��

A

t

��
s

��

φ1 // A′

t′

��
s′

��

ψ1 // A′′

t′′

��
s′′

��
V V

φ0

// V ′ V
φ0

// V ′
ψ0

// V ′′

with s′(φ1(α)) = φ0(s(α)) and t′(φ1(α)) = φ0(t(α)


A

s

��
t

��
V

×


A′

s′

��
t′

��
V ′

 ∼=


A× A′

s×s′

��
t×t′

��
V × V ′


The Cartesian product in Grph is deduced form the Cartesian product in Set
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Example
Cartesian product in the category of graphs (Grph)

The elements of V are the vertices and those of A are the arrows
In particular A and V are sets

ObjectsXXXXMorphismsXXXXXXXXXXCompositionXXXXXX

A

t

��
s

��

A

t

��
s

��

φ1 // A′

t′

��
s′

��

A

t

��
s

��

φ1 // A′

t′

��
s′

��

ψ1 // A′′

t′′

��
s′′

��
V V

φ0

// V ′ V
φ0

// V ′
ψ0

// V ′′

with s′(φ1(α)) = φ0(s(α)) and t′(φ1(α)) = φ0(t(α)
A

s

��
t

��
V

×


A′

s′

��
t′

��
V ′

 ∼=


A× A′

s×s′

��
t×t′

��
V × V ′


The Cartesian product in Grph is deduced form the Cartesian product in Set

44



Introduction
The PV language

Introducing Direction

Discrete vs Topological
The algebraic topologist way

Two simple sequential programs

• print "Alfred" // •

•
print "Bertrand"

// •
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Two simple sequential processes running concurrently
What goes wrong with the graphs

XXXXXXXWhat we haveXXXXXWhat we expectXXXXX
XXXXXXproduct in GrphXXXXXproduct in CatXXXXX

p
r
i
n
t
 
"
B
e
r
t
r
a
n
d
"

print "Alfred"

p
r
i
n
t
 
"
B
e
r
t
r
a
n
d
"

print "Alfred"

Given two graphs G and G ′ we have
F (G × G ′) 6∼= F (G )× F (G ′)
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What goes wrong with the graphs

XXXXXXXWhat we haveXXXXXWhat we expectXXXXX
XXXXXXproduct in GrphXXXXXproduct in CatXXXXX

p
r
i
n
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B
e
r
t
r
a
n
d
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p
r
i
n
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B
e
r
t
r
a
n
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Given two graphs G and G ′ we have
F (G × G ′) 6∼= F (G )× F (G ′)
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Topological spaces
reminder

A topological space is a set X and a collection ΩX ⊆ P(X ) s.t.

1) ∅ ∈ ΩX and X ∈ ΩX

2) ΩX is stable under union
3) ΩX is stable under finite intersection

A continuous map f : (X ,ΩX )→ (Y ,ΩY ) is a map f : X → Y s.t.

∀U ∈ ΩY f -1(U) ∈ ΩX

Topological spaces and continuous maps form the category Top
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Topological spaces
reminder

A topological space is a set X and a collection ΩX ⊆ P(X ) s.t.

1) ∅ ∈ ΩX and X ∈ ΩX

2) ΩX is stable under union
3) ΩX is stable under finite intersection

A continuous map f : (X ,ΩX )→ (Y ,ΩY ) is a map f : X → Y s.t.

∀U ∈ ΩY f -1(U) ∈ ΩX

Topological spaces and continuous maps form the category Top
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Two simple sequential processes running concurrently
The topological model

Working in Top instead of Grph we have
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Functors f from C to D
Definition (preserving the “underlying graph”)

A functor f : C → D is defined by two “mappings” Ob(f ) and Mo(f ) such that

Mo(C)
s //
t

//

Mo(f )

��

Ob(C)

Ob(f )

��
Mo(D)

s’ //
t’

// Ob(D)

with s′(Mo(f )(α)) = Ob(f )(s(α)) and t′(Mo(f )(α)) = Ob(f )(t(α))

Hence it is in particular a morphism of graphs.
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Functors f from C to D
Definition (preserving the “underlying local monoid”)

The “mappings” Ob(f ) and Mo(f ) also make the following diagram commute

Mo(C)

Mo(f )

��

Ob(C)
idoo

Ob(f )

��
Mo(D) Ob(D)

id′
oo

and satisfies Mo(f )(γ ◦ δ) = Mo(f )(γ) ◦Mo(f )(δ)

x
GF ED

γ◦δ

��

δ
// y

γ
// z f (x)

GF ED
f (γ◦δ)

��

f (δ)
// f (y)

f (γ)
// f (z)
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Functors compose as morphisms of graphs do

Mo(C)

s

��

t

��

Mo(f )
//

GF ED
Mo(g◦f )

��

Mo(D)
Mo(g)

//

s′

��

t′

��

Mo(E)

s′′

��

t′′

��

Ob(C)
Ob(f )

//@A BC
Ob(g◦f )

OO
Ob(D)

Ob(g)
// Ob(E)

Hence the functors should be thought of as the morphisms of categories

The small categories and their funtors form a (large) category denoted by Cat
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Isomorphisms
of a category C

A morphism γ ∈ C[x , y ] is an isomorphism when there exists δ ∈ C[y , x] s.t.

