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Concurrency and Geometry ?
shared memory style

2Q1Q 3Q 4Q 5Q

Shared M
em

ory
Processes

x y z

x, y and z are locations

Not sequential programs, bad states, chaotic behavior
=⇒ Need for synchronizations =⇒ Need for locks
=⇒ deadlocks might appear.
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First Model
directed graphs of actions

PaPbVaVb PbPaVbVa

18 states and 20 arrows
VbPa Pb Va VbPa Pb Va

Pa

Pb

Va

Vb

Pa

Pb

Vb

Va
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A potential execution
program T1 =PaPbVaVb|T2 =PbPaVbVa

T2T1
Pa

Pb
Deadlock

VbPa Pb Va

Pa

Pb

Vb

Va

Deadlock
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Anoter potential execution
program T1 =PaPbVaVb|T2 =PbPaVbVa

T1
Pa

T2

Pb

Pb

Pa

VbPa Pb Va

Pa

Pb

Vb

Va

Va

Vb

Vb

Va

Termination
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Notice that...
... there are very few �interesting� paths

Suppose T1 = Pa(a = a + 1)Pb(b = b + 1)VaVb,
T2 = Pb(b = b − 1)Pa(b = 2 ∗ b)VbVa and in the beginning a = 1
and b = 2, we have:

1 path �T2 then T1� which computes b = 3 (2*(2-1)+1) and
a = 2.

1 path �T1 then T2� which computes b = 4 (2*((2+1)-1))
and a = 2.

2 �equivalent� paths near the diagonal: they do not
�terminate� with a = 2 and b = 1.
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Size explosion problem
Dekker's algorithm

Few lines of C on 2 processes lead to few hundreds of paths,
only 2 of which are interesting!
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Geometry
�progress graphs� E.W.Dijkstra'68 (later V.Pratt'91)

T1=Pa.Pb.Vb.Va in parallel with T2=Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

Forbidden

�Continuous model�: xi = local time; dark grey region=forbidden!
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Execution paths
are continuous

T1=Pa.Pb.Vb.Va in parallel with T2=Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

Traces are continuous paths increasing in each coordinate: dipaths.
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Deadlocks and Unsafe regions
Swiss �ag example

T1=Pa.Pb.Vb.Va in parallel with T2=Pb.Pa.Va.Vb

Pa Pb Vb Va

Pb

Pa

Va

Vb

Deadlock

Unsafe

Entering the unsafe region =⇒ �nishing to its deadlock.
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Classes of equivalent dipaths
up to dihomotopy

Pa Pb Vb Va

Pb

Pa

Va

Vb

T2

T1

b=2*b

b=b−1

a=
a+

1

b=
b+

1

b=2
a=1

T1 gets a and b before T2 => a=2 and b=4

T2 gets b and a before T1 => a=2 and b=3

Each of T1 and T2 gets a ressource
=> Deadlock with a=2 and b=1
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Ideally...
not quite true though

We will get back to this later.
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In higher-dimension
philosophers and chopsticks

a

b c

A=Pb.Pc.Vb.Vc
B=Pc.Pa.Vc.Va
C=Pa.Pb.Va.Vb

C

A

B
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E�ect of the level of sharing

A=Pa.Pb.Va.Pc.Vb.Pd.Vc.Pe.Vd.Pf.Ve.Vf
B=Pf.Pe.Vf.Pd.Ve.Pc.Vd.Pb.Vc.Pa.Vb.Va
C=Pf.Pe.Vf.Pd.Ve.Pc.Vd.Pb.Vc.Pa.Vb.Va

a,. . .binary sem. a,. . .counting sem.
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Correspondences
almost

Model [discrete] combinatorial complex
Model [continuous] topological space
Relation discrete/continuous geometric realisation
Parallel composition product
Action re�nement subdivision
Compositionality Seifert/van Kampen
Deadlocks/reachability connected components
Scheduling properties fundamental group
Observational equivalence homotopy equivalence (weak/strong)
Computable properties topological invariants (homology etc.)

