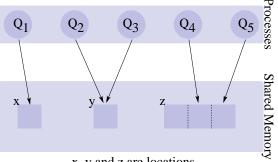
Directed Algebraic Topology and Concurrency

Eric Goubault and Emmanuel Haucourt

GEOCAL 2006 Marseille

A practical approach

Concurrency and Geometry? shared memory style



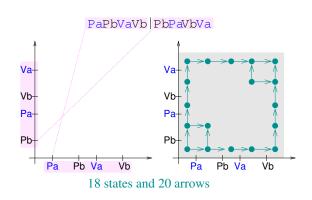
x, y and z are locations

Not sequential programs, bad states, chaotic behavior \implies Need for synchronizations \implies Need for locks ⇒ deadlocks might appear.

A practical approach

How continuum can help us An easy to handle framework

First Model directed graphs of actions

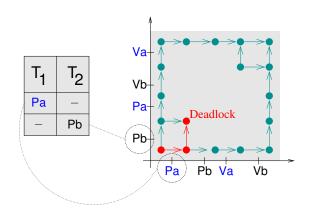


Introducing Directed Topology and Concurrency Getting serious about partially ordered spaces From continuum to discrete: The category of components Abstract nonsense extension

A practical approach

How continuum can help us An easy to handle framework

A potential execution program $T_1 = PaPbVaVb \mid T_2 = PbPaVbVa$

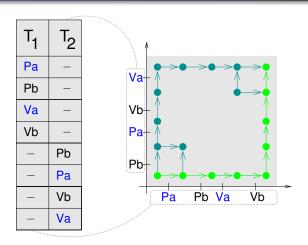


Introducing Directed Topology and Concurrency Getting serious about partially ordered spaces From continuum to discrete: The category of components Abstract nonsense extension

A practical approach

How continuum can help us An easy to handle framework

Anoter potential execution program $T_1 = PaPbVaVb \mid T_2 = PbPaVbVa$



Notice that...

... there are very few "interesting" paths

Suppose $T_1 = Pa(a = a + 1)Pb(b = b + 1)VaVb$, $T_2 = Pb(b = b - 1)Pa(b = 2 * b)VbVa$ and in the beginning a = 1 and b = 2, we have:

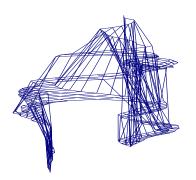
- 1 path " T_2 then T_1 " which computes $\underline{b}=\underline{3}$ (2*(2-1)+1) and $\underline{a}=\underline{2}$.
- 1 path " T_1 then T_2 " which computes $\underline{b}=\underline{4}$ (2*((2+1)-1)) and a=2.
- 2 "equivalent" paths near the diagonal: they do not "terminate" with a = 2 and b = 1.

Introducing Directed Topology and Concurrency Getting serious about partially ordered spaces From continuum to discrete: The category of components Abstract nonsense extension

A practical approach

How continuum can help us An easy to handle framework

Size explosion problem Dekker's algorithm

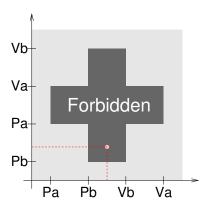


Few lines of C on 2 processes lead to few hundreds of paths, only 2 of which are interesting!

Geometry

"progress graphs" E.W.Dijkstra'68 (later V.Pratt'91)

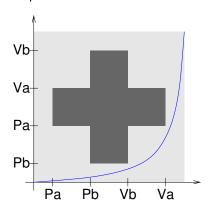
T1=Pa.Pb.Vb.Va in parallel with T2=Pb.Pa.Va.Vb



"Continuous model": $x_i = local time$; dark grey region=forbidden!

Execution paths are continuous

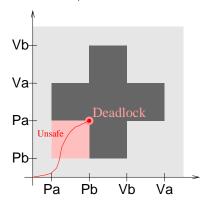
T1=Pa.Pb.Vb.Va in parallel with T2=Pb.Pa.Va.Vb

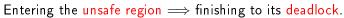


Traces are continuous paths increasing in each coordinate: dipaths.

Deadlocks and Unsafe regions Swiss flag example

T1=Pa.Pb.Vb.Va in parallel with T2=Pb.Pa.Va.Vb



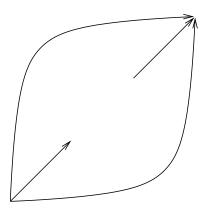


Classes of equivalent dipaths up to dihomotopy



A practical approach How continuum can help us An easy to handle framework

Ideally... not quite true though

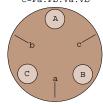


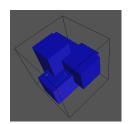
We will get back to this later.

