Two equivalent ways of directing the spaces

Emmanuel Haucourt

CEA, LIST, Gif-sur-Yvette, F-91191, France ;
Monday, the $11^{\text {th }}$ of January 2010

The Pakken-Vrijlaten language

 Edsger Wybe Dijkstra (1968)\#mutex a b
$P(a) \cdot P(b) \cdot V(b) \cdot V(a) \mid P(b) \cdot P(a) \cdot V(a) \cdot V(b)$

The geometric interpretation of the PV language Scott D. Carson and Paul F. Reynolds (1987)

Partially Ordered Spaces P_{0} Leopoldo Nachbin $(1948,1965)$

$$
\text { pospace } \vec{X}: \begin{cases}X & \text { topological space } \\ \sqsubseteq & \text { partial order closed in } X \times X\end{cases}
$$

morphism f from \vec{X} to $\overrightarrow{X^{\prime}}$: continuous and order preserving maps.
Directed real line $\overrightarrow{\mathbb{R}}$ and the sub-objects of its products.
The directed loops are not allowed in P o.

Locally Ordered Spaces $\mathcal{L p o}$

Lisbeth Fajstrup, Eric Goubault and Martin Raußen (1998)

$$
\begin{aligned}
& \vec{X}: \begin{cases}X & \text { topological space } \\
\mathcal{U}_{X} & \text { open covering } \text { of } X \\
(U, \sqsubseteq U) & \text { pospace for all } U \in \mathcal{U}_{X}\end{cases} \\
& \left.(\sqsubseteq U)\right|_{U \cap V}=\left.(\sqsubseteq v)\right|_{U \cap V} \text { for all } U, V \in \mathcal{U}_{X}
\end{aligned}
$$

$f: \vec{X} \rightarrow \vec{X}^{\prime}$ continuous and locally order preserving maps

$$
\text { i.e. } x \sqsubseteq U y \Rightarrow f(x) \sqsubseteq U^{\prime} f(y) \text { for all } U \in \mathcal{U}_{X} \text { and } U^{\prime} \in \mathcal{U}_{X^{\prime}}
$$ such that $U \subseteq f^{-1}\left(U^{\prime}\right)$

[^0]
A bit of history

 Our protagonists
Morphisms of Lpo

A bit of history

Our protagonists

Locally Ordered Spaces

Directed circle $\overline{\mathbb{S}}^{\mathrm{j}}$ and the sub-objects of its products

$x \sqsubseteq y$ and $y \sqsubseteq x$
Problem

Colimits in $\mathcal{L p o}$ are ill-behaved

since Lpo does not allow vortex

- $\mathbb{C} \backslash\{|z|<1\}$ has a local pospace structure such that $(r, \theta) \in \overrightarrow{[1,+\infty} \times \overrightarrow{\mathbb{R}} \longmapsto r e^{i \theta} \in \mathbb{C} \backslash\{|z|<1\}$ is a morphism of $\mathcal{L p o}$.
- \mathbb{C} has no local pospace structure such that $(r, \theta) \in \overrightarrow{\mathbb{R}}_{+} \times \overrightarrow{\mathbb{R}} \longmapsto r e^{i \theta} \in \mathbb{C}$ is a morphism of $\mathcal{L} p$.
- The following is a pushout in Lpo

Streams Str Sanjeevi Krishnan (2006)

A stream is a topological space X equiped with a circulation i.e. a mapping defined over the collection Ω_{X} of open subsets of X

$$
W \in \Omega_{X} \mapsto \preccurlyeq W \text { preorder on } W
$$

such that for all $W \in \Omega_{X}$ and all open coverings $\left(O_{i}\right)_{i \in I}$ of W

$$
(W, \preccurlyeq w)=\bigvee_{i \in I}\left(O_{i}, \preccurlyeq o_{i}\right)
$$

$f: \vec{X} \rightarrow \vec{X}^{\prime}$ continuous and locally order preserving maps
i.e. $x \preccurlyeq_{f^{-1}\left(W^{\prime}\right)} y \Rightarrow f(x) \preccurlyeq W^{\prime} f(y)$ for all $W^{\prime} \in \Omega_{X^{\prime}}$

