Introduction to Directed Algebraic Topology with a view towards modelling Concurrency III

Mathematical Structures of Computations - Lyon 2014

Emmanuel Haucourt

CEA-Tech, NanoInnov

The 31th of January

Summary

Category of components The loop-free case Beyond loop-freeness

Unique factorization theorems Free commutative monoid Finite connected loop-free categories Homogeneous sets of words

MSC - Lyon 2014

Category of components

> The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

- 미 > 《 🗗 > 《 트 > 《 트 > 《 트 > 이 < 🗠

Components

Motivations

For all programs P the homsets of arti[P] are 'finitely generated'

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

nomogeneous sets or word

Components

Motivations

- For all programs P the homsets of
 [→]₁ [[P]]
 are 'finitely generated'
- Yet $\overrightarrow{\pi_1}\llbracket P \rrbracket$ has uncountably many objects

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

lomogeneous sets of word

Components

Motivations

- For all programs P the homsets of
 [→]₁ [[P]]
 are 'finitely generated'
- Yet $\overrightarrow{\pi_1}\llbracket P \rrbracket$ has uncountably many objects
- Still we expect a finite description of $\overrightarrow{\pi_1}[\![P]\!]$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

ロ ト 4 母 ト 4 回 ト 4 回 ト 4 日 - 今 9 9 9

Components Formal approach

- the only isomorphisms of $\overrightarrow{\pi_1}[\![P]\!]$ are its identities therefore $\overrightarrow{\pi_1}[\![P]\!]$ is its own skeleton

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

□□▶◀륨▶◀필▶◀필▶ 필 ∽੧<)

Components Formal approach

- the only isomorphisms of $\overrightarrow{\pi_1}[\![P]\!]$ are its identities therefore $\overrightarrow{\pi_1}[\![P]\!]$ is its own skeleton
- find a nontrivial collection of morphisms enjoying properties similar to those of the class of isomorphisms

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Loop-free categories

introduced by André Haefliger as "small categories without loops'

 A category C such that for all objects x and y if both C[x, y] and C[y, x] are nonempty then x = y and C[x, x] = {id_x}

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Loop-free categories

introduced by André Haefliger as "small categories without loops'

- A category C such that for all objects x and y if both C[x, y] and C[y, x] are nonempty then x = y and C[x, x] = {id_x}
- The fundamental category of a pospace is loop-free

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

ロマト 4 聞 ト 4 回 h 4 回 h 4 回 h 4 回 h 4 □ h 4

Weak isomorphism

preserving the past and the future in the loop-free case

 $\sigma \in C[x, y]$ is a weak isomorphism when for any z:

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

- ロト・日・・日・・日・ うくの

Weak isomorphism

preserving the past and the future in the loop-free case

 $\sigma \in \mathcal{C}[x, y]$ is a weak isomorphism when for any z: future $\mathcal{C}[y, z] \neq \emptyset \Rightarrow \forall f \in \mathcal{C}[x, z], \exists ! g \in \mathcal{C}[y, z]$ s.t.

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

<ロ > < 母 > < 臣 > < 臣 > 三 の < で

 $\sigma \in \mathcal{C}[x, y]$ is a weak isomorphism when for any z: future $\mathcal{C}[y, z] \neq \emptyset \Rightarrow \forall f \in \mathcal{C}[x, z], \exists ! g \in \mathcal{C}[y, z]$ s.t.

past $C[z, x] \neq \emptyset \Rightarrow \forall f \in C[z, y], \exists ! g \in C[z, x] \text{ s.t.}$

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Weak isomorphisms

when loops occurs

If $\sigma : x \to y$ is a weak isomorphism and $\mathcal{C}[y, x] \neq \emptyset$ then σ is an isomorphism.

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

A collection Σ of morphisms of ${\mathcal C}$ such that :

1. {isomorphisms} $\subseteq \Sigma \subseteq$ {weak isomorphisms},

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

ロト 4 母 ト 4 画 ト 4 画 ト 9 の (で)

A collection Σ of morphisms of ${\mathcal C}$ such that :

- 1. {isomorphisms} $\subseteq \Sigma \subseteq$ {weak isomorphisms},
- 2. Σ is stable under composition, and

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

tomogeneous sets of word:

A collection Σ of morphisms of ${\mathcal C}$ such that :

- 1. {isomorphisms} $\subseteq \Sigma \subseteq$ {weak isomorphisms},
- 2. Σ is stable under composition, and
- 3. $\boldsymbol{\Sigma}$ is stable under change and cochange of base.

