Introduction to Directed Algebraic Topology with a view towards modelling Concurrency II

Mathematical Structures of Computations - Lyon 2014

Emmanuel Haucourt

CEA-Tech, NanoInnov

The 29th of January

Summary

Geometric realization

Directed Topology Local pospaces Realization of graphs Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

- ロト・日本・ヨー シャート ヨー シャー

Diagram in **Top** from a precubical set *K*

$$-\partial_i \cong (x \cdots x \underbrace{0}_{ith} x \cdots x) \text{ and } \partial_i^+ \cong (x \cdots x \underbrace{1}_{ith} x \cdots x)$$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Diagram in **Top**

-
$$\partial_i^{\pm} \cong (x \cdots x \underbrace{0}_{i^{th}} x \cdots x)$$
 and $\partial_i^{\pm} \cong (x \cdots x \underbrace{1}_{i^{th}} x \cdots x)$
- for all $n \in \mathbb{N}$ for all $x \in K_n$ for all $i \in \{0, \dots, n-1\}$
and for $\varepsilon \in \{0, 1\}$ we have the inclusion map

$$\begin{array}{rcl} \phi_{i,n,x}^{\varepsilon} & : & \{\partial_i^{\varepsilon}(x)\} \times [0,1]^{n-1} & \to & \{x\} \times [0,1]^n \\ & & (t_1,\ldots,t_{n-1}) & \mapsto & (t_1,\ldots,t_{i-1},\varepsilon,t_i,\ldots,t_{n-1}) \end{array}$$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・日・・ヨ・・ヨ・ つへで

Diagram in **Top**

-
$$\partial_i \cong (x \cdots x \underbrace{0}_{i^{th}} x \cdots x)$$
 and $\partial_i^+ \cong (x \cdots x \underbrace{1}_{i^{th}} x \cdots x)$
- for all $n \in \mathbb{N}$ for all $x \in K_n$ for all $i \in \{0, \dots, n-1\}$
and for $\varepsilon \in \{0, 1\}$ we have the inclusion map

$$\begin{array}{rcl} \phi_{i,n,x}^{\varepsilon} : & \{\partial_i^{\varepsilon}(x)\} \times [0,1]^{n-1} & \to & \{x\} \times [0,1]^n \\ & (t_1,\ldots,t_{n-1}) & \mapsto & (t_1,\ldots,t_{i-1},\varepsilon,t_i,\ldots,t_{n-1}) \end{array}$$

- |K|: the geometric realization of K is the colimit of this diagram in **Top**

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

コート 4 母 ト 4 目 ト 4 目 ト うらんら

Diagram in **Top** from a precubical set *K*

-
$$\partial_i \cong (x \cdots x \underbrace{0}_{i^{th}} x \cdots x)$$
 and $\partial_i^+ \cong (x \cdots x \underbrace{1}_{i^{th}} x \cdots x)$
- for all $n \in \mathbb{N}$ for all $x \in K_n$ for all $i \in \{0, \dots, n-1\}$
and for $\varepsilon \in \{0, 1\}$ we have the inclusion map

$$\begin{array}{rcl} \phi_{i,n,x}^{\varepsilon} & : & \{\partial_i^{\varepsilon}(x)\} \times [0,1]^{n-1} & \to & \{x\} \times [0,1]^n \\ & & (t_1,\ldots,t_{n-1}) & \mapsto & (t_1,\ldots,t_{i-1},\varepsilon,t_i,\ldots,t_{n-1}) \end{array}$$

- |K|: the geometric realization of K is the colimit of this diagram in **Top**
- for all K, K' precubical sets, $|K \otimes K'| \cong |K| imes |K'|$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

- ロ ト 4 昼 ト 4 亘 ト 4 亘 - りへで

a calculation

-
$$K_0 = \{a, b\}$$
 and $K_1 = \{\alpha, \beta\}$
 $\partial^{+} \alpha = \partial^{-} \beta = a$ and $\partial^{+} \alpha = \partial^{+} \beta = b$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・日下・ 山下・ 山下・ 山下・ 山下・

a calculation

-
$$K_0 = \{a, b\}$$
 and $K_1 = \{\alpha, \beta\}$
 $\partial^{+} \alpha = \partial^{-} \beta = a$ and $\partial^{+} \alpha = \partial^{+} \beta = b$

a •

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

▲□▶▲舂▶▲≧▶▲≧▶ ≧ めへぐ

h

a calculation

$$\mathcal{K}_0 = \{a, b\} \text{ and } \mathcal{K}_1 = \{\alpha, \beta\}$$

 $\partial^+ \alpha = \partial^+ \beta = a \text{ and } \partial^+ \alpha = \partial^+ \beta = b$
 $\partial^+ \alpha = a$
 $b = \partial^+ \alpha$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・雪・・雪・・雪・・ つくろ

a calculation

$$\mathcal{K}_{0} = \{a, b\} \text{ and } \mathcal{K}_{1} = \{\alpha, \beta\}$$

$$\partial^{+} \alpha = \partial^{+} \beta = a \text{ and } \partial^{+} \alpha = \partial^{+} \beta = b$$

$$\partial^{-} \beta = \partial^{-} \alpha = a$$

$$b = \partial^{+} \alpha = \partial^{+} \beta$$

1SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

another calculation

-
$$K_0 = \{a, b\}$$
 and $K_1 = \{\alpha, \beta\}$
 $\partial^{+} \alpha = \partial^{+} \beta = a$ and $\partial^{+} \alpha = \partial^{-} \beta = b$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

another calculation

-
$$K_0 = \{a, b\}$$
 and $K_1 = \{\alpha, \beta\}$
 $\partial^{\cdot} \alpha = \partial^{+} \beta = a$ and $\partial^{+} \alpha = \partial^{\cdot} \beta = b$

a • •

MSC - Lyon 201

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

h

$$K_0 = \{a, b\}$$
 and $K_1 = \{\alpha, \beta\}$
 $\partial \alpha = \partial^+ \beta = a$ and $\partial^+ \alpha = \partial^- \beta = b$

$$\partial^2 \alpha = a$$
 $b = \partial^+ \alpha$

MSC - Lyon 2014

Geometric realization

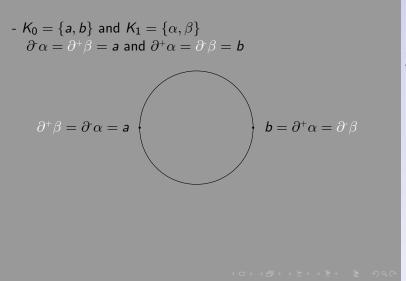
Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・雪・・雪・・雪・ 今へぐ.



1SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

- A topological space X together with a closed partial order

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト 4 聞 ト 4 画 ト 4 画 ・ クタイ

- A topological space X together with a closed partial order - morphisms: increasing continuous maps

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

(□ ▷ ▲ @ ▷ ▲ ≧ ▷ ▲ ≧ → りへで

- A topological space X together with a closed partial order
- morphisms: increasing continuous maps
- e.g. ${\mathbb R}$ with its standard topology and order

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

- A topological space X together with a closed partial order
- morphisms: increasing continuous maps
- e.g. ${\mathbb R}$ with its standard topology and order
- Potop is complete and cocomplete but its colimits do not preserve the topology

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

-
$$K_0 = \{a, b\}$$
 and $K_1 = \{\alpha, \beta\}$
 $\partial^{+} \alpha = \partial^{-} \beta = a$ and $\partial^{+} \alpha = \partial^{+} \beta = b$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

-
$$K_0 = \{a, b\}$$
 and $K_1 = \{\alpha, \beta\}$
 $\partial^{+} \alpha = \partial^{-} \beta = a$ and $\partial^{+} \alpha = \partial^{+} \beta = b$

a • •

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

h

$$a_{0} = \{a, b\} \text{ and } K_{1} = \{\alpha, \beta\}$$

 $\alpha = \partial^{+}\beta = a \text{ and } \partial^{+}\alpha = \partial^{+}\beta = b$
 $\partial^{-}\alpha = a$
 $b = \partial^{+}\alpha$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・母ト・ヨト・母・ うくの

 γ

Directed geometric realization in **PoTop** a calculation

-
$$\mathcal{K}_0 = \{a, b\} \text{ and } \mathcal{K}_1 = \{\alpha, \beta\}$$

 $\partial \alpha = \partial \beta = a \text{ and } \partial^+ \alpha = \partial^+ \beta = b$
 $\partial \beta = \partial \alpha = a$
 $b = \partial^+ \alpha = \partial^+ \beta$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

-
$$K_0 = \{a, b\}$$
 and $K_1 = \{\alpha, \beta\}$
 $\partial^{+} \alpha = \partial^{+} \beta = a$ and $\partial^{+} \alpha = \partial^{-} \beta = b$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・日下・ 山下・ 山下・ 山下・ 山下・

-
$$K_0 = \{a, b\}$$
 and $K_1 = \{\alpha, \beta\}$
 $\partial^{-}\alpha = \partial^{+}\beta = a$ and $\partial^{+}\alpha = \partial^{-}\beta = b$

a • • b

MSC - Lyon 201

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

▲□▶▲舂▶▲≧▶▲≧▶ ≧ のへぐ

$$\mathcal{K}_0 = \{a, b\} \text{ and } \mathcal{K}_1 = \{\alpha, \beta\}$$

 $\mathcal{F}\alpha = \partial^+\beta = a \text{ and } \partial^+\alpha = \partial^-\beta = b$
 $\partial^+\alpha = a$
 $b = \partial^+\alpha$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・白ト・ヨト・ヨー シック

$$\mathcal{K}_{0} = \{a, b\} \text{ and } \mathcal{K}_{1} = \{\alpha, \beta\}$$

$$\partial^{+}\beta = \partial^{+}\beta = a \text{ and } \partial^{+}\alpha = \partial^{-}\beta = b$$

$$\partial^{+}\beta = \partial^{+}\alpha = a$$

$$b = \partial^{+}\alpha = \partial^{-}\beta$$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

-
$$K_0 = \{a, b\}$$
 and $K_1 = \{\alpha, \beta\}$
 $\partial^{-}\alpha = \partial^{+}\beta = a$ and $\partial^{+}\alpha = \partial^{-}\beta = b$

just one point remains

MSC - Lyon 201

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・雪 ・ 山 ・ 小山 ・ 小山 ・ 小口 ・

- X underlying topological space

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・西ト・ヨー うんの

- X underlying topological space
- ordered chart on X: pospace over some open subset of X

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Locally Partially Ordered Spaces - local pospaces

Fajstrup, Goubault, and Raussen 98 (original version)

- X underlying topological space
- ordered chart on X: pospace over some open subset of X
- ordered atlas on X: collection \mathcal{U} of ordered charts s.t.
 - i) for all $U, U' \in \mathcal{U}$ and $x \in U \cap U'$ there exists $U'' \in \mathcal{U}$ s.t. $x \in U'' \subseteq U \cap U'$ and the order on U''matches both orders on U and U'
 - ii) \mathcal{U} induces a basis of topology of X

1SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Locally Partially Ordered Spaces - local pospaces

Fajstrup, Goubault, and Raussen 98 (original version)

- X underlying topological space
- ordered chart on X: pospace over some open subset of X
- ordered atlas on X: collection \mathcal{U} of ordered charts s.t.
 - i) for all $U, U' \in \mathcal{U}$ and $x \in U \cap U'$ there exists $U'' \in \mathcal{U}$ s.t. $x \in U'' \subseteq U \cap U'$ and the order on U''matches both orders on U and U'
 - ii) \mathcal{U} induces a basis of topology of X
- morphism of atlases f : (X, U) → (Y, V):
 a continuous map f : X → Y such that for all x ∈ X
 there exists U ∈ U, V ∈ V neighborhoods of x and f(x)
 such that f induces a morphism of pospaces from U to V

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

- Atlases \mathcal{U} and \mathcal{U}' on X are equivalent when their union is still an atlas

1SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・西ト・ヨー うんの

- Atlases \mathcal{U} and \mathcal{U}' on X are equivalent when their union is still an atlas
- The union of all atlases equivalent to $\ensuremath{\mathcal{U}}$ is an atlas

ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

- Atlases \mathcal{U} and \mathcal{U}' on X are equivalent when their union is still an atlas
- The union of all atlases equivalent to $\ensuremath{\mathcal{U}}$ is an atlas
- Local pospace: equivalence class of atlases

ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

- Atlases \mathcal{U} and \mathcal{U}' on X are equivalent when their union is still an atlas
- The union of all atlases equivalent to $\ensuremath{\mathcal{U}}$ is an atlas
- Local pospace: equivalence class of atlases
- If $\mathcal{U} \sim \mathcal{U}'$, $\mathcal{V} \sim \mathcal{V}'$, and $f : \mathcal{U} \to \mathcal{V}$ morphism of atlases then $f : \mathcal{U}' \to \mathcal{V}'$ morphism of atlases

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

- Atlases \mathcal{U} and \mathcal{U}' on X are equivalent when their union is still an atlas
- The union of all atlases equivalent to $\ensuremath{\mathcal{U}}$ is an atlas
- Local pospace: equivalence class of atlases
- If $\mathcal{U} \sim \mathcal{U}'$, $\mathcal{V} \sim \mathcal{V}'$, and $f : \mathcal{U} \to \mathcal{V}$ morphism of atlases then $f : \mathcal{U}' \to \mathcal{V}'$ morphism of atlases
- e.g. the exponential map $t \in \mathbb{R} \mapsto \mathsf{e}^{it} \in \mathbb{S}^1$

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Locally Partially Ordered Spaces - local pospaces

Fajstrup, Goubault, and Raussen 98 (original version)

- Atlases \mathcal{U} and \mathcal{U}' on X are equivalent when their union is still an atlas
- The union of all atlases equivalent to $\ensuremath{\mathcal{U}}$ is an atlas
- Local pospace: equivalence class of atlases
- If $\mathcal{U} \sim \mathcal{U}'$, $\mathcal{V} \sim \mathcal{V}'$, and $f : \mathcal{U} \to \mathcal{V}$ morphism of atlases then $f : \mathcal{U}' \to \mathcal{V}'$ morphism of atlases
- e.g. the exponential map $t \in \mathbb{R} \mapsto \mathsf{e}^{it} \in \mathbb{S}^1$
- Lpotop is finitely complete but misses some infinite products its cocompleteness is an open question its colimits do not preserve the topology

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Directed geometric realization in **LpoTop**

 For all finite precubical sets K, the directed geometric realization 1K|LpoTop exists

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・日・・ヨ・・日・ つくの

Directed geometric realization in **LpoTop** a claim

- For all finite precubical sets K, the directed geometric realization |K|_{LpoTop} exists
- and preserves the topology

 $U(|K|_{LpoTop}) = |K|$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

もしゃ 前 ふ 市 きょう きょうしゃ

Directed geometric realization in **LpoTop** a claim

- For all finite precubical sets K, the directed geometric realization |K|_{LpoTop} exists
- and preserves the topology

 $U(|K|_{LpoTop}) = |K|$

- therefore

 $|K \otimes K'|_{LpoTop} \cong |K|_{LpoTop} \times |K'|_{LpoTop}$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

(日本国際を通知を開てる) 聞い ろうの

as local pospaces

$$G: A \xrightarrow[\partial^+]{\partial^+} V$$

- underlying set $V \sqcup A \times]0, 1[$

1SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

▲ロト ▲酉 ▶ ▲ 亘 ▶ ▲ 亘 ● りへで

as local pospaces

$$G: A \xrightarrow[\partial^+]{\partial^+} V$$

- underlying set $V \sqcup A \times]0, 1[$
- v_{ε}^+ union of $\{\alpha\} \times]0, \varepsilon[$ for all $\alpha \in A$ such that $\partial^{\cdot} \alpha = v$ and $0 < \varepsilon < 1$
- v_{ε}^{-} union of $\{\alpha\} \times]1 \varepsilon, 1[$

for all $\alpha \in {\cal A}$ such that $\partial^+ \alpha = {\it v}$ and $0 < \varepsilon < 1$

ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

as local pospaces

$$G: A \xrightarrow{\partial^-} V$$

- underlying set $V \sqcup A \times]0, 1[$
- v_{ε}^+ union of $\{\alpha\} \times]0, \varepsilon[$ for all $\alpha \in A$ such that $\partial^- \alpha = v$ and $0 < \varepsilon < 1$
- v_{ε}^{-} union of $\{\alpha\} \times]1 \varepsilon, 1[$ for all $\alpha \in A$ such that $\partial^{+}\alpha = v$ and $0 < \varepsilon < 1$
- directed atlas

 $\{\alpha\} \times]a, b[$ with $\alpha \in A$ and $0 \leq a < b \leq 1$, and $\{v\} \cup v_{\varepsilon}^+ \cup v_{\varepsilon}^-$ with $v \in V$ and $0 < \varepsilon < 1$ with obvious partial order

ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

as local pospaces

$$G: A \xrightarrow{\partial^-} V$$

- underlying set $V \sqcup A \times]0, 1[$
- v_{ε}^+ union of $\{\alpha\} \times]0, \varepsilon[$ for all $\alpha \in A$ such that $\partial^- \alpha = v$ and $0 < \varepsilon < 1$
- v_{ε}^{-} union of $\{\alpha\} \times]1 \varepsilon, 1[$ for all $\alpha \in A$ such that $\partial^{+}\alpha = v$ and $0 < \varepsilon < 1$
- directed atlas

 $\{\alpha\} \times]a, b[$ with $\alpha \in A$ and $0 \leq a < b \leq 1$, and $\{v\} \cup v_{\varepsilon}^+ \cup v_{\varepsilon}^-$ with $v \in V$ and $0 < \varepsilon < 1$ with obvious partial order

- denoted by |G|

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

virtual machine

- The labelling $\lambda: D \to A$, with $D = \{(\alpha, \frac{1}{2}) \mid \alpha \in A\}$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・日下・ 山下・ 山下・ 山下・ 山下・

virtual machine

- The labelling $\lambda : D \to A$, with $D = \{(\alpha, \frac{1}{2}) \mid \alpha \in A\}$
- for $\gamma : [0, r] \rightarrow |G|$ the set $\gamma^{-1}(D)$ is a finite union of disjoint compact intervals $[a_1, b_1] \cup \cdots \cup [a_n, b_n]$

1SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

virtual machine

- The labelling $\lambda: D \to A$, with $D = \{(\alpha, \frac{1}{2}) \mid \alpha \in A\}$
- for $\gamma : [0, r] \to |G|$ the set $\gamma^{-1}(D)$ is a finite union of disjoint compact intervals $[a_1, b_1] \cup \cdots \cup [a_n, b_n]$
- Instructions are performed when they are touched so [[γ]] = γ(a_n),..., γ(a₁) is associated with γ therefore the action of γ upon a distribution δ is [[γ]] · δ

4SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

virtual machine

- The labelling $\lambda: D \to A$, with $D = \{(\alpha, \frac{1}{2}) \mid \alpha \in A\}$
- for $\gamma : [0, r] \rightarrow |G|$ the set $\gamma^{-1}(D)$ is a finite union of disjoint compact intervals $[a_1, b_1] \cup \cdots \cup [a_n, b_n]$
- Instructions are performed when they are touched so [[γ]] = γ(a_n),..., γ(a₁) is associated with γ therefore the action of γ upon a distribution δ is [[γ]] · δ
- for any execution trace s, there exists a dipath γ such that $[\![\gamma]\!]=s$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Continuous parallel

dynamics

- if the process is conservative then for any δ , $[\![\gamma]\!]\cdot\delta$ only depends on $\partial^{\scriptscriptstyle -}\gamma$ and $\partial^{\scriptscriptstyle +}\gamma$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Continuous parallel

dynamics

- if the process is conservative then for any δ , $[\![\gamma]\!] \cdot \delta$ only depends on $\partial^* \gamma$ and $\partial^+ \gamma$ - therefore we have a potential function

 $F:|G|\times \mathcal{R} \to \mathbb{N}$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Areas

- G_1, \ldots, G_d finite graphs

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・酉・・川川・・四・

- G_1, \ldots, G_d finite graphs - (G_1, \ldots, G_d) -block: $B_1 \times \cdots \times B_n$ with B_k connected subset of $|G_k|$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

- G_1, \ldots, G_d finite graphs
- (G_1, \ldots, G_d) -block: $B_1 \times \cdots \times B_n$ with B_k connected subset of $|G_k|$
- (G_1, \ldots, G_d) -areas: finite union of blocks

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

- G_1, \ldots, G_d finite graphs
- (G_1, \ldots, G_d) -block: $B_1 \times \cdots \times B_n$ with B_k connected subset of $|G_k|$
- (G_1, \ldots, G_d) -areas: finite union of blocks
- The collection of (G₁,..., G_d)-areas forms a boolean subalgebra of 2¹G₁↓×···×↑G_d↓

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Race conditions

conflicts in variable access

- G_1, \ldots, G_d the control flow graphs of each process

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロト・四ト・回下・ 白マシークト

Race conditions

conflicts in variable access

- G_1, \ldots, G_d the control flow graphs of each process
- Race conditions is the subset of $|G_1| \times \cdots \times |G_d|$ s.t. there is $1 \leq i < j \leq d$ such that $\lambda(v_i)$ and $\lambda(v_j)$ are actions sharing some variable

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Forbidden area

via potential function

- F_1, \ldots, F_d the associated potential functions

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Forbidden area

via potential function

- F_1, \ldots, F_d the associated potential functions - $F : |G_1| \times \cdots \times |G_d| \times \mathcal{R} \to \mathbb{N}$ the potential function

$$F(v_1,\ldots,v_d,x)=\sum_{k=1}^d F_k(v_k,x)$$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

・ロット 4回ット 4回ット 4回ット 4日ッ

Forbidden area

via potential function

- F_1, \ldots, F_d the associated potential functions - $F : |G_1| \times \cdots \times |G_d| \times \mathcal{R} \to \mathbb{N}$ the potential function

$$F(v_1,\ldots,v_d,x)=\sum_{k=1}^d F_k(v_k,x)$$

- Forbidden area is the subset of $|G_1| \times \cdots \times |G_d|$

$$\{(v_1,\ldots,v_d) \mid \exists x \in \mathcal{R}, F(v_1,\ldots,v_d,x) \ge \operatorname{arity}(x)\}$$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

(ロト 4 酉) 4 回) 4 回) 1 の 4 ④

Walls

and geometric model

- Walls is the subset of $(v_1, \ldots, v_d) \in |G_1| \times \cdots \times |G_d|$ s.t. there exists a synchronization x s.t. the cardinal of $\{k \in \{1, \ldots, d\} \mid \lambda(v_k) = W(x)\}$ is neither 0 nor the arity of x

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Walls

and geometric model

- Walls is the subset of $(v_1, \ldots, v_d) \in |G_1| \times \cdots \times |G_d|$ s.t. there exists a synchronization x s.t. the cardinal of $\{k \in \{1, \ldots, d\} \mid \lambda(v_k) = W(x)\}$ is neither 0 nor the arity of x
- The geometric model is then defined as $|G_1| \times \cdots \times |G_d| \setminus (\text{Race} \cup \text{Forbidden} \cup \text{Walls})$

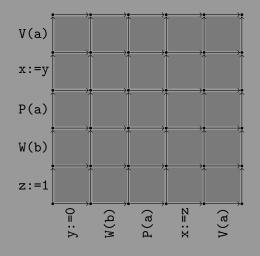
4SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category



/ISC - Lyon 2014

Geometric realization

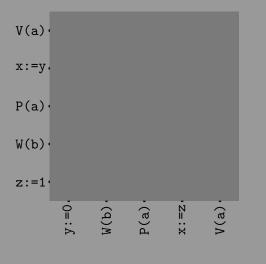
Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

ロト・日・・ヨ・・ヨ・ つくぐ.