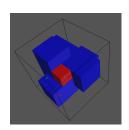
A practical approach How continuum can help us An easy to handle framework

In higher-dimension philosophers and chopsticks

A=Pb.Pc.Vb.Vc B=Pc.Pa.Vc.Va C=Pa.Pb.Va.Vb

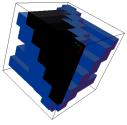




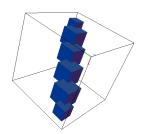


Effect of the level of sharing

A=Pa.Pb.Va.Pc.Vb.Pd.Vc.Pe.Vd.Pf.Ve.Vf
B=Pf.Pe.Vf.Pd.Ve.Pc.Vd.Pb.Vc.Pa.Vb.Va
C=Pf.Pe.Vf.Pd.Ve.Pc.Vd.Pb.Vc.Pa.Vb.Va



a,...binary sem.



 a, \ldots counting sem.

Correspondences

Model [discrete] combinatorial complex Model [continuous] topological space Relation discrete/continuous geometric realisation Parallel composition product Action refinement subdivision Compositionality Seifert/van Kampen Deadlocks/reachability connected components Scheduling properties fundamental group homotopy equivalence (weak/strong) Observational equivalence Computable properties topological invariants (homology etc.)

Other types of related subjects and their applications

- Rewriting invariants (Squier like see talks by Y. Lafont for instance)
- Fault-tolerant distributed systems (realizability and complexity, see M. Herlihy, S. Rajsbaum, N. Shavit etc.)

Models

- Po-spaces, local po-spaces, (pre-)cubical sets (see MFPS'98, with L. Fajstrup and M. Raussen)
- Globular CW-complexes: with P. Gaucher, "Topological Deformation of Higher-Dimensional Automata", HHA 2003
- Ω-categories, Category "Flow" (Philippe Gaucher)
- d-spaces (Marco Grandis)
- Higher-Dimensional Transition Systems (Vladimiro Sassone and Gian Luca Cattani, LICS'96)
- ECHIDNA (Richard Buckland and Michael Johnson, AMAST'96)
- Sanjeevi Krishnan's spaces
- et cetera

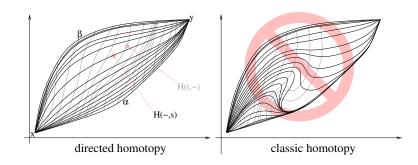
Partially Ordered Spaces

framework for "progress graphs" (one only needs MFPS'98)

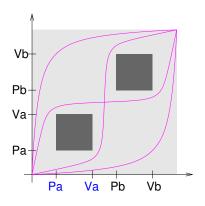
A topological space X with a (global) <u>closed</u> partial order \sqsubseteq

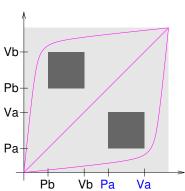
- Morphisms are increasing and <u>continuous</u> maps: <u>dimaps</u>
- (Finite) Traces on (X, \sqsubseteq) are dimaps from $\vec{l} = ([0,1], \leq)$ to (X, \sqsubseteq) : dipaths
- Dihomotopies between dipaths α and β with fixed extremities x and y are dimaps $H:\overrightarrow{I}\times\overrightarrow{I}\to X$ such that for all $s\in\overrightarrow{I}$, $t\in\overrightarrow{I}$,
 - $H(t,0) = \alpha(t)$ and $H(t,1) = \beta(t)$
 - H(0,s) = x and H(1,s) = y

Deformation of execution paths dihomotopy vs homotopy



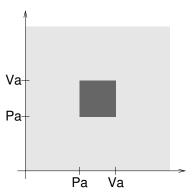
First subtlety directed homotopy is not classic homotopy

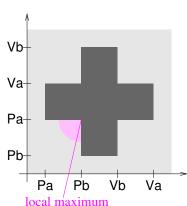




Second subtlety

classic homotopy cannot "see" local extrema

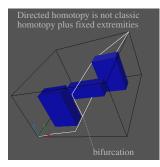


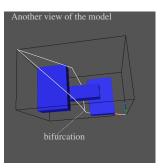


A practical approach How continuum can help us An easy to handle framework

Third subtlety Floating cube between two pillars

A=Pb.Pc.Vb.Vc B=Pc.Pa.Vc.Va C=Pa.Pb.Va.Vb





A typical object of study fundamental category $\overrightarrow{\pi_1}(\overrightarrow{X})$ of a pospace \overrightarrow{X}

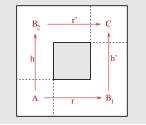
- its objects are the points of X,
- its morphisms are the classes of dipaths up to dihomotopy: a morphism from x to y is a dihomotopy class $[\alpha]$ of a dipath α going from x to y.