The stream condition

Moore paths and Concatenation

 on a topological space XA Moore path is a continuous mapping $\delta:[0, r] \rightarrow X\left(r \in \mathbb{R}_{+}\right)$ Its source $s(\delta)$ and its target $t(\delta)$ are $\delta(0)$ and $\delta(r)$
A subpath of δ is a path $\delta \circ \theta$ where $\theta:[0, r] \rightarrow\left[0, r^{\prime}\right]$ is increasing Given a path $\gamma:[0, s] \rightarrow X$ such that $s(\gamma)=t(\delta)$ we have the concatenation of δ followed by γ

$$
\begin{aligned}
\gamma * \delta:[0, r+s] & \longrightarrow X \\
t & \longmapsto \begin{cases}\delta(t) & \text { if } t \in[0, r] \\
\gamma(t-r) & \text { if } t \in[r, r+s]\end{cases}
\end{aligned}
$$

The path category functor

- The points of X together with the Moore paths of X and their concatenation form a category $P(X)$ whose identities are the paths defined on $\{0\}$
- This construction is functorial $P: \mathcal{T o p} \rightarrow \mathrm{Cat}$

A topological space X and a collection $d X$ of paths on X s.t.

- $d X$ contains all constant paths
- $d X$ is stable under concatenation
- $d X$ is stable under subpath
$f: \vec{X} \rightarrow \vec{X}^{\prime}$ continuous and $f \circ \delta \in d X^{\prime}$ for all $\delta \in d X$

Examples of d-spaces

- the compact interval $[0, r]$ with all the continuous increasing maps on it : denoted by $\uparrow \mathbb{I}_{r}$
- the Euclidean circle with paths $t \in[0, r] \mapsto e^{i \theta(t)}$ where θ is any increasing continuous map to \mathbb{R} : denoted by $\backslash \mathbb{S}^{1}$
- the directed complex plane $\uparrow \mathbb{C}$ with paths $t \in[0, r] \mapsto \rho(t) e^{i \theta(t)}$ where ρ and θ are any increasing continuous map to \mathbb{R}_{+}and \mathbb{R}

Examples of streams

- the compact interval $[0, r]$ with $x \preccurlyeq u x^{\prime}$ when $x \leqslant x^{\prime}$ and $\left[x, x^{\prime}\right] \subseteq U:$ denoted by $\overrightarrow{\mathbb{I}}_{r}$
- the Euclidean circle with $x \preccurlyeq U x^{\prime}$ when $x \curvearrowleft x^{\prime} \subseteq U$ denoted by $\overrightarrow{\mathbb{S}^{1}} 2$

Alternative approaches

- Enriching small categories in $\mathcal{T}_{o p}$ (Philippe Gaucher)
- Completing Lpo by means of Sheaves and Localization (Krzysztof Worytkiewicz)
- Using locally presentable category methods to obtain a subcategory of dTop in which the notion of "directed universal covering" makes sense (Lisbeth Fajstrup/jiri Rosicky)

From diop to Str

The functor S

Let $(X, d X)$ be a d-space and put $x \preccurlyeq U x^{\prime}$ when there exists $\delta \in d X$ such that

- $\exists t, t^{\prime} \in \operatorname{dom}(\delta)$ s.t. $t \leqslant t^{\prime}, \delta(t)=x$ and $\delta\left(t^{\prime}\right)=x^{\prime}$
- $\operatorname{img}(\delta) \subseteq U$

From Str to dTop
 The functor D

Let $\left(X,(\preccurlyeq U)_{U \in \Omega_{X}}\right)$ be a stream and consider the following collection of paths on the underlying space of X

$$
\bigcup_{r \in \mathbb{R}_{+}} \operatorname{Str}\left[\overrightarrow{\mathbb{I}}_{r}, X\right]
$$

Theorem (Sanjeevi Krishnan)

$$
(S: d T o p \rightarrow S t r) \dashv(D: S t r \rightarrow d T o p)
$$

Denote the unit and the co-unit by η and ε

The cores of Str and d Top

- Let $\mathcal{S} \bar{t}$ be the full subcategory of Str whose collection of objects is

$$
\{S(X) \mid X \text { d-space }\}
$$

- Let d TIop be the full subcategory of dTop whose collection of objects is

$$
\{D(X) \mid X \text { stream }\}
$$

By restricting the codomains of S and D we have the functors

$$
S^{\prime}: d \mathcal{T} o p \rightarrow \operatorname{Str} \text { and } D^{\prime}: S t r \rightarrow d(\mathcal{T} o p
$$

