Introduction to Directed Algebraic Topology with a view towards modelling Concurrency III

Mathematical Structures of Computations－Lyon 2014

Emmanuel Haucourt
CEA－Tech，Nanolnnov
The $31^{\text {th }}$ of January

Summary

Category of components
The loop-free case
Free commutative monoid Beyond loop-freeness

Unique factorization theorems
Free commutative monoid
Finite connected loop-free categories Homogeneous sets of words

Components

Motivations

Category of components

- For all programs P the homsets of $\overrightarrow{\pi_{1}} \llbracket P \rrbracket$ are 'finitely generated'

The loop-free case

Beyond loop-freeness

Components

Motivations

Category of components

- For all programs P the homsets of $\overrightarrow{\pi_{1}} \llbracket P \rrbracket$ are 'finitely generated'
- Yet $\vec{\pi}_{1} \llbracket P \rrbracket$ has uncountably many objects

Components

Motivations

Category of components

- For all programs P the homsets of $\overrightarrow{\pi_{1}} \llbracket P \rrbracket$ are 'finitely generated'
- Yet $\vec{\pi}_{1} \llbracket P \rrbracket$ has uncountably many objects
- Still we expect a finite description of $\overrightarrow{\pi_{1}} \llbracket P \rrbracket$

Components

Formal approach

- the only isomorphisms of $\overrightarrow{\pi_{1}} \llbracket P \rrbracket$ are its identities therefore $\vec{\pi}_{1} \llbracket P \rrbracket$ is its own skeleton

Components

Formal approach

- the only isomorphisms of $\vec{\pi}_{1} \llbracket P \rrbracket$ are its identities therefore $\overrightarrow{\pi_{1}} \llbracket P \rrbracket$ is its own skeleton
- find a nontrivial collection of morphisms enjoying properties similar to those of the class of isomorphisms

Loop-free categories

introduced by André Haefliger as "small categories without loops"

- A category \mathcal{C} such that for all objects x and y
if both $\mathcal{C}[x, y]$ and $\mathcal{C}[y, x]$ are nonempty
then $x=y$ and $\mathcal{C}[x, x]=\left\{\mathrm{id}_{x}\right\}$

Category of components

Loop-free categories

introduced by André Haefliger as "small categories without loops"

- A category \mathcal{C} such that for all objects x and y
if both $\mathcal{C}[x, y]$ and $\mathcal{C}[y, x]$ are nonempty
then $x=y$ and $\mathcal{C}[x, x]=\left\{\mathrm{id}_{x}\right\}$
- The fundamental category of a pospace is loop-free

Weak isomorphism

preserving the past and the future in the loop-free case

Category of

Weak isomorphism

preserving the past and the future in the loop-free case

$\sigma \in \mathcal{C}[x, y]$ is a weak isomorphism when for any z : future $\mathcal{C}[y, z] \neq \emptyset \Rightarrow \forall f \in \mathcal{C}[x, z], \exists!g \in \mathcal{C}[y, z]$ s.t.

Weak isomorphism

preserving the past and the future in the loop-free case
$\sigma \in \mathcal{C}[x, y]$ is a weak isomorphism when for any z : future $\mathcal{C}[y, z] \neq \emptyset \Rightarrow \forall f \in \mathcal{C}[x, z], \exists!g \in \mathcal{C}[y, z]$ s.t.

past $\mathcal{C}[z, x] \neq \emptyset \Rightarrow \forall f \in \mathcal{C}[z, y], \exists!g \in \mathcal{C}[z, x]$ s.t.

Category of
components
Tre loop fire case

Beyond loop-freeness

Unique

factorization
Free commutative monoid

Weak isomorphisms

when loops occurs

If $\sigma: x \rightarrow y$ is a weak isomorphism and $\mathcal{C}[y, x] \neq \emptyset$ then σ is an isomorphism.

System of weak isomorphisms

preserving the past and the future in the loop-free case

A collection Σ of morphisms of \mathcal{C} such that :

1. $\{$ isomorphisms $\} \subseteq \Sigma \subseteq\{$ weak isomorphisms $\}$,

System of weak isomorphisms

preserving the past and the future in the loop-free case

A collection Σ of morphisms of \mathcal{C} such that :

1. $\{$ isomorphisms $\} \subseteq \Sigma \subseteq\{$ weak isomorphisms $\}$,
2. Σ is stable under composition, and

System of weak isomorphisms

preserving the past and the future in the loop-free case

A collection Σ of morphisms of \mathcal{C} such that :

1. $\{$ isomorphisms $\} \subseteq \Sigma \subseteq\{$ weak isomorphisms $\}$,
2. Σ is stable under composition, and
3. Σ is stable under change and cochange of base.