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

・ロト 4 酉 ト 4 亘 ト 4 亘 - りへの

A collection Σ of morphisms of ${\mathcal C}$ such that :

- 1. {isomorphisms} $\subseteq \Sigma \subseteq$ {weak isomorphisms},
- 2. Σ is stable under composition, and
- 3. $\boldsymbol{\Sigma}$ is stable under change and cochange of base.

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

- ロ ト 4 母 ト 4 回 ト 4 回 ト 4 日 ト

Structure of Σ -components

 Σ system of weak isomorphisms over ${\mathcal C}$ loop-free

1. the relation $x \sim y \equiv \exists z \in |\mathcal{C}| \ \Sigma[x, z] \neq \emptyset$ and $\Sigma[y, z] \neq \emptyset$ is an equivalence relation

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

lomogeneous sets of word

Structure of Σ -components

 Σ system of weak isomorphisms over ${\mathcal C}$ loop-free

- 1. the relation $x \sim y \equiv \exists z \in |\mathcal{C}| \ \Sigma[x, z] \neq \emptyset$ and $\Sigma[y, z] \neq \emptyset$ is an equivalence relation
- 2. K a \sim -class, the full subcategory K is a non empty lattice

/ISC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

(ロ > 《 母 > 《 臣 > 《 臣 > 《 母 > 《 母 > 《

Structure of Σ -components

 Σ system of weak isomorphisms over ${\mathcal C}$ loop-free

- 1. the relation $x \sim y \equiv \exists z \in |\mathcal{C}| \ \Sigma[x, z] \neq \emptyset$ and $\Sigma[y, z] \neq \emptyset$ is an equivalence relation
- 2. K a \sim -class, the full subcategory K is a non empty lattice
- 3. If $a \sim b$ then

$$a \longrightarrow a \lor b$$

$$\uparrow \qquad \uparrow$$

$$a \land b \longrightarrow b$$

is both a pullback and a pushout in $\ensuremath{\mathcal{C}}$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

(日本・西本・山本・山本・山)

Locale of systems of weak isomorphisms

The poset ({systems of weak isomorphisms}, \subseteq) is a locale. Let $\overline{\Sigma}$ be its greatest element.

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

└□▶◀@▶◀칠▶◀칠▶ 칠 '의۹♡'

Category of components

- The category of components of a loop-free category ${\mathcal C}$ is the quotient ${\mathcal C}/_{\overline{\Sigma}}$ and denoted by $\overrightarrow{\pi_0}{\mathcal C}$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

・ロト・日・・ヨ・・日・ つくの

Category of components

- The category of components of a loop-free category \mathcal{C} is the quotient $\mathcal{C}/_{\overline{\Sigma}}$ and denoted by $\overrightarrow{\pi_0}\mathcal{C}$
- A loop-free category C is a non empty lattice iff its category of components is {0}

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

- ロ ト 4 酉 ト 4 亘 ト 4 国 - ろんの.

Category of components

- The category of components of a loop-free category \mathcal{C} is the quotient $\mathcal{C}/_{\overline{\Sigma}}$ and denoted by $\overrightarrow{\pi_0}\mathcal{C}$
- A loop-free category C is a non empty lattice iff its category of components is {0}

$$\overrightarrow{\pi_0}(\mathcal{A} imes \mathcal{B}) \cong \overrightarrow{\pi_0}\mathcal{A} imes \overrightarrow{\pi_0}\mathcal{B}$$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

- ロト 4 昼 ト 4 亘 ト 4 昼 ト 4 回 - の 9 ()

 ${\mathcal C}$ loop-free category and Σ system of weak isomorphisms over ${\mathcal C}$

1. Σ is pure in C i.e. $\beta \circ \alpha \in \Sigma \Rightarrow \beta, \alpha \in \Sigma$,

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

 ${\mathcal C}$ loop-free category and Σ system of weak isomorphisms over ${\mathcal C}$

1. Σ is pure in C i.e. $\beta \circ \alpha \in \Sigma \Rightarrow \beta, \alpha \in \Sigma$, 2. $C/_{\Sigma}$ is loop-free,

