Introduction to Directed Algebraic Topology with a view towards modelling Concurrency I

Mathematical Structures of Computations－Lyon 2014

Emmanuel Haucourt
CEA－Tech，Nanolnnov
The $27^{\text {th }}$ of January

Summary

Different kinds of parallelism
Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
Virtual Machines
Middle-End Representation Execution model

Concurrency
Generalizing graphs
Control flow precubical set The extended PV language

Distributed computation

- Variable amount of available resources
- Variable population of parallel processes
- e.g. SETI@home, Bitcoin, e-shopping
- Usual requirements: availability, coherence, fault tolerance

Fine grain parallelism

- Constant amount of available resources
- Constant population of parallel processes
- e.g. control-command, graphic rendering
- Usual requirements: deterministic output, nonblocking, as fast as possible

PV language

Expressions and values

\mathcal{V} : variables \mathcal{E} : expressions built on the following operators

v	content of $v \in \mathcal{V}$	$x \in \mathbb{R}$	constant
\wedge	minimum	\vee	maximum
+	addition	-	substraction
$*$	multiplication	$/$	division
\leqslant	less or equal	\geqslant	greater of equal
$<$	strictly less	$>$	strictly greater
\neg	complement	$=$	equal
\perp	bottom		

Parallelisms

Virtual Machines
Midale End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

nullary	unary
$\perp, x \in \mathbb{R}, v \in \mathcal{V}$	\neg
binary	
$\wedge, \vee,+,-, *, /,<,>, \leqslant, \geqslant,=$	

Interpretation of expressions
 $\llbracket \rrbracket:\left(\mathcal{V} \rightarrow \mathbb{R}_{\perp}\right) \rightarrow \mathcal{E} \rightarrow \mathbb{R}_{\perp}$

Parallelisms
Virtual Machines
Midde End
Dynamics

- distribution: $\delta: \mathcal{V} \rightarrow \mathbb{R}_{\perp}$

Interpretation of expressions

$\llbracket \rrbracket:\left(\mathcal{Y} \rightarrow \mathbb{R}_{\perp}\right) \rightarrow \mathcal{E} \rightarrow \mathbb{R}_{\perp}$
Parallelisms

Virtual Machines

Middie End

Dynamics

- distribution: $\delta: \mathcal{V} \rightarrow \mathbb{R}_{\perp}$
- $\llbracket v \rrbracket_{\delta}=\delta(v)$

Interpretation of expressions

$[\llbracket]\left(\mathcal{V} \rightarrow \mathbb{R}_{+}\right) \rightarrow \mathcal{E} \rightarrow \mathbb{R}_{+}$

- distribution: $\delta: \mathcal{V} \rightarrow \mathbb{R}_{\perp}$

Parallelisms
Virtual Machines
Midale End

Dynamics

- $\llbracket v \rrbracket_{\delta}=\delta(v)$
- 0 stands for false any value in $\mathbb{R} \backslash\{0\}$ stands for true

Interpretation of expressions

$\llbracket \rrbracket:\left(\mathcal{V} \rightarrow \mathbb{R}_{\perp}\right) \rightarrow \mathcal{E} \rightarrow \mathbb{R}_{\perp}$

- distribution: $\delta: \mathcal{V} \rightarrow \mathbb{R}_{\perp}$

Parallelisms
Virtual Machines
Midile End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

- $\llbracket v \rrbracket_{\delta}=\delta(v)$
- 0 stands for false any value in $\mathbb{R} \backslash\{0\}$ stands for true
$-\llbracket \neg \rrbracket: \mathbb{R}_{\perp} \rightarrow \mathbb{R}_{\perp}$,
$\llbracket \neg \rrbracket(0)=1$, and
$\llbracket \neg \rrbracket(x)=0$ for all $x \in \mathbb{R} \backslash\{0\}$

Interpretation of expressions

$\llbracket \rrbracket:\left(\mathcal{V} \rightarrow \mathbb{R}_{\perp}\right) \rightarrow \mathcal{E} \rightarrow \mathbb{R}_{\perp}$

- distribution: $\delta: \mathcal{V} \rightarrow \mathbb{R}_{\perp}$

Parallelisms
Virtual Machines
Midile End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

- $\llbracket v \rrbracket_{\delta}=\delta(v)$
- 0 stands for false any value in $\mathbb{R} \backslash\{0\}$ stands for true
- 【ᄀ】 : $\mathbb{R}_{\perp} \rightarrow \mathbb{R}_{\perp}$,
$\llbracket \neg \rrbracket(0)=1$, and
$\llbracket \neg \rrbracket(x)=0$ for all $x \in \mathbb{R} \backslash\{0\}$
- $\llbracket e \rrbracket=\perp$ for all expression e in which \perp occurs

Interpretation of actions

$\llbracket \rrbracket:\left(\mathcal{V} \rightarrow \mathbb{R}_{\perp}\right) \rightarrow \mathcal{V} \rightarrow \mathcal{E} \rightarrow\left(\mathcal{V} \rightarrow \mathbb{R}_{\perp}\right)$

Parallelisms
Virtual Machines
Midale End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

- v : variable, e: expression, δ : distribution
- $v:=e$ is called an action, \mathcal{A} set of all the actions

Interpretation of actions

$\llbracket \rrbracket:\left(\mathcal{V} \rightarrow \mathbb{R}_{\perp}\right) \rightarrow \mathcal{V} \rightarrow \mathcal{E} \rightarrow\left(\mathcal{V} \rightarrow \mathbb{R}_{\perp}\right)$

Parallelisms
Virtual Machines
Midde End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

