Concurrency
 and

Directed Algebraic Topology

- MPRI -
thursday the $10^{\text {th }}$ of march 2015
duration: 3 h

Exercise 1:

According to the virtual machine of the PAML language give all the possible outputs (x, y) of the following program.

```
#variable x = 3
#process p1 = x:=1
#process p2 = x:=2
#process q = (y:=x)+[x=1]+(y:=x)+[x<>1]+(y:=x)
#init p1 p2 q
```

Exercise 2:
a) Provides the following process with a conservative control flow graph \#process $\mathrm{p}=\mathrm{P}(\mathrm{a})+[e=0]+\mathrm{P}(\mathrm{b})$ with e begin some expression.
b) Prove the following process has no finite conservative control flow graph: \#process $\mathrm{p}=\mathrm{P}(\mathrm{a}) . \mathrm{C}(\mathrm{p})$

Exercise 3:

Give the potential function of the following program
\#mutex a
\#process $\mathrm{p}=\mathrm{P}(\mathrm{a}) . \mathrm{V}(\mathrm{a})$
\#init $2 p$

Exercise 4:

Extend the PAML language and its virtual machine so the instruction F (name), name being an identifier, allows dynamic creation of processes. By convention, if name was not associated to a body of instructions by some line
\#process name = body of instructions
then its is considered as the empty process.
Exercise 5:
Give two precubical sets C and M whose realization in the category of topological spaces are respectively the cylinder and the Möbius band (pictures with some explanations suffice).

Exercise 6:

Let P be the following program

```
#mutex a b c
#process x = Pb.Pa.Va.Pc.Vc.Vb
#process y = Pa.Pc.Pb.Vb.Va.Vc
#init x y
```

a) Draw the geometric model (i.e. actually draw the forbidden region in grey) of P (make a rather large picture)
b) Draw the deadlock attractor of P
c) Draw the category of components of P

Observe that the forbidden region of P is actually contained in some square $[0, r]^{2}$ with $r>0$. A dipath is then said to be maximal when its image is contained in $[0, r]^{2}$ and it cannot be extended (by nonconstant dipaths). On a new picture:
d) Draw one representative of each dihomotopy class of the maximal dipaths on the model of P
e) Give a finite collection H_{1}, \ldots, H_{n} of subregions of the model such that:

- the image of a maximal dipath is contained in a unique H_{k}
- two maximal dipaths are dihomotopic iff their image are contained in the same H_{k}. The subregions may overlap so it is recommended to draw several pictures. Also note that a maximal dipath may not start at the origin.

Exercise 7:

Consider the following PAML program P
\#synchronization 2 a
\#process $\mathrm{p}=\mathrm{Wa}$
\#init 2p
a) Draw $\llbracket P \rrbracket$ the geometric model of P
b) Compute the fundamental category $\overrightarrow{\pi_{1}} \llbracket P \rrbracket$
c) Compute the category of components $\overrightarrow{\pi_{0}}\left(\overrightarrow{\pi_{1}} \llbracket P \rrbracket\right)$

Exercise 8:

Consider the following PAML program P
\#mutex a b
\#semaphore c
\#process $p=P a . P c . V c . V a$
\#process $q=\mathrm{Pb} . \mathrm{Pc} . \mathrm{Vc} . \mathrm{Vb}$
\#init 2p 2q
a) Compute the forbidden region generated by each resource.
b) Give the maximal cubes of the forbidden region.
c) Compute a decomposition of the state space.
d) Denote by X the geometric model of P and write a PAML program whose geometric model is isomorphic with X.
Exercise 9: An n-grid, for $n \in \mathbb{N}$ is a subset $S \subseteq \mathbb{Z}^{n}$. A path of length $n \in \mathbb{N}$ on the grid S is a finite sequence of points p_{0}, \ldots, p_{n} of S such that for all $k \in\{1, \ldots, n\}, p_{k+1}-p_{k}$ is a vector whose unique nonzero coordinate is 1 .
a) We want to define a category $P(S)$ whose morphisms are the paths on the grid S. Describe the sources, the targets, the compositions, and the identities.
b) Prove that $P(S)$ is freely generated by some graph $G(S)$ (describe this graph).

Two paths of length 2 with the same source and the same target are declared to be equivalent so we have a congruence \sim over $P(S)$. Define $F(S)$ as the quotient $P(S) / \sim$.
c) Prove that $F(S)$ is loop-free.

Let S be $\{0,1,2\}^{3} \backslash\{(1,1,1)\}$.
d) Make a picture of the graph $G(S)$.
e) What is the collection of arrows of $G(S)$ that preserve both future cones and past cones in the category $F(S)$?
f) Which square of the graph $G(S)$ are not pushouts of $F(S)$? Same question with pullbacks.
g) What is the greatest system of weak isomorphisms of $F(S)$? What is the category of components of $F(S)$?

Exercise 10:

Recall that $c \operatorname{Set}=\operatorname{Set}^{\square^{+ \text {op }}}$ is the category of precubical sets. For any $n \in \mathbb{N}$ and any precubical set K, define $\operatorname{trunc}_{n}(K)$ as the precubical sets obtained by discarding all the cubes of dimension greater or equal than n. For $n \in \mathbb{N}$, define cSet_{n} as the full subcategory of c Set whose objects are the precubical sets of dimension n i.e. $K_{d}=\emptyset$ for $d>n$. By convention $c \operatorname{Set}_{-1}$ is the category with only one morphism (and therefore only one object). Let I_{n} be the inclusion functor of cSet_{n} into $c \operatorname{Set}$.
a) Explain why trunc $_{n}$ actually extends to a functor $\boldsymbol{c S e t} \rightarrow \operatorname{cSet}_{n-1}$.
b) Prove that trunc n is right adjoint to I_{n-1}.

The standard n-cube is denoted by \square_{n}^{+}. In particular \square_{1}^{+}is the graph with one arrow between two vertex, \square_{2}^{+}is the square, \square_{3}^{+}is the cube. In general \square_{n}^{+}is the n-fold tensor product of \square_{1}^{+}.
b) What is the geometric realization (i.e. in $\mathcal{T o p}$) of $\operatorname{trunc}_{n}\left(\square_{n}^{+}\right)$?

Let 1-L: cSet $\rightarrow d$ ITop denotes the realization in dIop and $\vec{\pi}_{1}: d$ ITop \rightarrow Cat be the fundamental category functor. Then for all precubical sets K, define $F(K)$ as the full subcategory of $\overrightarrow{\pi_{1}}(1 K \downarrow)$ whose set of objects is K_{0}.
c) What is $F(K)$ when K is a graph (i.e. a 1-dimensional precubical set)
d) Compute $F\left(\square_{3}^{+}\right)$and $F\left(\operatorname{trunc}_{3}\left(\square_{3}^{+}\right)\right)$
e) Given a precubcial set K, what is $F\left(\operatorname{trunc}_{3}(K)\right)$ (all the cubes of dimension greater of equal than 3 are dropped)
f) Explain why F actually extends to a functor from $\mathcal{C S e t}$ to $C a t$
g) Prove that $F\left(K \otimes K^{\prime}\right) \cong F(K) \times F\left(K^{\prime}\right)$
h) Give a direct description of F (i.e. without topological arguments)