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

(ロト・西ト・ヨト・ヨー りょう

 ${\mathcal C}$ loop-free category and Σ system of weak isomorphisms over ${\mathcal C}$

- 1. Σ is pure in C i.e. $\beta \circ \alpha \in \Sigma \Rightarrow \beta, \alpha \in \Sigma$,
- 2. $\mathcal{C}/_{\Sigma}$ is loop-free,
- 3. $\mathcal{C}[\Sigma^{-1}]$ and $\mathcal{C}/_{\Sigma}$ are equivalent and

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

 ${\mathcal C}$ loop-free category and Σ system of weak isomorphisms over ${\mathcal C}$

- 1. Σ is pure in C i.e. $\beta \circ \alpha \in \Sigma \Rightarrow \beta, \alpha \in \Sigma$,
- 2. $\mathcal{C}/_{\Sigma}$ is loop-free,
- 3. $\mathcal{C}[\Sigma^{-1}]$ and $\mathcal{C}/_{\Sigma}$ are equivalent and
- 4. $\mathcal{C}[\Sigma^{-1}]$ is fibered over the base $\mathcal{C}/_{\Sigma}$.

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Examples in dimension 2

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

- $(M, *, \varepsilon)$ such that for all $a, b, c \in M$, (ab)c = a(bc) $\varepsilon a = a = a\varepsilon$ ab = ba

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

lomogeneous sets of words

・ロト・酉 ト・言 ト・言 うへで

- $(M, *, \varepsilon)$ such that for all $a, b, c \in M$, (ab)c = a(bc) $\varepsilon a = a = a\varepsilon$ ab = ba
- For all set X the collection MX of multisets over X
 i.e. maps φ : X → N s.t. {x ∈ X | φ(x) ≠ 0} is finite forms a commutative monoid

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

- ロト・日・・ 川田・・ 日・ 今々で

- $(M, *, \varepsilon)$ such that for all $a, b, c \in M$, (ab)c = a(bc) $\varepsilon a = a = a\varepsilon$ ab = ba
- For all set X the collection MX of multisets over X i.e. maps $\phi: X \to \mathbb{N}$ s.t. $\{x \in X \mid \phi(x) \neq 0\}$ is finite forms a commutative monoid
- A commutative monoid is said to be free when it is isomorphic with some *MX*

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

□ ト 4 昼 ト 4 重 ト 4 恒 ト 4 回 - 4 0 0 0 0 0

- $(M, *, \varepsilon)$ such that for all $a, b, c \in M$, (ab)c = a(bc) $\varepsilon a = a = a\varepsilon$ ab = ba
- For all set X the collection MX of multisets over X i.e. maps $\phi : X \to \mathbb{N}$ s.t. $\{x \in X \mid \phi(x) \neq 0\}$ is finite forms a commutative monoid
- A commutative monoid is said to be free when it is isomorphic with some *MX*
- Functor $M : \mathbf{Set} \to \mathbf{CMon}$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

(ロト 4 団 ト 4 三 ト 4 団 ト 4 団 ト 4 団 ト 4 団 ト 4 団 ト 4 回 h 4 0 ∩ 4

Prime and irreducible elements

of a commutative monoid

d divides x, denoted by d|x, when there exists x' such that x = dx'

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free

lomogeneous sets of words

◆□ ▶ ◆昼 ▶ ∢ 臣 ▶ ∢ 臣 ▶ ○ 臣 = ∽ � � �

Prime and irreducible elements

of a commutative monoid

- d divides x, denoted by d|x, when there exists x' such that x = dx'
- *u* unit: exists *u'* s.t. $uu' = \varepsilon$ then write $x \sim y$ when y = ux for some unit *u*

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

lomogeneous sets of words

- ロ ト 4 昼 ト 4 亘 ト 4 回 - りへぐ

Prime and irreducible elements

of a commutative monoid

- d divides x, denoted by d|x, when there exists x' such that x = dx'
- *u* unit: exists *u'* s.t. $uu' = \varepsilon$ then write $x \sim y$ when y = ux for some unit *u*
- *i* irreducible: *i* nonunit and x|i implies $x \sim i$ or x unit

/ISC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization
Prime and irreducible elements

of a commutative monoid

- d divides x, denoted by d|x, when there exists x' such that x = dx'
- *u* unit: exists u' s.t. $uu' = \varepsilon$ then write $x \sim y$ when y = ux for some unit *u*
- *i* irreducible: *i* nonunit and x|i implies $x \sim i$ or x unit
- p prime: p nonunit and p|ab implies p|a or p|b

