Loop-free categories and their Components

Emmanuel Haucourt

CEA LIST, Laboratoire de Modélisation et d'Analyse des Systèmes en Interaction Gif-sur-Yvette 91191 FRANCE, Boîte Courrier 94

special session on Asymmetric Topology

The category PoTop Fundamental category of a pospace LfCat instead of Grd

Partially Ordered Space (or Pospace) X

S.Eilenberg 41 L.Nachbin 48 65 P.Johnstone 82

- A topological space X,
- 2 An order relation \sqsubseteq over |X| whose graph is closed in $X \times X$.

The category PoTop Fundamental category of a pospace LfCat instead of Grd

Morphism of pospace from X to Y

- A map $f : |X| \longrightarrow |Y|$ inducing:
 - **(**) a continuous map from X to Y
 - 2 an increasing map from $(|X|, \sqsubseteq_X)$ to $(|Y|, \sqsubseteq_Y)$.

PoTop is the category of pospaces and their morphisms

The category PoTop Fundamental category of a pospace LfCat instead of Grd

Examples of pospaces

- the real line ℝ with its classical topology and order (denoted ℝ),
- the unit segment [0, 1] with the induced structure (denoted [0, 1]),
- **3** any morphism of PoTop from [0, 1] to \vec{X} is called a directed path over \vec{X} . Formally, the set of directed paths over \vec{X} is $PoSpc[[0,1], \vec{X}]$, it is also denoted $d\vec{X}$.

The category PoTop Fundamental category of a pospace LfCat instead of Grd

Categorical Proprerties of PoTop comparing Top and PoTop

Theorem (E.Haucourt 05)

- complete and co-complete,
- symetric monoidal closed,
- the full subcategory of compact pospaces is complete, co-complete and admits $\overrightarrow{[0,1]}$ as a cogenerator,
- the full subcategory of compactly generated pospaces is reflective in PoTop and cartesian closed.

The category PoTop Fundamental category of a pospace LfCat instead of Grd

Directed homotopy over X from α to β

M.Grandis 01 L.Fajstrup/M.Raussen/E.Goubault 98

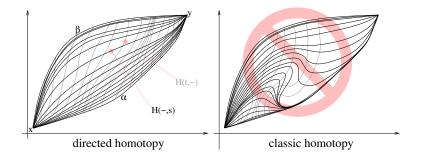
A morphism *h* of PoTop from $[0,1] \times [0,1]$ to \overrightarrow{X} such that U(h) is a classical homotopy from $U(\alpha)$ to $U(\beta)$. Denote $\sim_{\overrightarrow{X}}$ the symetric and transitive closure of

 $\left\{ (\alpha, \beta) \in d\overrightarrow{X} \times d\overrightarrow{X} \middle| \text{there exists a directed homotopy from } \alpha \text{ to } \beta \right\}.$

Dipaths α and β are said dihomotopic when $\alpha \sim_{\overrightarrow{\mathbf{v}}} \beta$.

The category PoTop Fundamental category of a pospace LfCat instead of Grd

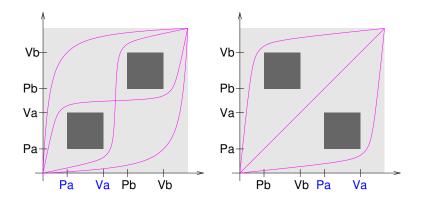
Directed Homotopy vs Classical Homotopy



7

The category PoTop Fundamental category of a pospace LfCat instead of Grd

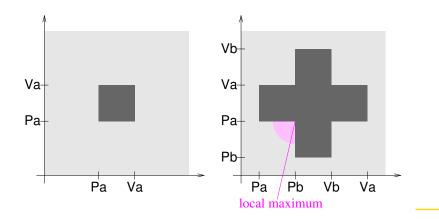
First subtlety directed homotopy is not classic homotopy



