
SEMANTICS OF A CONCURRENT LANGUAGE
BY MEANS OF DIRECTED TOPOLOGY

Habilitation Defense

Friday the 30th of September 2016

Emmanuel Haucourt

September 30, 2016

1 / 75

Summary

1. The language

2. Abstract machine

3. Higher dimensional control flow structure

4. Providing models with local pospace structure

5. Handling continuous models

6. Factoring

7. Directed topology

8. Perspectives

2 / 75

Summary

1. The language

2. Abstract machine

3. Higher dimensional control flow structure

4. Providing models with local pospace structure

5. Handling continuous models

6. Factoring

7. Directed topology

8. Perspectives

2 / 75

Summary

1. The language

2. Abstract machine

3. Higher dimensional control flow structure

4. Providing models with local pospace structure

5. Handling continuous models

6. Factoring

7. Directed topology

8. Perspectives

2 / 75

Summary

1. The language

2. Abstract machine

3. Higher dimensional control flow structure

4. Providing models with local pospace structure

5. Handling continuous models

6. Factoring

7. Directed topology

8. Perspectives

2 / 75

Summary

1. The language

2. Abstract machine

3. Higher dimensional control flow structure

4. Providing models with local pospace structure

5. Handling continuous models

6. Factoring

7. Directed topology

8. Perspectives

2 / 75

Summary

1. The language

2. Abstract machine

3. Higher dimensional control flow structure

4. Providing models with local pospace structure

5. Handling continuous models

6. Factoring

7. Directed topology

8. Perspectives

2 / 75

Summary

1. The language

2. Abstract machine

3. Higher dimensional control flow structure

4. Providing models with local pospace structure

5. Handling continuous models

6. Factoring

7. Directed topology

8. Perspectives

2 / 75

Summary

1. The language

2. Abstract machine

3. Higher dimensional control flow structure

4. Providing models with local pospace structure

5. Handling continuous models

6. Factoring

7. Directed topology

8. Perspectives

2 / 75

Summary

1. The language

2. Abstract machine

3. Higher dimensional control flow structure

4. Providing models with local pospace structure

5. Handling continuous models

6. Factoring

7. Directed topology

8. Perspectives

2 / 75

1. The Language

3 / 75

Targeted software and strategy

- Fine-grained parallel programs (e.g. asynchronous control command systems).

4 / 75

Targeted software and strategy

Program analysis

5 / 75

Targeted software and strategy

Control flow analysis

5 / 75

Targeted software and strategy

Control flow analysis

Value analysis

5 / 75

Targeted software and strategy

Control flow analysis

Coordination analysis

Value analysis

5 / 75

Features of the language
Dijkstra, E.W., Cooperating sequential processes, 1968.

- shared memory abstract machine (PRAM)
concurrent read exclusive write (CREW)

- no pointer arithmetics

- no function

- no birth nor death of process at runtime

- tokens are owned by processes

- conservative processes

6 / 75

Features of the language
Dijkstra, E.W., Cooperating sequential processes, 1968.

- shared memory abstract machine (PRAM)
concurrent read exclusive write (CREW)

- no pointer arithmetics

- no function

- no birth nor death of process at runtime

- tokens are owned by processes

- conservative processes

6 / 75

Standard examples

sem: 1 a
proc:

p = P(a); V(a)

init: 2p

var: x = 0
proc:

p1 = x:=1 ,
p2 = x:=2

init: p1 p2

7 / 75

Middle-end representation

- P = {process identifiers},
V = {variables},
S = {semaphores},
B = {barriers}

- init : V → R
- arity : S t B → N ∪ {∞}
- proc : P → {control flow graphs}

8 / 75

Control flow graphs
Floyd, R. W., Assigning meanings to programs, 1967
Allen, F. E., Control flow analysis, 1970

var: x = 7
proc:
p = J(q)+[x<>1]+() ,
q = (x:=x/2; J(p))+[x % 2 = 0]+

(x:=3*x+1; J(p))
init: p en

try
po

int

x:=x/2

x:=3*x+1

x%
2=
0

x=1

9 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 7

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 7

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 22

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 22

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 22

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 22

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 11

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 11

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 11

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 11

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 34

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 34

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 34

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 34

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 17

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 17

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 17

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 17

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 52

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 52

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 52

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 52

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 26

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 26

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 26

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 26

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 13

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 13

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 13

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 13

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 40

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 40

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 40

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 40

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 20

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 20

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 20

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 20

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 10

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 10

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 10

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 10

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 5

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 5

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 5

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 5

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 16

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 16

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 16

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 16

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 8

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 8

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 8

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 8

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 4

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 4

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 4

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 4

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 2

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 2

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 2

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 2

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

10 / 75

An Execution Trace
on a control flow graph

en
tr
y
po
in
t

x:=x/2

x:=3*x+1

x%
2=
0

x=1

the current value of x is 7the current value of x is 1

10 / 75

2. Abstract Machine

11 / 75

State (Assume that P = {1, . . . ,N})

point: a tuple (p1, . . . , pN) s.t. each pn is either a vertex or an arrow of the nth

control flow graph.

context: mapping σ defined over V t S s.t.

- for all v ∈ V, σ(v) ∈ R, and

- for all s ∈ S, σ(s) is a multiset over P.

We denote by σ0 the initial context of a program.

state: a point and a context.

12 / 75

State (Assume that P = {1, . . . ,N})

point: a tuple (p1, . . . , pN) s.t. each pn is either a vertex or an arrow of the nth

control flow graph.

context: mapping σ defined over V t S s.t.

- for all v ∈ V, σ(v) ∈ R, and

- for all s ∈ S, σ(s) is a multiset over P.

We denote by σ0 the initial context of a program.

state: a point and a context.

12 / 75

Multi-instruction
Cattani, G. L., and Sassone, V., Higher dimensional transition systems, 1996
Assume P = {1, . . . ,N}

multi-instruction: a partial map µ from P to {single instructions}

µ admissible in the context σ:

- µ(i) and µ(j) do not conflict

- for all s ∈ S, |σ(s)|+ card{i ∈ M | µ(i) = P(s)} 6 arity(s)

- for all b ∈ B, card{i ∈ M | µ(i) = W(b)} 6∈ {1, . . . , arity(b)}

The context σ · µ is the result of the execution of µ in the context σ.