/ISC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

monoid irreducibles primes units

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid

inite connected loop-free ategories

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

ree commutative monoid

inite connected loop-free ategories

monoid	irreducibles	primes	units
$\mathbb{N}\setminus\{0\}, imes,1$	{prime numbers}		$\{1\}$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

ree commutative monoid

inite connected loop-free ategories

monoid	irreducibles	primes	units
$\mathbb{N}\setminus\{0\}, imes,1$	{prime numbers}		$\{1\}$
$\mathbb{N},+,0$	{1}		{0}

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

ree commutative monoid

inite connected loop-free ategories

monoid	irreducibles	primes	units
$\mathbb{N}\setminus\{0\}, imes,1$	{prime numbers}		$\{1\}$
$\mathbb{N},+,0$	{1}		{0}
$\mathbb{R}_+,+,0$	Ø		{0}

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

ree commutative monoid

ategories

monoid	irreducibles	primes	units
$\mathbb{N}\setminus\{0\}, imes,1$	{prime numbers}		$\{1\}$
$\mathbb{N},+,0$	{1}		{0}
$\mathbb{R}_+,+,0$	Ø		{0}
$\mathbb{R}_+, ee, 0$	Ø	$\mathbb{R}_+ \setminus \{0\}$	{0}

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

ree commutative monoid

ategories

monoid	irreducibles	primes	units
$\mathbb{N}\setminus\{0\}, imes,1$	{prime numbers}		$\{1\}$
$\mathbb{N},+,0$	{1}		{0}
$\mathbb{R}_+,+,0$	Ø		{0}
$\mathbb{R}_+, ee, 0$	Ø	$\mathbb{R}_+ \setminus \{0\}$	{0}
$\mathbb{Z}_6, imes, 1$	Ø	$\{0, 2, 3, 4\}$	$\{1, 5\}$

Graded commutative monoid

- $(M, *, \varepsilon)$ graded: there is a one-to-one morphism from $(M, *, \varepsilon)$ to $(\mathbb{N}, +, 0)$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free

lomogeneous sets of words

・ロト・西ト・ヨト・ヨー 今々ぐ

Graded commutative monoid

- (M, *, ε) graded: there is a one-to-one morphism from (M, *, ε) to (N, +, 0)
- If *M* is graded then
 {irreducibles of *M*} generates *M* {primes of *M*} ⊆ {irreducibles of *M*}

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

lomogeneous sets of words

コント・日本 キャット キャック くつ

- $N: M
ightarrow (\mathbb{Z} \setminus \{0\}, imes, 1); \ N(a + b\sqrt{10}) = a^2 - 10b^2$

MSC - Lyon 2014

Category of components

The loop-free case Bevond loop-freeness

Unique factorization

ree commutative monoid

-
$$N: M \to (\mathbb{Z} \setminus \{0\}, \times, 1); N(a + b\sqrt{10}) = a^2 - 10b^2$$

 $N(uv) = N(u)N(v)$

MSC - Lyon 2014

Category of components

The loop-free case Bevond loop-freeness

Unique factorization

iree commutative monoid

-
$$N: M \rightarrow (\mathbb{Z} \setminus \{0\}, \times, 1); N(a + b\sqrt{10}) = a^2 - 10b^2$$

 $N(uv) = N(u)N(v)$
 u unit iff $N(u) \in \{\pm 1\}$

MSC - Lyon 2014

Category of components

The loop-free case Bevond loop-freeness

Unique factorization

ree commutative monoid

$$\begin{array}{l} - \ N : M \to (\mathbb{Z} \setminus \{0\}, \times, 1); \ N(a + b\sqrt{10}) = a^2 - 10b^2 \\ N(uv) = N(u)N(v) \\ u \text{ unit iff } N(u) \in \{\pm 1\} \\ N(a + b\sqrt{10}) \text{ mod } 10 \ \in \ \{1, 4, 5, 6, 9\} \end{array}$$