- v : variable, e: expression, δ : distribution
- $v:=e$ is called an action, \mathcal{A} set of all the actions
- $\llbracket v:=e \rrbracket_{\delta}$ is the distribution as follows

Interpretation of actions

$\llbracket \rrbracket:\left(\mathcal{V} \rightarrow \mathbb{R}_{\perp}\right) \rightarrow \mathcal{V} \rightarrow \mathcal{E} \rightarrow\left(\mathcal{V} \rightarrow \mathbb{R}_{\perp}\right)$

Parallelisms
Virtual Machines
Midale End

Dynamics

Concurrency
Generalizing graphs
Control flow
PV language

- v : variable, e: expression, δ : distribution
- $v:=e$ is called an action, \mathcal{A} set of all the actions
- $\llbracket v:=e \rrbracket_{\delta}$ is the distribution as follows
$\llbracket v:=e \rrbracket_{\delta}(v)=\llbracket e \rrbracket_{\delta}$

Interpretation of actions

$\llbracket \rrbracket:\left(\mathcal{V} \rightarrow \mathbb{R}_{\perp}\right) \rightarrow \mathcal{V} \rightarrow \mathcal{E} \rightarrow\left(\mathcal{V} \rightarrow \mathbb{R}_{\perp}\right)$
Parallelisms
Virtual Machines
Midale End

Dynamics

Concurrency
Generalizing graphs
Control flow

- v : variable, e: expression, δ : distribution
- $v:=e$ is called an action, \mathcal{A} set of all the actions
- $\llbracket v:=e \rrbracket_{\delta}$ is the distribution as follows
$\llbracket v:=e \rrbracket_{\delta}(v)=\llbracket e \rrbracket_{\delta}$
$\llbracket v:=e \rrbracket_{\delta}\left(v^{\prime}\right)=\delta\left(v^{\prime}\right)$ for $v^{\prime} \neq v$

Control Flow Graphs

\mathcal{A} : arrows, V : control points, \mathcal{A} : actions

Parallelisms

Virtual Machines

$$
G: A \xlongequal[\partial^{+}]{\frac{\partial^{-}}{\longrightarrow}} V \text { and } \lambda: A \rightarrow \mathcal{A}
$$

PV language

Control Flow Graphs

A : arrows, V : control points, \mathcal{A} : actions

Parallelisms
Virtual Machines
Midale End
Dynamics
Concurrency
Generalizing graphs

$$
G: A \xrightarrow[\partial^{+}]{\stackrel{\partial}{\longrightarrow}} V \text { and } \lambda: A \rightarrow \mathcal{A}
$$

- $\phi: \mathcal{V} \rightarrow(\mathcal{E} \times A)^{*}$
if $\Phi(v)=\left[\left(e_{1}, \alpha_{1}\right), \ldots,\left(e_{k}, \alpha_{k}\right)\right]$
then $\partial^{-} \alpha_{i}=v$ for all $v \in \mathcal{V}$ and all $i \in\{1, \ldots, k\}$

Control Flow Graphs

A: arrows, V : control points, \mathcal{A} : actions

Parallelisms
Virtual Machines
Midale End

Dynamics

Concurrency
Generalizing graphs

$$
G: A \xrightarrow[\partial^{+}]{\stackrel{\partial}{\longrightarrow}} V \text { and } \lambda: A \rightarrow \mathcal{A}
$$

Control flow

PV language

- $\phi: \mathcal{V} \rightarrow(\mathcal{E} \times A)^{*}$
if $\Phi(v)=\left[\left(e_{1}, \alpha_{1}\right), \ldots,\left(e_{k}, \alpha_{k}\right)\right]$
then $\partial^{-} \alpha_{i}=v$ for all $v \in \mathcal{V}$ and all $i \in\{1, \ldots, k\}$
- $v_{0} \in V$ the starting point

Control Flow Graphs

A: arrows, V: control points, \mathcal{A} : actions

$$
G: A \xrightarrow[\partial^{+}]{\stackrel{\partial}{\longrightarrow}} V \text { and } \lambda: A \rightarrow \mathcal{A}
$$

Parallelisms
Virtual Machines
Midale End

Dynamics

Concurrency
Generalizing graphs
Control flow
PV language

- $\phi: \mathcal{V} \rightarrow(\mathcal{E} \times A)^{*}$
if $\Phi(v)=\left[\left(e_{1}, \alpha_{1}\right), \ldots,\left(e_{k}, \alpha_{k}\right)\right]$
then $\partial^{-} \alpha_{i}=v$ for all $v \in \mathcal{V}$ and all $i \in\{1, \ldots, k\}$
- $v_{0} \in V$ the starting point
- $\left(G, \lambda, \Phi, v_{0}\right)$ is the middle-end representation

Sequential

Virtual Machine

Parallelisms

Virtual Machines

Middle-End

Dynamics

- δ_{0} : initial state (with the starting point v_{0})

Sequential

Virtual Machine

Parallelisms
Virtual Machines
Middle-End
Dymamies
Concurrency
Generalizing graphs

- δ_{0} : initial state (with the starting point v_{0})
- $\left(v_{n}, \delta_{n}\right)$: current state
suppose $\Phi\left(v_{n}\right)=\left[\left(e_{1}, \alpha_{1}\right), \ldots,\left(e_{k}, \alpha_{k}\right)\right]$