15



Introducing Directed Topology and ConcurrencyGetting serious about partially ordered spacesFrom continuum to discrete: The category of componentsAbstract nonsense extension
A practical approachHow continuum can help usAn easy to handle framework

Other types of related subjects
and their applications

Rewriting invariants (Squier like - see talks by Y. Lafont for
instance)

Fault-tolerant distributed systems (realizability and complexity,
see M. Herlihy, S. Rajsbaum, N. Shavit etc.)
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Models

Po-spaces, local po-spaces, (pre-)cubical sets (see MFPS'98,
with L. Fajstrup and M. Raussen)

Globular CW-complexes: with P. Gaucher, �Topological
Deformation of Higher-Dimensional Automata�, HHA 2003

Ω-categories, Category �Flow� (Philippe Gaucher)

d -spaces (Marco Grandis)

Higher-Dimensional Transition Systems (Vladimiro Sassone
and Gian Luca Cattani, LICS'96)

ECHIDNA (Richard Buckland and Michael Johnson,
AMAST'96)

Sanjeevi Krishnan's spaces

et cetera
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Partially Ordered Spaces
framework for �progress graphs� (one only needs MFPS'98)

A topological space X with a (global) closed partial order v

Morphisms are increasing and continuous maps: dimaps

(Finite) Traces on (X ,v) are dimaps from ~I = ([0, 1],≤) to
(X ,v): dipaths
Dihomotopies between dipaths α and β with �xed extremities
x and y are dimaps H :

−→
I ×

−→
I → X such that for all s ∈

−→
I ,

t ∈
−→
I ,
H(t, 0) = α(t) and H(t, 1) = β(t)
H(0, s) = x and H(1, s) = y
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Deformation of execution paths
dihomotopy vs homotopy

H(−,s)

H(t,−)

directed homotopy
x

y

α

β

classic homotopy
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First subtlety
directed homotopy is not classic homotopy

Pb Vb Pa Va

Pb

Vb

Pa

Va

Pb VbPa Va

Pa

Va

Pb

Vb
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Second subtlety
classic homotopy cannot �see� local extrema

Va

Pa

VaPa Pa Pb Vb Va

Pb

Pa

Va

Vb

local maximum
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Third subtlety
Floating cube between two pillars

A=Pb.Pc.Vb.Vc
B=Pc.Pa.Vc.Va
C=Pa.Pb.Va.Vb

bifurcation

Directed homotopy is not classic
homotopy plus fixed extremities

Another view of the model

bifurcation
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A typical object of study
fundamental category −→π1(−→X ) of a pospace −→X

its objects are the points of X ,

its morphisms are the classes of dipaths up to dihomotopy:
a morphism from x to y is a dihomotopy class [α] of a dipath
α going from x to y .
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A detailed example (1)
square with centered hole

x ∈ y ∈ −→π1(
−→
X )[x , y ]

A A {σx ,y}
B1 B1 {σx ,y}
B2 B2 {σx ,y}
C C {σx ,y}
A B1 {rx ,y}
A B2 {hx ,y}
B1 C {h′x ,y}
B2 C {r ′x ,y}
B1 B2 ∅
B2 B1 ∅
A C {ux ,y , dx ,y}

With
r ′y ,z ◦ hx ,y = ux ,z , h′y ,z ◦ rx ,y = dx ,z
and 3 points x , y , z of the square such
that x v y v z ;
if x 6v y then −→π1(

−→
X ) = ∅.

r’

h’h

r

2B

B1

C

A
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A detailed example (2)
the previous calculation suggests that

we have a partition A, B1, B2, C of the objects of −→π1(
−→
X ),

any arrow of −→π1(
−→
X ) can be given a �type� (σ, h, h′, r , r ′, u or

d) according to the components its extremities x and y belong
to,

the type σ is �neutral� in the sense that σy ,z ◦ σx ,y = σx ,z
the map which sends

any object x of −→π1(
−→
X ) to its component (A, B1, B2 or C )

any morphism α to its �type� (σ, h, h′, r , r ′, u or d)

is both an equivalence and a �bration and its codomain is, by
de�nition, the category of components of

−→
X .
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Example of product
parallel �independent� composition

this pospace and the square with centered
hole have the same component category

Though their fundamental categories differ...
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The Seifert/Van Kamen theorem for fundamental category
compositionality
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A Seifert/Van Kamen theorem for components category (1)
subdivisions are necessary
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A Seifert/Van Kamen theorem for components category (2)
the resulting category of components