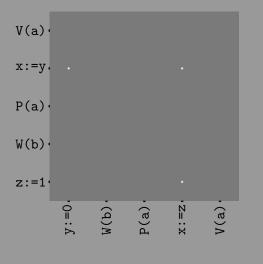
MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category



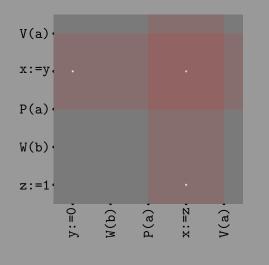
MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category



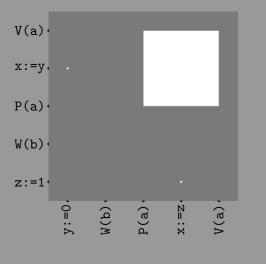
MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category



MSC - Lyon 2014

Geometric realization

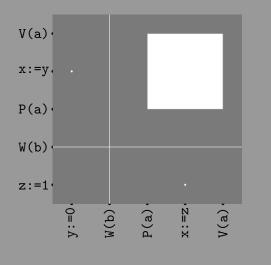
Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

ロト 4 昼 ト 4 亘 ト 4 亘 - りへぐ



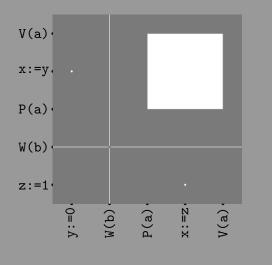
MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category



MSC - Lyon 2014

Geometric realization

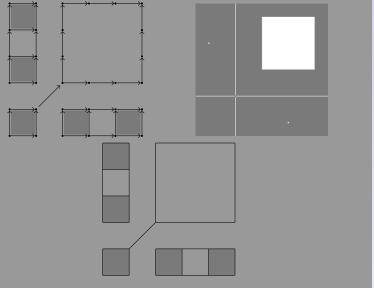
Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Comparing

Discrete vs Continuous



MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Fundamental category

of a precubical set K

 F(trunc₁(K)) the category of paths on the underlying graph of K

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Fundamental category

of a precubical set K

- F(trunc₁(K)) the category of paths on the underlying graph of K
- the congruence \sim over $F(trunc_1(K))$ generated by $\gamma \sim \delta$ when γ and δ start and finish at the lower and upper corners of the same *n*-cube

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Fundamental category

of a precubical set K

- F(trunc₁(K)) the category of paths on the underlying graph of K
- the congruence ~ over F(trunc₁(K)) generated by γ ~ δ when γ and δ start and finish at the lower and upper corners of the same *n*-cube - define π₁[→]K = F(trunc₁(K))/ ~

4SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Fundamental category

of a precubical set K

- F(trunc₁(K)) the category of paths on the underlying graph of K
- the congruence ~ over F(trunc₁(K)) generated by γ ~ δ when γ and δ start and finish at the lower and upper corners of the same *n*-cube - define π₁[→]K = F(trunc₁(K))/ ~
- $-\overrightarrow{\pi_1}K = \overrightarrow{\pi_1}(trunc_2(K))$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

- Dipath: morphism $\gamma : [0, r] \to X$ with $r \ge 0$ $\partial^{\cdot} \gamma = \gamma(0)$ and $\partial^{+} \gamma = \gamma(r)$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロト・西ト・ヨー シック・ヨー うくの

- Dipath: morphism
$$\gamma : [0, r] \to X$$
 with $r \ge 0$
 $\partial^{\cdot} \gamma = \gamma(0)$ and $\partial^{+} \gamma = \gamma(r)$
- Concatenation $\gamma \cdot \delta : [0, r + r'] \to X$ when $\partial^{\cdot} \gamma = \partial^{+} \delta$;
 $\gamma \cdot \delta(t) = \begin{cases} \delta(t) & \text{if } t \leqslant r \\ \gamma(t) & \text{if } r \leqslant t \end{cases}$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

- Dipath: morphism
$$\gamma : [0, r] \to X$$
 with $r \ge 0$
 $\partial^{2}\gamma = \gamma(0)$ and $\partial^{+}\gamma = \gamma(r)$
- Concatenation $\gamma \cdot \delta : [0, r + r'] \to X$ when $\partial^{2}\gamma = \partial^{+}\delta$;
 $\gamma \cdot \delta(t) = \begin{cases} \delta(t) & \text{if } t \le r \\ \gamma(t) & \text{if } r \le t \end{cases}$

- Dipath functor P : **LpoTop** \rightarrow **Cat**

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

- Dipath: morphism
$$\gamma : [0, r] \to X$$
 with $r \ge 0$
 $\partial^{\cdot} \gamma = \gamma(0)$ and $\partial^{+} \gamma = \gamma(r)$
- Concatenation $\gamma \cdot \delta : [0, r + r'] \to X$ when $\partial^{\cdot} \gamma = \partial^{+} \delta$;
 $\gamma \cdot \delta(t) = \begin{cases} \delta(t) & \text{if } t \le r \\ \gamma(t) & \text{if } r \le t \end{cases}$

- Dipath functor P : **LpoTop** \rightarrow **Cat**
- If X is the model of a program then the dipaths on X is an overapproximation of the execution traces

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

- Dipath: morphism
$$\gamma : [0, r] \to X$$
 with $r \ge 0$
 $\partial^{-}\gamma = \gamma(0)$ and $\partial^{+}\gamma = \gamma(r)$
- Concatenation $\gamma \cdot \delta : [0, r + r'] \to X$ when $\partial^{-}\gamma = \partial^{+}\delta$;
 $\gamma \cdot \delta(t) = \begin{cases} \delta(t) & \text{if } t \le r \\ \gamma(t) & \text{if } r \le t \end{cases}$

- Dipath functor $P : \mathbf{LpoTop} \to \mathbf{Cat}$
- If X is the model of a program then the dipaths on X is an overapproximation of the execution traces
- Infinitely many paths between two points

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Dihomotopy between dipaths on X

- morphism $h: [0, r] \times [0, \rho] \rightarrow X$ s.t. $h(0, _)$ and $h(r, _)$ are both constant

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロト (四) (三) (三) (三) (三) (二) (二)

Dihomotopy between dipaths on X

 morphism h: [0, r] × [0, ρ] → X s.t. h(0, _) and h(r, _) are both constant
 2-dimensional precubical set...

$$\partial_0^+ h = \operatorname{cst} \left| \begin{array}{c} \partial_1^+ h = \delta \\ \hline h \\ \hline \partial_0^- h = \operatorname{cst} \\ \hline \partial_1^- h = \gamma \end{array} \right| \partial_0^+ h = \operatorname{cst}$$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation:

・ロト・日下・山田・山田・山下・山下

Dihomotopy between dipaths on X

 morphism h : [0, r] × [0, ρ] → X s.t. h(0, _) and h(r, _) are both constant
 2-dimensional precubical set...

$$\partial_0^+ h = \operatorname{cst} \left| \begin{array}{c} \partial_1^+ h = \delta \\ \\ h \\ \hline \\ \partial_0^+ h = - \operatorname{cst} \end{array} \right| \left| \partial_0^+ h = \operatorname{cst} \right|$$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculations

...and even more.

