Compactifications of d-spaces and vector fields

Emmanuel Haucourt

Laboratoire d'Informatique de l'École Polytechnique

D-spaces

Directed Homotopy Theory I, Cah. Top. Géom. Diff. Cat., Marco Grandis (2003)

- A Hausdorff space X together with a collection dX of paths on it such that
 - any constant path belongs to dX,
 - the collection dX is stable under concatenation, and
 - if $\gamma \in dX$, dom $\gamma = [0, r]$ and $\theta : [0, r'] \rightarrow [0, r]$ is continuous and increasing, then $\gamma \circ \theta \in dX$
- The elements of dX are called the d-paths while the collection dX is called a direction on X. The
 collection of all directions over X is a complete lattice.
- − A d-map from (X, dX) to (Y, dY) is a continuous map $f : X \to Y$ s.t. $f \circ dX \subseteq dY$
- The category of d-spaces is denoted by dTop

D-spaces

Examples

- Any subspace of \mathbb{R}^n with increasing paths.
- The d-complex plane $\mathbb C$ (i.e. the d-paths are $t\mapsto \rho(t)e^{i\theta(t)}$ with $\rho\geqslant 0$ and θ,ρ nondecreasing)
- The d-Riemann sphere Σ (i.e. the d-paths are $t \mapsto \rho(t)e^{i\theta(t)}$ with $\rho \in \mathbb{R}_+ \cup \{+\infty\}$ and θ, ρ nondecreasing)
- The d-circle \mathbb{S}^1 as a d-subspace of \mathbb{C} (or Σ).
- The direction of a product of d-spaces is given by paths whose projections are d-paths.

The fundamental category

of a d-space (X, dX)

A d-homotopy (resp. anti-d-homotopy) from a dipath γ to a dipath δ is a d-map h of some rectangle $[a,b]\times[c,d]$ (resp. $[a,b]\times[c,d]^{op}$) such that Uh is a homotopy from $U\gamma$ to $U\delta$.

An elementary homotopy is a finite concatenation of d-homotopies and anti-d-homotopies.

Then γ and δ are d-homotopic when there exists an elementary homotopy between $\gamma \circ \theta$ and $\delta \circ \theta'$ for some reparametrizations $\theta : [a,b] \to \text{dom}(\gamma)$ and $\theta' : [a,b] \to \text{dom}(\delta)$. We write $\gamma \sim \delta$.

The relation \sim defines a congruence over PX, the path category of X, and the fundamental category of X, denoted by $\overrightarrow{\pi_1}X$, is the quotient PX/\sim . This construction extends to a functor

$$\overrightarrow{\pi_1}: \mathsf{dTop} o \mathsf{Cat}$$

Compactification

- A compactification of a topological space X is an embedding k : X

 K such that K is Hausdorff compact and k(X) is dense in K.
- Some examples:
 - $]0, 1[^n \hookrightarrow [0, 1]^n \text{ and }]0, 1[^n \hookrightarrow \mathbb{S}^{n+1}]$

 - The Alexandroff compactification for locally compact Hausdorff spaces adds one point ∞ and its neighborhoods are the complement of the compact subspaces (e.g. Rⁿ ∪ {∞} ≅ Sⁿ⁺¹).
 - The Freudenthal compactification for σ -locally compact, locally connected, Hausdorff spaces with finitely many connected components, which adds a new point for each end of the space (e.g. $\mathbb{R} \cup \{\text{ends}\} \cong \mathbb{R} \cup \{-\infty, +\infty\} \cong [0, 1]$ and $\mathbb{R}^n \cup \{\text{ends}\} \cong \mathbb{S}^{n+1}$).

Compactifying d-spaces

A problem

Suppose X and K are d-spaces such that

- $k: UX \hookrightarrow UK$ is a compactification
- The direction dK of K is the least one that makes the preceding inclusion a d-map (i.e. that contains k ∘ dX)

Problem: No path starting or ending at a point of $K \setminus X$ is a d-path (e.g. $]0, 1[\hookrightarrow [0, 1])$. Consequence: $\overrightarrow{\pi_1}K \cong \overrightarrow{\pi_1}X \sqcup \overrightarrow{\pi_1}(K \setminus X)$ the second one being discrete.

A solution: A d-space is said to be complete when

- for all d-maps δ : \mathbb{R} → X, if both following limits exist then δ extends to a d-map $\overline{\delta}$: $\mathbb{R} \cup \{ \infty, +\infty \} \to X$.

$$\lim_{t \to -\infty} \delta(t) \quad \text{and} \quad \lim_{t \to +\infty} \delta(t)$$

 $dTop_c \subseteq dTop$ the full subcategory whose objects are complete.