The bounding diagrams of the grey squares do not commute.
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The category of components of the swiss �ag

Pa Pb Vb Va

Pb

Pa

Va

Vb
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The components category of the 3 philosophers
non-orthogonal representation

the pospace its category of components
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The components category of a 2-semaphore

the pospace its category of components
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Computations: some theoretical and practical tools
for handling concrete cases

We have a Seifert/van Kampen for local po-spaces (last
ATMCS - or M. Grandis' proof)

We also have a form of Seifert/van Kampen for components
categories, �up to subdivision� (Emmanuel Haucourt), which is
of value for practical computations.

Also, some speci�c algorithms for mutual exclusion models (M.
Raussen in dimension 2, and sub-optimal algorithm by E.
Goubault in all dimensions).
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Some �gures
[Eric Goubault's algorithm]

new3phil.pv: (0.05s) Objects: 27, Morphisms: 48, Relations:
18

new4phil.pv: (0.07s) Objects: 85, Morphisms: 200, Relations:
132

new7phil.pv: 147.36s; 81 Mo; (about one million transitions in
a standard model) Objects: 2467, Morphisms: 10094,
Relations: 15484

new8phil.pv: 320.02s; 121Mo; (about 10 million transitions in
a standard interleaving model) Objects: 3214, Morphisms:
14282, Relations: 24396
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PaVa|PaVa
Dijkstra 68, Pratt/van Glabbeek 91, Goubault 92

Pa

Pa

Va

Va

région interdite

35



Introducing Directed Topology and ConcurrencyGetting serious about partially ordered spacesFrom continuum to discrete: The category of componentsAbstract nonsense extension

PV language and its modelsDe�nition and PropertiesFundamental categoryLfCat instead of Grd

PaVa|PaVa
modèle discret classique

Pa

Pa

Va

Va

région interdite
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PaVa|PaVa
réduction

Pa

Pa

Va

Va

ces trois états devraient etre identifiés

région interdite
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Pospace
−→
X

Eilenberg 41, Nachbin 48 65, Johnstone 82

1 a topological space X ,
2 a partial order v over |X | whose graph is closed in X × X .

Lemma: for any x ∈
−→
X , {y ∈ X |x v y} (denoted ↑x) is closed in

X .
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Morphisms of pospaces from
−→
X to

−→
Y

A map f : |X | −→ |Y | inducing:
1 a continuous map from X to Y and
2 an increasing map from (|X |,v

X
) to (|Y |,v

Y
).

Hence the category of pospaces denoted: PoSpc.
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Usual Pospaces
some common examples

1 directed real line R with its classical topology and order (
−→
R ),

2 directed unit segment [0, 1] with the structure induiced by
−→
R

(
−−→
[0, 1]),

3 any morphism of PoSpc from
−−→
[0, 1] to

−→
X is called a directed

path on
−→
X . Formelly, the set of directed paths on

−→
X is

PoSpc
[−−→
[0, 1],

−→
X

]
, also denoted d

−→
X .
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Forgetful functors PoSpc

PoSpc

U $$IIIIIIIII

Uyyttttttttt

PoSet

discrete topology
99t

t
t

t
t

U
%%KKKKKKKKKK Haus

trivial order
ddI

I
I

I
I

U
zzuuuuuuuuu

Set
trivial order

eeK
K

K
K

K discrete topology

::u
u

u
u

u
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Categorical properties of PoSpc
analogy between Top and PoSpc

1 complete and cocomplete,
2 symmetric monoidal closed,

3 compact pospaces is complete, cocomplete and admits
−−→
[0, 1]

as a cogenerator,
4 the full sub-category of compactly generated pospaces is

re�ective in PoSpc and cartesian closed.
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Cocompleteness of PoSpc
sketch of proof

1 Prove that the category RSpc admits quotients.
2 Use quotients of RSpc to prove its cocompletness.
3 Use quotients of RSpc to construct the re�ect of any object of