Some objects of $d \mathscr{T O p}$ and $S \bar{T}$

Directed versions of some usual spaces

- Compact Interval : $S\left(\uparrow \mathbb{I}_{1}\right)=\overrightarrow{\mathbb{I}}_{1}$ and $\uparrow \mathbb{I}_{1}=D\left(\overrightarrow{\mathbb{I}}_{1}\right)$
- Hypercubes: $S\left(\left(\uparrow \mathbb{I}_{1}\right)^{n}\right)=\left(\overrightarrow{\mathbb{I}}_{1}\right)^{n}$ and $D\left(\left(\overrightarrow{\mathbb{I}}_{1}\right)^{n}\right)=\left(\uparrow \mathbb{I}_{1}\right)^{n}$ for all $n \in \mathbb{N}$
- Euclidean Circle : $S\left(\uparrow \mathbb{S}^{1}\right)=\overrightarrow{\mathbb{S}^{1}}$ and $\uparrow \mathbb{S}^{1}=D\left(\overrightarrow{\mathbb{S}}^{1}\right)$
- Complex plane : $S(\uparrow \mathbb{C})=\overrightarrow{\mathbb{S}}^{1}$ and $\uparrow \mathbb{S}^{1}=D(\overrightarrow{\mathbb{C}})$
- Riemann Sphere : $S(\uparrow \Sigma)=\vec{\Sigma}$ and $\uparrow \Sigma=D(\vec{\Sigma})$

Properties

- The natural transformations $\eta * D, S * \eta, D * \varepsilon$ and $\varepsilon * S$ are identities ($S \dashv D$ is an idempotent adjunction), in particular $S \circ D \circ S=S$ and $D \circ S \circ D=D$
- the adjoint pair $S \dashv D$ induces a pair of isomorphisms (\bar{S}, \bar{D})

$$
\bar{S} \circ \bar{D}=i d_{S \bar{\pi}} \quad \bar{D} \circ \bar{S}=i d_{d T O p}
$$

More properties

- $d \mathscr{T} o p$ is a mono and epi reflective subcategory of d Top : the reflector being $\bar{D} \circ S^{\prime}$
- Str is a mono and epi coreflective subcategory of Str : the coreflector being $\bar{S} \circ D^{\prime}$
- $d \mathscr{T} O p$ and $S \bar{t}$ are complete and cocomplete
- the following diagrams commute

Describing the coreflector $\bar{S} \circ D^{\prime}$

Let X be a stream and UX its underlying space
For all $W \in \Omega_{U X}$ we have $x \preccurlyeq{ }_{W}^{\left(\bar{S} \circ D^{\prime}(X)\right)} x^{\prime}$ iff

$$
\exists \delta \in \operatorname{Str}\left[\overrightarrow{\mathbb{T}}_{1}, X\right] \text { s.t. } s(\delta)=x, t(\delta)=x^{\prime} \text { and } \operatorname{img}(\delta) \subseteq W
$$

Describing the reflector $\bar{D} \circ S^{\prime}$

Let X be a d-space and $U X$ its underlying space
Given a path $\gamma \in \operatorname{Top}[[0, r], U X], \gamma \in d\left(\bar{D} \circ S^{\prime}(X)\right)$ iff $\forall W \in \Omega_{U X}, \forall t \leqslant t^{\prime}$ s.t. $\left[t, t^{\prime}\right] \subseteq \gamma^{-1}(W), \exists \delta \in d X$ s.t. $s(\delta)=\gamma(t), t(\delta)=\gamma\left(t^{\prime}\right)$ and $\operatorname{img}(\delta) \subseteq W$

Realization of cubical sets

in a cocomplete category C

Let $K \in c \operatorname{Set}$ the category of cubical sets, we have

$$
K \cong \underset{\substack{\square^{n} \rightarrow K \\ \text { in } c \operatorname{coset} \downarrow K}}{ } \square^{n}
$$

Let \mathcal{C} be a cocomplete category and $F: \square \rightarrow \mathcal{C}$, we define the geometric realisation in \mathcal{C} as

$$
\left.1 K\right|_{C}=\operatorname{colim}_{\substack{\left.\square^{n} \rightarrow K \\ \text { in } \operatorname{coset}\right\rfloor K}} F\left(\square^{n}\right)
$$