γ ◦ δ = idt(γ) and δ ◦ γ = ids(γ)

In this case δ is unique and we write δ = γ-1

x
γ=δ-1

// y
δ=γ-1

oo

We also say that x and y are isomorphic which is denoted by x ∼= y
A category in which every morphism is an isomorphism is called a groupoid
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The overall idea of Algebraic Topology

Any functor preserve the isomorphisms

Problem: prove the topological spaces X and Y are not the same
Strategy: find a functor F defined over Top such that F (X ) 6∼= F (Y )

In this case, if X = JPK and Y = JQK then the programs P and Q do not have the

same behaviour.
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The connected component functor
from Top to Set

1) A topologcial space X is the disjoint sum of its connected components
2) Any connected subset of X is contained in a connected component of X
3) Any continuous direct image of a connected subset of X is connected

Top
π

0 // Set

X

f

��

π0 (X )

π
0

(f )

��
Y π0 (Y )

� //

Moreover we have π0 (g ◦ f ) = π0 (g) ◦ π0 (f )
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An application involving basic (algebraic) topology
The continuous image of a connected space is connected

The image of the space B is entirely contained in a connected
component of the space V.

B

V1

V2
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The set of connected components
is a functorial construction

This situation is abstracted by classifying continuous maps from B to V according to
which connected component (V1 or V2) the single connected components of B
(namely B itself) is sent to. There are exactly two set theoretic maps from the

singleton {B} to the pair {V1,V2} hence there is at most (in fact exactly) two kinds
of continuous maps from B to V .

{B} //
// {V1,V2}

In particular B and V are not homeomorphic.
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Application
The compact interval and the circle are not homeomorphic

Let S1 :=
{
z ∈ C

∣∣ |z| = 1
}

be the Euclidean circle.

Suppose ϕ : [0, 1]→ S1 is a homeomorphism. Then ϕ induces a homeomorphism

[0, 1
2

[ ∪ ] 1
2
, 1] → S1\

{
ϕ( 1

2
)
}

which does not exist!

ϕ( 1
2

)1
2

63



Introduction
The PV language

Introducing Direction

Discrete vs Topological
The algebraic topologist way

Generalization
Bouquets of circles

These topological spaces are pairwise not homeomorphic. Why ?
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Examples of large categories
used in (directed) algebraic topology

Set : sets and mappings
Top : topological spaces and continuous maps
Pre : preordered sets and preorder preserving maps
Pos : partially ordered sets and order preserving maps
Mon : Monoids and their morphisms
Cmon : Commutative monoids and their morphisms
Gr : Groups and their morphisms

Ab : Abelian groups and their morphisms
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Example of small categories

(N,6): set of objects N
(guess the remaining)

(N,+, 0): set of morphisms N
(guess the remaining)

The same way, any poset or monoid
can be seen as a small category

F(G): The category freely generated by the graph G
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The Prolaag-Verhogen language
Edsger Wybe Dijkstra (1968)

S : set of semaphores and α : S → N\{0, 1} associates each semaphore s with its
arity αs ≥ 2.
Hypothesis : For all α ≥ 2, there exist infinitely many semaphores whose arity is α.
P(s) and V(s) are the only instructions (where s ∈ S) of the language.
A processes P is a finite sequence of instructions, P(j) the j th instruction with j > 1.

P(a).V(a)XXandXX P(a).P(b).V(a).V(b)

A PV program is a finite sequence of processes

P(a).V(a) | P(a).V(a)

P(a).P(b).V(a).V(b) | P(b).P(a).V(b).V(a)

Therefore a PV program can be seen as a matrix of instructions each line of which

being a process. The operator . bounds tighter that the operator |
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PV Programs as heterogeneous matrices of instructions

PV program = vector of processes
−→
P

−→
Pi = i th process of the program
−→
Pi (j) = j th instruction of the i th process.

li = number of instructions of the process
−→
Pi (indexed from 1 to li )

dom(
−→
P ) := {0, . . . , l1} × · · · × {0, . . . , ln}

One has intentionally included 0
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Intuition

- P stands for “prolaag” (short for “probeer te verlagen” i.e. “try
to reduce” in Dutch) and P(s) means: take an occurence of the
semaphore s from the pool of resources, but wait if none is
available.