RSpc in PoSpc.
4 It is a general fact that any re�ective subcategory of a

cocomplete category is cocomplete, hence PoSpc is
cocomplete.
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A pushout in PoSpc (1)
the directed circle in PoSpc squashed to a point

i1

i2

a

b

a and b are not ordered

44



Introducing Directed Topology and ConcurrencyGetting serious about partially ordered spacesFrom continuum to discrete: The category of componentsAbstract nonsense extension

PV language and its modelsDe�nition and PropertiesFundamental categoryLfCat instead of Grd

A pushout in PoSpc (2)
the directed circle in PoSpc squashed to a point

i1 : {a, b} →
−−→
[0, 1]; i1(a) = 0; i1(b) = 1

i1 : {a, b} →
−−→
[0, 1]; i2(a) = 1; i2(b) = 0

suppose f , g : {a, b} →
−−→
[0, 1] with f ◦ i1 = g ◦ i2,

we have f (i1(a)) = g(i2(a)) i.e. f (0) = g(1) and the same way
g(0) = f (1).
Hence f (0) v f (1) = g(0) v g(1) = f (0) =⇒
f (0) = f (1) = g(0) = g(1)
and then f and g are constant and equal.
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Directed homotopy on
−→
X from α to β

Grandis 01, Fajstrup/Raussen/Goubault 98...

A morphism h de�ned on
−−→
[0, 1]×

−−→
[0, 1] with values in

−→
X such that

U(h) be a classic homotopy from U(α) to U(β).
We denote ∼−→

X
the symmetric and transitive closure of{

(α, β) ∈ d
−→
X × d

−→
X

∣∣∣il existe une homotopie dirigée de α vers β
}

.

Two dipaths α and β are said dihomotopic when α ∼−→
X

β.
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Directed Homotopy vs classic homotopy

H(−,s)

H(t,−)

directed homotopy
x

y

α

β

classic homotopy
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Image of a dipath
Singular facts about pospaces

1 The image of a dipath α on a pospace
−→
X is either isomorphic

(in PoSpc) to
−−→
[0, 1] or {•}.

2 Two dipaths sharing the same image are dihomotopic.
3 There is no directed Peano curve.
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Fundamental category of a pospace
−→
X

denoted −→π1(−→X )

1 objects: the elements de |X |,
2 morphisms from x to y : the set of ∼−→

X
-equivalence classes of{

α ∈ d
−→
X

∣∣∣α(0) = x et α(1) = y
}
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Loop-free categories
play the role of the groupoids

A (small) category C such that for any objects x and y of C, if
C[x , y ] 6= ∅ and C[y , x ] 6= ∅ then x = y and C[x , x ] = {idx}. We
denote LfCat the full subcategory of Cat whose objects are the
small loop-free category.

1 LfCat is cartesian closed and re�ective in Cat.
2 The fundamental category of a pospace is loop-free, hence the

functor

PoSpc
−→π 1 // LfCat

50



Introducing Directed Topology and ConcurrencyGetting serious about partially ordered spacesFrom continuum to discrete: The category of componentsAbstract nonsense extension

PV language and its modelsDe�nition and PropertiesFundamental categoryLfCat instead of Grd
−→π1(

−→
X ) is loop-free

proof

A morphism of −→π1(
−→
X ) is the ∼−→X -equivalence class of some dipath

α from x to y , hence x v y ; suppose that −→π1(
−→
X )[y , x ] 6= ∅, then

we also have y v x and then x = y . Further, if α is a dipath from
x to x , then for any t ∈ [0, 1], we have
x = α(0) v α(t) v α(1) = x i.e. α is constant.
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Sections and retractions
of a loop-free category C

Suppose that f2 ◦ f1 = idx , the source and the target of f1 and f2 is
x and then f1 = f2 = idx . Hence the only isomorphisms of C are its
identities and the collection of identities of C is pure in C. In
particular, the limits and colimits in a loop-free category are strictly
unique and not only up to isomorphism.
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Directed Van Kampen Theorem
Grandis 01, Goubault 01

−→
X

dans PoSpc

−→π1(
−→
X )

dans LfCat

−→
X 1

j1
??~~~~~~~~

somme amalgamée −→X 2

j2
__@@@@@@@@

−→π1(
−→
X1)

−→π1(−→j1 )
;;vvvvvvvvv

somme amalgamée −→π1(
−→
X2)