Directed Geometric Realization of cubical sets

- Taking $F\left(\square^{n}\right)=\left(\overrightarrow{\mathbb{I}}_{1}\right)^{n}$ we have $1-l_{S t r}$ and $1-l_{S \bar{\pi}}$
- Taking $F\left(\square^{n}\right)=\left(\uparrow \mathbb{I}_{1}\right)^{n}$ we have $1-l_{d \text { Top }}$ and $1-l_{d \text { Top }}$

Relations

between the adjunction $S \dashv D$ and the directed geometric realizations

- for all $K \in \operatorname{set} \bar{S}\left(\left.1 K\right|_{d T o p}\right)=\left.1 K\right|_{S \bar{\pi}}$ and $\bar{D}\left(\left.1 K\right|_{S \bar{\pi}}\right)=|K|_{d T o p}$
- for all $K \in \operatorname{cSet} S\left(\left.1 K\right|_{d T o p}\right)=\left.1 K\right|_{S t r}$ and $\left.1 K\right|_{S \bar{\pi}}=\left.1 K\right|_{S t r}$

Realizing a vortex

from the directed square

\longrightarrow

Description (Sanjeevi Krishnan)

The downward spiral

There may be cubical sets K such that

$$
D\left(\left.1 K\right|_{\text {str }}\right) \neq\left. 1 K\right|_{d T_{o p}} \text { and }\left.1 K\right|_{d T o p} \neq\left. 1 K\right|_{d T_{o p}}
$$

Concrete category over Top

Let \mathcal{I} be the collection of all sub-intervals of \mathbb{R} (including \emptyset and the singletons)

- An adjunction $F \dashv U: \mathcal{C} \rightarrow$ Top with U faithful.
- A family of objects $\left(\mathbb{I}_{\iota}\right)_{\iota \in \mathcal{I}}$ indexed by \mathcal{I}, for $r \in \mathbb{R}_{+}$the notation \mathbb{I}_{r} stands for $\mathbb{I}_{[0, r]}$.

Axiom 1

Existence of Hypercubes

For all n-uple $\left(\iota_{1}, \ldots, \iota_{n}\right)$ of elements of \mathcal{I} the n-fold product $\mathbb{I}_{\iota_{1}} \times \cdots \times \mathbb{I}_{\iota_{n}}$ exists and we suppose that $F(\{0\})=\mathbb{I}_{0}$. By convention the 0 -fold product is the terminal object of \mathcal{C}.

Axiom 2

Coherence with respect to the product order of \mathbb{R}^{n}

For all continous order ${ }^{3}$ preserving $\beta: \iota_{1} \times \cdots \times \iota_{n} \rightarrow \iota_{1}^{\prime} \times \cdots \times \iota_{n^{\prime}}^{\prime}$ there exists a morphism $\alpha \in C\left[\mathbb{I}_{\iota_{1}} \times \cdots \times \mathbb{I}_{\iota_{n}}, \mathbb{I}_{\iota_{1}^{\prime}} \times \cdots \times \mathbb{I}_{\iota_{n^{\prime}}}\right]$ s.t.

$$
U(\alpha)=\beta
$$

As a consequence, for all $\iota \in \mathcal{I}$ we have $U\left(\mathbb{I}_{\iota}\right)=\iota$.
Given $x, r, s \in \mathbb{R}_{+}$such that $x+r \leqslant s, i_{x, r}^{s}: \mathbb{I}_{r} \rightarrow \mathbb{I}_{s}$ is the unique morphism of C such that $U\left(i_{x, r}^{s}\right)$ is the following translation.

$$
\begin{aligned}
{[0, r] } & \longrightarrow[0, s] \\
t & \longmapsto x+t
\end{aligned}
$$

[^1]
Axiom 3

Concatenation via Pushout

The following diagram is a pushout square in \mathcal{C}

and for all $\left(\mathbb{I}_{r_{1}}, \ldots, \mathbb{I}_{r_{n}}\right)$ and all $i \in\{1, \ldots, n\}$, it is preserved by the following endofunctor of C

$$
X \mapsto \mathbb{I}_{r_{1}} \times \cdots \times \mathbb{I}_{r_{i-1}} \times X \times \mathbb{I}_{r_{i+1}} \times \cdots \times \mathbb{I}_{r_{n}}
$$

A structure satisfying the axioms 1,2 and 3 is called a framework for fundamental category of fffc

Examples

of frameworks for fundamental categories

The categories $\mathcal{T} o p, \mathcal{P}_{o}$, $d \mathcal{T} o p, \operatorname{Str}, d \mathcal{T} o p$ and $\mathcal{S} \bar{t}$ with their obvious forgetful functor and intervals are fffc's.