Fundamental Category of Partially Ordered Spaces

Fundamental category of a pospace

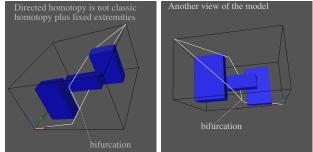
Second subtlety classic homotopy cannot "see" local extrema



9

The category PoTop Fundamental category of a pospace LfCat instead of Grd

Third subtlety Floating cube between two pillars



The category PoTop Fundamental category of a pospace LfCat instead of Grd

Image of a directed path A special feature of directed topology

Theorem

- The image of a dipath α over a pospace X is either isomorphic (in PoTop) to {•} or (0,1)
- 2 Two dipaths sharing the same image are dihomotopic
- There is no directed Peano curve

The category PoTop Fundamental category of a pospace LfCat instead of Grd

Fundamental category $\overrightarrow{\pi_1}(X)$ of a pospace \overrightarrow{X}

- its objects are the elements of |X|,
- **②** its set of morphism from x to y, is the collection of ∼_x-equivalence classes of

$$\left\{ lpha \in d\overrightarrow{X} \, \Big| \, lpha(\mathbf{0}) = x \text{ and } lpha(\mathbf{1}) = y
ight\}$$

Fundamental Category of Partially Ordered Spaces Category of components LfCat instead of Grd

Loop-free categories introduced by A.Haefliger as "scwols" 91 instead of groupoids

A (small) category C such that for all objects x and y of C, if $C[x, y] \neq \emptyset$ and $C[y, x] \neq \emptyset$ then x = y and $C[x, x] = \{id_x\}$. LfCat is the full subcategory (in Cat) of small loop-free categories.

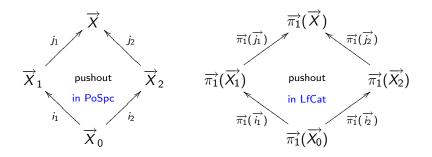
- IfCat is cartesian closed and reflective in Cat.
- the fundamental category of a pospace is loop-free, whence the functor

$$\mathsf{PoTop} \xrightarrow{\overrightarrow{\pi}_1} \mathsf{LfCat}$$

The category PoTop Fundamental category of a pospace LfCat instead of Grd

Van Kampen theorem for fundamental categories

M.Grandis 01 E.Goubault 01 also see P.J.Higgins "Categories and Groupoids"



Yoneda morphism preserving the past and the future I

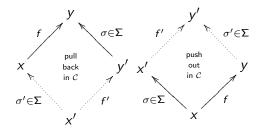
A morphism $\sigma \in C[x, y]$ is a *Yoneda* morphism when for any *z*: future if $C[y, z] \neq \emptyset$ then for all $f \in C[x, z]$, there is a <u>unique</u> $g \in C[y, z]$ such that

past if $C[z, x] \neq \emptyset$ then for all $f \in C[z, y]$, there is a <u>unique</u> $g \in C[z, x]$ such that

Yoneda system of a small category ${\cal C}$ preserving the past and the future II

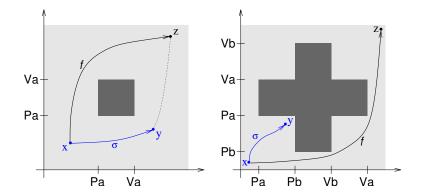
A collection Σ of morphisms of ${\mathcal C}$ such that :

- **①** Σ is stable under composition,
- **2** Σ contains all the isomorphisms of C,
- ${f 0}$ all the elements of Σ are *Yoneda* morphisms and
- Σ is stable under change and cochange of base.