Sequential

Virtual Machine

Parallelisms

Virtual Machines

Middle-End

Dynamics

- δ_{0} : initial state (with the starting point v_{0})
- $\left(v_{n}, \delta_{n}\right)$: current state
suppose $\Phi\left(v_{n}\right)=\left[\left(e_{1}, \alpha_{1}\right), \ldots,\left(e_{k}, \alpha_{k}\right)\right]$
define $i=\min \left\{j \in\{1, \ldots, k\} \mid \llbracket e_{j} \rrbracket_{\delta_{n}}\right.$ is true $\}$

Sequential

Virtual Machine

Parallelisms

Virtual Machines

Middle:End

Dymamis

- δ_{0} : initial state (with the starting point v_{0})
- $\left(v_{n}, \delta_{n}\right)$: current state
suppose $\Phi\left(v_{n}\right)=\left[\left(e_{1}, \alpha_{1}\right), \ldots,\left(e_{k}, \alpha_{k}\right)\right]$
define $i=\min \left\{j \in\{1, \ldots, k\} \mid \llbracket e_{j} \rrbracket_{\delta_{n}}\right.$ is true $\}$
if i exists then $v_{n+1}=\partial^{+} \alpha_{i}$ and $\delta_{n+1}=\left[\lambda\left(\alpha_{i}\right) \rrbracket_{\delta_{n}}\right.$

Sequential

Virtual Machine

Parallelisms
Virtual Machines
Middle:End
Dymamis
Concurrency
Generalizing graphs
Control flow
PV language

- δ_{0} : initial state (with the starting point v_{0})
- $\left(v_{n}, \delta_{n}\right)$: current state
suppose $\Phi\left(v_{n}\right)=\left[\left(e_{1}, \alpha_{1}\right), \ldots,\left(e_{k}, \alpha_{k}\right)\right]$
define $i=\min \left\{j \in\{1, \ldots, k\} \mid \llbracket e_{j} \rrbracket_{\delta_{n}}\right.$ is true $\}$ if i exists then $v_{n+1}=\partial^{+} \alpha_{i}$ and $\delta_{n+1}=\left[\lambda\left(\alpha_{i}\right) \rrbracket_{\delta_{n}}\right.$ otherwise the induction stops

Sequential

Virtual Machine

Parallelisms
Virtual Machines
Middle:End
Dynamics
Concurrency

- δ_{0} : initial state (with the starting point v_{0})
- $\left(v_{n}, \delta_{n}\right)$: current state
suppose $\Phi\left(v_{n}\right)=\left[\left(e_{1}, \alpha_{1}\right), \ldots,\left(e_{k}, \alpha_{k}\right)\right]$
define $i=\min \left\{j \in\{1, \ldots, k\} \mid \llbracket e_{j} \rrbracket_{\delta_{n}}\right.$ is true $\}$ if i exists then $v_{n+1}=\partial^{+} \alpha_{i}$ and $\delta_{n+1}=\left[\lambda\left(\alpha_{i}\right) \rrbracket_{\delta_{n}}\right.$ otherwise the induction stops
- deterministic behavior and output

An example

The Hasse/Syracuse algorithm
while $x \neq 1$

$$
\begin{gathered}
\text { do } \\
\text { if } x \bmod 2=0 \\
\text { then } x:=x / 2 \\
\text { else } x:=3 * x+1 \\
\text { done }
\end{gathered}
$$

An example

The Hasse/Syracuse algorithm

[^0]
An example

The Hasse/Syracuse algorithm
input $x ;$
while $x \neq 1$
if $x \bmod 2=0$
then $x:=x / 2$
else $x:=3 * x+1$
done

An example

The Hasse/Syracuse algorithm
input $x ;$
while $x \neq 1$
$x \neq 1$
if $x \bmod 2=0$
then $x:=x / 2$
else $x:=3 * x+1$
done

An example

The Hasse/Syracuse algorithm
Parallelisms
Virtual Machines
Middle-End
Dynamics

An example

The Hasse/Syracuse algorithm

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An example

The Hasse/Syracuse algorithm

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs

PV language

An example

The Hasse/Syracuse algorithm

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs

PV language

An example

The Hasse/Syracuse algorithm

Parallelisms
Virtual Machines
Middle-End
Dymamies
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dymamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dymamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dymamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dymamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

An execution trace

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

$$
\alpha \delta \gamma \delta \gamma \delta \gamma \gamma \delta \gamma \gamma \gamma \delta \gamma \gamma \gamma \gamma \Theta
$$

Execution traces of a program

as paths over its control flow graph

- Any execution trace induces a path
- Some paths do not come from an execution trace

Execution traces of a program

as paths over its control flow graph
Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency

- Any execution trace induces a path
- Some paths do not come from an execution trace

Therefore the collection of all paths provides a (strict) overapproximation of the collection of execution traces

Execution traces of a program

 as paths over its control flow graphParallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency

- Any execution trace induces a path
- Some paths do not come from an execution trace

Therefore the collection of all paths provides a (strict) overapproximation of the collection of execution traces

The (infinite) collection of paths is entirely determined by the (finite) control flow graph

The overall idea

The model of a program should be the finite representation of an overapproximation of the collection of all its execution traces.