13 / 75

Multi-instruction
Cattani, G. L., and Sassone, V., Higher dimensional transition systems, 1996
Assume P = {1, . . . ,N}

multi-instruction: a partial map µ from P to {single instructions}

µ admissible in the context σ:

- µ(i) and µ(j) do not conflict

- for all s ∈ S, |σ(s)|+ card{i ∈ M | µ(i) = P(s)} 6 arity(s)

- for all b ∈ B, card{i ∈ M | µ(i) = W(b)} 6∈ {1, . . . , arity(b)}

The context σ · µ is the result of the execution of µ in the context σ.

13 / 75

Paths

path: a sequence of points p(0), . . . , p(K) s.t. ∀k ∈ {1, . . . ,K} one has

execution: ∀n ∈ Dk ∂
+pn(k − 1) = pn(k)

or

branching: ∀n ∈ Dk pn(k − 1) = ∂-pn(k)

where Dk =
{
n ∈ {1, . . . ,N}

∣∣ pn(k − 1) 6= pn(k)
}

14 / 75

Execution path

Each path is associated with a sequence of multi-instructions (µk) where
µk (n) = λn(pn(k)) for all n such that

pn(k) = ∂+pn(k − 1) or λn(pn(k)) = W ()

The path is said to be admissible when µk+1 is admissible in the context σ0 · µ1 · · ·µk
for all k.

It is an execution path when for all k, n :

∂-pn(k) = pn(k − 1) implies Jλn(pn(k))Kσ·µ0···µk−1 6= 0

15 / 75

3. Higher Dimensional
Control Flow Structure
Encoding admissibility in a model

16 / 75

Race condition
write-write conflict

var: x = 0
proc:

p1 = x := 1,
p2 = x := 2

init: p1 p2

17 / 75

Exhaustive model
tensor product of graphs

x
:
=
1

x:=2

⊗

18 / 75

Exhaustive model
tensor product of graphs

x
:
=
1

x:=2

⊗

18 / 75

Exhaustive model
tensor product of graphs

x
:
=
1

x:=2

⊗

18 / 75

Exhaustive model
tensor product of graphs

x
:
=
1

x:=2

⊗

18 / 75

Exhaustive model
tensor product of graphs

x
:
=
1

x:=2

⊗

18 / 75

Exhaustive model
tensor product of graphs

x
:
=
1

x:=2

⊗

18 / 75

Not admissible path
due to race condition var: x = 0

the value of x is 0

x
:
=
1

x:=2

⊗

19 / 75

Not admissible path
due to race condition var: x = 0

the value of x is 0

x
:
=
1

x:=2

⊗

19 / 75

Not admissible path
due to race condition var: x = 0

the value of x is 0

x
:
=
1

x:=2

⊗

19 / 75

Not admissible path
due to race condition var: x = 0

the value of x is ?

x
:
=
1

x:=2

⊗

19 / 75

Admissible path
that however meets a forbidden point

the value of x is 0

x
:
=
1

x:=2

⊗

20 / 75

Admissible path
that however meets a forbidden point

the value of x is 0

x
:
=
1

x:=2

⊗

20 / 75

Admissible path
that however meets a forbidden point

the value of x is 0

x
:
=
1

x:=2

⊗

20 / 75

Admissible path
that however meets a forbidden point

the value of x is 1

x
:
=
1

x:=2

⊗

20 / 75

Admissible path
that however meets a forbidden point

the value of x is 2

x
:
=
1

x:=2

⊗

20 / 75

Admissible path
that however meets a forbidden point

the value of x is 2

x
:
=
1

x:=2

⊗

20 / 75

Admissible path
that however meets a forbidden point

the value of x is 2

x
:
=
1

x:=2

⊗

20 / 75

Admissible path
that however meets a forbidden point

the value of x is 2

x
:
=
1

x:=2

⊗

20 / 75

Admissible path
avoiding forbidden points

the value of x is 0

x
:
=
1

x:=2

⊗

21 / 75

Admissible path
avoiding forbidden points

the value of x is 0

x
:
=
1

x:=2

⊗

21 / 75

Admissible path
avoiding forbidden points

the value of x is 0

x
:
=
1

x:=2

⊗

21 / 75

Admissible path
avoiding forbidden points

the value of x is 1

x
:
=
1

x:=2

⊗

21 / 75

Admissible path
avoiding forbidden points

the value of x is 1

x
:
=
1

x:=2

⊗

21 / 75

Admissible path
avoiding forbidden points

the value of x is 2

x
:
=
1

x:=2

⊗

21 / 75

Admissible path
avoiding forbidden points

the value of x is 2

x
:
=
1

x:=2

⊗

21 / 75

Admissible path
avoiding forbidden points

the value of x is 2

x
:
=
1

x:=2

⊗

21 / 75

Admissible path
avoiding forbidden points

the value of x is 2

x
:
=
1

x:=2

⊗

21 / 75

The replacement property
for admissible paths

Replacement:

Any admissible path that meets a race condition is “equivalent” to an admissible path
which avoids all of them.

22 / 75

One token for two processes

sem: 1 a
proc:

p = P(a);V(a)
init: 2p

23 / 75

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

24 / 75

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

24 / 75

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

24 / 75

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

24 / 75

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

24 / 75

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗
0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

24 / 75

Discrete model
sem: 1 a

P
(
a
)

P(a)

V
(
a
)

V(a)

⊗

0

0

1

1

0

0

0

0 0 1 1 0 0 0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

1

1

2

2

1

1

1

1

1

2

2

1

1

1

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

24 / 75

The potential functions of processes and programs
Conservative forces in physics
Fahrenberg, U., Master’s Thesis, 2002

A process π is conservative when for all paths and all semaphores s, the amount of
tokens of type s held by the process at the end of the execution trace only depends on
its arrival point.

In that case the process π comes with a potential function Fπ

Fπ : {semaphores} × {points} → N

A program Π is conservative when so are its processes π1, . . . , πd and its potential
function is given by

FΠ(s, (p1, . . . , pd)) =
d∑

k=1

Fπk (s, pk)

If FΠ(s, p) > arity(s) for some semaphore s, then p is forbidden.