System of weak isomorphisms

A collection Σ of morphisms of \mathcal{C} such that :

1. $\{$ isomorphisms $\} \subseteq \Sigma \subseteq\{$ weak isomorphisms $\}$,
2. Σ is stable under composition, and
3. Σ is stable under change and cochange of base.

Structure of \sum-components

Σ system of weak isomorphisms over \mathcal{C} loop-free

Category of components

The loop firee case

Beyond loop-freeness

Structure of \sum-components

Σ system of weak isomorphisms over \mathcal{C} loop-free

1. the relation $x \sim y \equiv \exists z \in|\mathcal{C}| \Sigma[x, z] \neq \emptyset$ and $\Sigma[y, z] \neq \emptyset$ is an equivalence relation
2. K a \sim-class, the full subcategory K is a non empty lattice

Unique
factorization
Free commutative monoid
Finite connected loop-free categories

Structure of \sum-components

Σ system of weak isomorphisms over \mathcal{C} loop-free

1. the relation $x \sim y \equiv \exists z \in|\mathcal{C}| \Sigma[x, z] \neq \emptyset$ and $\Sigma[y, z] \neq \emptyset$ is an equivalence relation
2. K a \sim-class, the full subcategory K is a non empty lattice
3. If $a \sim b$ then

is both a pullback and a pushout in \mathcal{C}

Locale of systems of weak isomorphisms

The poset (\{systems of weak isomorphisms $\}, \subseteq$) is a locale. Let $\bar{\Sigma}$ be its greatest element.

Category of components

- The category of components of a loop-free category \mathcal{C} is the quotient $\mathcal{C} / \bar{\Sigma}$ and denoted by $\vec{\pi}_{0} \mathcal{C}$

Category of components

- The category of components of a loop-free category \mathcal{C} is the quotient $\mathcal{C} / \bar{\Sigma}$ and denoted by $\vec{\pi}_{0} \mathcal{C}$
- A loop-free category \mathcal{C} is a non empty lattice iff its category of components is $\{0\}$

Category of components

- The category of components of a loop-free category \mathcal{C} is the quotient $\mathcal{C} / \bar{\Sigma}$ and denoted by $\vec{\pi}_{0} \mathcal{C}$
- A loop-free category \mathcal{C} is a non empty lattice iff its category of components is $\{0\}$
- $\overrightarrow{\pi_{0}}(\mathcal{A} \times \mathcal{B}) \cong \overrightarrow{\pi_{0}} \mathcal{A} \times \overrightarrow{\pi_{0}} \mathcal{B}$

Fundamental theorem

\mathcal{C} loop-free category and Σ system of weak isomorphisms over \mathcal{C}

1. Σ is pure in \mathcal{C} i.e. $\beta \circ \alpha \in \Sigma \Rightarrow \beta, \alpha \in \Sigma$,

Fundamental theorem

\mathcal{C} loop-free category and Σ system of weak isomorphisms over \mathcal{C}

1. Σ is pure in \mathcal{C} i.e. $\beta \circ \alpha \in \Sigma \Rightarrow \beta, \alpha \in \Sigma$,
2. \mathcal{C} / Σ is loop-free,

Fundamental theorem

\mathcal{C} loop-free category and Σ system of weak isomorphisms over \mathcal{C}

1. Σ is pure in \mathcal{C} i.e. $\beta \circ \alpha \in \Sigma \Rightarrow \beta, \alpha \in \Sigma$,
2. \mathcal{C} / Σ is loop-free,
3. $\mathcal{C}\left[\Sigma^{-1}\right]$ and \mathcal{C} / Σ are equivalent and

Fundamental theorem

\mathcal{C} loop-free category and Σ system of weak isomorphisms over \mathcal{C}

1. Σ is pure in \mathcal{C} i.e. $\beta \circ \alpha \in \Sigma \Rightarrow \beta, \alpha \in \Sigma$,
2. \mathcal{C} / Σ is loop-free,
3. $\mathcal{C}\left[\Sigma^{-1}\right]$ and \mathcal{C} / Σ are equivalent and
4. $\mathcal{C}\left[\Sigma^{-1}\right]$ is fibered over the base \mathcal{C} / Σ.