The parallel composition operator

Enabling several actions to be performed at the same time

The parallel composition operator

Enabling several actions to be performed at the same time

- Middle-end: d-sequence of control flow graphs

The parallel composition operator
Enabling several actions to be performed at the same time

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

- Middle-end: d-sequence of control flow graphs
- Shared memory: all variables can be seen by all processes

The parallel composition operator

Enabling several actions to be performed at the same time

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

- Middle-end: d-sequence of control flow graphs
- Shared memory: all variables can be seen by all processes
- State: a d-uple of control points with a single distribution

The parallel composition operator

Enabling several actions to be performed at the same time

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

- Middle-end: d-sequence of control flow graphs
- Shared memory: all variables can be seen by all processes
- State: a d-uple of control points with a single distribution
- The virtual machine has to be adapted accordingly

Interleaving

Virtual Machine

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs

- global clock: 1 tick / 1 process / 1 step performed

Interleaving

Virtual Machine

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs

- global clock: 1 tick / 1 process / 1 step performed
- global choice $p \in\{1, \ldots, d\}^{\mathbb{N}}$ process $p(k)$ activated at the $k^{\text {th }}$ tick of the clock

Interleaving

Virtual Machine
Parallelisms
Virtual Machines
Middle-End

Dynamics

- global clock: 1 tick / 1 process / 1 step performed
- global choice $p \in\{1, \ldots, d\}^{\mathbb{N}}$ process $p(k)$ activated at the $k^{\text {th }}$ tick of the clock
- neither behavior nor output is deterministic e.g.

$$
x:=0 \mid x:=1
$$

Precubical sets

higher dimensional graphs

Precubical sets

higher dimensional graphs

Parallelisms

Virtual Machines

Middle-End
Dynamics
Concurrency
Generlizing scrplas
Control flow
PV language

dimension 1

Precubical sets

higher dimensional graphs

Parallelisms

Virtual Machines

Middle-End
Dynamics
Concurrency
Generalizing saplis
Control flow
PV language
dimension 1

Precubical sets

higher dimensional graphs

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing saplis
Control flow
PV language

dimension 2

Precubical sets

higher dimensional graphs
Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generlizing saplis
Control flow

dimension 2

Precubical sets

dimension 2

Precubical sets

another approach

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generlizing saplis
Control flow
PV language

dimension 1

Precubical sets

another approach
Parallelisms

Virtual Machines

Middle-End
Dynamics
Concurrency
Generalizing saplas

Control flow

dimension 0

Precubical sets

The \square^{+}category formally

- $\left\{\right.$ Objects of $\left.\square^{+}\right\}=\mathbb{N}$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizins staple
Control flow
PV language

Precubical sets

The \square^{+}category formally

- $\left\{\right.$ Objects of $\left.\square^{+}\right\}=\mathbb{N}$
- $\square^{+}[n, m]=$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graples
Control flow
PV language

Precubical sets

The \square^{+}category formally

- $\left\{\right.$ Objects of $\left.\square^{+}\right\}=\mathbb{N}$
- $\square^{+}[n, m]=$

Parallelisms
Virtual Machines
Middle-End

Dynamics

Concurrency
Generalizing sapilis
Control flow
PV language

Precubical sets

The \square^{+}category formally

- $\left\{\right.$ Objects of $\left.\square^{+}\right\}=\mathbb{N}$
- $\square^{+}[n, m]=$

Parallelisms
Virtual Machines
Middle-End

Dynamics

Concurrency
Generalizing staple
Control flow
PV language

Precubical sets

The \square^{+}category formally

- $\left\{\right.$ Objects of $\left.\square^{+}\right\}=\mathbb{N}$
- $\square^{+}[n, m]=$
\{words of length m on $\{0,1, x\}$ with n occurences of $x\}$ empty when $n>m$; singleton when $n=m$
$-\mathrm{id}_{n}=x^{n}$
$-\partial_{i} \cong(x \cdots x \underbrace{0}_{i^{t h}} x \cdots x)$ and $\partial_{i}^{+} \cong(x \cdots x \underbrace{1}_{i^{t h}} x \cdots x)$
- if $w: a \rightarrow b$ and $w^{\prime}: b \rightarrow c$ then $w^{\prime} w$ is obtained replacing the $i^{t h}$ occurrence of x in w^{\prime} by the $i^{\text {th }}$ letter of w.

Precubical sets

The $\square+$ category pictured

Precubical sets

The \square^{+}category pictured

Concurrency
Generfizing scaplis
Control flow
PV language

Precubical sets

The \square^{+}category pictured

Parallelisms

Virtual Machines

Middle-End
Dynamics
Concurrency
Generalizing sapplis
Control flow
PV language

Precubical sets

The \square^{+}category pictured

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generlizing scaplis
Control flow
PV language

Precubical sets

The \square^{+}category pictured

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency

Control flow
PV language

Precubical sets

as presheaves over \square^{+}

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency

Control flow
PV language

Tensor product

Parallelisms

Virtual Machines

Middle:End
Dynamics
Concurrency set of n-cubes for $0 \leqslant n \leqslant p+q$

$$
\left(K \otimes K^{\prime}\right)_{n}=\bigsqcup_{i+j=n} K_{i} \times K_{j}
$$

For $x \otimes y \in K_{i} \times K_{j}^{\prime}$ with $i+j=n$ the $k^{t h}$ face map, with $0 \leqslant k<n$, is given by

$$
\partial_{k}^{ \pm}(x \otimes y)= \begin{cases}\partial_{k}^{ \pm}(x) \otimes y & \text { if } 0 \leqslant k<i \\ \left.x \otimes \partial_{k-p}^{ \pm} y\right) & \text { if } i \leqslant k<n\end{cases}
$$

Control flow
PV language

Given precubical sets K and K^{\prime} of dimension p and q, the

Example of tensor product of precubical sets

Example of tensor product

 of precubical sets

Concurrency
Generalizing staples
Control flow
PV language

Example of tensor product

 of precubical sets

Example of tensor product

Middle-End
Dynamics
Concurrency
Generfizing sarils
Control flow
PV language

Example of tensor product

Parallelisms
Virtual Machines
Middle-End
Dynamics

Generalizing sapplis
Control flow
PV language

Example of tensor product

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing sapplis
Control flow
PV language