A detailed example (1)

square with centered hole

$x \in$	y ∈	$\overrightarrow{\pi_1}(\overrightarrow{X})[x,y]$
Α	Α	$\{\sigma_{x,y}\}$
B_1	B_1	$\{\sigma_{x,y}\}$
B_2	B_2	$\{\sigma_{X,y}\}$
С	С	$\{\sigma_{x,y}\}$
Α	B_1	$\{r_{x,y}\}$
Α	B_2	$\{h_{x,y}\}$
B_1	С	$\{h'_{x,y}\}$
B_2	С	$\{r'_{x,y}\}$
B_1	B_2	Ø
B_2	B_1	Ø
Α	С	$\{u_{x,y}, d_{x,y}\}$

With $r'_{y,z} \circ h_{x,y} = u_{x,z}, \ h'_{y,z} \circ r_{x,y} = d_{x,z}$ and 3 points x, y, z of the square such that $x \sqsubseteq y \sqsubseteq z$; if $x \not\sqsubseteq y$ then $\overrightarrow{\pi_1}(\overrightarrow{X}) = \emptyset$.



A detailed example (2) the previous calculation suggests that

- we have a partition A, B_1 , B_2 , C of the objects of $\overrightarrow{\pi_1}(\overrightarrow{X})$,
- any arrow of $\overrightarrow{\pi_1}(\overrightarrow{X})$ can be given a "type" $(\sigma, h, h', r, r', u)$ or d) according to the components its extremities x and y belong to,
- the type σ is "neutral" in the sense that $\sigma_{y,z} \circ \sigma_{x,y} = \sigma_{x,z}$
- the map which sends
 - any object x of $\overrightarrow{\pi_1}(\overrightarrow{X})$ to its component $(A, B_1, B_2 \text{ or } C)$
 - any morphism α to its "type" $(\sigma, h, h', r, r', u \text{ or } d)$

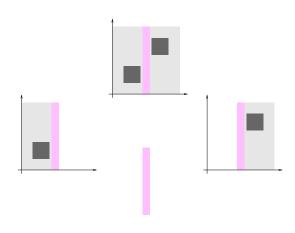
is both an equivalence and a fibration and its codomain is, by definition, the category of components of \overrightarrow{X} .

Example of product parallel "independent" composition

Though their fundamental categories differ... this pospace and the square with centered hole have the same component category

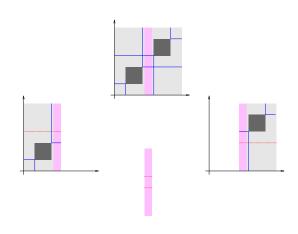
A practical approach How continuum can help us An easy to handle framework

The Seifert/Van Kamen theorem for fundamental category compositionality

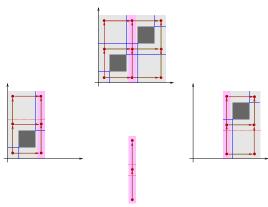


A practical approach How continuum can help us An easy to handle framework

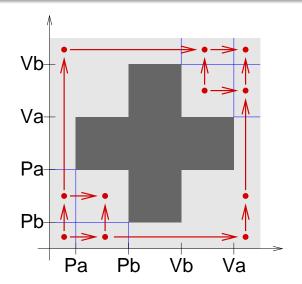
A Seifert/Van Kamen theorem for components category (1) subdivisions are necessary



A Seifert/Van Kamen theorem for components category (2) the resulting category of components

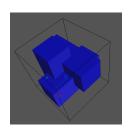


The category of components of the swiss flag



A practical approach How continuum can help us An easy to handle framework

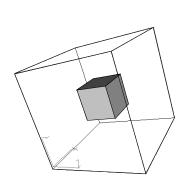
The components category of the 3 philosophers non-orthogonal representation



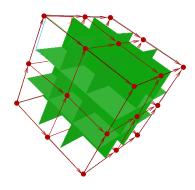
the pospace

its category of components

The components category of a 2-semaphore



the pospace



its category of components

Computations: some theoretical and practical tools for handling concrete cases

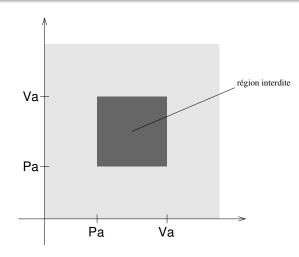
- We have a Seifert/van Kampen for local po-spaces (last ATMCS - or M. Grandis' proof)
- We also have a form of Seifert/van Kampen for components categories, "up to subdivision" (Emmanuel Haucourt), which is of value for practical computations.
- Also, some specific algorithms for mutual exclusion models (M. Raussen in dimension 2, and sub-optimal algorithm by E. Goubault in all dimensions).