−→π1(−→j2 )
ccHHHHHHHHH

−→
X 0

i1

__@@@@@@@@ i2

??~~~~~~~~
−→π1(

−→
X0)

−→π1(−→i1 )

ccHHHHHHHHH −→π1(−→i2 )

;;vvvvvvvvv

53



Introducing Directed Topology and ConcurrencyGetting serious about partially ordered spacesFrom continuum to discrete: The category of componentsAbstract nonsense extension
Yoneda SystemComponents and fractions

Yoneda morphism
axiomatizing the preservation of the future and the past (1)

Let C be a small category. A Yoneda morphism σ is an element of
C[x , y ] such that for all object z of C,

future if C[y , z ] 6= ∅ then for all f ∈ C[x , z ], there is a unique
g ∈ C[y , z ] such that

z

x
σ

//

f
??��������
y

g
OO

past if C[z , x ] 6= ∅ then for all f ∈ C[z , y ], there is a unique
g ∈ C[z , x ] such that

x σ // y

z
f

??�������
g

OO
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Some properties of Yoneda morphisms
statements

Yoneda morphisms compose

if C is loop-free and σ ∈ C[x , y ] is a Yoneda morphism, then
C[x , y ] = {σ}
any Yoneda morphism is a monomorphism and an epimorphism

55



Introducing Directed Topology and ConcurrencyGetting serious about partially ordered spacesFrom continuum to discrete: The category of componentsAbstract nonsense extension
Yoneda SystemComponents and fractions

Some properties of Yoneda morphisms
proofs

Yoneda morphisms compose since injective maps compose as
well as surjective ones.

If σ is a Yoneda morphism, then the map
γ ∈ C[y , y ] 7→ γ ◦ σ ∈ C[x , y ] is a bijection; since C is
loop-free, C[y , y ] = {idy}, hence the result.

A Yoneda morphism σ is an epimorphism since
γ ∈ C[y , z ] 7→ γ ◦ σ ∈ C[x , z ] is a bijection as soon as
C[y , z ] 6= ∅, the same we prove that σ is a monomorphism.
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Yoneda system of a small category C
axiomatizing the preservation of the future and the past (2)

A collection Σ of morphisms of C such that:
1 Σ is stable under composition,
2 Σ contains all the isomorphisms of C,
3 all the elements of Σ are Yoneda morphisms and
4 Σ is stable under change and cochange of base.

y

x

f @@����
y ′

σ∈Σ__????

x ′
σ′∈Σ

^^

f ′
??

pullbackin C

y ′

x ′

f ′ ??

y

σ′∈Σ^^

xσ∈Σ

``BBBB f
>>~~~~

pushoutin C
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Pureness of Yoneda system Σ
of a loop-free category C

Suppose f2 ◦ f1 = σ ∈ Σ, by cochange of base, we have the left
hand side pushout below.

f ′1 // id //

f1
//

σ

OO

σ′∈Σ

OO

f1
//

σ

OO

f2∈Σ

OO

Still, f1 in an epimorphism since so is σ; it follows that the right
hand square above is also a pushout. By the strict uniqueness of the
colimits of a loop-free category, f ′1 is an identity and f2 = σ′ ∈ Σ.
Using change of base, we prove that f1 ∈ Σ too.
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Examples
of morphisms which do not belong to a Yoneda system

z

x
y

σ

y

x

z

f

fσ

Va

Pa

VaPa Pa Pb Vb Va

Pb

Pa

Va

Vb

59



Introducing Directed Topology and ConcurrencyGetting serious about partially ordered spacesFrom continuum to discrete: The category of componentsAbstract nonsense extension
Yoneda SystemComponents and fractions

Locale of Yoneda systems
pointless topology on a small loop-free category

The collection of Yoneda systems of a small loop-free category,
ordered by inclusion, forms a locale whose greatest and least
elements are respectively denoted Σ> and Σ⊥. Besides Σ⊥ is the
collection of identities of C.
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Σ-zigzags and Σ-components
of a loop-free category C