A compactification of a complete d-space X is a d-space K s.t. UK is compactification of UX and dK is the least complete direction on UK that contains dX.

Examples

of d-compactifications

- ($\mathbb{R} \times \mathbb{S}^1$) ∪ {ends} \cong the d-Riemann sphere $\cong \mathbb{C} \cup \{\infty\}$
- ($\mathbb{R} \times \mathbb{S}^1$) ∪ {∞} is the d-Riemann sphere with north and south poles identified ... make a picture!

Direction

from a single vector field

Given a vector field f over a manifold \mathcal{M} and a point $x \in \mathcal{M}$, there is a unique maximal integral curve γ that goes through x at time 0 i.e.

$$\gamma(0) = x$$
 and $\forall t \in \text{dom}(\gamma), \frac{d\gamma}{dt}(t) = f(\gamma(t))$

In particular the traces of the maximal integral curves form a partition of \mathcal{M} .

Then consider the direction dM on M generated by the proper integral curves

$$\left\{ \delta \mid \delta = \gamma |_{[a,b]} \text{ for some maximal intergal curve } \gamma \text{ and some compact interval } [a,b] \subseteq \text{dom } (\gamma) \right\}$$

Then $\overrightarrow{\pi_1}(\mathcal{M}, d\mathcal{M})$ is isomorphic with a disjoint union of copies of $\{0\}$, (\mathbb{R}, \leq) and $\overrightarrow{\pi_1}\mathbb{S}^1$.

Direction

from several vector fields

Given an *n*-uple of vector fields f_1, \ldots, f_k over a manifold \mathcal{M} , consider for all points $x \in \mathcal{M}$, the set

$$F_X := \Big\{ \sum_{i=1}^k \lambda_i \cdot f_i(x) \mid \lambda_i \geqslant 0 \text{ for } i = 1, \dots, k \Big\}$$

as the forward cone of \mathcal{M} at x.

A curve γ is said to be forward (with respect to f_1, \ldots, f_k) when its derivative at time t belongs to $F_{\gamma(t)}$ for all $t \in \text{dom } \gamma$:

$$\frac{\partial \gamma}{\partial t}(t) \in F_{\gamma(t)}$$

The d-space generated by the vector fields f_1, \ldots, f_k on the manifold \mathcal{M} is the least direction on \mathcal{M} that contains all the forward curves, it is denoted by $d\mathcal{M}_f$ with f being understood as the set $\{f_1, \ldots, f_k\}$.

Example: \mathbb{R}^n with the constant vector fields $f_k(x) = (\ldots, 0, 1, 0, \ldots)$

Singular points are disconnected

Problem: If $f_1(x) = \cdots = f_n(x) = 0$ at some point x, then x is isolated in $\overrightarrow{\pi_1}(\mathcal{M}, d\mathcal{M})$.

Examples:

- the vector fields f(t) = 1 and g(t) = t induce the d-spaces $d\mathbb{R}_f$ and $d\mathbb{R}_g$ and $\overrightarrow{\pi_1}(d\mathbb{R}_f) \cong (\mathbb{R}, \leqslant)$ and $\overrightarrow{\pi_1}(d\mathbb{R}_g) \cong (\mathbb{R} \setminus \{0\}, \leqslant) \sqcup \{0\} \sqcup (\mathbb{R}_* \setminus \{0\}, \leqslant)$
- if Σ is equipped with the vector fields $f_1(z) = z$ and $f_2(z) = z \cdot e^{\frac{i\pi}{2}}$ then

$$\overrightarrow{\pi_1}\mathbb{C}\cong\left(\overrightarrow{\pi_1}\mathbb{S}^1\times(\mathbb{R},\leqslant)\right)\sqcup\{0\}\sqcup\{\infty\}$$

As before we consider the complete direction generated by the forward curves.

Direction from an *n*-uple of vector fields

vs n-join of the directions for each vector field

The collection of (complete) directions form a complete lattice and one easily sees that

$$d\,\mathcal{M}_{f_1}\vee\cdots\vee d\,\mathcal{M}_{f_n}\subseteq d\,\mathcal{M}_f$$

problem: The example of \mathbb{R}^n with the constant vector fields $f_k(x) = (\dots, 0, 1, 0, \dots)$ proves that the converse inclusion does not hold.

