
A Practical Application of Geometric Semantics

to Static Analysis of Concurrent Programs

Eric Goubault1 and Emmanuel Haucourt2

1 LIST (CEA - Technologies Avancées),
DTSI-SOL, CEA F91191 Gif-sur-Yvette Cedex

Eric.Goubault@cea.fr
2 Preuves, Programmation, Systèmes,

Université Paris 7, 175 rue Chevaleret, F75013
haucourt@cea.fr

Abstract. In this paper we show how to compress efficiently the state-
space of a concurrent system (here applied to a simple shared memory
model, but this is no way limited to that model). The technology used
here is based on research on geometric semantics by the authors and
collaborators [1]. It has been implemented in a abstract interpretation
based static analyzer (ALCOOL), and we show some preliminary results
and benchmarks.

1 Introduction and Related Work

The aim of this paper is to show how to infer some important properties of
concurrent and distributed systems using geometric ideas1. The algorithms we
describe in this paper have been implemented in a prototype “ALCOOL” briefly
benchmarked and explained in Section 4, as well as in appendix A.

A class of examples arises from a toy langage manipulating semaphores. Using
Dijkstra’s notation [2], we consider processes to be sequences of locking opera-
tions Pa on semaphores a and unlocking operations V a. In the example where
two processes share two resources a and b: T 1 = Pa.Pb.V b.V a in parallel with
T 2 = Pb.Pa.V a.V b, the geometric model is the “Swiss flag”, Fig. 1, regarded
as a subset of R

2 with the componentwise partial order (x1, y1) ≤ (x2, y2) if
x1 ≤ y1 and x2 ≤ y2. The (interior of the) horizontal dashed rectangle comprises
global states that are such that T1 and T2 both hold a lock on a: this is impossi-
ble by the very definition of a binary semaphore. Similarly, the (interior of the)
vertical rectangle consists of states violating the mutual exclusion property on b.
Therefore both dashed rectangles form the forbidden region, which is the com-
plement of the space X of (legal) states. This space with the inherited partial
order provides us with a particular po-space X [3],[4], as defined in Sect. 2. This
view can be generalized to more general counting semaphores, i.e. resources that
can be shared by some k > 1 but not k + 1 processes (see Figure 3 for the case
k = 2 and three processes). Moreover, legal execution paths, called dipaths, are

1 Work partially funded by EDF under grant CEA/EDF 1-5-163 CE.

M. Abadi and L. de Alfaro (Eds.): CONCUR 2005, LNCS 3653, pp. 503–517, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

504 E. Goubault and E. Haucourt

Pb Vb VaPa

Pb

Vb

Pa

Va

FORBIDDEN

T2

T1
b=2

b=b+1

b=b*2

T1 gets a and b before T2 does: b=6

Pb Vb VaPa

Pb

Vb

Pa

Va

FORBIDDEN

T2

T1
b=2

b=b+1

b=b*2

T2 gets a and b before T1 does: b=5!

Fig. 1. Essential schedules for the swiss flag

increasing maps from the po-space I (the unit segment with its natural order)
to X . The partial order on X thus reflects (at least) the time ordering on all
possible execution paths. Many different execution paths have the same global
effect: In the “Swiss Flag” example, for any execution path shaped like the one
at the left of Figure 1, T1 gets hold of locks a and b before T2 does. This implies
that for the actual assignments on variable b that we have chosen in this exam-
ple: T1 does b := b + 1 and T2 does b = b ∗ 2, starting with an initial value of
2, all execution paths below the hole will end up with the value b = 6, since T1

will do b = 2 + 1 = 3 and then only after will T2 do b = 3 ∗ 2 = 6. In fact, there
are only two essentially different execution paths from the initial point (0, 0) to
the final point (1, 1), that fully determine the computer-scientific behaviour of
the system. See picture at the right hand side of Figure 1). These are in fact
the only two classes of dipaths from (0, 0) to (1, 1) modulo “continuous defor-
mations” that do not reverse time, i.e., up to dihomotopy as defined in [5]. This
fact is indeed general, and is not at all limited to the example. For determining
the possible outcome of a concurrent program (modelled in a suitable way, as
for our PV programs), only the dihomotopy classes of dipaths count.

Other interesting dipaths, in our example space, start in the initial point
(0, 0) and end in a deadlock, or start in the unreachable point and end in (1, 1)
see the dashed paths on Figure 1.