25 / 75

Conservative process
example

x:=0

P(s)

V
(
s
)

x+
+

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Conservative process
example

P(s)

V
(
s
)

26 / 75

Not conservative process
example

x:=0

P(s)

x
+
+

x+
+

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

27 / 75

Not conservative process
example

P(s)

conflict

27 / 75

A synchronization barrier

sync: 1 b
proc:

p = W(b)
init: 2p

28 / 75

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗

0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

29 / 75

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

29 / 75

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

29 / 75

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

29 / 75

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

29 / 75

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗
0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

29 / 75

Discrete Model
sync: 1 b

W
(
b
)

W(b)

⊗

0

0

1

0

0

0 0 1 0 0

0

0

1

0

0

0

0

1

0

0

1

1

2

1

1

0

0

1

0

0

0

0

1

0

0

29 / 75

4. Providing Models with
Local Pospace Structure

30 / 75

Locally ordered spaces
L. Fajstrup, É. Goubault, and M. Raussen, Algebraic Topology and Concurrency, 1998

Directed atlas U For all points p, for all directed neighborhoods A and B of p, there
exists a directed neighborhood C of p such that C ⊆ A ∩ B and 6A |C =6C=6B |C .

p

6A

6B

6C

31 / 75

From discrete models to continuous ones

G : A
∂+
//

∂-
// V �G� = V t A ×]0, 1[

�G1� × · · ·× �GN� =
⊔

points p of
G1, . . . ,GN

{p}×]0, 1[dim(p1,...,pN)

where p = (p1, . . . , pN) and dim p = #{n ∈ {1, . . . ,N} | pn ∈ An}

The directed topological model is then⊔
not forbidden
points p of
G1, . . . , GN

{p}×]0, 1[dim(p1,...,pN)

32 / 75

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

33 / 75

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

33 / 75

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

33 / 75

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

33 / 75

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

33 / 75

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

33 / 75

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

33 / 75

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

33 / 75

From discrete to continuous
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

⊗

×

33 / 75

Directed homotopy of directed paths
L. Fajstrup, É. Goubault, and M. Raussen, Algebraic Topology and Concurrency, 1998
M. Grandis, Directed Homotopy Theory, I. The Fundamental Category, 2001

Weakly directed homotopy: A homotopy of paths whose intermediate paths are
directed.

Strongly directed homotopy: A morphism of local pospace whose underlying map is a
homotopy of paths.

The dihomotopy classes of a local pospace X are the morphisms of its fundamental
category usually denoted by −→π1X .

34 / 75

Adequacy

Theorem

1. Each directed path on a continuous model gives rise to an admissible path on the
corresponding discrete model. Hence directed paths act on valuations.

2. The output valuations of weakly dihomotopic directed paths are the same. Hence
weak dihomotopy classes (i.e. the fundamental category of the model) act on
valuations.

3. The weak dihomotopy class of an execution path only contains execution paths.

35 / 75

Adequacy

Theorem

1. Each directed path on a continuous model gives rise to an admissible path on the
corresponding discrete model. Hence directed paths act on valuations.

2. The output valuations of weakly dihomotopic directed paths are the same. Hence
weak dihomotopy classes (i.e. the fundamental category of the model) act on
valuations.

3. The weak dihomotopy class of an execution path only contains execution paths.

35 / 75

Adequacy

Theorem

1. Each directed path on a continuous model gives rise to an admissible path on the
corresponding discrete model. Hence directed paths act on valuations.

2. The output valuations of weakly dihomotopic directed paths are the same. Hence
weak dihomotopy classes (i.e. the fundamental category of the model) act on
valuations.

3. The weak dihomotopy class of an execution path only contains execution paths.

35 / 75

Adequacy

Theorem

1. Each directed path on a continuous model gives rise to an admissible path on the
corresponding discrete model. Hence directed paths act on valuations.

2. The output valuations of weakly dihomotopic directed paths are the same. Hence
weak dihomotopy classes (i.e. the fundamental category of the model) act on
valuations.

3. The weak dihomotopy class of an execution path only contains execution paths.

35 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Directed homotopy
sem: 1 a sync: 1 b

y
:
=
0

W
(
b
)

P
(
a
)

x
:
=
z

V
(
a
)

z:=1

W(b)

P(a)

x:=y

V(a)

×

36 / 75

Independence of programs

Observational independence

P1

P2

µ′ µ′

P1

P2

µ′µ′

Model independence
J P1 | P2 K = J P1 K× J P2 K

Theorem [Haucourt - not published yet]: The following chain of implications is strict.

syntactic independence
⇓

model independence
⇓

observational independence

37 / 75

Independence of programs

Observational independence

P1

P2

µ′ µ′

P1

P2

µ′µ′

Model independence
J P1 | P2 K = J P1 K× J P2 K

Theorem [Haucourt - not published yet]: The following chain of implications is strict.

syntactic independence
⇓

model independence
⇓

observational independence

37 / 75

Independence of programs

Observational independence

P1

P2

µ′ µ′

P1

P2

µ′µ′

Model independence
J P1 | P2 K = J P1 K× J P2 K

Theorem [Haucourt - not published yet]: The following chain of implications is strict.

syntactic independence
⇓

model independence
⇓

observational independence

37 / 75

Independence of programs

Observational independence

P1

P2

µ′ µ′

P1

P2

µ′µ′

Model independence
J P1 | P2 K = J P1 K× J P2 K

Theorem [Haucourt - not published yet]: The following chain of implications is strict.

syntactic independence
⇓

model independence
⇓

observational independence

37 / 75

Parallelizing a program

sem: 1 a

sem: 2 c

proc:

p = P(a);P(c);V(c);V(a)

q = P(c);V(c)

init: 2p q

38 / 75

Parallelizing a program

sem: 1 a

sem: 2 c

proc:

p = P(a);P(c);V(c);V(a)

init: 2p

sem: 1 a

sem: 2 c

proc:

q = P(c);V(c)

init: q

39 / 75

Parallelizing a program

sem: 1 a

sem: 2 c

proc:

p = P(a);V(a)

init: 2p

sem: 1 a

sem: 2 c

proc:

q = ()

init: q

40 / 75

5. Handling Continuous Models

41 / 75

Almost finite graphs
A graph G is said to be linear
when |G | is an interval of R.