One can fix it by considering the d-spaces X such that for all paths γ ,

if for all open subsets U, all $[a, b] \subseteq \gamma^{-1}(U)$ there exists a d-path δ from $\gamma(a)$ to $\gamma(b)$ such that $\operatorname{img}(\delta) \subseteq U$, then γ is a d-path.

Such a d-space is said to be filled.

Conjecture: If $d\mathcal{M}_f$ is defined as the least complete filled d-space containing the forward curves, then

$$d\mathcal{M}_{f_1} \vee \cdots \vee d\mathcal{M}_{f_n} = d\mathcal{M}_f$$

Pospace atlases

Fajstrup, Goubault, and Raußen (1998)

A pospace is a topological space X together with a closed parital order on it (Nachbin (1948)). The underlying space UX of a pospace X is Hausdorff.

A pospace atlas on a Hausdorff space X is a family $\mathcal U$ of pospace such that:

- the collection $\{UW \mid W \in \mathcal{U}\}\$ is an open covering of UX, and
- for all W_0 , W_1 ∈ \mathcal{U} and all x ∈ W_0 ∩ W_1 , there exists W_2 ∈ \mathcal{U} such that x ∈ W_2 ⊆ W_0 ∩ W_1 and

$$\sqsubseteq_{W_0}\mid_{UW_2} = \sqsubseteq_{W_2} = \sqsubseteq_{W_1}\mid_{UW_2}$$

The pospace atlases \mathcal{U} and \mathcal{U}' are equivalent when their union is still a pospace atlas.

A local pospace is an equivalence class of pospace atlases.

Local pospaces

Fajstrup, Goubault, and Raußen (1998)

Every equivalence class has a greatest element (namely the greatest pospace atlas).

A pospace atlas morphism from $\mathcal U$ to $\mathcal U'$ is a mapping f s.t. for all x and all $W' \in \mathcal U'$ containing f(x) there exists $W \in \mathcal U$ containing x s.t. $f(W) \subseteq W'$.

If $\mathcal{U}_0 \sim \mathcal{U}_1$ and $\mathcal{U}_0' \sim \mathcal{U}_1'$ and f is a pospace atlas morphism from \mathcal{U}_0 to \mathcal{U}_0' , then it is also a pospace atlas morphism from \mathcal{U}_1 to \mathcal{U}_1' .

The category of local pospaces is denoted by **LpoTop**.

There is an inclusion $\textbf{LpoTop} \hookrightarrow \textbf{dTop}_{cf}$ in the category of complete filled d-spaces.

Fundamental category of local pospaces

Let X be a local pospace

- A local pospace has no vortex (i.e. each point has a neighborhood without d-loop)
- Given a d-loop α at x, α is d-homotopic with the constant path x iff α is the constant path x.
- Conjecture: Given a nonconstant d-loop $\alpha \in \overrightarrow{\pi_1}X(x,x)$, one has $\{\alpha^n \mid n \in \mathbb{N}\} \cong (\mathbb{N},+,0)$

Parallelizable manifolds

A parallelization of a manifold \mathcal{M} of dimension n is an n-uple of vector fields (f_1, \ldots, f_n) s.t. for all $x \in \mathcal{M}$, $(f_1(x), \ldots, f_n(x))$ is a vector basis of the tangent space of \mathcal{M} at x namely $T_x \mathcal{M}$.

Conjecture: There exits an open covering ${\mathcal U}$ of ${\mathcal M}$ such that

- for all $W \in \mathcal{U}$, the relation $x \sqsubseteq_W y$ defined by the existence of a forward curve δ from x to y with $\operatorname{img}(\delta) \subseteq W$ defines a pospace on W
- These pospaces induce a local pospace

This local pospace induces $d\mathcal{M}_f$.

A manifold \mathcal{M} is said to be parallelizable when it admits a parallelization.

Parallelizable manifolds

All the linear groups of the tangent spaces $T_x \mathcal{M}$, for $x \in \mathcal{M}$, are gathered in a single manifold called the frame manifold $GL \mathcal{M}$.

Then GLM "transitively acts" on the parallelizations of M in the following sense: if g is a section of GLM then $g \cdot (f_1, \ldots, f_n)$ is another parallelization of M and all of them can be obtained that way.

Conjecture: Up to isomorphism, the local pospace structure induced by a parallelization of a manifold \mathcal{M} (and therefore $\overrightarrow{\pi_1}\mathcal{M}_f$), does not depend on the specific parallelization. In that case we can define "the" fundamental category of a parallelizable manifold.

Example: Every Lie group is parallelizable.