- V stands for “verhogen” (“increase” in Dutch) and V(s) means:
release an occurence of the semaphore s, if the process trying to
perform this action does not hold any occurence of s then the
instruction is just ignored and the process keeps on running.
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An example of trace

T1
Pa

T2

Pb

Pb

Pa

VbPa Pb Va

Pa

Pb

Vb

Va

Va

Vb

Vb

Va
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Another example of trace

T2T1
Pa

Pb
Deadlock

VbPa Pb Va

Pa

Pb

Vb

Va

71



Introduction
The PV language

Introducing Direction

Syntax
Semantics

Semaphore held by a process

The real positive half-line is R+ = [0,+∞[
For each process P, each semaphore s and each point x ∈ R+ , we define

ax := max
{
k ∈ N

∣∣ k ≤ x et P(k) = P(s)
}

and
bx := min

{
k ∈ N

∣∣ ax ≤ k et P(k) = V(s)
}

with the (unusual) convention that max ∅=min ∅=∞.
The occupied/held part of s is

Bs(P) :=
{
x ∈ R+

∣∣ x ∈ [ax , bx [
}
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Example

0 P
(
s
)

V
(
s
)

x

x not occupied

ax = 1 and bx = 2

0 P
(
s
)

x V
(
s
)

x occupied

ax = 1 and bx = 4
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The forbidden area generated by a semaphore s
of a PV program

−→
P = P1|...|Pn

The indicator function of the set Bs(P)

χs
P

: R+
// {0, 1}

x
� //

{
1 if x ∈ Bs(P)
0 otherwise

For
−→
f := (f1 , . . . , fn ) n-uple of functions R+ → R and −→x := (x1, . . . , xn) ∈ Rn

+

−→
f ·−→x :=

∑n
i=1 fi (xi )

Let −→χ be the n-uple (χs
P1
, . . . , χs

Pn
) of indicators of the sets Bs(P1), . . . ,Bs(Pn)

The forbidden region generated by s of arity α is

Fs :=
{−→x ∈ Rn

+

∣∣ −→χ ·−→x ≥ α}
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Forbidden area and Model
of a PV program

−→
P = P1|...|Pn

The forbidden area of the program
−→
P is

F :=
⋃

s∈S Fs

The model is the set theoretic complement (relatively to Rn
+

) of its forbidden area.

JP1|...|PnK := Rn
+
\F
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Example
P(a).V(a) | P(a).V(a)

P(a)

V(a)

P
(
a
)

V
(
a
)

P(a)

V(a)

P
(
a
)

V
(
a
)

If we were working in R+ × R+ then all the points of the grey square should be
removed.
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Taking direction into account

The following spaces are homeomorphic though the first one has no local maximum

local maximum
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Topological spaces
are not enough

The homset Top
[
[0, 1], J

−→
P K
]

still contains elements which do not correspond to any
execution trace

P(a)

V(a)

P
(
a
)

V
(
a
)
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Partially Ordered Spaces or Pospaces
Leopoldo Nachbin (1968)

A pospace is a topological space X and a partial order v over the underling set of X
s.t.

{(x , y) ∈ X × X | x v y} is closed in X × X

The morphisms of pospaces are the continuous order preserving maps

The pospaces and their morphisms form the category Po

The real line R (with its standard topology and order) provides a pospace

The products Rn with the product topology and product order are pospaces

Any subset of a pospace inherits a pospace structure
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Models of PV program
−→
P

using pospaces

The previous topological model J
−→
P K inherits a pospace structures as a subset of Rn

The paths on a pospace X are the elements of the homset

Po
[
[0, 1],X

]
∀γ ∈ Po

[
[0, 1],X

]
, γ is constant iff γ(0) = γ(1)

∀γ ∈ Po
[
[0, 1], [0, 1]

]
, γ is onto (surjective) iff γ(0) = 0 and γ(1) = 1
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Paths and Execution traces

Theorem

Given a PV program
−→
P , any element of Po

[
[0, 1], J

−→
P K
]
induces an execution trace of

−→
P and conversely, any execution trace of

−→
P is induced by some element of

Po
[
[0, 1], J

−→
P K
]

P(a)

V(a)

P
(
a
)

V
(
a
)
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Direct image of paths on a pospaces
Characterization

The direct image im(f ) of any f ∈ Po[X ,Y ] inherits a pospace struture still denoted
by im(f )

Theorem

Given a pospace X and γ ∈ Po
[
[0, 1],X

]
, we have im(γ) ∼= {∗} or im(γ) ∼= [0, 1]
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