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Underlying graph and Category of paths I
graph : 1-dimensional pre-simplicial set
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An example of model of a multi-task program
from Edsger Wybe Dijkstra “Pakken/Vrijlaten” language
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Another example
from Edsger Wybe Dijkstra “Pakken/Vrijlaten” language

PaPbVaVb PbPaVbVa

18 states and 20 arrows
VbPa Pb Va VbPa Pb Va
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Underlying graph and Category of paths II
adjunction between Cat and Grph

Path : morphism of graph from In to Γ

0 1 2 3
. . .

n n+1
. . .

Forgetful functor U : Cat // Grph

“Category of paths” functor F : Grph // Cat

F a U
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A potential execution
program T1 =PaPbVaVb|T2 =PbPaVbVa
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Anoter potential execution
program T1 =PaPbVaVb|T2 =PbPaVbVa
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Underlying graph and Category of paths III
Cartesian products in Grph

F (Γ× Γ′) 6∼= F (Γ)× F (Γ′)

Transitions Systems, CCS/π-calculus, Mazurkiewicz Traces ...
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Partially ordered spaces
The category PoTop

Pospace
−→
X :


X topological space
v closed in X × X

morphism f from
−→
X to

−→
X ′ : continuous and order preserving maps

PoTop //

��

PoSet

��
Haus // Set
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Categorical properties of PoTop

Theorem

- The directed compact unit segment is exponentiable in PoTop
- PoTop is complete and cocomplete
- PoTop is symmetric monoidal closed
- CGPoTop is a Cartesian closed reflective subcategory of PoTop
- CPoTop is a (complete and cocomplete) Cartesian closed reflective subcategory of
CGPoTop cogenerated by the directed compact unit segment
- PoTop has no loop
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Partially ordered spaces
examples

- Real line with standard order and topology :
−→R

- Subset of a pospace (in particular
−−→
[0, 1])

- Geometric realization of a graph
- Cartesian Product

- Closed subsets of a metric space together with inclusion
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Size reduction
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Graph Γ−→
X

of paths on a pospace
−→
X

- paths on
−→
X : morphisms from

−−→
[0, 1] to

−→
X

- arrows of Γ−→
X

: paths on
−→
X

- source and target of a path γ on,
−→
X : γ(0) and γ(1)
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Image of a dipath
Singular facts about pospaces

1 The image of a dipath α on a pospace
−→
X is either isomorphic (in PoSpc) to

−−→
[0, 1] or {∗} (hence no directed Peano curve).

2 Two dipaths sharing the same image are dihomotopic.
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Some paths around a cubic hole
P(a).V(a) | P(a).V(a) | P(a).V(a) with αa = 3
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Two “concatenations”
paths on Γ−→

X
vs paths on

−→
X

- Composition on F (Γ−→
X

) denoted by ◦

- Given γ = (γn, . . . , γ1) a path on Γ−→
X

, we define the following path on
−→
X

`
ν(γ)

´
(t) =


γk (nt − k) si t ∈ [ k

n
, k+1

n
[ et k < n − 1

γn(nt − n + 1) si t ∈ [ n−1
n
, 1]
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Directed homotopy
what it is and looks like

Morphism h from
−−→
[0, 1]2 to

−→
X such that U(h) is a homotopy from γ to δ

h(−,s)

h(t,−)

directed homotopy

x

y

α

β

classical homotopy
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Directed homotopy
an example

Pa Pb Vb Va
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T1 gets a and b before T2 => a=2 and b=4

T2 gets b and a before T1 => a=2 and b=3

Each of T1 and T2 gets a ressource
=> Deadlock with a=2 and b=1
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A subtlety
directed homotopy is not classical homotopy

Pb Vb Pa Va

Pb

Vb

Pa

Va

Pb VbPa Va

Pa

Va

Pb

Vb

19



Loop-Free and One-Way categories
André Haefliger (scwol) / Dmitry Kozlov (acyclic) and Colin McLarty

Loop-Free category or small categories without loops (LfCat) :
C[x , x] = {idx} and (C[x , y ]× C[y , x] 6= ∅ =⇒ x = y)