Examples

in dimension 2

Category of

 componentsThe loop fite case
Beyond loop-freeness
Unique
factorization
Free commutative monoid
Finite connected loop-free categories
Homogeneous sets of words

Commutative monoids

- $(M, *, \varepsilon)$ such that for all $a, b, c \in M$, $(a b) c=a(b c)$
$\varepsilon a=a=a \varepsilon$
$a b=b a$

Category of components

The loop-free case

Finite connected loop-free

Commutative monoids

- $(M, *, \varepsilon)$ such that for all $a, b, c \in M$, $(a b) c=a(b c)$
$\varepsilon a=a=a \varepsilon$
$a b=b a$
- For all set X the collection $M X$ of multisets over X i.e. maps $\phi: X \rightarrow \mathbb{N}$ s.t. $\{x \in X \mid \phi(x) \neq 0\}$ is finite forms a commutative monoid

Commutative monoids

- $(M, *, \varepsilon)$ such that for all $a, b, c \in M$, $(a b) c=a(b c)$
$\varepsilon a=a=a \varepsilon$
$a b=b a$
- For all set X the collection $M X$ of multisets over X i.e. maps $\phi: X \rightarrow \mathbb{N}$ s.t. $\{x \in X \mid \phi(x) \neq 0\}$ is finite forms a commutative monoid
- A commutative monoid is said to be free when it is isomorphic with some $M X$

Commutative monoids

- $(M, *, \varepsilon)$ such that for all $a, b, c \in M$,
$(a b) c=a(b c)$
$\varepsilon a=a=a \varepsilon$
$a b=b a$
- For all set X the collection $M X$ of multisets over X i.e. maps $\phi: X \rightarrow \mathbb{N}$ s.t. $\{x \in X \mid \phi(x) \neq 0\}$ is finite forms a commutative monoid
- A commutative monoid is said to be free when it is isomorphic with some $M X$
- Functor M : Set \rightarrow CMon
components

Beyond loop-freeness

Prime and irreducible elements

of a commutative monoid

- d divides x, denoted by $d \mid x$, when there exists x^{\prime} such that $x=d x^{\prime}$

Prime and irreducible elements

of a commutative monoid

- d divides x, denoted by $d \mid x$, when there exists x^{\prime} such that $x=d x^{\prime}$
- u unit: exists u^{\prime} s.t. $u u^{\prime}=\varepsilon$ then write $x \sim y$ when $y=u x$ for some unit u

Prime and irreducible elements

of a commutative monoid

- d divides x, denoted by $d \mid x$, when there exists x^{\prime} such that $x=d x^{\prime}$
- u unit: exists u^{\prime} s.t. $u u^{\prime}=\varepsilon$ then write $x \sim y$ when $y=u x$ for some unit u
- i irreducible: i nonunit and $x \mid i$ implies $x \sim i$ or x unit

Prime and irreducible elements

of a commutative monoid

- d divides x, denoted by $d \mid x$, when there exists x^{\prime} such that $x=d x^{\prime}$
- u unit: exists u^{\prime} s.t. $u u^{\prime}=\varepsilon$ then write $x \sim y$ when $y=u x$ for some unit u
- i irreducible: i nonunit and $x \mid i$ implies $x \sim i$ or x unit
- p prime: p nonunit and $p \mid a b$ implies $p \mid a$ or $p \mid b$

Examples

monoid

Examples

monoid	irreducibles	primes	units
$\mathbb{N} \backslash\{0\}, \times, 1$	\{prime numbers $\}$	$\{1\}$	

Examples

monoid	irreducibles	primes
$\mathbb{N} \backslash\{0\}, \times, 1$	units	
$\mathbb{N},+, 0$	1	

Examples

monoid	irreducibles	primes
$\mathbb{N} \backslash\{0\}, \times, 1$	units	
$\mathbb{N},+, 0$	prime numbers $\}$	$\{1\}$
$\mathbb{R}_{+},+, 0$	$\{1\}$	$\{0\}$
	\emptyset	$\{0\}$

Examples

monoid	irreducibles	primes	units
$\mathbb{N} \backslash\{0\}, \times, 1$	\{prime numbers $\}$	$\{1\}$	
$\mathbb{N},+, 0$	1		$\{0\}$
$\mathbb{R}_{+},+, 0$	\emptyset	$\{0\}$	
$\mathbb{R}_{+}, \vee, 0$	\emptyset	$\mathbb{R}_{+} \backslash\{0\}$	$\{0\}$

Examples

Category of components
The loop-free case
Beyond loop-freeness
Unique
factorization

monoid	irreducibles	primes	units
$\mathbb{N} \backslash\{0\}, \times, 1$	\{prime numbers $\}$	$\{1\}$	
$\mathbb{N},+, 0$	1		$\{0\}$
$\mathbb{R}_{+},+, 0$	\emptyset	$\{0\}$	
$\mathbb{R}_{+}, \vee, 0$	\emptyset	$\mathbb{R}_{+} \backslash\{0\}$	$\{0\}$
$\mathbb{Z}_{6}, \times, 1$	\emptyset	$\{0,2,3,4\}$	$\{1,5\}$