Some figures [Eric Goubault's algorithm]

- new3phil.pv: (0.05s) Objects: 27, Morphisms: 48, Relations:
 18
- new4phil.pv: (0.07s) Objects: 85, Morphisms: 200, Relations:
 132
- new7phil.pv: 147.36s; 81 Mo; (about one million transitions in a standard model) Objects: 2467, Morphisms: 10094, Relations: 15484
- new8phil.pv: 320.02s; 121Mo; (about 10 million transitions in a standard interleaving model) Objects: 3214, Morphisms: 14282, Relations: 24396

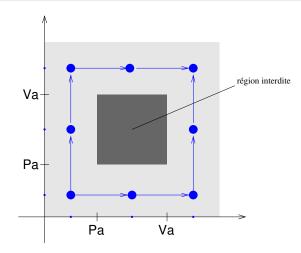
PV language and its models Definition and Properties LfCat instead of Grd

PaVa PaVa Dijkstra 68, Pratt/van Glabbeek 91, Goubault 92



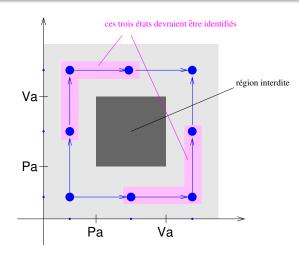
PV language and its models Definition and Properties LfCat instead of Grd

PaVa PaVa modèle discret classique



PV language and its models Definition and Properties Fundamental category LfCat instead of Grd

PaVa PaVa



PV language and its mode Definition and Properties Fundamental category LfCat instead of Grd

- lacktriangle a topological space X,
- 2 a partial order \sqsubseteq over |X| whose graph is closed in $X \times X$.

Lemma: for any $x \in \overrightarrow{X}$, $\{y \in X | x \sqsubseteq y\}$ (denoted $\uparrow x$) is closed in X.

Morphisms of pospaces from \overrightarrow{X} to \overrightarrow{Y}

A map $f: |X| \longrightarrow |Y|$ inducing:

- $oldsymbol{0}$ a continuous map from X to Y and
- ② an increasing map from $(|X|, \sqsubseteq_X)$ to $(|Y|, \sqsubseteq_Y)$.

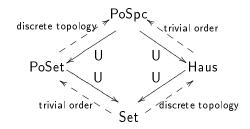
Hence the category of pospaces denoted: PoSpc.

Usual Pospaces

some common examples

- **1** directed real line \mathbb{R} with its classical topology and order (\mathbb{R}) ,
- ② directed unit segment [0,1] with the structure induiced by \mathbb{R} ([0,1]),
- 3 any morphism of PoSpc from [0,1] to \overrightarrow{X} is called a directed path on \overrightarrow{X} . Formelly, the set of directed paths on \overrightarrow{X} is PoSpc[0,1], \overrightarrow{X} , also denoted \overrightarrow{dX} .

Forgetful functors PoSpc



Categorical properties of PoSpc analogy between Top and PoSpc

- complete and cocomplete,
- symmetric monoidal closed,
- $oldsymbol{0}$ compact pospaces is complete, cocomplete and admits [0,1] as a cogenerator,
- the full sub-category of compactly generated pospaces is reflective in PoSpc and cartesian closed.

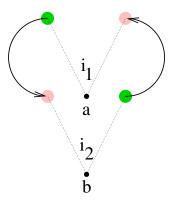
Cocompleteness of PoSpc sketch of proof

- Prove that the category RSpc admits quotients.
- Use quotients of RSpc to prove its cocompletness.
- Use quotients of RSpc to construct the reflect of any object of RSpc in PoSpc.
- It is a general fact that any reflective subcategory of a cocomplete category is cocomplete, hence PoSpc is cocomplete.