True concurrency - discrete version

Virtual Machine

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Genealizins saplas

Control flow

- get rid of the global clock

PV language

True concurrency - discrete version

Virtual Machine

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency

Generlizins saribs

Control flow

- get rid of the global clock
- an execution step from $\left(\left(v_{1}, \ldots, v_{d}\right), \delta\right)$ becomes a multiset M on $\{1, \ldots, d\}$

True concurrency - discrete version

Virtual Machine

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency

Generalizing saplis

Control flow
PV language

- get rid of the global clock
- an execution step from $\left(\left(v_{1}, \ldots, v_{d}\right), \delta\right)$ becomes
a multiset M on $\{1, \ldots, d\}$
- need a total order on multisets to provide a global choice

True concurrency - discrete version

Virtual Machine

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency

Generlizing saplis

- get rid of the global clock
- an execution step from $\left(\left(v_{1}, \ldots, v_{d}\right), \delta\right)$ becomes a multiset M on $\{1, \ldots, d\}$
- need a total order on multisets to provide a global choice
- interleaving model only allows M such that $|M|=1$

True concurrency - discrete version

Virtual Machine

Parallelisms
Virtual Machines
Middle-End

Dynamics

Concurrency

- performing M only makes sense under the sheaf condition: for all finite sequences s of length ℓ with elements in $\{1, \ldots, d\}$ and satisfying $\#\left\{i \mid s_{i}=k\right\} \leqslant M(k)$ for all $k \in\{1, \ldots, d\}$,
the intermediate state of the interleaving execution at step ℓ from the inital state $\left(v_{1}, \ldots, v_{d}, \delta\right)$ and according to the global choice s, only depends on the multiset $k \mapsto \#\left\{i \mid s_{i}=k\right\}$.

True concurrency - discrete version

Control flow from tensor product of control flow graphs

Parallelisms

Virtual Machines
(process p) $\mathrm{x}:=0$; $\mathrm{x}:=2 \mid$
(process q) $\mathrm{x}:=1$; $\mathrm{x}:=2$

Middle-End
Dynamics

True concurrency - discrete version

Control flow from tensor product of control flow graphs

Parallelisms

Virtual Machines
Middle-End
Dynamics

True concurrency - discrete version

Control flow from tensor product of control flow graphs

Parallelisms
(process p) $\mathrm{x}:=0$; $\mathrm{x}:=2 \mid$
(process q) $\mathrm{x}:=1$; $\mathrm{x}:=2$

Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

True concurrency - discrete version

Control flow from tensor product of control flow graphs

Parallelisms

Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs

$-p+q \subseteq 2 p+2 q$
$-2 p+2 q$ is compatible yet $p+q$ is not

True concurrency - discrete version

Virtual Machine

Parallelisms
(process p) $\mathrm{x}:=\mathrm{y}$; $\mathrm{x}:=2 \mid$
(process q) $\mathrm{x}:=\mathrm{z}$; $\mathrm{x}:=2$

Virtual Machines
Middle-End
Dynamics

Generalizing graphs
Control flow
PV language

True concurrency - discrete version

Virtual Machine

Parallelisms

Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs

- filling square may depend on the current distribution

True concurrency - discrete version

Virtual Machine

Parallelisms

Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

- filling square may depend on the current distribution
- solution: actions with disjoint sets of occuring variables

The control flow precubical set

Middle-end representation taking race conditions into account

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

The control flow precubical set

Middle-end representation taking race conditions into account

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

- $G_{1} \otimes \cdots \otimes G_{d}$ tensor product of the control flow graphs
- Labelling all cubes of dimenson $1 \leqslant k \leqslant d$ by $\lambda\left(\alpha_{1} \otimes \cdots \otimes \alpha_{k}\right)=\lambda_{1}\left(\alpha_{1}\right), \cdots, \lambda_{k}\left(\alpha_{k}\right)$ for $k \leqslant d$

Middle-end representation taking race conditions into account

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Gontrol flow
PV language

- $G_{1} \otimes \cdots \otimes G_{d}$ tensor product of the control flow graphs
- Labelling all cubes of dimenson $1 \leqslant k \leqslant d$ by $\lambda\left(\alpha_{1} \otimes \cdots \otimes \alpha_{k}\right)=\lambda_{1}\left(\alpha_{1}\right), \cdots, \lambda_{k}\left(\alpha_{k}\right)$ for $k \leqslant d$
- remove all cubes $\alpha_{1} \otimes \cdots \otimes \alpha_{k}$ s.t. there are $1 \leqslant i<j \leqslant k$ whose actions $\lambda_{i}\left(\alpha_{i}\right)$ and $\lambda_{j}\left(\alpha_{j}\right)$ share some variable

Dynamics

Parallelisms
Virtual Machines

Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

Dynamics

Parallelisms
Virtual Machines

Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

Dynamics

Parallelisms
Virtual Machines

Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

True concurrency - discrete version

Virtual Machine

True concurrency - discrete version

Virtual Machine
Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs

- the true concurrency virtual machine is thus well-defined
- language extension paradigm: parallelize as much as possible

True concurrency - discrete version

Virtual Machine

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

- the true concurrency virtual machine is thus well-defined
- language extension paradigm: parallelize as much as possible
- a weak form of synchronization remains...
...continuous models are not far

True concurrency - discrete version

Virtual Machine

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV language

The PV language

Dijkstra 68 - Input language for ALCOOL in an extended form

- Sem: set of semaphores with arity in $\mathbb{N} \backslash\{0,1\}$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV innumage