42 / 75

Almost finite graphs
A graph G is said to be linear
when |G | is an interval of R.

42 / 75

Almost finite graphs
A graph G is said to be linear
when |G | is an interval of R.

42 / 75

Characterizing almost finite graphs

RG = {finite union of connected subsets of |G |}

Theorem [Haucourt - Ninin not published yet]
Given a graph G , the following are equivalent:

- G is almost finite,

- The collection RG forms a Boolean subalgebra of 2|G |

- The following sum is finite∑
v vertex

|deg(v)− 2|+ #{connected components} < ∞

- The Freudenthal extension of |G | is homeomorphic with the geometric
realization of some finite graph.

When the preceding statements are satisfied, the number of ends of |G | is the number
of infinite conneected components of L.

43 / 75

Characterizing almost finite graphs

RG = {finite union of connected subsets of |G |}

Theorem [Haucourt - Ninin not published yet]
Given a graph G , the following are equivalent:

- G is almost finite,

- The collection RG forms a Boolean subalgebra of 2|G |

- The following sum is finite∑
v vertex

|deg(v)− 2|+ #{connected components} < ∞

- The Freudenthal extension of |G | is homeomorphic with the geometric
realization of some finite graph.

When the preceding statements are satisfied, the number of ends of |G | is the number
of infinite conneected components of L.

43 / 75

Characterizing almost finite graphs

RG = {finite union of connected subsets of |G |}

Theorem [Haucourt - Ninin not published yet]
Given a graph G , the following are equivalent:

- G is almost finite,

- The collection RG forms a Boolean subalgebra of 2|G |

- The following sum is finite∑
v vertex

|deg(v)− 2|+ #{connected components} < ∞

- The Freudenthal extension of |G | is homeomorphic with the geometric
realization of some finite graph.

When the preceding statements are satisfied, the number of ends of |G | is the number
of infinite conneected components of L.

43 / 75

Isothetic regions (1)

block: B1 × · · · × BN with Bn 6= ∅ and Bn ∈ RGn for 1 6 n 6 N.

Theorem [Haucourt - not published yet]
The (nonempty) graphs G1, . . . ,GN are almost finite, iff

RG1,...,GN
= {finite unions of blocks}

is a Boolean subalgebra of 2|G1|×···×|GN |.

In that case RG1,...,GN
is stable under interior, closure, forward and backward

operators, and its elements are the subsets of |G1| × · · · × |GN | with finitely many
maximal subblocks. They are called isothetic regions.

frw(A,B) =
⋃
{img(δ) | δ a dipath of A ∪ B starting in A}

bck(A,B) =
⋃
{img(δ) | δ a dipath of A ∪ B ending in B}

44 / 75

Isothetic regions (1)

block: B1 × · · · × BN with Bn 6= ∅ and Bn ∈ RGn for 1 6 n 6 N.

Theorem [Haucourt - not published yet]
The (nonempty) graphs G1, . . . ,GN are almost finite, iff

RG1,...,GN
= {finite unions of blocks}

is a Boolean subalgebra of 2|G1|×···×|GN |.

In that case RG1,...,GN
is stable under interior, closure, forward and backward

operators, and its elements are the subsets of |G1| × · · · × |GN | with finitely many
maximal subblocks. They are called isothetic regions.

frw(A,B) =
⋃
{img(δ) | δ a dipath of A ∪ B starting in A}

bck(A,B) =
⋃
{img(δ) | δ a dipath of A ∪ B ending in B}

44 / 75

Isothetic regions (1)

block: B1 × · · · × BN with Bn 6= ∅ and Bn ∈ RGn for 1 6 n 6 N.

Theorem [Haucourt - not published yet]
The (nonempty) graphs G1, . . . ,GN are almost finite, iff

RG1,...,GN
= {finite unions of blocks}

is a Boolean subalgebra of 2|G1|×···×|GN |.

In that case RG1,...,GN
is stable under interior, closure, forward and backward

operators, and its elements are the subsets of |G1| × · · · × |GN | with finitely many
maximal subblocks. They are called isothetic regions.

frw(A,B) =
⋃
{img(δ) | δ a dipath of A ∪ B starting in A}

bck(A,B) =
⋃
{img(δ) | δ a dipath of A ∪ B ending in B}

44 / 75

Isothetic regions (2)
Main motivation

The continuous model of a program is an isothetic region.

45 / 75

Swiss Flag
Maximal subblocks of the state space

#mtx a b

proc:

p = P(a).P(b).V(b).V(a)

q = P(b).P(a).V(a).V(b)

init: p q
P(a)

P
(
b
)

P(b)

P
(
a
)

V(b)

V
(
a
)

V(a)

V
(
b
)

46 / 75

Swiss Flag
Maximal subblocks of the state space

#mtx a b

proc:

p = P(a).P(b).V(b).V(a)

q = P(b).P(a).V(a).V(b)

init: p q
P(a)

P
(
b
)

P(b)

P
(
a
)

V(b)

V
(
a
)

V(a)

V
(
b
)

46 / 75

Swiss Flag
Maximal subblocks of the state space

#mtx a b

proc:

p = P(a).P(b).V(b).V(a)

q = P(b).P(a).V(a).V(b)

init: p q
P(a)

P
(
b
)

P(b)

P
(
a
)

V(b)

V
(
a
)

V(a)

V
(
b
)

46 / 75

Swiss Flag
Maximal subblocks of the state space

#mtx a b

proc:

p = P(a).P(b).V(b).V(a)

q = P(b).P(a).V(a).V(b)

init: p q
P(a)

P
(
b
)

P(b)

P
(
a
)

V(b)

V
(
a
)

V(a)

V
(
b
)

46 / 75

3D Swiss cross
Tetrahemihexacron

P(a) V(a)

P(a)

V(a)

P(a)

V(a)