Graded commutative monoid

- $(M, *, \varepsilon)$ graded: there is a one-to-one morphism from ($M, *, \varepsilon$) to $(\mathbb{N},+, 0)$

Category of components

The loop-free case

Beyond loop-freeness

Graded commutative monoid

- $(M, *, \varepsilon)$ graded: there is a one-to-one morphism from ($M, *, \varepsilon$) to $(\mathbb{N},+, 0)$
- If M is graded then
\{irreducibles of $M\}$ generates M $\{$ primes of $M\} \subseteq\{$ irreducibles of $M\}$

Category of components
The loop-free case
Beyond loop-freeness
Unique
factorization

Irreducible that are not prime

$M=(\{a+b \sqrt{10} \mid a, b \in \mathbb{Z} ; a \neq 0$ or $b \neq 0\}, x, 1)$
$-N: M \rightarrow(\mathbb{Z} \backslash\{0\}, \times, 1) ; N(a+b \sqrt{10})=a^{2}-10 b^{2}$

Category of
components
The loop-free case Beyond loop-freeness

Unique
factorization
Free commutative monoid
Finite connected loop-free categories
Homogeneous sets of words

Irreducible that are not prime

$M=(\{a+b \sqrt{10} \mid a, b \in \mathbb{Z} ; a \neq 0$ or $b \neq 0\}, x, 1)$
$-N: M \rightarrow(\mathbb{Z} \backslash\{0\}, \times, 1) ; N(a+b \sqrt{10})=a^{2}-10 b^{2}$

$$
N(u v)=N(u) N(v)
$$

Category of
components
The loop-free case

Beyond loop-freeness

Unique

factorization

Irreducible that are not prime

$M=(\{a+b \sqrt{10} \mid a, b \in \mathbb{Z} ; a \neq 0$ or $b \neq 0\}, x, 1)$
$-N: M \rightarrow(\mathbb{Z} \backslash\{0\}, \times, 1) ; N(a+b \sqrt{10})=a^{2}-10 b^{2}$
$N(u v)=N(u) N(v)$
u unit iff $N(u) \in\{ \pm 1\}$

Category of
components
The loop-free case
Beyond loop-freeness
Unique
factorization
Free commutative monoid

Irreducible that are not prime

$M=(\{a+b \sqrt{10} \mid a, b \in \mathbb{Z} ; a \neq 0$ or $b \neq 0\}, x, 1)$

- $N: M \rightarrow(\mathbb{Z} \backslash\{0\}, \times, 1) ; N(a+b \sqrt{10})=a^{2}-10 b^{2}$
$N(u v)=N(u) N(v)$
u unit iff $N(u) \in\{ \pm 1\}$
$N(a+b \sqrt{10}) \bmod 10 \in\{1,4,5,6,9\}$

Category of components

The loop-free case
Beyond loop-freeness

Unique

factorization

Free commutative monoid

Finite connected loop-free
categories
Homogeneous sets of words

Irreducible that are not prime

$M=(\{a+b \sqrt{10} \mid a, b \in \mathbb{Z} ; a \neq 0$ or $b \neq 0\}, x, 1)$

- $N: M \rightarrow(\mathbb{Z} \backslash\{0\}, \times, 1) ; N(a+b \sqrt{10})=a^{2}-10 b^{2}$
$N(u v)=N(u) N(v)$
u unit iff $N(u) \in\{ \pm 1\}$
$N(a+b \sqrt{10}) \bmod 10 \in\{1,4,5,6,9\}$
therefore $N(a+b \sqrt{10}) \notin\{ \pm 2, \pm 3\}$

Unique

factorization

Free commutative monoid

Irreducible that are not prime

$M=(\{a+b \sqrt{10} \mid a, b \in \mathbb{Z} ; a \neq 0$ or $b \neq 0\}, x, 1)$

- $N: M \rightarrow(\mathbb{Z} \backslash\{0\}, \times, 1) ; N(a+b \sqrt{10})=a^{2}-10 b^{2}$
$N(u v)=N(u) N(v)$
u unit iff $N(u) \in\{ \pm 1\}$
$N(a+b \sqrt{10}) \bmod 10 \in\{1,4,5,6,9\}$
therefore $N(a+b \sqrt{10}) \notin\{ \pm 2, \pm 3\}$

uv	$N($ uv $)$	$N(u)$
2	4	$\pm 1, \pm 2, \pm 4$
3	9	$\pm 1, \pm 3, \pm 9$
$4 \pm \sqrt{10}$	6	$\pm 1, \pm 2, \pm 3, \pm 6$