In general, one of the important invariants of a concurrent system is its
fundamental category [6],[7], defined in Section 3.1, classifiying dipaths between
any pair of points up to dihomotopy, i.e, a directed version of the fundamental
groupoid of a topological space. In nice cases, the relevant information in the
fundamental category is essentially finite. This is shown using a construction
based on categories of fractions [8], as developped in [1] and [9]. The formalism
developped in these last two papers allows to decompose the fundamental cat-
egory (or the state-space) into big chunks as the regions 1 to 10 in Figure 2.
Basically, inside these regions, or components, nothing important happens. This
produces the following compressed state-space on which, using general results
of [1], one can read all temporal properties as pictured in Figure 2 (with two
views, one geometric, the other, algebraic). The graph of the right hand side

A Practical Application of Geometric Semantics to Static Analysis 505

1 2

3 4

5

6

7

8

9

10 5 �� 8
g′

2�� 10

7

g′
1

��

g1
�� 9

g2
��

3

��

f ′
2 �� 4

1

f ′
1

��

f1

�� 2
f2

��

�� 6

��

Fig. 2. The components of the Swiss flag

should be understood as generating a category [10], where morphisms represent
classes of paths of execution, such that we have relations g′2 ◦ g′1 = g2 ◦ g1 and
f ′

2 ◦ f ′
1 = f2 ◦ f1 (compare with e.g. [11]). In some sense, this so-called category

of components finitely presents the fundamental category and the essential prop-
erties of the state-space, that can be used in a static analysis based verification
tool.

Some comparisons between what this type of approach should buy us with
other state-space reduction techniques such as persistent sets [12],[13], stubborn
sets [14],[15], Petri nets based techniques [16] etc. have been made in [7]. In this
paper, we develop this line of research a bit further, giving actual algorithms
to compute this component category in relevant cases, implementing them and
benchmarking them.

In Section 3.2, we give an algorithm to find the components, and to enu-
merate the “essential traces”, i.e. the traces of execution modulo dihomotopy,
which correspond, on a fragment of the model, to finding representatives of the
Mazurkiewicz traces [17]. This in turn can be used to compute efficiently an
abstraction of the collecting semantics of parallel processes, as used in abstract
interpreters [18]. This is described in Section 4. The implementation of this algo-
rithm is for the time being rather crude, but still, one can fully handle the case
of 9 philosophers, and effectively compress its state-space and its set of essen-
tial schedules (which in this case is very large anyway). This is the base of the
static analyzer ALCOOL we have been developping for EDF (the main French
electricity provider), that we briefly describe at the end of this section.

We should end up this introductory section by saying that this state-space re-
duction technique is entirely orthogonal to other techniques like symbolic model-
checking as developped in e.g. [19],[20],[21] or like abstraction based techniques.
A combination of good abstractions with this algorithm should improve perfor-
mances a lot. Last but not least, other geometric criteria for state-space reduction
are currently being developped, one which looks extremely promising being [22].

2 Models of Concurrent Computation

The main idea (see [23] for instance) is to model a discrete concurrency problem
in a continuous geometric set-up: A system of n concurrent processes will be

506 E. Goubault and E. Haucourt

represented as a subset of Euclidean space R
n. Each coordinate axis corresponds

to one of the processes. The state of the system corresponds to a point in R
n,

whose i’th coordinate describes the state (or “local time”) of the i’th processor.
An execution is then a continuous increasing path within the subset from an
initial state to a final state.

A more general framework on which this paper is based is defined below
(see [5]):

Definition 1.

1. A po-space is a topological space X with a (global) closed partial order ≤
(i.e. ≤ is a closed subset of X × X).

2. A dimap f : X → Y between po-spaces X and Y is a continuous map that
respects the partial orders (is non-decreasing).

3. A dipath f : I → X is a dimap whose source is the interval I with the usual
order.

Po-spaces and dimaps form a category. To a certain degree, our methods
apply to the more general categories of lpo-spaces [5] , of flows [24] and of d-
spaces [25].

We start with a very simplistic language, in order to explain the concepts. We
will point out in Section 4 that this can be extended to more realistic languages,
as used in ALCOOL.

Procd = ε | Pa.Procd | V a.Procd

(ε being the empty string, a being any object of O, defined as a binary semaphore:
s(a) = 1 or as a counting semaphore initialized to k: s(a) = k). A PV program
is any parallel combination of these PV processes, Prog = Proc | (Prog |
Prog). The typical example in shared memory concurrent programs is O being
the set of shared variables and for all a ∈ O, s(a) = 1. The P action is putting
a lock and the V action is relinquishing it. We will suppose in the sequel that
any given process can only access once an object before releasing it.

