Concurrency

and Directed Algebraic Topology

- MPRI -

thursday the 10^{th} of march 2011 duration: 1h30

Exercise 1: Maximal Subcubes

An *n*-cube is a subset of \mathbb{R}^n_+ of the form $I_1 \times \cdots \times I_n$ where each I_k is an interval. An *n*-cubical area is a finite union of *n*-cubes i.e.

 $X = C_1 \cup \cdots \cup C_p$ where $p \in \mathbb{N} \setminus \{0\}$ and each C_k is an *n*-cube

An *n*-cube C such that $C \subseteq X$ is called a *subcube* of X. Moreover if for all subcubes C' of X we have

$$C \subseteq C' \; \Rightarrow \; C = C'$$

then C is called a *maximal subcube* of X. Given a cubical area X, we put

 $M(X) := \mathsf{Card}\{\text{maximal subcubes of } X\}$

thus defining a morphism of commutative monoids in particular for all cubical areas X and Y we have

$$M(X \times Y) = M(X) \times M(Y)$$

1) Given an *n*-cube C compute M(C) (give a short explanation).

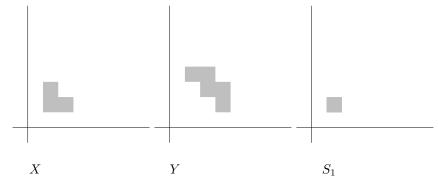
Reminder: any subcube of a cubical area X is included in some *maximal* subcube of the cubical area X.

2) Given an *n*-cubical area, prove if M(X) = 1 then X is an *n*-cube (give a short explanation).

3) Prove if M(X) is a prime number then $X = C \times X'$ where C is a cube and X' is prime and not an interval (hint: any cubical area has a unique decomposition in prime cubical areas).

The result provided by the 3^{rd} question of the exercise 1 can be used in the rest of the exam.

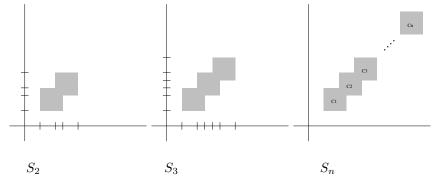
Exercise 2: Staircases, PV programs and Categories of Components



1) For each cubical area X, Y and S_1 (the *complement* of the grey cubical area) count the number of maximal subcubes of and explain why X, Y and S_1 are prime.

A point *a* of a cubical area *A* is called a *deadlock* when any path on *A* starting at *a* is *constant*. The *deadlock attractor* of a cubical area *A* is the set of points $x \in A$ such that for all path γ starting at *x* there *exists* a path δ such that $\delta(0) = \gamma(1)$ and $\delta(1)$ is a deadlock.

2) What are the deadlocks and the deadlock attractors of X and Y?



3) Give 2 PV programs whose geometric models are S_2 and S_3

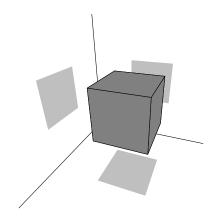
4) What are the categories of components of S_2 and S_3 ?

In general S_n is the union of n squares along the diagonal, formally $S_n := [1,4] \times [1,4] \cup [3,6] \times [3,6] \cup \cdots \cup [2n-1,2n+2] \times [2n-1,2n+2]$

5) By a simple geometric argument, prove the number of maximal subcubes of

- S_n is even (i.e. can be divided by 2)
- 6) Give the exact number of maximal subcubes of S_n
- 7) What is the category of components of S_n ?

Exercise 3: Dimension 3



1) Find a PV program whose geometric model is X, the (complement of the) gray cube.

2a) Given two points a and b of a pospace $\overrightarrow{X} = (X, \sqsubseteq)$ consider the subpospace \overrightarrow{A} with $A := \{x \in X \mid a \sqsubseteq x \sqsubseteq b\}$ then compare $\overrightarrow{\pi_1}(\overrightarrow{A})[a, b]$ and $\overrightarrow{\pi_1}(\overrightarrow{X})[a, b]$ i.e. the collection of paths from a to b on \overrightarrow{A} and the collection of paths from a to b on \overrightarrow{X} .

2b) Find $a, b \in X$ such that $Card(\overrightarrow{\pi}_1(\overrightarrow{X})[a,b]) = 2$

In the sequel, the acronym nflcc stands for "nonempty finite loop free connected category".

Exercise 4: nflcc!

Reminder: any nflcc can be written as a product of prime nflcc's in a unique way (up to permutation of the terms) and for all nflcc's \mathcal{A} and \mathcal{B} be a nflcc we have

 $Ob(\mathcal{A} \times \mathcal{B}) = Ob(\mathcal{A}) \times Ob(\mathcal{B})$ and $Mo(\mathcal{A} \times \mathcal{B}) = Mo(\mathcal{A}) \times Mo(\mathcal{B})$

1) prove \mathcal{C} prime $\Rightarrow \mathsf{Card}(Ob(\mathcal{C})) \ge 2$ and $\mathsf{Card}(Mo(\mathcal{C})) \ge 3$

2a) prove $Card(Ob(\mathcal{C}))$ prime (number) $\Rightarrow \mathcal{C}$ prime (nflcc)

2b) prove $Card(Mo(\mathcal{C}))$ prime (number) $\Rightarrow \mathcal{C}$ prime (nflcc)

3) Find an infinite family $(\mathcal{C}_n)_{n\in\mathbb{N}}$ of prime nflcc's such that for all $n\in\mathbb{N}$, $Card(Ob(\mathcal{C}_n)) < Card(Ob(\mathcal{C}_{n+1}))$

4) Find a *prime* nflcc C such that Card(Ob(C)) and Card(Mo(C)) are not prime (numbers) and C is not free.