-
$$h: [0, r] \times [0, \rho] \rightarrow X$$
 and $g: [0, r] \times [0, \rho'] \rightarrow X$
with $h(-, \rho) = g(-, 0)$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

-
$$h: [0, r] \times [0, \rho] \rightarrow X$$
 and $g: [0, r] \times [0, \rho'] \rightarrow X$
with $h(_{-}, \rho) = g(_{-}, 0)$
 $g * h: [0, r] \times [0, \rho + \rho'] \rightarrow X$ defined by
 $g * h(t, x) = \begin{cases} h(t, x) & \text{if } x \leqslant \rho \\ g(t, x - \rho) & \text{if } \rho \leqslant x \end{cases}$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation:

< ロ > < 母 > < 臣 > < 臣 > < 臣 > < 臣 < つ < ○</p>

-
$$h: [0, r] \times [0, \rho] \rightarrow X$$
 and $g: [0, r] \times [0, \rho'] \rightarrow X$
with $h(\neg, \rho) = g(\neg, 0)$
 $g * h: [0, r] \times [0, \rho + \rho'] \rightarrow X$ defined by
 $g * h(t, x) = \begin{cases} h(t, x) & \text{if } x \leq \rho \\ g(t, x - \rho) & \text{if } \rho \leq x \end{cases}$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

-
$$h: [0, r] \times [0, \rho] \rightarrow X$$
 and $g: [0, r] \times [0, \rho'] \rightarrow X$
with $h(\neg, \rho) = g(\neg, 0)$
 $g * h: [0, r] \times [0, \rho + \rho'] \rightarrow X$ defined by
 $g * h(t, x) = \begin{cases} h(t, x) & \text{if } x \leq \rho \\ g(t, x - \rho) & \text{if } \rho \leq x \end{cases}$

$$\delta$$

 g
 ξ
 h
 γ

/ISC - Lyon 2014

Geometric realization

Directed Topology

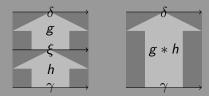
Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation:

・ロット 聞 ・ 言 ・ 小山 ・ ふくり・

-
$$h: [0, r] \times [0, \rho] \rightarrow X$$
 and $g: [0, r] \times [0, \rho'] \rightarrow X$
with $h(\neg, \rho) = g(\neg, 0)$
 $g * h: [0, r] \times [0, \rho + \rho'] \rightarrow X$ defined by
 $g * h(t, x) = \begin{cases} h(t, x) & \text{if } x \leq \rho \\ g(t, x - \rho) & \text{if } \rho \leq x \end{cases}$



1SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

2-category

- $h: [0, r] \times [0, \rho] \rightarrow X$ and $h': [0, r'] \times [0, \rho] \rightarrow X$ with $\partial^+_0 h = \partial^-_0 h'$ i.e. $h(r, _) = h'(0, _)$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロト・日下・ 山下・ 山下・ 山下・ 日・

2-category

-
$$h: [0, r] \times [0, \rho] \to X$$
 and $h': [0, r'] \times [0, \rho] \to X$
with $\partial^+{}_0 h = \partial_0 h'$ i.e. $h(r, _) = h'(0, _)$
 $h' \cdot h: [0, r] \times [0, \rho + \rho'] \to X$ defined by
 $h' \cdot h(t, x) = \begin{cases} h(t, x) & \text{if } t \leqslant r \\ h'(t - r, x) & \text{if } r \leqslant t \end{cases}$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

2-category

-
$$h: [0, r] \times [0, \rho] \to X$$
 and $h': [0, r'] \times [0, \rho] \to X$
with $\partial^+{}_0 h = \partial_0 h'$ i.e. $h(r, _) = h'(0, _)$
 $h' \cdot h: [0, r] \times [0, \rho + \rho'] \to X$ defined by
 $h' \cdot h(t, x) = \begin{cases} h(t, x) & \text{if } t \leqslant r \\ h'(t - r, x) & \text{if } r \leqslant t \end{cases}$

/ISC - Lyon 2014

Geometric realization

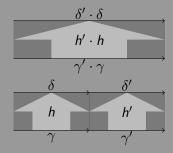
Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

2-category

-
$$h: [0, r] \times [0, \rho] \to X$$
 and $h': [0, r'] \times [0, \rho] \to X$
with $\partial^+{}_0 h = \partial^-{}_0 h'$ i.e. $h(r, _) = h'(0, _)$
 $h' \cdot h: [0, r] \times [0, \rho + \rho'] \to X$ defined by
 $h' \cdot h(t, x) = \begin{cases} h(t, x) & \text{if } t \leqslant r \\ h'(t - r, x) & \text{if } r \leqslant t \end{cases}$



MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロト 4 酉 ト 4 亘 ト 4 酉 ト 4 回 ト

Godement

Exchange property

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

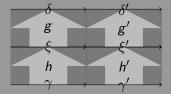
Fundamental category

Precubical sets Local pospaces Some calculation

・ロト・日下・ 山下・ 山下・ 山下・ 日・

Godement

Exchange property



$$(g'*h')\cdot(g*h)=(g'\cdot g)*(h'\cdot h)$$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation:

(日本・西本・山本・山本・山)

Directed topology vs Category 2-category

Directed topology	Category
point	category
dipath	functor
dihomotopy	natural transformation
path concatenation	composition of functors
'piled up' homotopies	composition of natural transformations
'side-by-side' homotopies	juxtaposition of natural transformations

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Elementary homotopy

- anti-dihomotopy $h:[0,r] \times [0,\rho] \to X$ such that $(t,x) \mapsto h(t,-x)$ is a dihomotopy

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロト・雪 ・ 言 ・ 小山 ・ 小山 ・ 小口 ・

Elementary homotopy

- anti-dihomotopy $h: [0, r] \times [0, \rho] \to X$ such that $(t, x) \mapsto h(t, -x)$ is a dihomotopy

- elementary homotopy $h_n * \cdots * h_1$ where each h_k is either a dihomotopy or an antidihomotopy

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Elementary homotopy

- anti-dihomotopy $h: [0, r] \times [0, \rho] \to X$ such that $(t, x) \mapsto h(t, -x)$ is a dihomotopy
- elementary homotopy $h_n * \cdots * h_1$ where each h_k is either a dihomotopy or an antidihomotopy
- a finite juxtaposition of dihomotopies and anti-dihomotopies can be 'replaced' by an elementary homotopy