Category of components
The loop-free case
Beyond loop-freeness

Unique

factorization

Irreducible that are not prime

$M=(\{a+b \sqrt{10} \mid a, b \in \mathbb{Z} ; a \neq 0$ or $b \neq 0\}, x, 1)$

- $N: M \rightarrow(\mathbb{Z} \backslash\{0\}, \times, 1) ; N(a+b \sqrt{10})=a^{2}-10 b^{2}$

$$
N(u v)=N(u) N(v)
$$

u unit iff $N(u) \in\{ \pm 1\}$
$N(a+b \sqrt{10}) \bmod 10 \in\{1,4,5,6,9\}$
therefore $N(a+b \sqrt{10}) \notin\{ \pm 2, \pm 3\}$

uv	$N(u v)$	$N(u)$
2	4	$\pm 1, \pm 2, \pm 4$
3	9	$\pm 1, \pm 3, \pm 9$
$4 \pm \sqrt{10}$	6	$\pm 1, \pm 2, \pm 3, \pm 6$

$-2,3$, and $4 \pm \sqrt{10}$ are irreducible but not prime since $2 \cdot 3=(4+\sqrt{10}) \cdot(4-\sqrt{10})$

Irreducible that are not prime

$M=(\{a+b \sqrt{10} \mid a, b \in \mathbb{Z} ; a \neq 0$ or $b \neq 0\}, x, 1)$

- $N: M \rightarrow(\mathbb{Z} \backslash\{0\}, \times, 1) ; N(a+b \sqrt{10})=a^{2}-10 b^{2}$

$$
N(u v)=N(u) N(v)
$$

u unit iff $N(u) \in\{ \pm 1\}$
$N(a+b \sqrt{10}) \bmod 10 \in\{1,4,5,6,9\}$
therefore $N(a+b \sqrt{10}) \notin\{ \pm 2, \pm 3\}$

uv	$\mathrm{N}($ uv $)$	$\mathrm{N}(\mathrm{u})$
2	4	$\pm 1, \pm 2, \pm 4$
3	9	$\pm 1, \pm 3, \pm 9$
$4 \pm \sqrt{10}$	6	$\pm 1, \pm 2, \pm 3, \pm 6$

$-2,3$, and $4 \pm \sqrt{10}$ are irreducible but not prime since $2 \cdot 3=(4+\sqrt{10}) \cdot(4-\sqrt{10})$

- $\{a+b \sqrt{10} \mid a, b \in \mathbb{Z}\} \backslash\{0\}$ is graded by the number of prime factors of $N(u)$

$\mathbb{N}[X]$ polynomials with coefficients in \mathbb{N}

Junji Hashimoto 51
$X^{5}+X^{4}+X^{3}+X^{2}+X+1=$

Category of components
The loop-free case
Beyond loop-freeness
Unique
factorization
Free commutative monoid
Finite connected loop-free categories
Homogeneous sets of words

$\mathbb{N}[X]$ polynomials with coefficients in \mathbb{N}

Junji Hashimoto 51
$X^{5}+X^{4}+X^{3}+X^{2}+X+1=$
$\left\{(x+1)\left(x^{4}+x^{2}+1\right)\right.$

$\mathbb{N}[X]$ polynomials with coefficients in \mathbb{N}

Junji Hashimoto 51

$$
\begin{aligned}
& X^{5}+X^{4}+X^{3}+X^{2}+X+1= \\
& \left\{(X+1)\left(X^{4}+X^{2}+1\right)=\left(X^{3}+1\right)\left(X^{2}+X+1\right) \quad \text { in } \mathbb{N}[X]\right.
\end{aligned}
$$

$\mathbb{N}[X]$ polynomials with coefficients in \mathbb{N}

Junji Hashimoto 51

$$
\begin{aligned}
& X^{5}+X^{4}+X^{3}+X^{2}+X+1= \\
& \begin{cases}(X+1)\left(X^{4}+X^{2}+1\right)=\left(X^{3}+1\right)\left(X^{2}+X+1\right) & \text { in } \mathbb{N}[X] \\
(X+1)\left(X^{2}+X+1\right)\left(X^{2}-X+1\right) & \text { in } \mathbb{Z}[X]\end{cases}
\end{aligned}
$$