Supposing that the length of the strings Xi (1 ≤ i ≤ n), denoting n processes
in parallel in this language, are integers li, the semantics of Prog is included in
[0, l1]×· · ·×[0, ln]. A description of [[Prog]] can be given by describing inductively
what should be digged into this n-rectangle (the semantics is given in terms of
the set of forbidden hyper-rectangles). The semantics of our language can be
described by the simple rule, [k1, r1] × · · · × [kn, rn] ∈ [[X1 | · · · | Xn]] if there is
a partition of {1, · · · , n} into U ∪ V with card(U) = s(a) + 1 for some object a
with, Xi(ki) = Pa, Xi(ri) = V a for i ∈ U and kj = 0, rj = lj for j ∈ V .

3 Essential Schedules

3.1 A Bit of Theory

Equivalence of dipaths, as used in the examples of Figure 1, is modelled by
the notion of dihomotopy, a directed version of standard homotopy [26]. They

A Practical Application of Geometric Semantics to Static Analysis 507

describe accurately, in a continuous model, a generalized notion of “commutation
of actions”, and make available some powerful tools from algebraic topology (see
[6], [27], [5] for surveys).

Dihomotopies between dipaths f and g (with fixed extremities α and β in
X) are dimaps H : I × I → X such that for all x ∈ I, t ∈ I, H(x, 0) =
f(x), H(x, 1) = g(x), H(0, t) = α, H(1, t) = β. Notice that here I carries the
equality as order contrarily to I (another definition can be given [25], but which
is equivalent in all the cases dealt with in this paper).

A dihomotopy is to be understood as a 1-parameter family of dimaps without
order requirements in the second I-coordinate2. Now, we can define the main ob-
ject of study of this paper, the fundamental category, which contains all relevant
information for the study of traces of execution:

Definition 2. The fundamental category is the category π1(X) with:

– as objects: the points of X,
– as morphisms, the dihomotopy classes of dipaths: a morphism from x to y is

a dihomotopy class [f] of a dipath f from x to y.

Concatenation of dipaths factors over dihomotopy and yields the composition
of morphisms in the fundamental category. A dimap f : X → Y between po-
spaces induces a functor f# : π1(X) → π1(Y), and we obtain thus a functor π1

from the category of po-spaces to the category of categories.
We formally invert some “inessential” morphisms in the fundamental cate-

gory, as in [1], [9], to obtain a “compressed” component category. For instance,
for a binary semaphore taken by two processes, we will obtain the category gen-
erated by the graph of Figure 6. In the case of three processes trying to get hold
of a counting semaphore initialized to two (geometric semantics given by Figure
3), we would get the component category pictured in Figure 4: each of the 26
subcubes delineated by the green planes are components, and there is one mor-
phism from each of these to neighbouring ones (in the directed order). Every
four neighbours having a segment in common have their four “neighbouring”
morphisms commute.

3.2 Inductive Computation

In the case of the geometric semantics of the toy PV language we chose, all
these component categories are in fact generated by 2-dimensional precubical
sets (graphs plus a notion of 2-cell, filling some of the rectangular holes in the
graph):

Definition 3. A 2-dimensional precubical set is given by

(X0, X1, X2, (∂0
0 , ∂0

1 , ∂1
0 , ∂1

1 : X2 → X1), (∂0
0 , ∂1

0 : X1 → X0))

such that ∂k
i ◦ ∂l

j = ∂l
j−1 ◦ ∂k

i for i < j and k = 0, 1, l = 0, 1. ∂1
0 and ∂1

1

(respectively ∂0
0 , ∂0

1) are called end (respectively start) boundary operators.
2 This is slightly different for d-spaces, but coincides in important cases.

508 E. Goubault and E. Haucourt

Fig. 3. Geometric semantics of a

counting semaphore initialized to 2
Fig. 4. Its component category

More general versions of these precubical sets have been used to model con-
current processes [6]. These 2-dimensional precubical sets are somehow the ana-
logues of asynchronous transition systems [28], [29]. Elements of Xn (n = 0, 1, 2)
are called n-transitions. A simple example of a 2-dimensional pre-cubical set
(which should represent a in parallel with b) is given below:

a

b b’A

s s

ss
0

2 3

1

a’

where A is a 2-transition, a, b, a′, b′ are 1-transitions and s0, s1, s2 and s3

are all 0-transitions (or states). We have ∂0
0(A) = a, ∂1

0(A) = a′, ∂0
1(A) = b,

∂1
1(A) = b′, ∂0

0(a) = ∂0
0(b) = s0, ∂1

0(a) = s1 = ∂0
0(b′), ∂1

0(b) = ∂0
0(a′) = s2

and ∂1
1(b′) = ∂1

1(a′) = s3. One can readily check the commutation rules of the
definition, for instance, ∂0

0∂1
1(A) = ∂0

0(b′) = s1 = ∂1
0(a) = ∂1

0∂0
0(A). We should

think in the sequel, of A as representing the independance of a and b.