We associate each object X of a given fffc \mathcal{C} with the following d-space

$$
\bigcup_{r \in \mathbb{R}_{+}} C\left[\mathbb{I}_{r}, X\right]
$$

thus defining a faithful functor from \mathcal{C} to d Iop

The category of directed paths of an object X of C denoted by $\vec{P}(X)$

Objects and Identities: $\mathcal{C}\left[\mathbb{I}_{0}, X\right]$ (points of X)
Morphisms: $\bigcup \mathcal{C}\left[\mathbb{I}_{r}, X\right]$ (directed paths on X) $r \in \mathbb{R}_{+}$

The construction is functorial and there is a natural embeding of $\vec{P}(X)$ into $P \circ U(X)$

Directed Homotopy

between γ and δ two directed paths on X

Write $\gamma \preccurlyeq \delta$ when there exists two constant paths c_{γ}, c_{δ} and some $h \in C\left[\mathbb{I}_{r} \times \mathbb{I}_{\rho}, X\right]$ such that $U(h)$ is a usual homotopy from $U\left(c_{\gamma} * \gamma\right)$ to $U\left(c_{\delta} * \delta\right)^{4}$

[^2]
$\vec{\pi}_{1}(X)$
 The Fundamental Category of X

Denote by \sim for the equivalence relation generated by \preccurlyeq, it yields to a congruence over $\vec{P}(X)$.

Then define the fundamental category of X as the quotient

$$
\vec{\pi}_{1}(X):=\vec{P}(X) / \sim
$$

The construction is functorial

$$
\overrightarrow{\pi_{1}}: C \rightarrow C a t
$$

and there is a natural morphism from $\vec{\pi}_{1}(X)$ to $\pi_{1} \circ U(X)$

The Seifert-Van Kampen Theorem

generic version

We call inclusion any $\alpha \in \mathcal{C}[X, Y]$ s.t. $U(\alpha)=U(X) \hookrightarrow U(Y)$.
Then $U(X)$ is the topological interior of $U(X) \subseteq U(Y)$.

Theorem (Seifert - Van Kampen)

A square of inclusions such that $U\left({ }^{\circ} X_{1}\right)$ and $U\left({ }^{\circ} X_{2}\right)$ cover $U(X)$ and $U\left(X_{0}\right)=U\left(X_{1}\right) \cap U\left(X_{2}\right)$ is sent to pushout squares of Cat by the functors \vec{P} and $\vec{\pi}_{1}$.

$$
\begin{gathered}
\vec{P}\left(X_{0}\right) \longrightarrow \vec{P}\left(X_{1}\right) \\
\downarrow \\
\vec{P}\left(X_{2}\right) \longrightarrow \vec{P}(X)
\end{gathered}
$$

$$
\begin{gathered}
\overrightarrow{\pi_{1}}\left(X_{0}\right) \longrightarrow \vec{\pi}_{1}\left(X_{1}\right) \\
\left.\left\lvert\, \begin{array}{l}
\downarrow \\
\pi_{1} \\
\left(X_{2}\right) \longrightarrow \\
\pi_{1}
\end{array}\right.\right)
\end{gathered}
$$

Relations
 between $S \dashv D, 1-1$ and $\vec{\pi}_{1}$

- For all topological spaces $X, \vec{\pi}_{1}(X)$ is the fundamental groupoid of X
- For all streams $X, \vec{\pi}_{1}(D(X))=\vec{\pi}_{1}(X)$
- For all d-spaces X, if there exists a stream X^{\prime} such that $X=D\left(X^{\prime}\right)$, then $\vec{\pi}_{1}(S(X))=\vec{\pi}_{1}(X)$
- For all $X \in S \bar{t}$ and all $Y \in d \mathscr{T O p}$ $\vec{\pi}_{1}(\bar{D}(X))=\vec{\pi}_{1}(X)$ and $\vec{\pi}_{1}(\bar{S}(Y))=\vec{\pi}_{1}(Y)$
- For all cubical sets K following have the same fundamental category: $D\left(\left.1 K\right|_{S t r}\right),\left.\upharpoonleft K\right|_{\text {Str }},|K|_{S \bar{\pi}}, S\left(\left.1 K\right|_{\text {dTop }}\right),\left.1 K\right|_{\text {dTop }}$
- Question: what about $\left.1 K\right|_{d T_{o p}}$?