$\mathbb{N}[X]$ polynomials with coefficients in \mathbb{N}

Junji Hashimoto 51
$X^{5}+X^{4}+X^{3}+X^{2}+X+1=$
$\begin{cases}(X+1)\left(X^{4}+X^{2}+1\right)=\left(X^{3}+1\right)\left(X^{2}+X+1\right) & \text { in } \mathbb{N}[X] \\ (X+1)\left(X^{2}+X+1\right)\left(X^{2}-X+1\right) & \text { in } \mathbb{Z}[X]\end{cases}$

- therefore $X+1, X^{2}+X+1, X^{3}+1$, and $X^{4}+X^{2}+1$ are irreducible but not prime
- $\mathbb{N}[X] \backslash\{0\}$ is graded by the degree

Finite connected loop-free

 categories
Characterization

of the free commutative monoids

The following are equivalent:

- M is free commutative

Characterization

of the free commutative monoids

The following are equivalent:

- M is free commutative
- any element of M can be written as a product of irreducibles in a unique way up to reordering

Characterization

of the free commutative monoids

The following are equivalent:

- M is free commutative
- any element of M can be written as a product of irreducibles in a unique way up to reordering
- $\{$ primes of $M\}=\{$ irreducibles of $M\}$ and generates M

Characterization

of the free commutative monoids

The following are equivalent:

- M is free commutative
- any element of M can be written as a product of irreducibles in a unique way up to reordering
- $\{$ primes of $M\}=\{$ irreducibles of $M\}$ and generates M
- M is graded and \{irreducibles of $M\} \subseteq\{$ primes of $M\}$

Commutative monoid

of nonempty finite connected loop-free categories

- $\mathcal{A} \times \mathcal{B}$ nonempty finite connected iff so are \mathcal{A} and \mathcal{B}

Commutative monoid

of nonempty finite connected loop-free categories

- $\mathcal{A} \times \mathcal{B}$ nonempty finite connected iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \cong \mathcal{A}^{\prime}$ and $\mathcal{B} \cong \mathcal{B}^{\prime}$ implies $\mathcal{A} \times \mathcal{A}^{\prime} \cong \mathcal{B} \times \mathcal{B}^{\prime}$

Category of components
The loop-free case
Beyond loop-freeness
Unique
factorization
Free commutative monoid
Finite connexted loop-free "ategories

Commutative monoid

of nonempty finite connected loop-free categories

- $\mathcal{A} \times \mathcal{B}$ nonempty finite connected iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \cong \mathcal{A}^{\prime}$ and $\mathcal{B} \cong \mathcal{B}^{\prime}$ implies $\mathcal{A} \times \mathcal{A}^{\prime} \cong \mathcal{B} \times \mathcal{B}^{\prime}$
- $(\mathcal{A} \times \mathcal{B}) \times \mathcal{C} \cong \mathcal{A} \times(\mathcal{B} \times \mathcal{C})$

Category of components
The loop-free case
Beyond loop-freeness
Unique
factorization
Free commutative monoid
Finite conneated loop.free categories

Commutative monoid

of nonempty finite connected loop-free categories

- $\mathcal{A} \times \mathcal{B}$ nonempty finite connected iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \cong \mathcal{A}^{\prime}$ and $\mathcal{B} \cong \mathcal{B}^{\prime}$ implies $\mathcal{A} \times \mathcal{A}^{\prime} \cong \mathcal{B} \times \mathcal{B}^{\prime}$
- $(\mathcal{A} \times \mathcal{B}) \times \mathcal{C} \cong \mathcal{A} \times(\mathcal{B} \times \mathcal{C})$
$-1 \times \mathcal{A} \cong \mathcal{A} \cong \mathcal{A} \times 1$

Category of components
The loop-free case
Beyond loop-freeness
Unique
factorization
Free commutative monoid
Finite conneated loop-free categories

Commutative monoid

of nonempty finite connected loop-free categories

- $\mathcal{A} \times \mathcal{B}$ nonempty finite connected iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \cong \mathcal{A}^{\prime}$ and $\mathcal{B} \cong \mathcal{B}^{\prime}$ implies $\mathcal{A} \times \mathcal{A}^{\prime} \cong \mathcal{B} \times \mathcal{B}^{\prime}$
- $(\mathcal{A} \times \mathcal{B}) \times \mathcal{C} \cong \mathcal{A} \times(\mathcal{B} \times \mathcal{C})$
$-1 \times \mathcal{A} \cong \mathcal{A} \cong \mathcal{A} \times 1$
- $\mathcal{A} \times \mathcal{B} \cong \mathcal{B} \times \mathcal{A}$