Example. We know from [1] that the po-space and the component category
corresponding to the PV program (where a is a binary semaphore) A = Pa.V a
in parallel with B = Pa.V a are those pictured at Figure 5, respectively, of
Figure 6.

As a matter of fact, the precubical set (here of dimension 1, since there is
no relation between morphisms here) corresponding to this component category
can be pictured as in Figure 7.

Intuition of the Inductive Algorithm. Now, what if we dig in a new hole in
the po-space of Figure 5? We get the po-space pictured in Figure 8 and should
obtain the component category (where solid squares represent relations) pictured
in Figure 9. This po-space corresponds to the PV program A = Pa.V a.Pb.V b in

A Practical Application of Geometric Semantics to Static Analysis 509

Fig. 5. Po-space corre-

sponding to a simple PV

program

A

D

B

C

e1

e4

e2 e3

Fig. 6. Its component cat-

egory

F

A B

DC

e1

e4

e2

e3

Fig. 7. The components,

geometrically

parallel with B = Pb.V b.Pa.V a and the component category corresponds to the
precubical set of dimension 2, pictured “geometrically” in Figure 10. The idea
is that digging a new hole, creates new isothetic hyperplanes, coming out from
the min and max points of this hole. These hyperplanes cut the previous com-
ponents into new components; the orthogonal of these hyperplanes will create
new edges in the component graph, or morphisms in the component category. A
new phenomenon here is that the intersection of two hyperplanes (here lines),
which give a codimension 2 linear variety in general (here, points), correspond
to relations between newly created morphisms. Here, in Figure 10, F2 is the new
hole. The morphisms of the component category for the only hole F1 are denoted
here by f1, f2, f3 and f4. We see3 in Figure 10 that we have two codimension 2
varieties of interest, namely the two intersections e1 ∩ f2 and e3 ∩ f4 which give
the two relations, hence the two 2-cells of the component category, pictured in
Figure 9.

In the case of the 3 philosophers problem, A = Pa.Pb.V a.V b parallel B =
Pb.Pc.V b.V c parallel C = Pc.Pa.V c.V a, we get the very nice component cate-
gory pictured in Figure 11 for instance, where the central point represents both
the deadlocking and the unreachable regions.

Inductive Computation - the Algorithm. We start inductively by a compo-
nent category of [0, 1]n\R, generated by a 2-dimensional precubical set, that we
write in short as (Y0, Y1, Y2, δ

0, δ1). We define a new structure (Z0, Z1, Z2, ∂
0, ∂1)

as follows, which will generate (an “approximation” of) the component category
of U\R:

– Z0 = {A ∩ B | A ∈ X0, B ∈ Y0, A ∩ B �= ∅}
– Z1 = {A ∩ f | A ∈ X0, f ∈ Y1, A ∩ f �= ∅}

∪{e ∩ B | e ∈ X1, B ∈ Y0, e ∩ B �= ∅}

– Z2 =
{e ∩ f | e ∈ X1, f ∈ Y1, e ∩ f �= ∅}
∪{R ∩ B | R ∈ X2, B ∈ Y0, R ∩ B �= ∅}
∪{A ∩ S | A ∈ X0, S ∈ Y2, A ∩ S �= ∅}

3 The intersection a ∩ b in this figure are denoted by the pair a, b.

510 E. Goubault and E. Haucourt

Fig. 8. Po-space

with two incompara-

ble holes

Fig. 9. Component

category (squares are

relations)

F2

F1

A1,A2

A1,C2

D1,D2D1,C2C1,C2

B1,C2
B1,D2

B1,B2B1,A2

A1,f2

e1,C2

e3,C2

e4,C2 D1,f4

e3,D2

B1,f3

B1,f2

B1,f4

e1,C2

e1,A2

relation e1,f2

relation e3,f4

Fig. 10. The precubical set corresponding

to the component category, geometrically

–

∂∗
∗ : Z1 → Z0 are defined by:

• ∂0
0(A ∩ f) = A ∩ δ0

0(f),
• ∂1

0(A ∩ f) = A ∩ δ1
0(f),

• ∂0
0(e ∩ B) = d0

0(e) ∩ B,
• ∂1

0(e ∩ B) = d1
0(e) ∩ B.