MSC - Lyon 2014

Category of components

The loop-free case Bevond loop-freeness

Unique factorization

Free commutative monoid

$$\begin{array}{l} -N: M \to (\mathbb{Z} \setminus \{0\}, \times, 1); \ N(a + b\sqrt{10}) = a^2 - 10b^2 \\ N(uv) = N(u)N(v) \\ u \text{ unit iff } N(u) \in \{\pm 1\} \\ N(a + b\sqrt{10}) \text{ mod } 10 \in \{1, 4, 5, 6, 9\} \\ \text{therefore } N(a + b\sqrt{10}) \notin \{\pm 2, \pm 3\} \end{array}$$

MSC - Lyon 2014

Category of components

The loop-free case Bevond loop-freeness

Unique factorization

ree commutative monoid inite connected loop-free ategories

lomogeneous sets of words

・ロト・日下・ 山下・ 山下・ 山下・ 日・

$$\begin{array}{l} - N: M \to (\mathbb{Z} \setminus \{0\}, \times, 1); \ N(a + b\sqrt{10}) = a^2 - 10b^2 \\ N(uv) = N(u)N(v) \\ u \text{ unit iff } N(u) \in \{\pm 1\} \\ N(a + b\sqrt{10}) \text{ mod } 10 \in \{1, 4, 5, 6, 9\} \\ \text{therefore } N(a + b\sqrt{10}) \notin \{\pm 2, \pm 3\} \end{array}$$

uv	N(uv)	N(u)
2	4	$\pm 1, \pm 2, \pm 4$
3	9	$\pm 1, \pm 3, \pm 9$
$4 \pm \sqrt{10}$	6	$\pm 1,\pm 2,\pm 3,\pm 6$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

ree commutative monoid inite connected loop-free ategories

$$\begin{array}{l} -N: M \to (\mathbb{Z} \setminus \{0\}, \times, 1); \ N(a + b\sqrt{10}) = a^2 - 10b^2 \\ N(uv) = N(u)N(v) \\ u \text{ unit iff } N(u) \in \{\pm 1\} \\ N(a + b\sqrt{10}) \text{ mod } 10 \in \{1, 4, 5, 6, 9\} \\ \text{therefore } N(a + b\sqrt{10}) \notin \{\pm 2, \pm 3\} \end{array}$$

uv	N(uv)	N(u)
2	4	$\pm 1, \pm 2, \pm 4$
3	9	$\pm 1, \pm 3, \pm 9$
$4 \pm \sqrt{10}$	6	$\pm 1, \pm 2, \pm 3, \pm 6$

- 2, 3, and $4 \pm \sqrt{10}$ are irreducible but not prime since $2 \cdot 3 = (4 + \sqrt{10}) \cdot (4 - \sqrt{10})$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

ree commutative monoid Finite connected loop-free categories

$$\begin{array}{l} -N: M \to (\mathbb{Z} \setminus \{0\}, \times, 1); \ N(a + b\sqrt{10}) = a^2 - 10b^2 \\ N(uv) = N(u)N(v) \\ u \text{ unit iff } N(u) \in \{\pm 1\} \\ N(a + b\sqrt{10}) \text{ mod } 10 \in \{1, 4, 5, 6, 9\} \\ \text{therefore } N(a + b\sqrt{10}) \notin \{\pm 2, \pm 3\} \end{array}$$

uv	N(uv)	N(u)
2	4	$\pm 1, \pm 2, \pm 4$
3	9	$\pm 1, \pm 3, \pm 9$
$4\pm\sqrt{10}$	6	$\pm 1, \pm 2, \pm 3, \pm 6$

- 2, 3, and $4 \pm \sqrt{10}$ are irreducible but not prime since $2 \cdot 3 = (4 + \sqrt{10}) \cdot (4 - \sqrt{10})$
- $\{a + b\sqrt{10} \mid a, b \in \mathbb{Z}\} \setminus \{0\}$ is graded by the number of prime factors of N(u)

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

ree commutative monoid Finite connected loop-free categories

$X^5 + X^4 + X^3 + X^2 + X + 1 =$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free

lomogeneous sets of word:

・ロト・日下・ 山下・ 山下・ 日下・ (日下・)

$$X^{5} + X^{4} + X^{3} + X^{2} + X + 1 =$$

$$\begin{cases} (X+1)(X^{4} + X^{2} + 1) \end{cases}$$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free

lomogeneous sets of words

◆□▶ ◆昼▶ ∢ ≧▶ ∢ ≧▶ ─ ≧ − ∽ � ↔

$$X^{5} + X^{4} + X^{3} + X^{2} + X + 1 =$$

$$\begin{cases} (X+1)(X^{4} + X^{2} + 1) = (X^{3} + 1)(X^{2} + X + 1) & \text{in } \mathbb{N}[X] \end{cases}$$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