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

The dihomotopy relation γ and δ dipaths defined over [0, r] and [0, r']

- Write $\gamma \sim \delta$ when $\partial^{-}\gamma = \partial^{-}\delta$, $\partial^{+}\gamma = \partial^{+}\delta$ and there is an elementary homotopy between $c \cdot \gamma$ and $d \cdot \delta$ where c (resp. d) is constant over $[0, (r \vee r') - r]$ (resp. $[0, (r \vee r') - r']$)

1SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

The dihomotopy relation γ and δ dipaths defined over [0, r] and [0, r']

- Write $\gamma \sim \delta$ when $\partial^{-}\gamma = \partial^{-}\delta$, $\partial^{+}\gamma = \partial^{+}\delta$ and there is an elementary homotopy between $c \cdot \gamma$ and $d \cdot \delta$ where c (resp. d) is constant over $[0, (r \vee r') - r]$ (resp. $[0, (r \vee r') - r']$)

- The relation \sim is a congruence over PX

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

- By definition $\overrightarrow{\pi_1}X = PX/\sim$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation:

・ロト・日本・ヨー シック・ロー

- By definition $\overrightarrow{\pi_1}X = PX/\sim$
- $f \circ (h_n * \cdots * h_1) = (f \circ h_n) * \cdots * (f \circ h_1)$ therefore $\gamma \sim \delta$ implies $f \circ \gamma \sim f \circ \delta$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロト・日下・ 山下・ 山下・ 山下・ 日・

- By definition $\overrightarrow{\pi_1}X = PX/\sim$
- $f \circ (h_n * \cdots * h_1) = (f \circ h_n) * \cdots * (f \circ h_1)$ therefore $\gamma \sim \delta$ implies $f \circ \gamma \sim f \circ \delta$
- Hence a functor $\overrightarrow{\pi_1}$: LpoTop \rightarrow Cat

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロト・雪・・雪・・雪・・ むくろ

- By definition $\overrightarrow{\pi_1}X=PX/\sim$
- $f \circ (h_n * \cdots * h_1) = (f \circ h_n) * \cdots * (f \circ h_1)$ therefore $\gamma \sim \delta$ implies $f \circ \gamma \sim f \circ \delta$
- Hence a functor $\overrightarrow{\pi_1}: \mathbf{LpoTop} \to \mathbf{Cat}$
- $-\overrightarrow{\pi_1}(A\times B)\cong\overrightarrow{\pi_1}A\times\overrightarrow{\pi_1}B$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロト・母ト・ヨト・ヨー シック

- By definition $\overrightarrow{\pi_1}X=PX/\sim$
- $f \circ (h_n * \cdots * h_1) = (f \circ h_n) * \cdots * (f \circ h_1)$ therefore $\gamma \sim \delta$ implies $f \circ \gamma \sim f \circ \delta$
- Hence a functor $\overrightarrow{\pi_1}: \mathbf{LpoTop} \to \mathbf{Cat}$
- $-\overrightarrow{\pi_1}(A\times B)\cong\overrightarrow{\pi_1}A\times\overrightarrow{\pi_1}B$
- for all dipaths $\gamma : [0, r] \to X$ for all θ morphisms from [0, r'] onto [0, r], $\gamma \sim \gamma \circ \theta$

1SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

●□▶●₽▶●≡▶●≡ の�?

of the *n*-cube

-
$$\mathsf{Obj}(\overrightarrow{\pi_1}[0,1]) = [0,1]$$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロト・西ト・ヨト・ヨー 今々で

of the *n*-cube

$$\begin{array}{l} - \ \operatorname{Obj}(\overrightarrow{\pi_1}[0,1]) = [0,1] \\ - \ (\overrightarrow{\pi_1}[0,1])[a,b] = \left\{ \begin{array}{l} \{(a,b)\} & \text{if } a \leqslant b \\ \emptyset & \text{otherwise} \end{array} \right. \end{array}$$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロト・雪・・雪・・雪・・ ゆくの

of the *n*-cube

-
$$\operatorname{Obj}(\overrightarrow{\pi_1}[0,1]) = [0,1]$$

$$- (\overrightarrow{\pi_1}[0,1])[a,b] = \begin{cases} (a,b) & \text{if } a \leq b \\ \emptyset & \text{otherwise} \end{cases}$$

$$-\overrightarrow{\pi_1}[0,1]^n=([0,1],\leqslant)^n=([0,1]^n,\leqslant^n)$$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロト・母ト・ヨト・ヨー シック

The fundamental category of the realization of a graph G as a local pospace

- A presentation is given by the graph

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

< ロ > < 母 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The fundamental category of the realization of a graph G as a local pospace

 A presentation is given by the graph vertex: V ⊔ A×]0,1[

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

< ロ > < 母 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The fundamental category of the realization of a graph G as a local pospace

A presentation is given by the graph vertex: V ⊔ A×]0,1[
 arrows: (t, α, t') with α arrow of G and t < t' ∈ [0,1]

1SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces

(日) (間) (目) (目) (日) (日)

The fundamental category of the realization of a graph *G* as a local pospace

A presentation is given by the graph vertex: V ⊔ A×]0,1[
arrows: (t, α, t') with α arrow of G and t < t' ∈ [0,1]
∂⁻(t, α, t') = (α, t) if t > 0; ∂⁻α otherwise

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces

< ロ > < 母 > < 三 > < 三 > < 三 < の < ○</p>

The fundamental category of the realization of a graph *G* as a local pospace

- A presentation is given by the graph vertex: $V \sqcup A \times]0,1[$ arrows: (t, α, t') with α arrow of G and $t < t' \in [0,1]$ $\partial^{-}(t, \alpha, t') = (\alpha, t)$ if t > 0; $\partial^{-}\alpha$ otherwise $\partial^{+}(t, \alpha, t') = (\alpha, t')$ if t < 1; $\partial^{+}\alpha$ otherwise MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

of the realization of a graph G as a local pospace

A presentation is given by the graph vertex: V ⊔ A×]0,1[arrows: (t, α, t') with α arrow of G and t < t' ∈ [0,1] ∂(t, α, t') = (α, t) if t > 0; ∂⁻α otherwise ∂⁺(t, α, t') = (α, t') if t < 1; ∂⁺α otherwise
with the relations (t', α, t") ∘ (t, α, t') = (t", α, t) for α arrow of G and t < t' < t" ∈ [0,1]