∂∗
∗ : Z2 → Z1 are defined by:

• ∂0
0(e ∩ f) = d0

0(e) ∩ f ,
• ∂0

1(e ∩ f) = e ∩ δ0
0(f),

• ∂1
0(e ∩ f) = d1

0(e) ∩ f ,
• ∂1

1(e ∩ f) = e ∩ δ1
0(f),

• ∂k
l (R ∩ B) = dk

l (R) ∩ B, k, l = 0, 1,
• ∂k

l (A ∩ S) = A ∩ δk
l (S).

One can show that this gives an “over-approximation” of the component
category in general, i.e. that one will get a compressed state-space, which might
not be as optimal as the component category defined in [1]. Similarly, one can
check easily that this, applied to the case of Figure 8 starting with the case of
Figure 6 gives the right result of Figure 10.

3.3 Syntactic Lift

From the component category, we can deduce the maximal morphisms (or equiva-
lently, the equivalences classes of maximal dipaths, or put it differently the max-
imal essential traces), basically from some traversing of the underlying graph
modulo 2 cells. In the case of the maximal dipaths modulo dihomotopy for the 3
philosophers, we find 7 paths, the 3! = 6 non-deadlocking paths, 3 of which are
represented as blue lines in Figures 11, 12 and 13, one deadlocking path.

Now, we want to get back from these “continuous” paths to “discrete” paths.
This “discrete” path should be an interleaving path corresponding to this ideal-
ized execution, which can then be analyzed by any standard sequential analyzer.

We remark, essentially by [1], that (1): every component has a trivial −→π 1

and (2): there exists a path (unique) from the minimum (or infimum in general)
from a component to the minimum of the next component (essentially by the
lifting property). Given the morphisms of the component category, we compute:

A Practical Application of Geometric Semantics to Static Analysis 511

Fig. 11. Paths (1) Fig. 12. Paths (2) Fig. 13. Paths (3)

Fig. 14. First step Fig. 15. Second step Fig. 16. Third step

– (a) the infimum of the components (i.e. of hyperrectangles minus the forbid-
den region)

– (b) the program comprising the possible executions between the minimum of
a component, and the minimum of the next

– (c) we use the interleaving semantics for finding just one path in this program
(using (1), in a very economical manner)

We exemplify this in Figures 14, 15, 16, 17, 18 and 19 for the 3 philosophers’
problem. Forbidden regions are represented in blue, and components are repre-
sented from green to red, in a graded manner. We represent only maximal paths
in the component category as sequences of such components in these figures.

Point (c) is done by taking any interleaving path for some program, extracted
fromProg inaveryeasymanner,usingthecoordinatesof thetwoconsecutive infima
points (represented as red dots) as intervals, in each coordinate, or equivalently
for each process, of instructions to fire (this is represented as red chunks). The first
step of the lifting is (Figure 14) amounts to interpreting 0 | 0 | P(c) in context
sem(c) = 1, sem(b) = 1, and sem(a) = 1. We use the notation sem(x) = k to
express that x is a semaphore which can be taken (by P) by at most k processes.
This describes the state of our concurrent machine. The 2nd, 3rd, 4th, 5th and 6th

steps are respectively described in Figures 15, 16, 17, 18 and 19.

512 E. Goubault and E. Haucourt

Fig. 17. Fourth step Fig. 18. Fifth step Fig. 19. Sixth step

The final interleaving representative is given at Figure 20 and corresponds to4:

P3(c).P3(a).P2(b).V3(c).P2(c).V2(b).V2(c).V3(a).P1(a).P1(b).V1(a).V1(b).