PV language and its model Definition and Properties Fundamental category LfCat instead of Grd

A pushout in PoSpc (1)

the directed circle in PoSpc squashed to a point



a and b are not ordered

A pushout in PoSpc (2)

the directed circle in PoSpc squashed to a point

$$i_1: \{a,b\} \to \underline{[0,1]}; \ i_1(a) = 0; \ i_1(b) = 1$$
 $i_1: \{a,b\} \to \overline{[0,1]}; \ i_2(a) = 1; \ i_2(b) = 0$
suppose $f, g: \{a,b\} \to \overline{[0,1]} \text{ with } f \circ i_1 = g \circ i_2,$
we have $f(i_1(a)) = g(i_2(a))$ i.e. $f(0) = g(1)$ and the same way $g(0) = f(1)$.
Hence $f(0) \sqsubseteq f(1) = g(0) \sqsubseteq g(1) = f(0) \Longrightarrow f(0) = f(1) = g(0) = g(1)$ and then f and g are constant and equal.

Directed homotopy on \overrightarrow{X} from α to β Grandis 01, Fajstrup/Raussen/Goubault 98...

A morphism h defined on $\overline{[0,1]} \times \overline{[0,1]}$ with values in \overrightarrow{X} such that U(h) be a classic homotopy from $U(\alpha)$ to $U(\beta)$. We denote $\sim_{\overrightarrow{Y}}$ the symmetric and transitive closure of

$$\left\{(\alpha,\beta)\in d\overrightarrow{X}\times d\overrightarrow{X}\ \middle|\ \text{il existe une homotopie dirigée de }\alpha\ \text{vers}\ \beta\right\}.$$

Two dipaths α and β are said dihomotopic when $\alpha \sim_{\overrightarrow{x}} \beta$.

Directed Homotopy vs classic homotopy

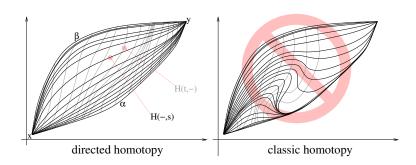


Image of a dipath Singular facts about pospaces

- The image of a dipath α on a pospace \overrightarrow{X} is either isomorphic (in PoSpc) to [0,1] or $\{\bullet\}$.
- 2 Two dipaths sharing the same image are dihomotopic.
- 3 There is no directed *Peano* curve.

Fundamental category of a pospace \overrightarrow{X} denoted $\overrightarrow{\pi_1}(\overrightarrow{X})$

- objects: the elements de |X|,
- $oldsymbol{\circ}$ morphisms from x to y: the set of $\sim_{\overrightarrow{x}}$ -equivalence classes of

$$\left\{ \alpha \in d\overrightarrow{X} \middle| \alpha(0) = x \text{ et } \alpha(1) = y \right\}$$

Loop-free categories play the role of the groupoids

A (small) category $\mathcal C$ such that for any objects x and y of $\mathcal C$, if $\mathcal C[x,y]\neq\emptyset$ and $\mathcal C[y,x]\neq\emptyset$ then x=y and $\mathcal C[x,x]=\{id_x\}$. We denote LfCat the full subcategory of Cat whose objects are the small loop-free category.

- 1 LfCat is cartesian closed and reflective in Cat.
- The fundamental category of a pospace is loop-free, hence the functor

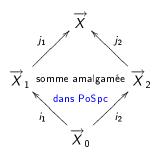
PoSpc
$$\xrightarrow{\overrightarrow{\pi}_1}$$
 LfCat

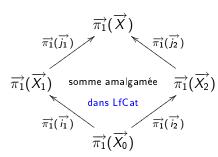
A morphism of $\overrightarrow{\pi_1}(\overrightarrow{X})$ is the $\sim_{\overrightarrow{X}}$ -equivalence class of some dipath α from x to y, hence $x \sqsubseteq y$; suppose that $\overrightarrow{\pi_1}(\overrightarrow{X})[y,x] \neq \emptyset$, then we also have $y \sqsubseteq x$ and then x=y. Further, if α is a dipath from x to x, then for any $t \in [0,1]$, we have $x = \alpha(0) \sqsubseteq \alpha(t) \sqsubseteq \alpha(1) = x$ i.e. α is constant.

Sections and retractions of a loop-free category $\mathcal C$

Suppose that $f_2 \circ f_1 = id_x$, the source and the target of f_1 and f_2 is x and then $f_1 = f_2 = id_x$. Hence the only isomorphisms of $\mathcal C$ are its identities and the collection of identities of $\mathcal C$ is pure in $\mathcal C$. In particular, the limits and colimits in a loop-free category are strictly unique and not only up to isomorphism.