The Fundamental Category of the directed hypercubes

The fundamental category of the directed hypercube $\overrightarrow{\mathbb{I}}_{r}$ is the product poset $([0, r], \leqslant)^{n}$.

The Fundamental Category of the Circles

 directed or classical

$$
\begin{aligned}
& \overrightarrow{\pi_{1}}\left(\overrightarrow{\mathbb{S}^{1}}\right)[x, y]=\{x\} \times \mathbb{N} \times\{y\} \\
& \pi_{1}\left(\mathbb{S}^{1}\right)[x, y]=\{x\} \times \mathbb{Z} \times\{y\}
\end{aligned}
$$

Define $\omega(x, n, y):=n$

The fundamental category of the directed complex plane

 Let $z, z^{\prime}, z^{\prime \prime} \in \mathbb{C}$Define $p: z \in \mathbb{C} \backslash\{0\} \mapsto \frac{z}{|z|} \in \mathbb{S}^{1}$

$$
\begin{gathered}
\overrightarrow{\pi_{1}}(\overrightarrow{\mathbb{C}})\left[z, z^{\prime}\right]=\left\{\begin{array}{cl}
\emptyset & \text { if }|z|>\left|z^{\prime}\right| \\
\left\{\perp_{z^{\prime}}\right\} & \text { if } z=0 \\
\{z\} \times \mathbb{N} \times\left\{z^{\prime}\right\} & \text { if } z \neq 0 \text { and }|z| \leqslant\left|z^{\prime}\right|
\end{array}\right. \\
\left(z, n, z^{\prime}\right) \circ \perp_{z}=\perp_{z^{\prime}} \text { i.e. } 0 \text { is the initial object of } \overrightarrow{\pi_{1}}(\overrightarrow{\mathbb{C}})
\end{gathered}
$$

The fundamental category of the directed Riemann sphere

 Let $\mathbf{z}, \boldsymbol{z}^{\prime}, \mathbf{z}^{\prime \prime} \in \Sigma$Extend $p: z \in \Sigma \backslash\{0, \infty\} \mapsto \frac{z}{|z|} \in \mathbb{S}^{1}$

$$
\vec{\pi}_{1}(\overrightarrow{\mathbb{C}})\left[z, z^{\prime}\right]=\left\{\begin{array}{cl}
\emptyset & \text { if }|z|>\left|z^{\prime}\right| \\
\left\{\perp_{z^{\prime}}\right\} & \text { if } z=0 \\
\left\{T_{z}\right\} & \text { if } z^{\prime}=\infty \\
\{z\} \times \mathbb{N} \times\left\{z^{\prime}\right\} & \text { if } z \neq 0 \text { and }|z| \leqslant\left|z^{\prime}\right|
\end{array}\right.
$$

$\perp_{\infty}=T_{0}$
$\left(z, n, z^{\prime}\right) \circ \perp_{z}=\perp_{z^{\prime}}$ i.e. 0 is the initial object of $\overrightarrow{\pi_{1}}(\vec{\Sigma})$
$T_{z^{\prime}} \circ\left(z, n, z^{\prime}\right)=T_{z}$ i.e. ∞ is the terminal object of $\overrightarrow{\pi_{1}}(\vec{\Sigma})$
$\left(z^{\prime}, m, z^{\prime \prime}\right) \circ\left(z, n, z^{\prime}\right)=\left(z, \omega\left(\left(p z^{\prime}, m, p z^{\prime \prime}\right) \circ\left(p z, n, p z^{\prime}\right)\right), z^{\prime \prime}\right)$

[^0]: ${ }^{1}$ Actually one can even suppose that \mathcal{U}_{X} is a \subseteq-ideal.

[^1]: ${ }^{3}$ Here we mean product order.

[^2]: ${ }^{4}$ The constant paths are needed so we can relate two directed paths whose domains of definition differ.