4 Application to Static Analysis

A static analyzer (ALCOOL) based on these principles has been implemented,
it consists of about 25000 lines of C. It relies on Hans Boehm garbage collector
[30] for memory allocation and QT for the graphical user interface. ALCOOL
analyzes programs written in a high-level language, to be described elsewhere,
extending the one of Section 2: binary semaphores, general counting semaphores
but also synchronisation barriers and bounded and unbounded FIFO message
passing queues (with various blocking/unblocking policies for sending and receiv-
ing) are modelled. Numeric variables are allowed, and guards (tests) are allowed
in non-deterministic choices. General expressions on variables are understood,
as well as iteration schemes. As such, this language is not far from the level of
expressiveness of PROMELA [31], with a different syntax, aimed at the particu-
lar geometric models we have developped. A comparison with PROMELA, and
SPIN, will be published elsewhere. An example of the syntax can be found in
appendix A. The analyzer first represents an abstraction of the set of forbid-
den regions (as products of intervals in some subspace of Rn), from the syntax
of the program to analyze. It then computes inductively, using the algorithm
presented in Section 3.2, the component category, as a 2-dimensional precubi-
cal set both geometrically (meaning that the objects, morphisms and relations
are represented as their corresponding 0-, 1- and 2-codimensional geometric vari-
eties) and combinatorially, using the boundary operators. It represents internally
also the duals of the boundary operators, the “coboundary” operators, mapping
each i-dimensional object to the (i + 1)-dimensional objects it is the bound-
ary of. Using these coboundary operators for edges, and a simple depth-first or
breadth-first traversal of the underlying graph, it can determine the maximal
4 Where we put the number of the process which takes the step as a subscript of the P

and V actions.

A Practical Application of Geometric Semantics to Static Analysis 513

Fig. 20. The interleaving representative

dipaths modulo 2-cells (modulo dihomotopy), that is, the essential paths. From
the essential paths, it determines using a simple abstract interpreter [32] (using
intervals of values again), an over-approximation of the local invariants of the
program. It has then to iterate this process again, since knowing more about the
values of the variables at each reachable state, enables to qualify more precisely
whether all the synchronisation that have been modelled as forbidden regions
are actually done (because of the guards of the choices for instance). More about
the look and feel of the analyzer can be found in appendix A. The analyzer has
been applied to a variety of academic examples. For instance, the enumeration of
the compressed state space of the n-philosophers’ problem is shown for different
values of n, on a standard PC with 512Mb of memory and 1GHz clock:

n time mem # o # m # r # p #s # t
3 0.38s ≤ 10 Mb 27 48 18 6 576 1475
4 0.43s ≤ 15 Mb 85 200 132 24 3966 13450
5 0.69 19 Mb 263 770 730 120 27265 113938
6 3.49 23 Mb 807 2832 3516 720 184876 914019
7 96.76s 42 Mb 2467 10094 15484 5040 ? ?
8 1656.9s 100Mb 7533 35216 64312 40320 ? ?
9 13739s 319Mo 22995 120924 256158 362880 ∼2996970∗ ∼22698700∗

where # o, # m and # r denote respectively the number of objects, morphisms
and relations of the component category, # p is the number of maximal terminat-
ing paths (not counting the deadlocking path for instance) and # s (respectively
t) is the number of states (respectively transitions) used in the translation
of the n-philosophers’ problem for SPIN with the partial-order reduction pack-
age (in PROMELA) of [33]5. For the 9 philosophers’ problem, we have only an
estimate ∼ . . .∗, using the bit state hashing reduction technique.

This analyzer has also been applied to a real industrial example, for the
french electricity provider EDF. The code to analyze was a 100000 lines program
written in C, comprising a dozen threads running on top of the VXWORKS op-
5 Some other implementations of the n-philosophers’ problem may find different num-

bers of states and transitions: our experience is that it can vary from 1 to 10.

514 E. Goubault and E. Haucourt

erating system. These threads communicate through FIFO queues, and synchro-
nize using several dozens of semaphores and monitors. First, this code has been
translated in the ALCOOL language (an extract of a typical example is given
in Appendix A). This can now be done using the tool MIEL, by Jean-Michel
Collart (CEA/LIST), which will be described elsewhere. The first analysis has
been made using a handmade translation, taking into account a subgroup of six
processes, accounting for 1966 lines of process algebra code, much like the ones
shown in Appendix A. The analyzer could prove (using some restrictive assump-
tions though) that there is no deadlock, no loss of message in 497.43 seconds, for
a maximal memory consumption of 47 Mb. In order to do this, it enumerated
the class of execution paths (about 6.2 Mb in textual form) and interpret them
using a simple interval abstract interpreter.