Commutative monoid

of nonempty finite connected loop-free categories

- $\mathcal{A} \times \mathcal{B}$ nonempty finite connected iff so are \mathcal{A} and \mathcal{B}
- $\mathcal{A} \cong \mathcal{A}^{\prime}$ and $\mathcal{B} \cong \mathcal{B}^{\prime}$ implies $\mathcal{A} \times \mathcal{A}^{\prime} \cong \mathcal{B} \times \mathcal{B}^{\prime}$
- $(\mathcal{A} \times \mathcal{B}) \times \mathcal{C} \cong \mathcal{A} \times(\mathcal{B} \times \mathcal{C})$
$-1 \times \mathcal{A} \cong \mathcal{A} \cong \mathcal{A} \times 1$
- $\mathcal{A} \times \mathcal{B} \cong \mathcal{B} \times \mathcal{A}$
- the corresponding commutative monoid is isomorphic with $(\mathbb{N} \backslash\{0\}, \times, 1)$

Commutative monoid

of homogeneous sets of words

Category of
components

- \mathbb{A}^{*} (non commutative) monoid of words on \mathbb{A}, let ε denotes the empty word

Commutative monoid

of homogeneous sets of words

Category of
components

- \mathbb{A}^{*} (non commutative) monoid of words on \mathbb{A}, let ε denotes the empty word
- $H \subseteq \mathbb{A}^{*}$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length $\operatorname{dim}(H)$

Commutative monoid

of homogeneous sets of words

- \mathbb{A}^{*} (non commutative) monoid of words on \mathbb{A}, let ε denotes the empty word
- $H \subseteq \mathbb{A}^{*}$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length $\operatorname{dim}(H)$
- $H \cdot H^{\prime}=\left\{w \cdot w^{\prime} \mid w \in H ; w^{\prime} \in H^{\prime}\right\}$ is homogeneous iff so are H and H^{\prime}

Commutative monoid

of homogeneous sets of words

- \mathbb{A}^{*} (non commutative) monoid of words on \mathbb{A}, let ε denotes the empty word
- $H \subseteq \mathbb{A}^{*}$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length $\operatorname{dim}(H)$
- $H \cdot H^{\prime}=\left\{w \cdot w^{\prime} \mid w \in H ; w^{\prime} \in H^{\prime}\right\}$ is homogeneous iff so are H and H^{\prime}
$-\{\varepsilon\} \cdot H=H=H \cdot\{\varepsilon\}$

Commutative monoid

of homogeneous sets of words
Category of
components

- \mathbb{A}^{*} (non commutative) monoid of words on \mathbb{A}, let ε denotes the empty word
- $H \subseteq \mathbb{A}^{*}$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length $\operatorname{dim}(H)$
- $H \cdot H^{\prime}=\left\{w \cdot w^{\prime} \mid w \in H ; w^{\prime} \in H^{\prime}\right\}$ is homogeneous iff so are H and H^{\prime}
- $\{\varepsilon\} \cdot H=H=H \cdot\{\varepsilon\}$
- $\left(\mathcal{P}_{h}(\mathbb{A}), \cdot,\{\varepsilon\}\right)$ noncommutative monoid of homogeneous sets

Commutative monoid

- \mathbb{A}^{*} (non commutative) monoid of words on \mathbb{A}, let ε denotes the empty word
- $H \subseteq \mathbb{A}^{*}$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length $\operatorname{dim}(H)$
- $H \cdot H^{\prime}=\left\{w \cdot w^{\prime} \mid w \in H ; w^{\prime} \in H^{\prime}\right\}$ is homogeneous iff so are H and H^{\prime}
$-\{\varepsilon\} \cdot H=H=H \cdot\{\varepsilon\}$
- $\left(\mathcal{P}_{h}(\mathbb{A}), \cdot,\{\varepsilon\}\right)$ noncommutative monoid of homogeneous sets
- $H \sim H^{\prime}$ when $\operatorname{dim}(H)=\operatorname{dim}\left(H^{\prime}\right)$ and $H^{\prime}=\sigma H$ for some $\sigma \in \mathfrak{S}_{\operatorname{dim}(H)}$