 $X^5 + X^4 + X^3 + X^2 + X + 1 =$

$$\begin{cases} (X+1)(X^4+X^2+1) = (X^3+1)(X^2+X+1) & \text{in } \mathbb{N}[X] \\ (X+1)(X^2+X+1)(X^2-X+1) & \text{in } \mathbb{Z}[X] \end{cases}$$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

$$X^{5} + X^{4} + X^{3} + X^{2} + X + 1 =$$

$$\begin{cases} (X+1)(X^{4} + X^{2} + 1) = (X^{3} + 1)(X^{2} + X + 1) & \text{in } \mathbb{N}[X] \\ (X+1)(X^{2} + X + 1)(X^{2} - X + 1) & \text{in } \mathbb{Z}[X] \end{cases}$$

- therefore X + 1, $X^2 + X + 1$, $X^3 + 1$, and $X^4 + X^2 + 1$ are irreducible but not prime
- $\mathbb{N}[X] \setminus \{0\}$ is graded by the degree

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

of the free commutative monoids

The following are equivalent: - *M* is free commutative

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free

lomogeneous sets of word:

(日) 4 酉 2 4 回 2 4 回 2 9 9 9 9 9

of the free commutative monoids

The following are equivalent:

- M is free commutative
- any element of *M* can be written as a product of irreducibles in a unique way up to reordering

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

lomogeneous sets of words

・ロト・四ト・回ト・回 シック

of the free commutative monoids

The following are equivalent:

- M is free commutative
- any element of *M* can be written as a product of irreducibles in a unique way up to reordering
- {primes of M} = {irreducibles of M} and generates M

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

of the free commutative monoids

The following are equivalent:

- M is free commutative
- any element of *M* can be written as a product of irreducibles in a unique way up to reordering
- {primes of M} = {irreducibles of M} and generates M
- M is graded and {irreducibles of M} \subseteq {primes of M}

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

of nonempty finite connected loop-free categories

- $\mathcal{A}\times\mathcal{B}$ nonempty finite connected iff so are \mathcal{A} and \mathcal{B}

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

・ロト・母 ト・ヨ ト・日 うくの

of nonempty finite connected loop-free categories

- $\mathcal{A} \times \mathcal{B}$ nonempty finite connected iff so are \mathcal{A} and \mathcal{B} - $\mathcal{A} \cong \mathcal{A}'$ and $\mathcal{B} \cong \mathcal{B}'$ implies $\mathcal{A} \times \mathcal{A}' \cong \mathcal{B} \times \mathcal{B}'$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

of nonempty finite connected loop-free categories

- $\mathcal{A} \times \mathcal{B}$ nonempty finite connected iff so are \mathcal{A} and \mathcal{B} - $\mathcal{A} \cong \mathcal{A}'$ and $\mathcal{B} \cong \mathcal{B}'$ implies $\mathcal{A} \times \mathcal{A}' \cong \mathcal{B} \times \mathcal{B}'$ - $(\mathcal{A} \times \mathcal{B}) \times \mathcal{C} \cong \mathcal{A} \times (\mathcal{B} \times \mathcal{C})$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

of nonempty finite connected loop-free categories

- $\mathcal{A} \times \mathcal{B}$ nonempty finite connected iff so are \mathcal{A} and \mathcal{B} - $\mathcal{A} \cong \mathcal{A}'$ and $\mathcal{B} \cong \mathcal{B}'$ implies $\mathcal{A} \times \mathcal{A}' \cong \mathcal{B} \times \mathcal{B}'$ - $(\mathcal{A} \times \mathcal{B}) \times \mathcal{C} \cong \mathcal{A} \times (\mathcal{B} \times \mathcal{C})$ - $1 \times \mathcal{A} \cong \mathcal{A} \cong \mathcal{A} \times 1$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