5 Conclusion and Future Work

We have described a first step towards using geometric invariants for efficient
static analysis of concurrent programs. Much work is still to do. For instance,
the computation of components is still sub-optimal (in size). We could also use
static/dynamic segment trees to improve the computation of intersections, or
simpler geometric constraints to prune the intersection search. For the compu-
tation of morphisms in the component category, we could think of getting some
help from the first homology group. We can also approximate relations using
some techniques used in persistent sets [34] for instance. On the longer run, we
think that the consideration of higher-dimensional analogues of the fundamental
category (see [6] and in particular [35]) should help us having smaller retracts
of the state space. We should also point out that some other methods used to
compress the state space being entirely orthogonal to our technique, we should
combine the latter with symbolic methods, use of symmetry, on the fly traversal
etc. We would also like to generalize our current ALCOOL analyzer so that it
can deal with more general temporal logic formulas. For the time being, loops
(and non-deterministic branchings) are interpreted in a simplistic way, by just
unravelling them. We are currently trying to see if we can extend our method
to local po-spaces [5] directly.

Acknowledgments. We used Geomview, see the Web page http://freeabel.
geom.umn.--edu/software/download/geomview.html/ to make the 3D pic-
tures of this article (in a fully automated way, from ALCOOL). Acknowledg-
ments are due to Fabrice Derepas for his help with comparing ALCOOL with
SPIN. Acknowledgments to Jean-Michel Collart (CEA), Alain Ourghanlian and
Jean-Baptiste Chabannes (EDF).

References

1. Fajstrup, L., Goubault, E., Haucourt, E., Raussen, M.: Components of the funda-
mental category. Applied Categorical Structures (2004)

2. Dijkstra, E.: Cooperating Sequential Processes. Academic Press (1968)

http://freeabel.geom.umn.--edu/software/download/geomview.html/
http://freeabel.geom.umn.--edu/software/download/geomview.html/

A Practical Application of Geometric Semantics to Static Analysis 515

3. Nachbin, L.: Topology and Order. Van Nostrand, Princeton (1965)
4. Johnstone, P.T.: Stone Spaces. Cambridge University Press (1982)
5. Fajstrup, L., Goubault, E., Raussen, M.: Algebraic topology and concurrency. sub-

mitted to Theoretical Computer Science, also technical report, Aalborg University
(1999)

6. Goubault, E.: Some geometric perspectives in concurrency theory. Homology
Homotopy and Applications (2003)

7. Goubault, E., Raussen, M.: Dihomotopy as a tool in state space analysis. In
Rajsbaum, S., ed.: LATIN 2002: Theoretical Informatics. Volume 2286 of Lect.
Notes Comput. Sci., Cancun, Mexico, Springer-Verlag (2002) 16 – 37

8. Gabriel, P., Zisman, M.: Calculus of fractions and homotopy theory. Number 35
in Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer Verlag (1967)

9. Haucourt, E.: A framework for component categories. ENTCS (to appear, 2005)
10. Mac Lane, S.: Categories for the working mathematician. Springer-Verlag (1971)
11. Gaucher, P., Goubault, E.: Topological deformation of higher dimensional au-

tomata. Technical report, arXiv:math.AT/010760, to appear in HHA (2001)
12. Godefroid, P., Peled, D., Staskauskas, M.: Using partial-order methods in the for-

mal validation of industrial concurrent programs. IEEE Transactions on Software
Engineering 22 (1996) 496–507

13. Godefroid, P., Holzmann, G.J., Pirottin, D.: State-space caching revisited. In: For-
mal Methods and System Design. Volume 7., Kluwer Academic Publishers (1995)
1–15

14. Valmari, A.: A stubborn attack on state explosion. In: Proc. of CAV’90, Springer
Verlag, LNCS (1990)

15. Valmari, A.: Eliminating redundant interleavings during concurrent program ver-
ification. In: Proc. of PARLE. Volume 366., Springer-Verlag, Lecture Notes in
Computer Science (1989) 89–103

16. Melzer, S., Roemer, S.: Deadlock checking using net unfoldings. In: Proc. of
Computer Aided Verification, Springer-Verlag (1997)

17. Mazurkiewicz, A.: Basic notions of trace theory. In: Lecture notes for the REX
summer school in temporal logic, Springer-Verlag (1988)

18. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximations of fixed points. Principles
of Programming Languages 4 (1977) 238–252

19. Boigelot, B., Godefroid, P.: Model checking in practice: An analysis of the ac-
cess.bus protocol using spin. In: Proceedings of Formal Methods Europe’96. Vol-
ume 1051., Springer-Verlag, Lecture Notes in Computer Science (1996) 465–478

20. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: Proc. of the Fifth Annual IEEE Symposium
on Logic and Computer Science, IEEE Press (1990) 428–439

21. Garavel, H., Jorgensen, M., Mateescu, R., Pecheur, C., Sighireanu, M., Vivien,
B.: Cadp’97 – status, applications and perspectives. Technical report, Inria Alpes
(1997)

22. Raussen, M.: Deadlocks and dihomotopy in mutual exclusion models. Tech-
nical report, Aalborg University (2005) available at http://www.math.aau.dk/
index en.html.