Directed Van Kampen Theorem Grandis 01, Goubault 01





Yoneda morphism

axiomatizing the preservation of the future and the past (1)

Let $\mathcal C$ be a small category. A *Yoneda* morphism σ is an element of $\mathcal C[x,y]$ such that for all object z of $\mathcal C$, future if $\mathcal C[y,z]\neq\emptyset$ then for all $f\in\mathcal C[x,z]$, there is a unique $g\in\mathcal C[y,z]$ such that

past if $\mathcal{C}[z,x] \neq \emptyset$ then for all $f \in \mathcal{C}[z,y]$, there is a unique $g \in \mathcal{C}[z,x]$ such that

Some properties of *Yoneda* morphisms statements

- Yoneda morphisms compose
- if $\mathcal C$ is loop-free and $\sigma \in \mathcal C[x,y]$ is a *Yoneda* morphism, then $\mathcal C[x,y]=\{\sigma\}$
- any Yoneda morphism is a monomorphism and an epimorphism

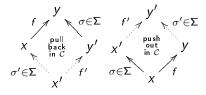
Some properties of *Yoneda* morphisms proofs

- Yoneda morphisms compose since injective maps compose as well as surjective ones.
- If σ is a Yoneda morphism, then the map $\gamma \in \mathcal{C}[y,y] \mapsto \gamma \circ \sigma \in \mathcal{C}[x,y]$ is a bijection; since \mathcal{C} is loop-free, $\mathcal{C}[y,y] = \{id_y\}$, hence the result.
- A Yoneda morphism σ is an epimorphism since $\gamma \in \mathcal{C}[y,z] \mapsto \gamma \circ \sigma \in \mathcal{C}[x,z]$ is a bijection as soon as $\mathcal{C}[y,z] \neq \emptyset$, the same we prove that σ is a monomorphism.

Yoneda system of a small category C axiomatizing the preservation of the future and the past (2)

A collection Σ of morphisms of C such that:

- \bullet Σ is stable under composition,
- \bigcirc Σ contains all the isomorphisms of \mathcal{C} ,
- lacktriangle all the elements of Σ are Yoneda morphisms and
- \bullet Σ is stable under change and cochange of base.



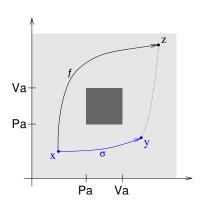
Pureness of *Yoneda* system Σ of a loop-free category C

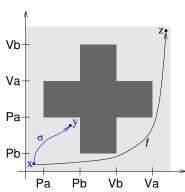
Suppose $f_2 \circ f_1 = \sigma \in \Sigma$, by cochange of base, we have the left hand side pushout below.

Still, f_1 in an epimorphism since so is σ ; it follows that the right hand square above is also a pushout. By the <u>strict</u> uniqueness of the colimits of a loop-free category, f_1' is an identity and $f_2=\sigma'\in\Sigma$. Using change of base, we prove that $f_1\in\Sigma$ too.

Examples

of morphisms which do not belong to a Yoneda system





Locale of Yoneda systems pointless topology on a small loop-free category

The collection of *Yoneda* systems of a small loop-free category, ordered by inclusion, forms a locale whose greatest and least elements are respectively denoted Σ_{\top} and Σ_{\bot} . Besides Σ_{\bot} is the collection of identities of \mathcal{C} .

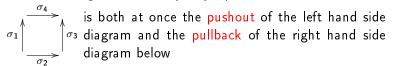
Σ -zigzags and Σ -components of a loop-free category $\mathcal C$

A Σ -zigzag between two objects x and y of C is a finite sequence $(\sigma_n,\ldots,\sigma_0)$ $(n\in\mathbb{N})$ of morphisms of Σ such that there is a finite sequence (z_0,\ldots,z_{n+1}) of objects of C such that $z_0=x$, $z_{n+1}=y$ and for all $k\in\{0,\ldots,n\}$, $\sigma_k\in C[x_k,x_{k+1}]\cup C[x_{k+1},x_k]$. Then we say that x and y are Σ related: thus we have an equivalence relation since Σ contains identities and is stable under composition.

The equivalence classes of this relation are called the Σ -components.

Fundamental theorem of the Σ -components \mathcal{C} loop-free and Σ Yoneda system of \mathcal{C}

Any Σ -component X of $\mathcal C$ ordered by $x\sqsubseteq y$ when $\mathcal C[x,y]\neq\emptyset$ is a lattice. Further given $x,\ y\in X,\ \mathcal C[x,y]$ is a singleton whose only element belongs to Σ . Finally, any square of arrows of Σ



lattice = the l.u.b. and the g.l.b. of any pair of elements of X exists

Components of compact pospaces statement

- If \overrightarrow{K} is a <u>compact</u> pospace such that any pair of element of K has an upper/lower bound (\vee -lattice/ \wedge -lattice), then \overrightarrow{K} has a greatest/<u>least</u> element.
- If \overrightarrow{K} is a <u>compact</u> pospace, then any component of $\overrightarrow{\pi_1}(\overrightarrow{K})$ has both a <u>greatest lower bound</u> and an <u>least upper bound</u> in $(|K|, \sqsubseteq)$.