The PV language

Dijkstra 68 - Input language for ALCOOL in an extended form

- Sem: set of semaphores with arity in $\mathbb{N} \backslash\{0,1\}$
- Mtx: set of mutex, an alias for a semaphore of arity 2

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV Inneuage

The PV language

Dijkstra 68 - Input language for ALCOOL in an extended form

- Sem: set of semaphores with arity in $\mathbb{N} \backslash\{0,1\}$
- Mtx: set of mutex, an alias for a semaphore of arity 2
- A semaphore x of arity n is a resource offering $n-1$ tokens, each process can hold one token or more

Parallelisms

Virtual Machines

Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV innsuage

The PV language

Dijkstra 68 - Input language for ALCOOL in an extended form

- Sem: set of semaphores with arity in $\mathbb{N} \backslash\{0,1\}$
- Mtx: set of mutex, an alias for a semaphore of arity 2
- A semaphore x of arity n is a resource offering $n-1$ tokens, each process can hold one token or more
- a process acquire a token executing the instruction $P(x)$ and release it executing the instruction $\mathrm{V}(\mathrm{x})$

Parallelisms

Virtual Machines

Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV ingruese

The PV language

Dijkstra 68 - Input language for ALCOOL in an extended form

- Sem: set of semaphores with arity in $\mathbb{N} \backslash\{0,1\}$
- Mtx: set of mutex, an alias for a semaphore of arity 2
- A semaphore x of arity n is a resource offering $n-1$ tokens, each process can hold one token or more
- a process acquire a token executing the instruction $\mathrm{P}(\mathrm{x})$ and release it executing the instruction $\mathrm{V}(\mathrm{x})$
- A mutex can be held by only one process at the time

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency
Generalizing graphs
Control flow
PV ingtuge

The PV language

Dijkstra 68 - Input language for ALCOOL in an extended form

- Sem: set of semaphores with arity in $\mathbb{N} \backslash\{0,1\}$
- Mtx: set of mutex, an alias for a semaphore of arity 2
- A semaphore x of arity n is a resource offering $n-1$ tokens, each process can hold one token or more
- a process acquire a token executing the instruction $\mathrm{P}(\mathrm{x})$ and release it executing the instruction $\mathrm{V}(\mathrm{x})$
- A mutex can be held by only one process at the time
- Trying to perform $P(x)$ though x is not available blocks the execution unless x is a mutex already held by the process

Parallelisms

Virtual Machines

Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV innguege

The PV language

Dijkstra 68- Input language for ALCOOL in an extended form

- Sem: set of semaphores with arity in $\mathbb{N} \backslash\{0,1\}$
- Mtx: set of mutex, an alias for a semaphore of arity 2
- A semaphore x of arity n is a resource offering $n-1$ tokens, each process can hold one token or more
- a process acquire a token executing the instruction $\mathrm{P}(\mathrm{x})$ and release it executing the instruction $\mathrm{V}(\mathrm{x})$
- A mutex can be held by only one process at the time
- Trying to perform $P(x)$ though x is not available blocks the execution unless x is a mutex already held by the process
- the instruction $V(x)$ is not blocking

The PV language

Dijkstra 68 - Inputlanguage for ALCOOL in an extended form

- Sem: set of semaphores with arity in $\mathbb{N} \backslash\{0,1\}$
- Mtx: set of mutex, an alias for a semaphore of arity 2
- A semaphore x of arity n is a resource offering $n-1$ tokens, each process can hold one token or more
- a process acquire a token executing the instruction $P(x)$ and release it executing the instruction $\mathrm{V}(\mathrm{x})$
- A mutex can be held by only one process at the time
- Trying to perform $P(x)$ though x is not available blocks the execution unless x is a mutex already held by the process
- the instruction $\mathrm{V}(\mathrm{x})$ is not blocking
- Wait: set of synchronization bareers with arity in $\mathbb{N} \backslash\{0,1\}$

The PV language

Dijkstra 68 - Inputlanguage for ALCOOL in an extended form

- Sem: set of semaphores with arity in $\mathbb{N} \backslash\{0,1\}$
- Mtx: set of mutex, an alias for a semaphore of arity 2
- A semaphore x of arity n is a resource offering $n-1$ tokens, each process can hold one token or more
- a process acquire a token executing the instruction $P(x)$ and release it executing the instruction $\mathrm{V}(\mathrm{x})$
- A mutex can be held by only one process at the time
- Trying to perform $\mathrm{P}(\mathrm{x})$ though x is not available blocks the execution unless x is a mutex already held by the process
- the instruction $\mathrm{V}(\mathrm{x})$ is not blocking
- Wait: set of synchronization bareers with arity in $\mathbb{N} \backslash\{0,1\}$
- Instruction W (x) blocks the execution of the process until n (arity of x) processes are blocked by x then all the execution are resumed at the same time

Extending the middle-end representation

Potential function along a path

- $\mathcal{R}=\{$ semaphores and mutex $\}$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV innsuage

Extending the middle-end representation

Potential function along a path

- $\mathcal{R}=\{$ semaphores and mutex $\}$
- distribution: $\delta: \mathcal{V} \cup \mathcal{R} \rightarrow \mathbb{N}$

Extending the middle-end representation

Potential function along a path

- $\mathcal{R}=\{$ semaphores and mutex $\}$
- distribution: $\delta: \mathcal{V} \cup \mathcal{R} \rightarrow \mathbb{N}$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV ingeuage

$$
\llbracket \mathrm{P}(\mathrm{a}) \rrbracket_{\delta}(x)= \begin{cases}\delta(x) & \text { if } x \neq \mathrm{a} \\ \delta(\mathrm{a})+1 & \text { if } x=\mathrm{a}\end{cases}
$$