Yoneda system Components and Fractions

Examples of morphism which do not belong to any *Yoneda* system



Yoneda system Components and Fractions

Structure of Σ -components C loop-free category and Σ Yoneda system over C

Theorem (E.Haucourt 05)

- the relation \sim over |C| defined by $x \sim y$ iff $\exists z \in |C| \ \Sigma[x, z] \neq \emptyset$ and $\Sigma[y, z] \neq \emptyset$ is an equivalence relation
- Given any ∼-equivalence class K, the full subcategory of C whose set of objects is K is a non empty lattice
- If a ~ b ~ c ~ d and C[a, b], C[d, b], C[c, a] and C[c, d] are not empty, then the following square is both a <u>pullback</u> and a pushout in C.

$$\begin{array}{c} a \longrightarrow b \\ \uparrow & \uparrow \\ c \longrightarrow d \end{array}$$

Yoneda system Components and Fractions

Locale of *Yoneda* systems topology without point over a loop-free category

Theorem (E.Haucourt 05)

The collection, ordered by inclusion, of the Yoneda systems of a loop-free category, forms a locale whose maximum is denoted $\overline{\Sigma}$. Beside, its minimum is the collection of all identities of C.

Yoneda system Components and Fractions

Category of components generalizing the set of arcwise components

The category of components of a loop-free category ${\cal C}$ is the quotient ${\cal C}/_{\overline{\Sigma}}.$

Theorem (E.Haucourt 05)

A loop-free category C is a non empty lattice iff its category of components is $\{\bullet\}$

Yoneda system Components and Fractions

Fundamental theorem C loop-free category and Σ Yoneda system over C

Theorem (E.Haucourt 05)

- the collection Σ is pure in C ($\beta \circ \alpha \in \Sigma \Rightarrow \beta, \alpha \in \Sigma$),
- **2** the category C/Σ is loop-free,
- § the categories $\mathcal{C}[\Sigma^{-1}]$ and $\mathcal{C}/_{\Sigma}$ are equivalent and
- the category $C[\Sigma^{-1}]$ is fibered over the base $C/_{\Sigma}$.

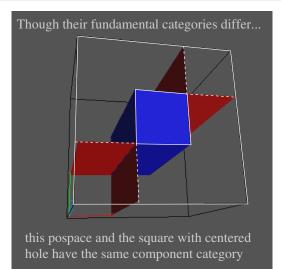
Yoneda system Components and Fractions

A detailed example square with centered hole

$ \begin{array}{c} x \in \\ A \\ B_1 \\ B_2 \\ C \\ A \end{array} $	$y \in A$ B_1 B_2 C B_1	$ \overline{\pi_1}(\overrightarrow{X})[x,y] $ $ \{\sigma_{x,y}\} $ $ \{r_{x,y}\} $	With $r'_{y,z} \circ h_{x,y} = u_{x,z}, h'_{y,z} \circ r_{x,y} = d_{x,z}$ and 3 points x, y, z of the square such that $x \sqsubseteq y \sqsubseteq z$; if $x \not\sqsubseteq y$ then $\overrightarrow{\pi_1}(\overrightarrow{X})[x,y] = \emptyset$.
A	B_1 B_2	$\{h_{x,y}\}$	$B_2 \longrightarrow C$
B_1	С	$\{h'_{x,y}\}$	
<i>B</i> ₂	С	$\{r'_{x,y}\}$	h h'
B_1	<i>B</i> ₂	Ø	
<i>B</i> ₂	B_1	Ø	$A \xrightarrow{r} B_1$
A	С	$\{u_{x,y} , d_{x,y}\}$	

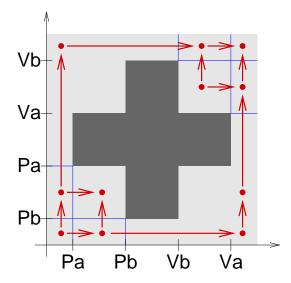
Yoneda system Components and Fractions

Example of product parallel "independent" composition



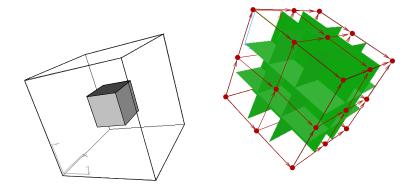
Yoneda system Components and Fractions

The category of components of the swiss flag



Yoneda system Components and Fractions

The components category of a 2-semaphore



the pospace

its category of components

Yoneda system Components and Fractions

The components category of the 3D swiss flag