Components of compact pospaces proof

- Suppose \overrightarrow{K} does not have a greatest element, then $K = \bigcup_{x \in K} \left(\uparrow x \right)^c$. Still, for K is compact and $\left(\uparrow x \right)^c$ is open, we have $K = \bigcup_{x \in F} \left(\uparrow x \right)^c$ for some finite $F \subseteq K$, but F has an upper bound \top in K and thus $K = \left(\uparrow \top \right)^c$, which is a contradiction.
- C is a lattice, then, for K is compact we know [Nachbin] that the topological closure of $\downarrow D$ is a \lor -lattice and a compact subset of K so we can apply the first point.

Category of components directed counterpart of the collection of arcwise connected components

The category of components of a small loop-free category $\mathcal C$ is then quotient category $\mathcal C/_{\Sigma_\top}.$

Fundamental theorem fractions vs quotients

Let $\mathcal C$ be a small loop-free category and Σ a *Yoneda* system of $\mathcal C$, then

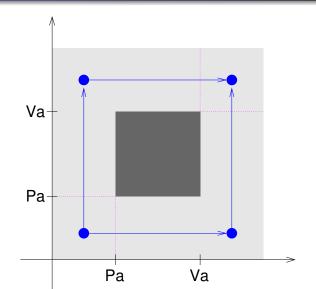
- the collection Σ is pure in C,
- $oldsymbol{0}$ the small category $\mathcal{C}/_{\Sigma}$ is loop-free,
- ullet the small categories $\mathcal{C}[\Sigma^{-1}]$ and $\mathcal{C}/_{\Sigma}$ are equivalent and
- the category $C[\Sigma^{-1}]$ is fibered over $C/_{\Sigma}$.

extension and improvement of Components of the Fundamental Category - APCS 04

Pureness of a collection of morphisms

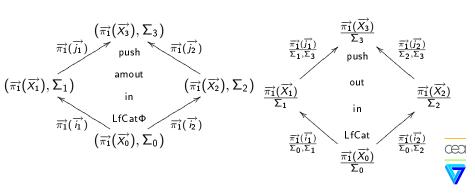
A collection Σ of morphisms of a category $\mathcal C$ is said pure in $\mathcal C$ when for all morphisms f_2 , f_1 of $\mathcal C$, if $f_2 \circ f_1 \in \Sigma$ then f_2 , $f_1 \in \Sigma$.

Example



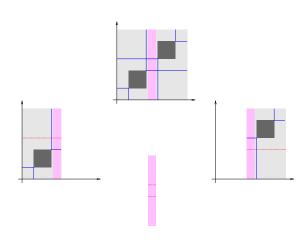
Van Kampen theorem for categories of components (1)

Let Σ_1 and Σ_2 be two *Yoneda* systems of $\overrightarrow{\pi_1}(\overrightarrow{X_1})$ and $\overrightarrow{\pi_1}(\overrightarrow{X_2})$. Suppose that $\Sigma_3 := \overrightarrow{\pi_1}(\overrightarrow{j_1})(\Sigma_1) \biguplus \overrightarrow{\pi_1}(\overrightarrow{j_2})(\Sigma_2)$ is a *Yoneda* system of $\overrightarrow{\pi_1}(\overrightarrow{X_3})$ and that $\overrightarrow{\pi_1}(\overrightarrow{i_1})(\Sigma_0) \subseteq \Sigma_1$ et $\overrightarrow{\pi_1}(\overrightarrow{i_2})(\Sigma_0) \subseteq \Sigma_2$, then



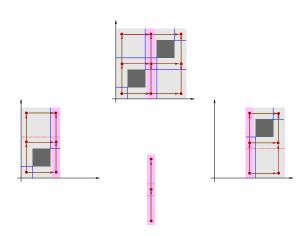
Van Kampen theorem

for categories of components: subdivisions (2)



Van Kampen theorem

for categories of components: subdivisions (3)



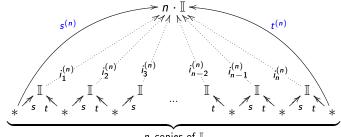
Generic segment of C axiomatizing the notion of *Moore* paths (1)