Commutative monoid

- \mathbb{A}^{*} (non commutative) monoid of words on \mathbb{A}, let ε denotes the empty word
- $H \subseteq \mathbb{A}^{*}$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length $\operatorname{dim}(H)$
- $H \cdot H^{\prime}=\left\{w \cdot w^{\prime} \mid w \in H ; w^{\prime} \in H^{\prime}\right\}$ is homogeneous iff so are H and H^{\prime}
$-\{\varepsilon\} \cdot H=H=H \cdot\{\varepsilon\}$
- $\left(\mathcal{P}_{h}(\mathbb{A}), \cdot,\{\varepsilon\}\right)$ noncommutative monoid of homogeneous sets
- $H \sim H^{\prime}$ when $\operatorname{dim}(H)=\operatorname{dim}\left(H^{\prime}\right)$ and $H^{\prime}=\sigma H$ for some $\sigma \in \mathfrak{S}_{\operatorname{dim}(H)}$
- $H \sim H^{\prime}$ and $K \sim K^{\prime}$ implies $H K \sim H^{\prime} K^{\prime}$

Commutative monoid

- \mathbb{A}^{*} (non commutative) monoid of words on \mathbb{A}, let ε denotes the empty word
- $H \subseteq \mathbb{A}^{*}$ is homogeneous when $H \neq \emptyset$ and all the words in H have the same length $\operatorname{dim}(H)$
- $H \cdot H^{\prime}=\left\{w \cdot w^{\prime} \mid w \in H ; w^{\prime} \in H^{\prime}\right\}$ is homogeneous iff so are H and H^{\prime}
$-\{\varepsilon\} \cdot H=H=H \cdot\{\varepsilon\}$
- $\left(\mathcal{P}_{h}(\mathbb{A}), \cdot,\{\varepsilon\}\right)$ noncommutative monoid of homogeneous sets
- $H \sim H^{\prime}$ when $\operatorname{dim}(H)=\operatorname{dim}\left(H^{\prime}\right)$ and $H^{\prime}=\sigma H$ for some $\sigma \in \mathfrak{S}_{\operatorname{dim}(H)}$
- $H \sim H^{\prime}$ and $K \sim K^{\prime}$ implies $H K \sim H^{\prime} K^{\prime}$
- $\mathcal{H}(\mathbb{A})=\left(\mathcal{P}_{h}(\mathbb{A}), \cdot,\{\varepsilon\}\right) / \sim$ free commutative monoid of homogeneous sets

Commutative monoid

of finite homogeneous sets of words

- $M^{\prime} \subseteq M$ is said to be pure when for all $x, y \in M$, $x y \in M^{\prime}$ implies $x, y, \in M^{\prime}$

Commutative monoid

of finite homogeneous sets of words
Category of components

The loop-free case
Beyond loop-freeness

- $M^{\prime} \subseteq M$ is said to be pure when for all $x, y \in M$, $x y \in M^{\prime}$ implies $x, y, \in M^{\prime}$
- A pure submonoid of a free commutative monoid is free

Commutative monoid

of finite homogeneous sets of words

- $M^{\prime} \subseteq M$ is said to be pure when for all $x, y \in M$, $x y \in M^{\prime}$ implies $x, y, \in M^{\prime}$
- A pure submonoid of a free commutative monoid is free
- $\mathcal{H}_{f}(\mathbb{A})=\{H \in \mathcal{H}(\mathbb{A}) \mid \# H$ is finite $\}$ is a pure submonoid of $\mathcal{H}(\mathbb{A})$ hence it is free

Commutative monoid

of finite homogeneous sets of words

- $M^{\prime} \subseteq M$ is said to be pure when for all $x, y \in M$, $x y \in M^{\prime}$ implies $x, y, \in M^{\prime}$
- A pure submonoid of a free commutative monoid is free
- $\mathcal{H}_{f}(\mathbb{A})=\{H \in \mathcal{H}(\mathbb{A}) \mid \# H$ is finite $\}$ is a pure submonoid of $\mathcal{H}(\mathbb{A})$ hence it is free
- $\mathcal{H}_{f}(\{$ nonempty intervals of $\mathbb{R}\})$ cubical areas

Commutative monoid

of finite homogeneous sets of words

- $M^{\prime} \subseteq M$ is said to be pure when for all $x, y \in M$, $x y \in M^{\prime}$ implies $x, y, \in M^{\prime}$
- A pure submonoid of a free commutative monoid is free
- $\mathcal{H}_{f}(\mathbb{A})=\{H \in \mathcal{H}(\mathbb{A}) \mid \# H$ is finite $\}$ is a pure submonoid of $\mathcal{H}(\mathbb{A})$ hence it is free
- $\mathcal{H}_{f}(\{$ nonempty intervals of $\mathbb{R}\})$ cubical areas
- $\mathcal{H}(\mathbb{R})$ subsets of \mathbb{R}^{n} for n ranging through \mathbb{N}

Category of

components
The loop-free case
Beyond loop-freeness

Unique
 factorization

Free commutative monoid
Finite connected loop-free categories
Hambentegre sets of mards