Extending the middle-end representation

Potential function along a path

- $\mathcal{R}=\{$ semaphores and mutex $\}$
- distribution: $\delta: \mathcal{V} \cup \mathcal{R} \rightarrow \mathbb{N}$

Parallelisms
Virtual Machines
Middle:End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV ingruage

$$
\begin{gathered}
\llbracket \mathrm{P}(\mathrm{a}) \rrbracket_{\delta}(x)= \begin{cases}\delta(x) & \text { if } x \neq \mathrm{a} \\
\delta(\mathrm{a})+1 & \text { if } x=\mathrm{a}\end{cases} \\
\llbracket \mathrm{V}(\mathrm{a}) \rrbracket_{\delta}(x)= \begin{cases}\delta(x) & \text { if } x \neq \mathrm{a} \\
\max \{0, \delta(\mathrm{a})-1\} & \text { if } x=\mathrm{a}\end{cases}
\end{gathered}
$$

Extending the middle-end representation

Potential function along a path

- $\mathcal{R}=\{$ semaphores and mutex $\}$
- distribution: $\delta: \mathcal{V} \cup \mathcal{R} \rightarrow \mathbb{N}$

Parallelisms
Virtual Machines
Middle:End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV Innguege

$$
\begin{gathered}
\llbracket \mathrm{P}(\mathrm{a}) \rrbracket_{\delta}(x)= \begin{cases}\delta(x) & \text { if } x \neq \mathrm{a} \\
\delta(\mathrm{a})+1 & \text { if } x=\mathrm{a}\end{cases} \\
\llbracket \mathrm{V}(\mathrm{a}) \rrbracket_{\delta}(x)= \begin{cases}\delta(x) & \text { if } x \neq \mathrm{a} \\
\max \{0, \delta(\mathrm{a})-1\} & \text { if } x=\mathrm{a}\end{cases} \\
\llbracket \mathrm{W}(\mathrm{a}) \rrbracket=\text { ignored }
\end{gathered}
$$

Extending the middle-end representation

Conservative process

Parallelisms

Virtual Machines
Middle-End
Dynamics

- $\gamma=\gamma_{1}, \ldots, \gamma_{n}$ a path on a cfg, then by definition $\llbracket \gamma \rrbracket \cdot \delta=\llbracket \lambda\left(\gamma_{n}\right) \rrbracket \cdots \llbracket \lambda\left(\gamma_{1}\right) \rrbracket \cdot \delta$
is the action of the path γ on the distribution δ

Extending the middle-end representation

Conservative process

Parallelisms

Virtual Machines

Middle-End
Dynamics
Concurrency

- $\gamma=\gamma_{1}, \ldots, \gamma_{n}$ a path on a cfg, then by definition $\llbracket \gamma \rrbracket \cdot \delta=\llbracket \lambda\left(\gamma_{n}\right) \rrbracket \cdots \llbracket \lambda\left(\gamma_{1}\right) \rrbracket \cdot \delta$
is the action of the path γ on the distribution δ
- A process is conservative when for all paths γ, γ^{\prime} on its cfg, all $x \in \mathcal{R}$ and all distributions δ

$$
\partial \gamma=\partial^{-} \gamma^{\prime} \text { and } \partial^{+} \gamma=\partial^{+} \gamma^{\prime} \Rightarrow \llbracket \gamma \rrbracket \cdot \delta(x)=\llbracket \gamma^{\prime} \rrbracket \cdot \delta(x)
$$

Being conservative

is decidable

- approximation: a mapping from V to $2^{\mathbb{N}^{\mathcal{R}}}$

Parallelisms
Virtual Machines
Middle-End
Dynamics

Generalizing graphs

Being conservative

- approximation: a mapping from V to $2^{\mathbb{N}^{\mathcal{R}}}$
$-s \subseteq s^{\prime}$ means $s(v) \subseteq s^{\prime}(v)$ for all $v \in V$

Being conservative

 is decidableParallelisms
Virtual Machines
Middle-End
Dynamics

- $\left\{s_{0}, \ldots, s_{n}\right\}$ inductively defined as follows:

Being conservative

 is decidable
Parallelisms

Virtual Machines
Middle-End

Dynamics

- approximation: a mapping from V to $2^{\mathbb{N}^{\mathcal{R}}}$
$-s \subseteq s^{\prime}$ means $s(v) \subseteq s^{\prime}(v)$ for all $v \in V$
- $\left\{s_{0}, \ldots, s_{n}\right\}$ inductively defined as follows:

The initial term s_{0} is defined by $s_{0}\left(v_{0}\right)=\left\{\delta_{0}\right\}$, and $s_{0}(v)=\emptyset$ for $v \neq v_{0}$.