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces

of the directed circle

- $\mathbb{S}^1 = \{z \in \mathbb{C} \mid z \text{ of magnitude } 1\}$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロト・雪 ・ 言 ・ 小山 ・ 小山 ・ 小山 ・

of the directed circle

-
$$\mathbb{S}^1 = \{z \in \mathbb{C} \mid z \text{ of magnitude } 1\}$$

- $\mathsf{Obj}(\overrightarrow{\pi_1} \mathbb{S}^1) = \mathbb{S}^1$

1SC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

<ロ > < 母 > < 臣 > < 臣 > < 臣 > の < @

of the directed circle

-
$$\mathbb{S}^1 = \{z \in \mathbb{C} \mid z \text{ of magnitude } 1\}$$

- $\operatorname{Obj}(\overrightarrow{\pi_1} \mathbb{S}^1) = \mathbb{S}^1$

$$\overrightarrow{\pi_1}\mathbb{S}^1[a,b]\cong\{a\} imes\mathbb{N} imes\{b\}$$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロット 日 ・ 山 ・ 山 ・ 小山 ・ ト ・ 日 ・ くの・

of the directed circle

$$\begin{array}{l} - \mathbb{S}^1 = \{z \in \mathbb{C} \mid z \text{ of magnitude } 1\} \\ - \operatorname{Obj}(\overrightarrow{\pi_1} \mathbb{S}^1) = \mathbb{S}^1 \\ - \overrightarrow{\pi_1} \mathbb{S}^1[a, b] \cong \{a\} \times \mathbb{N} \times \{b\} \end{array}$$

$$(b,m,c)\circ(a,n,b)=\left\{egin{array}{cc} (a,n+m,c) & ext{if } ab\cup bc
eq\mathbb{S}^1\\ (a,n+m+1,c) & ext{otherwise} \end{array}
ight.$$

ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

of the directed complex plane

- The directed complex plane is not a local pospace yet it contains the directed circle

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces

・ロト・日・・ヨ・・日・ つくの

of the directed complex plane

- The directed complex plane is not a local pospace yet it contains the directed circle
- $\mathsf{Obj}(\overrightarrow{\pi_1}^{\sim}\mathbb{C}) = \mathbb{C}$

MSC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces

・ロト・日・・ヨ・・日・ つへで

of the directed complex plane

- The directed complex plane is not a local pospace yet it contains the directed circle

$$\begin{array}{l} - \operatorname{Obj}(\overrightarrow{\pi_1}\mathbb{C}) = \mathbb{C} \\ - \overrightarrow{\pi_1}\mathbb{C}[a,b] \cong \begin{cases} \{a\} \times \mathbb{N} \times \{b\} & \text{if } a \neq 0 \text{ and } |a| \leqslant |b| \\ \{(0,b)\} & \text{if } a = 0 \\ \emptyset & \text{otherwise} \end{cases}$$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんぐ

of the directed complex plane

- The directed complex plane is not a local pospace yet it contains the directed circle
- $\begin{aligned} \operatorname{Obj}(\overrightarrow{\pi_1}\mathbb{C}) &= \mathbb{C} \\ \overrightarrow{\pi_1}\mathbb{C}[a, b] \cong \begin{cases} \{a\} \times \mathbb{N} \times \{b\} & \text{if } a \neq 0 \text{ and } |a| \leqslant |b| \\ \{(0, b)\} & \text{if } a = 0 \\ \emptyset & \text{otherwise} \end{cases} \\ (b, m, c) \circ (a, n, b) = \\ \begin{cases} (a, n + m, c) & \text{if } ab \cup bc \neq \mathbb{S}^1 \text{ and } a \neq 0 \\ (a, n + m + 1, c) & \text{if } ab \cup bc = \mathbb{S}^1 \text{ and } a \neq 0 \\ (0, c) & \text{if } a = 0 \end{cases} \end{aligned}$

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

of the directed complex plane

- The directed complex plane is not a local pospace yet it contains the directed circle
- $\begin{aligned} \operatorname{Obj}(\overrightarrow{\pi_{1}}\mathbb{C}) &= \mathbb{C} \\ \overrightarrow{\pi_{1}}\mathbb{C}[a, b] &\cong \begin{cases} \{a\} \times \mathbb{N} \times \{b\} & \text{if } a \neq 0 \text{ and } |a| \leqslant |b| \\ \{(0, b)\} & \text{if } a = 0 \\ \emptyset & \text{otherwise} \end{cases} \\ (b, m, c) \circ (a, n, b) &= \\ \begin{cases} (a, n + m, c) & \text{if } ab \cup bc \neq \mathbb{S}^{1} \text{ and } a \neq 0 \\ (a, n + m + 1, c) & \text{if } ab \cup bc = \mathbb{S}^{1} \text{ and } a \neq 0 \\ (0, c) & \text{if } a = 0 \end{cases} \end{aligned}$
- The fundamental category of the directed Riemann sphere is analoguous

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Fundamental categories

of cubical areas - a conjecture

- Cubical area X: finite union of *n*-cubes

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Precubical sets Local pospaces Some calculation

・ロト・四ト・回下・ 日下 シック・

Fundamental categories

of cubical areas - a conjecture

- Cubical area X: finite union of *n*-cubes
- There exists a finite family K of sub-cubical areas of X such that ∀γ, δ dipaths on X sharing their extremities, γ ~ δ iff ∀K ∈ K s.t. img(γ) ⊆ K ⇔ img(δ) ⊆ K

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category

Fundamental categories

of cubical areas - a conjecture

- Cubical area X: finite union of *n*-cubes
- There exists a finite family K of sub-cubical areas of X such that ∀γ, δ dipaths on X sharing their extremities, γ ~ δ iff ∀K ∈ K s.t. img(γ) ⊆ K ⇔ img(δ) ⊆ K
- it fails if $\overrightarrow{\pi_1}X$ contains loops

/ISC - Lyon 2014

Geometric realization

Directed Topology

Local pospaces Realization Continuous interpretation Geometric model

Fundamental category