・ロト・日・・ヨ・・日・ 今くで

of nonempty finite connected loop-free categories

- $\mathcal{A} \times \mathcal{B}$ nonempty finite connected iff so are \mathcal{A} and \mathcal{B} - $\mathcal{A} \cong \mathcal{A}'$ and $\mathcal{B} \cong \mathcal{B}'$ implies $\mathcal{A} \times \mathcal{A}' \cong \mathcal{B} \times \mathcal{B}'$ - $(\mathcal{A} \times \mathcal{B}) \times \mathcal{C} \cong \mathcal{A} \times (\mathcal{B} \times \mathcal{C})$ - $1 \times \mathcal{A} \cong \mathcal{A} \cong \mathcal{A} \times 1$ - $\mathcal{A} \times \mathcal{B} \cong \mathcal{B} \times \mathcal{A}$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

of nonempty finite connected loop-free categories

- $\mathcal{A} \times \mathcal{B}$ nonempty finite connected iff so are \mathcal{A} and \mathcal{B} - $\mathcal{A} \cong \mathcal{A}'$ and $\mathcal{B} \cong \mathcal{B}'$ implies $\mathcal{A} \times \mathcal{A}' \cong \mathcal{B} \times \mathcal{B}'$

-
$$(\mathcal{A} imes \mathcal{B}) imes \mathcal{C} \cong \mathcal{A} imes (\mathcal{B} imes \mathcal{C})$$

- $1 imes \mathcal{A} \cong \mathcal{A} \cong \mathcal{A} imes 1$
- $-\mathcal{A}\times\mathcal{B}\cong\mathcal{B}\times\mathcal{A}$
- the corresponding commutative monoid is isomorphic with ($\mathbb{N}\setminus\{0\},\times,1)$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

of homogeneous sets of words

- \mathbb{A}^* (non commutative) monoid of words on \mathbb{A} , let ε denotes the empty word

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

of homogeneous sets of words

- \mathbb{A}^* (non commutative) monoid of words on \mathbb{A} , let ε denotes the empty word
- $H \subseteq \mathbb{A}^*$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length dim(H)

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

lomogeneous sets of word:

・ロト・日・・ヨ・・ヨ・ つへで

of homogeneous sets of words

- \mathbb{A}^* (non commutative) monoid of words on \mathbb{A} , let ε denotes the empty word
- $H \subseteq \mathbb{A}^*$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length dim(H)
- *H* · *H*′ = {*w* · *w*′ | *w* ∈ *H*; *w*′ ∈ *H*′} is homogeneous iff so are *H* and *H*′

/ISC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

of homogeneous sets of words

- \mathbb{A}^* (non commutative) monoid of words on \mathbb{A} , let ε denotes the empty word
- $H \subseteq \mathbb{A}^*$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length dim(H)
- *H* · *H*′ = {*w* · *w*′ | *w* ∈ *H*; *w*′ ∈ *H*′} is homogeneous iff so are *H* and *H*′

$$-\{\varepsilon\} \cdot H = H = H \cdot \{\varepsilon\}$$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories
of homogeneous sets of words

- \mathbb{A}^* (non commutative) monoid of words on \mathbb{A} , let ε denotes the empty word
- $H \subseteq \mathbb{A}^*$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length dim(H)
- $H \cdot H' = \{ w \cdot w' \mid w \in H; w' \in H' \}$ is homogeneous iff so are H and H'

$$-\{\varepsilon\} \cdot H = H = H \cdot \{\varepsilon\}$$

 (𝒫_h(𝔅), ·, {ε}) noncommutative monoid of homogeneous sets

/ISC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

lomogeneous sets of word:

of homogeneous sets of words

- \mathbb{A}^* (non commutative) monoid of words on \mathbb{A} , let ε denotes the empty word
- $H \subseteq \mathbb{A}^*$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length dim(H)
- $H \cdot H' = \{ w \cdot w' \mid w \in H; w' \in H' \}$ is homogeneous iff so are H and H'

$$-\{\varepsilon\} \cdot H = H = H \cdot \{\varepsilon\}$$

- (*P_h*(A), ·, {ε}) noncommutative monoid of homogeneous sets
- $H \sim H'$ when dim(H) =dim(H') and $H' = \sigma H$ for some $\sigma \in \mathfrak{S}_{\dim(H)}$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

lomogeneous sets of word:

of homogeneous sets of words

- \mathbb{A}^* (non commutative) monoid of words on \mathbb{A} , let ε denotes the empty word
- $H \subseteq \mathbb{A}^*$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length dim(H)
- $H \cdot H' = \{ w \cdot w' \mid w \in H; w' \in H' \}$ is homogeneous iff so are H and H'