Being conservative

Parallelisms

Virtual Machines

Middle-End

Dynamics

- approximation: a mapping from V to $2^{\mathbb{N}^{\mathcal{R}}}$
$-s \subseteq s^{\prime}$ means $s(v) \subseteq s^{\prime}(v)$ for all $v \in V$
- $\left\{s_{0}, \ldots, s_{n}\right\}$ inductively defined as follows:

The initial term s_{0} is defined by $s_{0}\left(v_{0}\right)=\left\{\delta_{0}\right\}$, and $s_{0}(v)=\emptyset$ for $v \neq v_{0}$.
Assuming s_{n} is built, s_{n+1} is defined for all $v \in V$ by

$$
s_{n+1}(v)=s_{n}(v) \cup \bigcup^{f \in A ; \partial^{+} f=v ; \lambda(f) \in\{P, v\}} \underset{f}{ } f \cdot s_{n}\left(\partial^{-} f\right)
$$

Being conservative

 induces a potential functionParallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency

- The induction stops at the $n^{t h}$ step when either of the following property is satisfied:

Being conservative

 induces a potential function
Parallelisms

Virtual Machines
Middle-End

Dynamics

- The induction stops at the $n^{t h}$ step when either of the following property is satisfied:
$s_{n}=s_{n-1}$: 'true', or
there exists some $v \in V$ such that $\# s_{n}(v) \geqslant 2$: 'false'

Control flow

PV Innewage

Being conservative

 induces a potential functionParallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

- The induction stops at the $n^{t h}$ step when either of the following property is satisfied:
$s_{n}=s_{n-1}$: 'true', or
there exists some $v \in V$ such that $\# s_{n}(v) \geqslant 2$: 'false'
- in the first case we have the potential function $F: V \times \mathcal{R} \rightarrow \mathbb{N}$ defined by $F(v, x)=\delta(x)$ where $s_{n}(v)=\{\delta\}$ note that if $s_{n}(v)=\emptyset$ then v is unreachable

The potential function

of a PV program $P_{1}|\ldots| P_{d}$

Parallelisms
Virtual Machines
Middle-End
Dynamics

Control flow
PV inguage

The potential function

 of a PV program $P_{1}|\ldots| P_{d}$- assume each P_{k} is conservative and F_{k} the associated potential function
- let $K_{0}=V_{1} \times \cdots \times V_{d}$ the 0-dimensional cubes of the control flow precubical set K obtained by ignoring instructions P, V, and W

Parallelisms
Virtual Machines
Middle-End

Dynamics

Concurrency
Generalizing graphs

Control flow

PV innguage

The potential function

 of a PV program $P_{1}|\cdots| P_{d}$- assume each P_{k} is conservative and F_{k} the associated potential function
- let $K_{0}=V_{1} \times \cdots \times V_{d}$ the 0 -dimensional cubes of the control flow precubical set K obtained by ignoring instructions P, V, and W
- The potential function $F: K_{0} \times \mathcal{R} \rightarrow \mathbb{N}$ is

$$
F\left(v_{1}, \ldots, v_{d}, x\right)=\sum_{k=1}^{d} F_{k}\left(v_{k}, x\right)
$$

Parallelisms
Virtual Machines
Middle-End

Dynamics

Concurrency
Generalizing graphs
Control flow
PV Ingruage

The control flow precubical set
taking P, V, and W into account
Parallelisms
Virtual Machines
Middle-End
Dynamics

- Remove from K all v such that $F(v, x) \geqslant \operatorname{arity}(x)$ for some semaphore or mutex x

Parallelisms

Virtual Machines
Middle-End

Dynamics

Concurrency

- Remove from K all v such that $F(v, x) \geqslant \operatorname{arity}(x)$ for some semaphore or mutex x
- replace each n-cubes c whose edges carrying $W(x)$ for some synchronization bareer x of arity n by an arrow low $(c) \rightarrow u p(c)$

Parallelisms

Virtual Machines

Middle-End

Dynamics

Concurrency

- Remove from K all v such that $F(v, x) \geqslant \operatorname{arity}(x)$ for some semaphore or mutex x
- replace each n-cubes c whose edges carrying $W(x)$ for some synchronization bareer x of arity n by an arrow low (c) \rightarrow up (c)
- remove all arrows carrying $\mathrm{W}(\mathrm{x}$) for some synchronization bareer x

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0 \cdot W(b) \cdot P(a) \cdot x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics

Concurrency

Generalizing graphs
Control flow
PV/ mnsuage

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0 \cdot W(b) \cdot P(a) \cdot x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics

Concurrency

Generalizing graphs
Control flow
piV innsuage

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0 \cdot W(b) \cdot P(a) \cdot x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics

Concurrency

Generalizing graphs
Control flow
piV innsuage

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0 \cdot W(b) \cdot P(a) \cdot x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
piV innsuage

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0 \cdot W(b) \cdot P(a) \cdot x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV innymage

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0 \cdot W(b) \cdot P(a) \cdot x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
piV innsuage

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0 \cdot W(b) \cdot P(a) \cdot x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV innymage

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0 \cdot W(b) \cdot P(a) \cdot x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV innymage

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0, W(b) \cdot P(a), x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV innymage

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0, W(b) \cdot P(a), x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics

Concurrency

Generalizing graphs
Control flow
PV innymge

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0, W(b) \cdot P(a), x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV/ नnsurage

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0, W(b) \cdot P(a), x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV/ नnsurage

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0, W(b) \cdot P(a), x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV नnsurage

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0 \cdot W(b) \cdot P(a) \cdot x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV innsuage

Control Flow Precubical Set: an example

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV inguage

Control Flow Precubical Set: an example

 $y:=0 \cdot W(b) \cdot P(a) \cdot x:=z \cdot V(a) \mid z:=0 \cdot W(b) \cdot P(a) \cdot x:=y \cdot V(a)$

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV innsuage

Control Flow Precubical Set: an example

Parallelisms
Virtual Machines
Middle-End
Dynamics
Concurrency
Generalizing graphs
Control flow
PV/innyuge

[^0]: input x;
 while $x \neq 1$ do
 if $x \bmod 2=0$
 then $\mathrm{x}:=\mathrm{x} / 2$
 else $x:=3 * x+1$
 done