A generic segment of C is a triple (\mathbb{I}, s, t) where \mathbb{I} is an object of C and s, t two points of \mathbb{I} such that:

lacktriangle for any automorphism ϕ of $\mathbb I$ we have

$$\{\phi \circ s, \phi \circ t\} = \{s, t\}$$

② and for any $n \in \mathbb{N}$ we have the colimit



Directed generic segment axiomatization of the notion of direction

- A generic segment (\mathbb{I}, s, t) is said directed when for any automorphism ϕ of \mathbb{I} , we have $\phi \circ s = s$ and $\phi \circ t = t$.
- Any automorphism ϕ of \mathbb{I} such that $\phi \circ s = t$ and $\phi \circ t = s$ is called an inversion of (the) time (flow)
- In PoSpc, the generic segment [0,1] is directed while the generic segment ([0,1],=) does not.

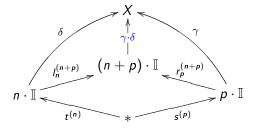
the map $t\mapsto 1-t$ is an inversion of time

Category of paths on an object X of C axiomatization of the notion of *Moore* path (2)

The objects of this category, denoted $\Gamma(X)$, are the points of X and its morphisms, called the paths on X, are the elements of

$$\bigcup_{n\in\mathbb{N}}\mathsf{C}[n\cdot\mathbb{I},X],$$

the source and the target of $\gamma \in C[n \cdot \mathbb{I}, X]$ are $\gamma \circ s^{(n)}$ and $\gamma \circ t^{(n)}$; the concatenation being given by the push-out:

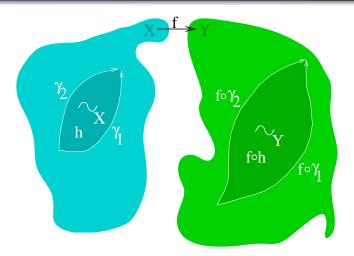


Homotopic congruence over C axiomatization of the notion of (di)homotopic (di)paths

A path $\gamma \in \mathcal{C} \big[n \cdot \mathbb{I}, X \big]$ is said constant when it can be written $\gamma = p \circ \mu$ where p is a point of X, it is the value of γ . A homotopic congruence on C is defined by, for each object X of C, a congruence \sim_X on the category of paths on X, such that for all paths γ_1 and γ_2 on X,

- **1** If γ_1 and γ_2 are constant with the same value, then $\gamma_1 \sim_X \gamma_2$,
- 2 if $\gamma_1 \sim_{\mathbf{X}} \gamma_2$, then
 - $\mathbf{0}$ γ_1 and γ_2 share the same extremities and
 - ② for all morphism f of C from X to Y we have $f \circ \gamma_1 \sim_Y f \circ \gamma_2$.

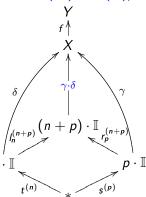
Homotopic congruence in picture



Think of \sim_X as "there exists a classic homotopy h from the paths γ_1 to γ_2 "

Generalized fundamental category

We set $\overrightarrow{\pi_1}(\overrightarrow{X}) := \Gamma(X)/\sim_X$ and we have a functor $\overrightarrow{\pi_1} : \mathsf{C} \longrightarrow \mathsf{Cat}$.



Since $\gamma_1 \sim_X \gamma_2$ implies $f \circ \gamma_1 \sim_Y f \circ \gamma_2$, we can define $\overrightarrow{\pi_1}(\overrightarrow{f})[\gamma]_{\sim_X} := [f \circ \gamma]_{\sim_Y}$, moreover, the left hand side diagram shows that we have $f \circ (\gamma \cdot \delta) = (f \circ \gamma) \cdot (f \circ \delta)$ whence the functoriality of $\overrightarrow{\pi_1}(\overrightarrow{f})$ from $\overrightarrow{\pi_1}(\overrightarrow{X})$ to $\overrightarrow{\pi_1}(\overrightarrow{Y})$.

directed vs undirected generic segment in the framework of PoSpc

- With the generic segment ([0, 1], =) over PoSpc, for any pospace \overrightarrow{X} , $\overrightarrow{\pi_1}(\overrightarrow{X})$ is the fundamental groupoid of X.
- With the generic segment ([0, 1], \leq) over PoSpc, for any pospace \overrightarrow{X} , $\overrightarrow{\pi_1}(\overrightarrow{X})$ is the fundamental category of \overrightarrow{X} .