One-Way category (OwCat) :
C[x , x] = {idx}

C one-way ⇐⇒ sk(C) is loop-free

LfCat � � // OwCat � � // Cat
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Fundamental Category −→π1
functor from PoTop to LfCat

Let ∼ be the congruence over F (Γ−→
X

) generated by

n`
(γn, . . . , γ1), (δp , . . . , δ1)

´ ˛̨̨
there is a dihomotopy from ν(γ) to ν(δ)

o
The fundamental category −→π1(

−→
X ) is F (Γ−→

X
)/ ∼ and we have

−→π1(
−→
X ×

−→
Y ) ∼= −→π1(

−→
X )×−→π1(

−→
Y )

−→π1(
−→
X ) is loop-free

van Kampen theorem
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A detailed example
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A detailed example
square with centered hole

x ∈ y ∈ −→π1(
−→
X )[x , y ]

A A {σx,y}
B1 B1 {σx,y}
B2 B2 {σx,y}
C C {σx,y}
A B1 {rx,y}
A B2 {hx,y}
B1 C {h′x,y}
B2 C {r ′x,y}
B1 B2 ∅
B2 B1 ∅
A C {ux,y , dx,y}

With r ′y,z◦hx,y = ux,z , h′y,z◦rx,y = dx,z

and 3 points x , y , z of the square
such that x v y v z; if x 6v y then
−→π1(
−→
X )[x , y ] = ∅.

r’

h’h

r

2B

B1

C

A
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Yoneda morphism σ ∈ C[x , y ]
preserving the past and the future I

future if C[y , z] 6= ∅, then C[y , z] // C[x , z]

γ � // γ ◦ σ
is a bijection and

past if C[z, x] 6= ∅, then C[z, x] // C[z, y ]

δ
� // σ ◦ δ

is a bijection
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Yoneda system Σ of a small category C
preserving the past and the future II

1 Σ is stable under composition,

2 Σ contains all the isomorphisms of C,

3 all the elements of Σ are Yoneda morphisms and

4 Σ is stable under change and cochange of base.
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Yoneda systems
Example
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Structure of Σ-components
C loop-free category and Σ Yoneda system over C

Theorem

1 ∃z Σ[x , z]× Σ[y , z] 6= ∅ iff ∃z Σ[z, x]× Σ[z, y ] 6= ∅
2 “ ∃z Σ[x , z]× Σ[y , z] 6= ∅ ” defines an equivalence relation x ∼ y

3 Given any ∼-equivalence class K, the full subcategory of C
whose set of objects is K is a non empty lattice

4 If a ∼ b, then the following square is both a pullback and a pushout in C.

x x
Σ // z a // a ∨ b

z

Σ

OO

Σ
// y y

Σ

OO

a ∧ b //

OO

b

OO
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Locale of Yoneda systems
topology without point over a one-way category

Theorem

The collection, ordered by inclusion, of the Yoneda systems of a one-way category,
forms a locale whose maximum is denoted Σ. Beside, its minimum is the collection of
all isomorphisms of C.
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Category of components
generalizing the set of arcwise components

The category of components of a loop-free category C is the quotient C/Σ

Theorem

A loop-free category C is a non empty lattice iff its category of components is {∗}

29



Fundamental theorem
C one-way category and Σ Yoneda system over C

Theorem

1 the collection Σ is pure in C (β ◦ α ∈ Σ⇒ β, α ∈ Σ),

2 the category C/Σ is loop-free and the category C[Σ−1] is one-way

3 the categories C[Σ−1] and C/Σ are equivalent and

4 the category C[Σ−1] is fibered over the base C/Σ.
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The category of components
of the swiss flag
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The category of components
Menger sponge first iteration : P(a).V(a) | P(a).V(a) | P(a).V(a) with αa = 2

Interior of the pospace Category of components Flattened

32



The components category
of a 2-semaphore : P(a).V(a) | P(a).V(a) | P(a).V(a) avec αa = 3

the pospace its category of components
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Factorization

Theorem (J. Hashimoto -T. Balabonski)

The monoid of (isomorphism classes of) non empty, connected, finite, loop-free
categories is countable and free
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Example of product
parallel “independent” composition
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The Directed Circle
Obects : S1 Morphisms : S1 × N× S1 Identities : (x,0,x) for x∈ S1
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