47 / 75

The Lipski algorithm
No deadlock

p

q

r

48 / 75

Applications
Past attractor and deadlocks

Ω = �G1� × · · ·× �GN�

conepA = {p ∈ Ω from which A can be reached} = bck(A,Ω)

escapefA = {p ∈ Ω from which A cannot be reached}

escapefA = (conepA)c

attpA = {p ∈ Ω from which A cannot be avoided}

attpA = escapef(escapefA)

49 / 75

Swiss Flag
Past attractor of a deadlock point

#mtx a b

proc:

p = P(a).P(b).V(b).V(a)

q = P(b).P(a).V(a).V(b)

init: p q
P(a)

P
(
b
)

P(b)

P
(
a
)

V(b)

V
(
a
)

V(a)

V
(
b
)

d (deadlock)

50 / 75

Swiss Flag
Past attractor of a deadlock point

#mtx a b

proc:

p = P(a).P(b).V(b).V(a)

q = P(b).P(a).V(a).V(b)

init: p q
P(a)

P
(
b
)

P(b)

P
(
a
)

V(b)

V
(
a
)

V(a)

V
(
b
)

conepd

50 / 75

Swiss Flag
Past attractor of a deadlock point

#mtx a b

proc:

p = P(a).P(b).V(b).V(a)

q = P(b).P(a).V(a).V(b)

init: p q
P(a)

P
(
b
)

P(b)

P
(
a
)

V(b)

V
(
a
)

V(a)

V
(
b
)

(conepd)c

50 / 75

Swiss Flag
Past attractor of a deadlock point

#mtx a b

proc:

p = P(a).P(b).V(b).V(a)

q = P(b).P(a).V(a).V(b)

init: p q
P(a)

P
(
b
)

P(b)

P
(
a
)

V(b)

V
(
a
)

V(a)

V
(
b
)

conep(conepd)c

50 / 75

Swiss Flag
Past attractor of a deadlock point

#mtx a b

proc:

p = P(a).P(b).V(b).V(a)

q = P(b).P(a).V(a).V(b)

init: p q
P(a)

P
(
b
)

P(b)

P
(
a
)

V(b)

V
(
a
)

V(a)

V
(
b
)

attpd

50 / 75

Three dining philosophers
Deadlock

x

y

z

P(a) P(b) V(a) V(b)

P(c)

P(a)

V(c)

V(a)

P(b)
P(c)

V(b)
V(c)

51 / 75

Tensor product of Boolean algebras
Blocks are pure tensors

For Ω ∈ RG1,...,Gn define

RΩ =
{
X ∈ RG1,...,Gn

∣∣ A ⊆ Ω
}

For all elements A ∈ RΩ1
, and B,C ∈ RΩ2

:

(A× B) ∪ (A× C) = A× (B ∪ C)

(A× B) ∩ (A× C) = A× (B ∩ C)

A × ∅ = ∅

but
A× Ω2 6= Ω1 × Ω2

52 / 75

Tensor product of Boolean algebras
Blocks are pure tensors

For Ω ∈ RG1,...,Gn define

RΩ =
{
X ∈ RG1,...,Gn

∣∣ A ⊆ Ω
}

For all elements A ∈ RΩ1
, and B,C ∈ RΩ2

:

(A× B) ∪ (A× C) = A× (B ∪ C)

(A× B) ∩ (A× C) = A× (B ∩ C)

A × ∅ = ∅

but
A× Ω2 6= Ω1 × Ω2

52 / 75

Tensor product of Boolean algebras
Semilattices and some other algebraic theories

Structure Signature Axioms Category

semilattice ∨
commutative idempotent SLat
semigroup

semilattice
∨, 0 commutative idempotent SLat0with zero monoid

lattice ∨, ∧ two semilattices Lat
with v∧=v

op
∨

distributive lattice ∨, ∧ lattice in which ∧ DLat
distributes over ∨

distributive lattice
∨, 0, ∧ distributive lattice in which DLat0with zero ∨ has a neutral element

distributive lattice
with difference

∨, 0, ∧, \
distributive lattice with zero s.t.

DLatd(x\y) ∨ (x ∧ y) = x
(x\y) ∧ y = 0

bounded distributive
∨, 0, ∧, 1 lattice in which both ∨ and ∧ DLatblattice have a neutral element

Boolean algebra
∨, 0, ∧, 1, _c bounded distributive lattice s.t.

BoolAlgxc ∧ x = 0 and xc ∨ x = 1

∨, 0, ∧, 1, \ bounded distributive lattice
with difference

53 / 75

Tensor product of Boolean algebras
Fraser, G. A., The semilattice tensor product of distributive lattices, 1976

BoolAlg // DLatd // DLat0 // SLat0 // SLat

Theorem [Haucourt - Ninin (2014)]
The universal tensor products of (finitely many) Boolean algebras in SLat0, DLat0,
and DLatd are isomorphic Boolean algebras. Moreover

RΩ1×···×ΩN
∼= RΩ1

⊗ · · · ⊗ RΩN

54 / 75

Tensor product of Boolean algebras
Fraser, G. A., The semilattice tensor product of distributive lattices, 1976

BoolAlg // DLatd // DLat0 // SLat0 // SLat

Theorem [Haucourt - Ninin (2014)]
The universal tensor products of (finitely many) Boolean algebras in SLat0, DLat0,
and DLatd are isomorphic Boolean algebras. Moreover

RΩ1×···×ΩN
∼= RΩ1

⊗ · · · ⊗ RΩN

54 / 75

6. Factoring

55 / 75

Example of factorization

56 / 75

Example of factorization

56 / 75

Example of factorization

56 / 75

Example of factorization

56 / 75

Example of factorization

56 / 75

Homogeneous languages
Main results

Theorem [Balabonki - Haucourt (2010)]
The collection H(A) forms a free commutative monoid under the product induced by
word concatenation and the zero language.

Theorem [Balabonki - Haucourt (2010)]
The collection of isothetic regions ⋃

n∈N
RG , . . . ,G︸ ︷︷ ︸

n times

forms a free commutative monoid that is isomorphic to H(A) with A the collection of
connected subsets of |G |.

57 / 75

Application to program factoring

If X is the model of a program P, a factorization of X induces a family of model
independent programs whose parallel compound is P.