A Σ-zigzag between two objects x and y of C is a �nite sequence
(σn, . . . , σ0) (n ∈ N) of morphisms of Σ such that there is a �nite
sequence (z0, . . . , zn+1) of objects of C such that z0 = x , zn+1 = y
and for all k ∈ {0, . . . , n}, σk ∈ C[xk , xk+1] ∪ C[xk+1, xk ].
Then we say that x and y are Σ related: thus we have an
equivalence relation since Σ contains identities and is stable under
composition.
The equivalence classes of this relation are called the
Σ-components.
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Fundamental theorem of the Σ-components
C loop-free and Σ Yoneda system of C

Any Σ-component X of C ordered by x v y when C[x , y ] 6= ∅ is a
lattice. Further given x , y ∈ X , C[x , y ] is a singleton whose only
element belongs to Σ. Finally, any square of arrows of Σ

σ4 //

σ1
OO

σ2
//

σ3
OO is both at once the pushout of the left hand side

diagram and the pullback of the right hand side
diagram below

σ4 //

σ1
OO

σ2
//

σ3
OO

lattice = the l.u.b. and the g.l.b. of any pair of elements of X exists
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Components of compact pospaces
statement

If
−→
K is a compact pospace such that any pair of element of K

has an upper/lower bound (∨-lattice/∧-lattice), then
−→
K has a

greatest/least element.

If
−→
K is a compact pospace, then any component of −→π1(

−→
K ) has

both a greatest lower bound and an least upper bound in(
|K |,v

)
.
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Components of compact pospaces
proof

Suppose
−→
K does not have a greatest element, then

K =
⋃

x∈K
(
↑x

)c . Still, for K is compact and
(
↑x

)c is open,
we have K =

⋃
x∈F

(
↑x

)c for some �nite F ⊆ K , but F has
an upper bound > in K and thus K =

(
↑>

)c , which is a
contradiction.

C is a lattice, then, for K is compact we know [Nachbin] that
the topological closure of ↓D is a ∨-lattice and a compact
subset of K so we can apply the �rst point.
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Category of components
directed counterpart of the collection of arcwise connected components

The category of components of a small loop-free category C is then
quotient category C/Σ> .
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Fundamental theorem
fractions vs quotients

Let C be a small loop-free category and Σ a Yoneda system of C,
then

1 the collection Σ is pure in C,
2 the small category C/Σ is loop-free,
3 the small categories C[Σ−1] and C/Σ are equivalent and
4 the category C[Σ−1] is �bered over C/Σ.

extension and improvement of Components of the Fundamental Category - APCS 04
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Pureness
of a collection of morphisms

A collection Σ of morphisms of a category C is said pure in C when
for all morphisms f2, f1 of C, if f2 ◦ f1 ∈ Σ then f2, f1 ∈ Σ.
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Example

Pa

Pa

Va

Va 68
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Van Kampen theorem
for categories of components (1)

Let Σ1 and Σ2 be two Yoneda systems of −→π1(
−→
X1) and −→π1(

−→
X2).

Suppose that Σ3 := −→π1(
−→
j1 )(Σ1)

⊎−→π1(
−→
j2 )(Σ2) is a Yoneda system

of −→π1(
−→
X3) and that −→π1(

−→
i1 )(Σ0) ⊆ Σ1 et −→π1(

−→
i2 )(Σ0) ⊆ Σ2 , then

(−→π1(−→X3),Σ3)
push

amout

in

LfCatΦ

(−→π1(−→X1),Σ1)

−→π1(−→j1 )
99ssssssssss

(−→π1(−→X2),Σ2)

−→π1(−→j2 )
eeKKKKKKKKKK

(−→π1(−→X0),Σ0)
−→π1(−→i1 )

eeKKKKKKKKKK −→π1(−→i2 )

99ssssssssss

−→π1(−→X3)
Σ3
push

out

in

LfCat

−→π1(−→X1)
Σ1

−→π1(
−→
j1 )

Σ1,Σ3
==zzzzzzzz

−→π1(−→X2)
Σ2

−→π1(
−→
j2 )

Σ2,Σ3
aaDDDDDDDD

−→π1(−→X0)
Σ0

−→π1(
−→
i1 )

Σ0,Σ1

aaDDDDDDDD −→π1(
−→
i2 )

Σ0,Σ2

==zzzzzzzz
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Van Kampen theorem
for categories of components: subdivisions (2)
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Van Kampen theorem
for categories of components: subdivisions (3)
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Generic segment of C
axiomatizing the notion of Moore paths (1)

A generic segment of C is a triple (I, s, t) where I is an object of C
and s, t two points of I such that:

1 for any automorphism φ of I we have

{φ ◦ s, φ ◦ t} = {s, t}
2 and for any n ∈ N we have the colimit

n · I

I
i (n)1

99

I
i (n)2

??

