

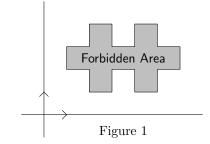
Directed Algebraic Topology

- MPRI -

monday the 5th of march 2012 duration: 1h30

Answers can be given in french or in english. The lecture notes from my webpage is the only document allowed.

Exercise 1: PV programs and Geometric Models



Reminder: the geometric model of a PV program is the *complement* of its forbidden area. We write *dipath* instead of *directed path*.

1) [1pt] Write the PV program corresponding to the forbidden area depicted on Figure 1.

A *deadlock* is a point d of a pospace X such that any directed path starting at d is constant. The *attractor* of a deadlock d is the subset $A \subset X$ such that any dipath starting in A is contained in A and from any point of $x \in A$ there exists a dipath from x to d.

2) [1pt] Find all the deadlocks of the geometric model depicted on Figure 1 and their attractors.

3) [1pt] Find the category of components of the geometric model (a picture suffices).

An *n*-cube is a subset of \mathbb{R}^n_+ of the form $I_1 \times \cdots \times I_n$ where each I_k is an interval. An *n*-cubical area is a finite union of *n*-cubes i.e.

 $X = C_1 \cup \cdots \cup C_p$ where $p \in \mathbb{N} \setminus \{0\}$ and each C_k is an *n*-cube

An *n*-cube C such that $C \subseteq X$ is called a *subcube* of X. Moreover if for all

subcubes C' of X we have $C \subseteq C' \Rightarrow C = C'$ then C is called a *maximal* subcube of X.

Consider the following program and denote by F its forbidden area:

```
#sem a,b 2
#sem c 3
process definition:
p = P(a).P(c).V(c).V(a)
q = P(b).P(c).V(c).V(b)
program:
p | p | q | q
```

4a) [0,5pt] Describe $F_{a,b}$ the forbidden area of the PV program generated by the semaphores a and b (giving the list of its maximal subcubes).

4b) [0.5pt] Describe F_c the forbidden area of the PV program generated by the semaphore c (giving the list of its maximal subcubes).

4c) [1pt] Compare $F_{a,b}$ and F_c then write a simpler PV program whose forbidden area is isomorphic to F.

Exercise 2: Any nonempty finite loopfree connected category (nflcc) can be written as a product of prime nflcc's in a unique way (up to permutation of the terms). The number of morphisms of a category C is called the *size* of C (don't forget the identities). We denote by \mathbb{M} the free commutative monoid of nflcc's. We have $size(\mathcal{A} \times \mathcal{B}) = size(\mathcal{A}) \times size(\mathcal{B})$.

1) [1pt] Find the least (i.e. of smallest size) non trivial element of \mathbb{M} and deduce its least non prime element.

2) [4pt] Find all the elements of M whose size is less or equal than 7. (There are 14 of them up to isomorphism and opposite, 0.25pt each). Deduce the least non free element of M.

3) [1pt] Prove for all prime number $p \neq 2$ there exists some prime element of \mathbb{M} of size p.

A semiring is a tuple $(S, \times, 1, +, 0)$ such that $(S, \times, 1)$ and (S, +, 0) are commutative monoid and \times distributes over +. A morphism of semiring is a mapping which preserves both monoid structures. For example \mathbb{N} (natural numbers) and $\mathbb{N}[X]$ (polynomials with coefficients in \mathbb{N}) are semirings with the usual operations.

The set S of all *finite loopfree categories* (empty or disconnected categories are allowed) admits a semiring structure with disjoint union and cartesian product as sum and product. We denote by $\mathbb{N}_0[X]$ and \mathbb{S}_0 the commutative monoids (under product) of nonzero elements of $\mathbb{N}[X]$ and S.

4) [1pt] Prove $\mathbb{N}_0[X]$ contains a nonprime irreducible element. Then make a

(relevant) remark about $\mathbb{N}_0[X]$.

5) [2pt] Prove for all $\mathcal{C} \in \mathbb{M}$ there is a unique morphism $\operatorname{eval}_{\mathcal{C}} : \mathbb{N}[X] \to \mathbb{S}$ such that $\operatorname{eval}_{\mathcal{C}}(X) = \mathcal{C}$

6) [2pt] Prove the commutative monoid of nonempty finite loopfree categories is <u>not</u> commutative free (in other words the connectedness hypothesis cannot be dropped from the theorem asserting \mathbb{M} is commutative free).

Exercise 3: A path on a topological space X is a continuous map γ from some compact interval [a, b] to X. The path γ is called a loop if $\gamma(a) = \gamma(b)$. A pospace is a pair (X, \sqsubseteq) where X is a topological space and \sqsubseteq a partial order on (the underlying set of) X. The morphisms of pospace, also called *dimaps*, are the monotonic continuous maps. The pospaces and their morphisms form the category P. The real line \mathbb{R} , with its usual order and topology, is a pospace. A *dipath/diloop* is a dimap which is also a path/loop.

1) [1pt] Prove any diloop of a pospace is constant.

We generalize the notion of pospace as follows: a *d-space* is a pair X, dX where X is a topological space and dX a collection of continuous map which is stable under concatenation, contains all the constant maps and such that for all monotonic continuous mapping $\theta : [c, d] \rightarrow [a, b]$ and any $\gamma : [a, b] \rightarrow X \in dX$, the composite $\gamma \circ \theta$ still belongs to dX. A morphism of d-space from X, dX to Y, dY is a continuous map $f : X \rightarrow Y$ such that for all $\gamma \in dX$, the composite $f \circ \gamma \in dY$. The d-spaces and their morphisms form the category D.

2) [1pt] Prove for all pospaces X, the pair $(X, dX := \{ \text{dipaths on } X \})$ is a d-space. Then describe a functor from the category of pospaces P to the category of d-spaces D.

By definition the dipaths of a d-space X, dX are the elements of dX. A subset F of X, dX is said to be *future stable* when any directed path starting in F is contained in F. The subsets \emptyset and X are obviously future stable.

3) [1pt] Prove any union/intersection of future stable subsets of a d-space is future stable. In particular the future stable subsets of a d-space X, dX form a sub-complete lattice of 2^X (the complete lattice of subsets of X).

4) [1pt] The directed circle is the unit circle S i.e. $\{z \in \mathbb{C} \mid |z| = 1\}$ the set of complex number of magnitude 1, with dS the collection of paths $t \in [a, b] \mapsto e^{i\theta(t)} \in S$ where θ is a dipath on \mathbb{R} . Describe the complete lattice of future stable subsets of the directed circle.

5) [2pt] The directed complex plane is the set of complex number, with $d\mathbb{C}$ the collection of paths $t \in [a, b] \mapsto \rho(t) \cdot e^{i\theta(t)} \in \mathbb{S}$ where θ is a dipath on \mathbb{R} and ρ a dipath on \mathbb{R}_+ . Describe the complete lattice of future stable subsets of the directed complex plane.