58 / 75

Parallelizing a program

sem: 1 a b

sem: 2 c

proc:

p = P(a);P(c);V(c);V(a)

q = P(b);P(c);V(c);V(b)

init: p q p q

59 / 75

Factoring the space of states

[0,1[[0,1[[0,+∞[[0,+∞[

[0,1[[4,+∞[[0,+∞[[0,+∞[

[0,1[[0,+∞[[0,+∞[[0,1[

[0,1[[0,+∞[[0,+∞[[4,+∞[

[4,+∞[[0,1[[0,+∞[[0,+∞[

[4,+∞[[4,+∞[[0,+∞[[0,+∞[

[4,+∞[[0,+∞[[0,+∞[[0,1[

[4,+∞[[0,+∞[[0,+∞[[4,+∞[

[0,+∞[[0,1[[0,1[[0,+∞[

[0,+∞[[0,1[[4,+∞[[0,+∞[

[0,+∞[[4,+∞[[0,1[[0,+∞[

[0,+∞[[4,+∞[[4,+∞[[0,+∞[

[0,+∞[[0,+∞[[0,1[[0,1[

[0,+∞[[0,+∞[[0,1[[4,+∞[

[0,+∞[[0,+∞[[4,+∞[[0,1[

[0,+∞[[0,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[
[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[

60 / 75

Factoring the space of states

[0,1[[0,1[[0,+∞[[0,+∞[

[0,1[[4,+∞[[0,+∞[[0,+∞[

[0,1[[0,+∞[[0,+∞[[0,1[

[0,1[[0,+∞[[0,+∞[[4,+∞[

[4,+∞[[0,1[[0,+∞[[0,+∞[

[4,+∞[[4,+∞[[0,+∞[[0,+∞[

[4,+∞[[0,+∞[[0,+∞[[0,1[

[4,+∞[[0,+∞[[0,+∞[[4,+∞[

[0,+∞[[0,1[[0,1[[0,+∞[

[0,+∞[[0,1[[4,+∞[[0,+∞[

[0,+∞[[4,+∞[[0,1[[0,+∞[

[0,+∞[[4,+∞[[4,+∞[[0,+∞[

[0,+∞[[0,+∞[[0,1[[0,1[

[0,+∞[[0,+∞[[0,1[[4,+∞[

[0,+∞[[0,+∞[[4,+∞[[0,1[

[0,+∞[[0,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[
[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[

60 / 75

Factoring the space of states

[0,1[[0,1[[0,+∞[[0,+∞[

[0,1[[4,+∞[[0,+∞[[0,+∞[

[0,1[[0,+∞[[0,+∞[[0,1[

[0,1[[0,+∞[[0,+∞[[4,+∞[

[4,+∞[[0,1[[0,+∞[[0,+∞[

[4,+∞[[4,+∞[[0,+∞[[0,+∞[

[4,+∞[[0,+∞[[0,+∞[[0,1[

[4,+∞[[0,+∞[[0,+∞[[4,+∞[

[0,+∞[[0,1[[0,1[[0,+∞[

[0,+∞[[0,1[[4,+∞[[0,+∞[

[0,+∞[[4,+∞[[0,1[[0,+∞[

[0,+∞[[4,+∞[[4,+∞[[0,+∞[

[0,+∞[[0,+∞[[0,1[[0,1[

[0,+∞[[0,+∞[[0,1[[4,+∞[

[0,+∞[[0,+∞[[4,+∞[[0,1[

[0,+∞[[0,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[

60 / 75

Factoring the space of states

[0,1[[0,1[[0,+∞[[0,+∞[

[0,1[[4,+∞[[0,+∞[[0,+∞[

[0,1[[0,+∞[[0,+∞[[0,1[

[0,1[[0,+∞[[0,+∞[[4,+∞[

[4,+∞[[0,1[[0,+∞[[0,+∞[

[4,+∞[[4,+∞[[0,+∞[[0,+∞[

[4,+∞[[0,+∞[[0,+∞[[0,1[

[4,+∞[[0,+∞[[0,+∞[[4,+∞[

[0,+∞[[0,1[[0,1[[0,+∞[

[0,+∞[[0,1[[4,+∞[[0,+∞[

[0,+∞[[4,+∞[[0,1[[0,+∞[

[0,+∞[[4,+∞[[4,+∞[[0,+∞[

[0,+∞[[0,+∞[[0,1[[0,1[

[0,+∞[[0,+∞[[0,1[[4,+∞[

[0,+∞[[0,+∞[[4,+∞[[0,1[

[0,+∞[[0,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[

60 / 75

Factoring the space of states

[0,1[[0,1[[0,+∞[[0,+∞[

[0,1[[4,+∞[[0,+∞[[0,+∞[

[0,1[[0,+∞[[0,+∞[[0,1[

[0,1[[0,+∞[[0,+∞[[4,+∞[

[4,+∞[[0,1[[0,+∞[[0,+∞[

[4,+∞[[4,+∞[[0,+∞[[0,+∞[

[4,+∞[[0,+∞[[0,+∞[[0,1[

[4,+∞[[0,+∞[[0,+∞[[4,+∞[

[0,+∞[[0,1[[0,1[[0,+∞[

[0,+∞[[0,1[[4,+∞[[0,+∞[

[0,+∞[[4,+∞[[0,1[[0,+∞[

[0,+∞[[4,+∞[[4,+∞[[0,+∞[

[0,+∞[[0,+∞[[0,1[[0,1[

[0,+∞[[0,+∞[[0,1[[4,+∞[

[0,+∞[[0,+∞[[4,+∞[[0,1[

[0,+∞[[0,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[
[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[

60 / 75

Factoring the space of states

[0,1[[0,1[[0,+∞[[0,+∞[

[0,1[[4,+∞[[0,+∞[[0,+∞[

[0,1[[0,+∞[[0,+∞[[0,1[

[0,1[[0,+∞[[0,+∞[[4,+∞[

[4,+∞[[0,1[[0,+∞[[0,+∞[

[4,+∞[[4,+∞[[0,+∞[[0,+∞[

[4,+∞[[0,+∞[[0,+∞[[0,1[

[4,+∞[[0,+∞[[0,+∞[[4,+∞[

[0,+∞[[0,1[[0,1[[0,+∞[

[0,+∞[[0,1[[4,+∞[[0,+∞[

[0,+∞[[4,+∞[[0,1[[0,+∞[

[0,+∞[[4,+∞[[4,+∞[[0,+∞[

[0,+∞[[0,+∞[[0,1[[0,1[

[0,+∞[[0,+∞[[0,1[[4,+∞[

[0,+∞[[0,+∞[[4,+∞[[0,1[

[0,+∞[[0,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[
[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[