I
i (n)3

II

I
i (n)
n−2

UU

I
i (n)
n−1

__

I
i (n)
n

ee

∗ s
>>|||

s(n)

00

∗t
``BBB s

>>|||
∗t

``BBB s
>>||| ···

∗t
``BBB s

>>|||
∗t

``BBB s
>>|||

∗t
``BBB

t(n)

nn

︸ ︷︷ ︸
n copies of I 72
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Directed generic segment
axiomatization of the notion of direction

A generic segment (I, s, t) is said directed when for any
automorphism φ of I, we have φ ◦ s = s and φ ◦ t = t.

Any automorphism φ of I such that φ ◦ s = t and φ ◦ t = s is
called an inversion of (the) time (�ow)

In PoSpc, the generic segment
−−→
[0, 1] is directed while the

generic segment ([0, 1],=) does not.

the map t 7→ 1− t is an inversion of time
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Category of paths on an object X of C
axiomatization of the notion of Moore path (2)

The objects of this category, denoted Γ(X ), are the points of X and
its morphisms, called the paths on X , are the elements of⋃

n∈N
C[n · I,X ],

the source and the target of γ ∈ C[n · I,X ] are γ ◦ s(n) and γ ◦ t(n);
the concatenation being given by the push-out:

X

(n + p) · I

γ·δ

OO

n · I
l (n+p)
n 33hhhhhhhhh

δ

44

p · I
r (n+p)
pkkVVVVVVVVV

γ

jj

∗t(n)

kkWWWWWWWWWWWWW s(p)

33ggggggggggggg
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Homotopic congruence over C
axiomatization of the notion of (di)homotopic (di)paths

A path γ ∈ C
[
n · I,X

]
is said constant when it can be written

γ = p ◦ µ where p is a point of X , it is the value of γ.
A homotopic congruence on C is de�ned by, for each object X of C,
a congruence ∼X on the category of paths on X , such that for all
paths γ1 and γ2 on X ,

1 if γ1 and γ2 are constant with the same value, then γ1 ∼X γ2,
2 if γ1 ∼X γ2, then

1 γ1 and γ2 share the same extremities and
2 for all morphism f of C from X to Y we have f ◦ γ1 ∼Y f ◦ γ2.
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Homotopic congruence
in picture

f

γ2

γ1

γ2f

γ1f

Y
X

f h

YX

h

Think of ∼X as �there exists a classic homotopy h from the paths γ1 to γ2� 76
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Generalized fundamental category

We set −→π1(
−→
X ) := Γ(X )/ ∼X and we have a functor −→π1 : C −→ Cat.
Y

X
f

OO

(n + p) · I

γ·δ

OO

n · I

l (n+p)
n

88qqqqqq

δ

<<

p · I

r (n+p)
pffMMMMMM

γ

bb

∗t(n)

ggOOOOOOOO s(p)

77oooooooo

Since γ1 ∼X γ2 implies f ◦
γ1 ∼Y f ◦ γ2, we can de�ne
−→π1(

−→
f )[γ]∼X

:= [f ◦ γ]∼Y
, more-

over, the left hand side diagram
shows that we have f ◦ (γ · δ) =
(f ◦ γ) · (f ◦ δ) whence the func-
toriality of −→π1(

−→
f ) from −→π1(

−→
X ) to

−→π1(
−→
Y ).
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directed vs undirected generic segment
in the framework of PoSpc

With the generic segment ([0, 1],=) over PoSpc, for any
pospace

−→
X , −→π1(

−→
X ) is the fundamental groupoid of X .

With the generic segment ([0, 1],≤) over PoSpc, for any
pospace

−→
X , −→π1(

−→
X ) is the fundamental category of

−→
X .
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