$$-\{\varepsilon\} \cdot H = H = H \cdot \{\varepsilon\}$$

- (𝒫_h(𝔅), ·, {ε}) noncommutative monoid of homogeneous sets
- $H \sim H'$ when dim(H) =dim(H') and $H' = \sigma H$ for some $\sigma \in \mathfrak{S}_{\dim(H)}$
- $H \sim H'$ and $K \sim K'$ implies $HK \sim H'K'$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

lomogeneous sets of words

of homogeneous sets of words

- \mathbb{A}^* (non commutative) monoid of words on \mathbb{A} , let ε denotes the empty word
- $H \subseteq \mathbb{A}^*$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length dim(H)
- $H \cdot H' = \{ w \cdot w' \mid w \in H; w' \in H' \}$ is homogeneous iff so are H and H'

$$-\{\varepsilon\} \cdot H = H = H \cdot \{\varepsilon\}$$

- (*P_h*(A), ·, {ε}) noncommutative monoid of homogeneous sets
- $H \sim H'$ when dim(H) =dim(H') and $H' = \sigma H$ for some $\sigma \in \mathfrak{S}_{\dim(H)}$
- $H \sim H'$ and $K \sim K'$ implies $HK \sim H'K'$
- $\mathcal{H}(\mathbb{A}) = (\mathcal{P}_h(\mathbb{A}), \cdot, \{\varepsilon\}) / \sim$ free commutative monoid of homogeneous sets

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

ree commutative monoid Finite connected loop-free Categories

lomogeneous sets of words

of finite homogeneous sets of words

- $M' \subseteq M$ is said to be pure when for all $x, y \in M$, $xy \in M'$ implies $x, y, \in M'$

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

lomogeneous sets of word:

・ロト ・ 酉 ト ・ 直 ト ・ 直 ・ つへぐ

of finite homogeneous sets of words

- $M' \subseteq M$ is said to be pure when for all $x, y \in M$, $xy \in M'$ implies $x, y, \in M'$
- A pure submonoid of a free commutative monoid is free

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

Homogeneous sets of word:

of finite homogeneous sets of words

- $M' \subseteq M$ is said to be pure when for all $x, y \in M$, $xy \in M'$ implies $x, y, \in M'$
- A pure submonoid of a free commutative monoid is free
- $\mathcal{H}_f(\mathbb{A}) = \{ H \in \mathcal{H}(\mathbb{A}) \mid \#H \text{ is finite} \}$ is a pure submonoid of $\mathcal{H}(\mathbb{A})$ hence it is free

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

(日) 4 母 2 4 日 2 4 日 2 9 9 9 9 9

of finite homogeneous sets of words

- $M' \subseteq M$ is said to be pure when for all $x, y \in M$, $xy \in M'$ implies $x, y, \in M'$
- A pure submonoid of a free commutative monoid is free
- $\mathcal{H}_f(\mathbb{A}) = \{ H \in \mathcal{H}(\mathbb{A}) \mid \#H \text{ is finite} \}$ is a pure submonoid of $\mathcal{H}(\mathbb{A})$ hence it is free
- $\mathcal{H}_f(\{\text{nonempty intervals of } \mathbb{R}\})$ cubical areas

/ISC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

of finite homogeneous sets of words

- $M' \subseteq M$ is said to be pure when for all $x, y \in M$, $xy \in M'$ implies $x, y, \in M'$
- A pure submonoid of a free commutative monoid is free
- $\mathcal{H}_f(\mathbb{A}) = \{ H \in \mathcal{H}(\mathbb{A}) \mid \#H \text{ is finite} \}$ is a pure submonoid of $\mathcal{H}(\mathbb{A})$ hence it is free
- $\mathcal{H}_f(\{\text{nonempty intervals of } \mathbb{R}\})$ cubical areas
- $\mathcal{H}(\mathbb{R})$ subsets of \mathbb{R}^n for *n* ranging through \mathbb{N}

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

Homogeneous sets of word:

MSC - Lyon 2014

Category of components

The loop-free case Beyond loop-freeness

Unique factorization

Free commutative monoid Finite connected loop-free categories

lomogeneous sets of word

・ロト・1日・1日・1日・1日・2000