23. Carson, S., Reynolds, P.: The geometry of semaphore programs. ACM TOPLAS
9 (1987) 25–53

24. Gaucher, P.: A convenient category for the homotopy theory of concurrency.
preprint available at math.AT/0201252 (2002)

516 E. Goubault and E. Haucourt

25. Grandis, M.: Directed homotopy theory, I. the fundamental category. Cahiers Top.
Gom. Diff. Catg, to appear, Preliminary version: Dip. Mat. Univ. Genova, Preprint
443 (2001)

26. Spanier, E.J.: Algebraic Topology. McGraw Hill (1966)
27. Goubault, E.: Geometry and concurrency: A users’ guide. Mathematical Structures

in Computer Science (2000)
28. Goubault, E.: Cubical sets are generalized transition systems. Technical report,

pre-proceedings of CMCIM’02, also available at http://www.di.ens.fr/˜goubault
(2001)

29. Fahrenberg, U.: A category of higher-dimensional automata. In: Foundations
of Software Science and Computation Structures (FOSSACS) : 8th International
Conference. LNCS, Springer (2005) to appear.

30. Boehm, H.: Bounding space usage of conservative garbage collector. In: Prin-
ciples Of Programing Language. (2002) see http://www.hpl.hp.com/personal/
Hans Boehm/gc/.

31. Holzmann, G.J.: SPIN Model Checker : The Primer and Reference Manual. Ad-
dison Wesley (2003)

32. Cousot, P., Cousot, R.: Comparison of the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. JTASPEFL ’91, Bordeaux.
BIGRE 74 (1991) 107–110

33. Demartini, C., Iosif, R., Sisto, R.: Modeling and validation of java multithreading
applications using spin. In: SPIN Workshop. (1998)

34. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of dead-
lock freedom and safety properties. In: Proc. of the Third Workshop on Computer
Aided Verification. Volume 575., Springer-Verlag, Lecture Notes in Computer Sci-
ence (1991) 417–428

35. Grandis, M.: The shape of a category up to directed homotopy. Technical
Report preprint 509, Dip. Mat. Univ. Genova (2004) available at http://www.
dima.unige.it/∼grandis/rec.public grandis.html.

A ALCOOL Analyzer

Let us give a simple example, in the language used by ALCOOL. Here we define
two FIFO queues containing at most one entry, x and y, and two semaphores z
and evt. INIT is a reserved keyword for initializing, before starting any process
(see PROMELA) the context of execution. @(a,5) stands for setting value 5 to
variable a. We can also use general interval expressions, such as [0,2]. PROG is
a reserved keyword to express which are the processes put in parallel. R(x,z)
stands for (blocking) receive on channel x, and put the received value in z (value
“protected” by semaphore z). A+[x=0]-B stands for: do A is guard (here x=0)
is true, otherwise, do B. The definition of automate as a “matrix” of actions
times events is typical of actuation and control software. S(x,7) stands for
(non-blocking) send on channel x, of value 7.

#fifo x
#fifo y
#sem z
#sem evt

A Practical Application of Geometric Semantics to Static Analysis 517

INIT=@(a,5).@(z,0).@(evt,[0,2])
PROG=automate|tache

act1=R(x,z).@(z,z*2)
act2=R(y,z).@(z,z*3+1)
act3=Pa.@(a,1).Va
ligneA=act1+[a=0]-(act2+[a=1]-(act3+[a=2]-))
ligneB=act2+[a=0]-(act3+[a=1]-(act1+[a=2]-))
ligneC=act3+[a=0]-(act1+[a=1]-(act2+[a=2]-))
matrice=ligneA+[evt=0]-(ligneB+[evt=1]-(ligneC+[evt=2]-))
automate=matrice.automate

tache=S(x,7).S(y,9).Pa.@(a,0).Va.Pa.@(a,2).Va

	Introduction and Related Work
	Models of Concurrent Computation
	Essential Schedules
	A Bit of Theory
	Inductive Computation
	Syntactic Lift

	Application to Static Analysis
	Conclusion and Future Work
	ALCOOL Analyzer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