60 / 75

Factoring the space of states

[0,1[[0,1[[0,+∞[[0,+∞[

[0,1[[4,+∞[[0,+∞[[0,+∞[

[0,1[[0,+∞[[0,+∞[[0,1[

[0,1[[0,+∞[[0,+∞[[4,+∞[

[4,+∞[[0,1[[0,+∞[[0,+∞[

[4,+∞[[4,+∞[[0,+∞[[0,+∞[

[4,+∞[[0,+∞[[0,+∞[[0,1[

[4,+∞[[0,+∞[[0,+∞[[4,+∞[

[0,+∞[[0,1[[0,1[[0,+∞[

[0,+∞[[0,1[[4,+∞[[0,+∞[

[0,+∞[[4,+∞[[0,1[[0,+∞[

[0,+∞[[4,+∞[[4,+∞[[0,+∞[

[0,+∞[[0,+∞[[0,1[[0,1[

[0,+∞[[0,+∞[[0,1[[4,+∞[

[0,+∞[[0,+∞[[4,+∞[[0,1[

[0,+∞[[0,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[
[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

60 / 75

Factoring the space of states

[0,1[[0,1[[0,+∞[[0,+∞[

[0,1[[4,+∞[[0,+∞[[0,+∞[

[0,1[[0,+∞[[0,+∞[[0,1[

[0,1[[0,+∞[[0,+∞[[4,+∞[

[4,+∞[[0,1[[0,+∞[[0,+∞[

[4,+∞[[4,+∞[[0,+∞[[0,+∞[

[4,+∞[[0,+∞[[0,+∞[[0,1[

[4,+∞[[0,+∞[[0,+∞[[4,+∞[

[0,+∞[[0,1[[0,1[[0,+∞[

[0,+∞[[0,1[[4,+∞[[0,+∞[

[0,+∞[[4,+∞[[0,1[[0,+∞[

[0,+∞[[4,+∞[[4,+∞[[0,+∞[

[0,+∞[[0,+∞[[0,1[[0,1[

[0,+∞[[0,+∞[[0,1[[4,+∞[

[0,+∞[[0,+∞[[4,+∞[[0,1[

[0,+∞[[0,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[
[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

60 / 75

Factoring the space of states

[0,1[[0,1[[0,+∞[[0,+∞[

[0,1[[4,+∞[[0,+∞[[0,+∞[

[0,1[[0,+∞[[0,+∞[[0,1[

[0,1[[0,+∞[[0,+∞[[4,+∞[

[4,+∞[[0,1[[0,+∞[[0,+∞[

[4,+∞[[4,+∞[[0,+∞[[0,+∞[

[4,+∞[[0,+∞[[0,+∞[[0,1[

[4,+∞[[0,+∞[[0,+∞[[4,+∞[

[0,+∞[[0,1[[0,1[[0,+∞[

[0,+∞[[0,1[[4,+∞[[0,+∞[

[0,+∞[[4,+∞[[0,1[[0,+∞[

[0,+∞[[4,+∞[[4,+∞[[0,+∞[

[0,+∞[[0,+∞[[0,1[[0,1[

[0,+∞[[0,+∞[[0,1[[4,+∞[

[0,+∞[[0,+∞[[4,+∞[[0,1[

[0,+∞[[0,+∞[[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[0,1[[0,1[

[0,1[[4,+∞[

[4,+∞[[0,1[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[

[4,+∞[

[4,+∞[[4,+∞[

[4,+∞[[4,+∞[[4,+∞[[4,+∞[
[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[[4,+∞[

60 / 75

Parallelizing a program

sem: 1 a b

sem: 2 c

proc:

p = P(a);P(c);V(c);V(a)

init: 2p

sem: 1 a b

sem: 2 c

proc:

q = P(b);P(c);V(c);V(b)

init: 2q

61 / 75

Parallelizing a program

sem: 1 a

sem: 2 c

proc:

p = P(a);V(a)

init: 2p

sem: 1 b

sem: 2 c

proc:

q = P(b);V(b)

init: 2q

62 / 75

Unique decomposition conjectures
Boolean algebras

1. Is the following decomposition unique ?

RΩ1×···×ΩN
∼= RΩ1

⊗ · · · ⊗ RΩN

2. In that case, does the Boolean algebra decomposition matches that of isothetic
regions ?

R. S. Pierce (Tensor Product of Boolean Algebras, 1983) proved that for all n ∈ N
there exists a countable Boolean algebra b such that the tensor products b, b2, . . . , bn

are distinct though bn = bn+1. Yet, Boolean algebras of the form RΩ are very specific.

63 / 75

Unique decomposition conjectures
Metrics

Any isothetic region can be turned into a finite affine rank length metric space in a
natural way.

T. Foertsch and A. Lytchak (The De Rham Decomposition Theorem for Metric
Spaces, 2008) proved a unique decomposition property for finite affine rank geodesic
metric spaces.

1. Does the result extend to length metrics ?

2. In that case, does the metric decomposition matches that of isothetic regions ?

64 / 75

Unique decomposition conjectures
Categories of components vs Isothetic regions

category of components −→π0(C): a generalized notion of skeleton that fits with
categories C with no isomorphisms but identities. Well-defined for all loop-free
categories.

E.g.: −→π1(X) for some isothetic region X .

Property (Haucourt 2006): For C loop-free, −→π0(C) = 1 iff C is a lattice.

Property: −→π1 and −→π0 preserves products.

Theorem (Balabonski 2006, unpublished): the collection of (isomorphism classes of)
nonempty connected finite loop-free categories with Cartesian product form a free
commutative monoid M.

Problem: relate the decomposition of an isothetic region to that of its category of
components.

E.g.: −→π0(−→π1([0, 1])) = 1 though [0, 1] is not the neutral isothetic region.

65 / 75

7. Directed Topology

66 / 75

Beyond locally ordered spaces
M. Grandis, Directed Homotopy Theory, I. The Fundamental Category, 2003
S. Krishnan, Convenient Category of Locally Preordered Spaces, 2009

Theorem (Haucourt 2012)

Strm

corefl

��

D //
> dTop
S

oo

refl

��
Strmd

a

D //
∼=

⊆
OO

D //
dTopf

S
oo

⊆

OO

a

All the categories on the diagram are complete and cocomplete.

67 / 75

Realization of (pre)cubical sets
Glabbeek (van), R.J., Bisimulations for Higher Dimensional Automata, 1991
Pratt, V., Modeling Concurrency with Geometry, 1991

Face maps:

xx01 ≡ (2, x1x201) : (a, b) ∈ [0, 1]2 7→ (a, b, 0, 1) ∈ [0, 1]4

Degeneracy maps:

(4, x1x3) : (a, b, c, d) ∈ [0, 1]4 7→ (a, c) ∈ [0, 1]2

68 / 75

Realization of (pre)cubical sets
Glabbeek (van), R.J., Bisimulations for Higher Dimensional Automata, 1991
Pratt, V., Modeling Concurrency with Geometry, 1991

Face maps:

xx01 ≡ (2, x1x201) : (a, b) ∈ [0, 1]2 7→ (a, b, 0, 1) ∈ [0, 1]4

Degeneracy maps:

(4, x1x3) : (a, b, c, d) ∈ [0, 1]4 7→ (a, c) ∈ [0, 1]2

68 / 75

Realizations in streams and d-spaces
and their fundamental categories

Theorem (Haucourt 2012)
For any cubical set K , the fundamental categories of the following objects are
isomorphic: D(�K�Strm), �K�Strm, �K�Strmd

, S(�K�dTopf
), �K�dTopf

.

But they may differ from the fundamental category of �K�dTop.

Conjecture
If K is a precubical set the preceding pathology vanishes.

69 / 75

The downward spiral
A directed path on the directed complex plane

70 / 75

Fundamental category vs fundamental groupoid

−→π1 and Π1 are the fundamental category and the fundamental groupoid functors.

G : Cat→ Grd is the enveloping groupoid functor (i.e. left adjoint to Cat ↪→ Grd)

U is the forgetful functor to Top.

There is a natural transformation g : G ◦ −→π1 → Π1 ◦ U

Conjecture: The groupoid morphism gX is an isomorphism when X is:

- the directed realization of a precubical set

- an isothetic region

71 / 75

Fundamental category vs fundamental groupoid

−→π1 and Π1 are the fundamental category and the fundamental groupoid functors.

G : Cat→ Grd is the enveloping groupoid functor (i.e. left adjoint to Cat ↪→ Grd)

U is the forgetful functor to Top.

There is a natural transformation g : G ◦ −→π1 → Π1 ◦ U

Conjecture: The groupoid morphism gX is an isomorphism when X is:

- the directed realization of a precubical set

- an isothetic region

71 / 75

Direction generated by vector fields on a manifold

Given some tuple of vector fields f1, . . . , fk over a manifold M, the forward cone of M
at x is the set

Fx :=
{ k∑

i=1

λi · fi (x)
∣∣ λi > 0 for i = 1, . . . , k

}
A curve γ is said to be forward (with respect to f1, . . . , fk) when its derivative at time
t belongs to Fγ(t) for all t ∈ dom γ:

∂γ

∂t
(t) ∈ Fγ(t)

Example: Rn with the constant vector fields fk (x) = (. . . , 0, 1, 0, . . .)

72 / 75

Parallelizable manifolds

A parallelization of a manifold M of dimension n is an tuple of vector fields
(f1, . . . , fn) s.t. for all x ∈M, (f1(x), . . . , fn(x)) is a vector basis of the tangent space
of M at x namely TxM.

A manifold M is said to be parallelizable when it admits a parallelization. All
parallelizations of a given manifold are “isomorphic” (the frame manifold acts
transitively on the set of parallelizations).

Conjecture: Any parallelization induces a local pospace structure on its underlying
manifold. That local pospace structure does not depend on the parallelization.

Conjecture: Given a manifold M equipped with the local order induced by some
parallelization, there exists a precubical set K whose local pospace realization is the
local pospace M.

Example: Every Lie group is parallelizable.

Example: It works for the circle! What about the spheres S3 and S7 ?

73 / 75

8. Conclusion

74 / 75

1. Connect a value analysis to the backend of the static analyzer
ALCOOL

2. Prove that all precubical sets can be realized in the category
of local pospaces

3. Extend the notion of category of components to realization of
precubical sets and isothetic regions

4. Directed version of the Gelfand-Naimark-Segal theorem

75 / 75

1. Connect a value analysis to the backend of the static analyzer
ALCOOL

2. Prove that all precubical sets can be realized in the category
of local pospaces

3. Extend the notion of category of components to realization of
precubical sets and isothetic regions

4. Directed version of the Gelfand-Naimark-Segal theorem

75 / 75

1. Connect a value analysis to the backend of the static analyzer
ALCOOL

2. Prove that all precubical sets can be realized in the category
of local pospaces

3. Extend the notion of category of components to realization of
precubical sets and isothetic regions

4. Directed version of the Gelfand-Naimark-Segal theorem

75 / 75

1. Connect a value analysis to the backend of the static analyzer
ALCOOL

2. Prove that all precubical sets can be realized in the category
of local pospaces

3. Extend the notion of category of components to realization of
precubical sets and isothetic regions

4. Directed version of the Gelfand-Naimark-Segal theorem

75 / 75

1. Connect a value analysis to the backend of the static analyzer
ALCOOL

2. Prove that all precubical sets can be realized in the category
of local pospaces

3. Extend the notion of category of components to realization of
precubical sets and isothetic regions

4. Directed version of the Gelfand-Naimark-Segal theorem

75 / 75

	The Language
	Abstract Machine
	Higher dimensional control flow structure
	Providing models with local pospace structure
	Handling continuous models
	Factoring
	Directed topology
	Conclusion

