Directed Algebraic Topology and Concurrency

Emmanuel Haucourt

CEA LIST, Modeling and Analysing Interaction between Systems Laboratory

Tuesday, the 10th of July 2008

Underlying graph and Category of paths I graph : 1-dimensional pre-simplicial set

An example of model of a multi-task program from *Edsger Wybe Dijkstra* "Pakken/Vrijlaten" language

Underlying graph and Category of paths II adjunction between Cat and Grph

 $F \dashv U$

A potential execution program $T_1 = PaPbVaVb | T_2 = PbPaVbVa$

Deadlock

Anoter potential execution program $T_1 = PaPbVaVb | T_2 = PbPaVbVa$

Termination

Underlying graph and Category of paths III Cartesian products in Grph

Transitions Systems, CCS/*π*-calculus, *Mazurkiewicz* Traces ...

Pospace
$$\overrightarrow{X}$$
: $\begin{cases} X & \text{topological space} \\ \sqsubseteq & \text{closed in } X \times X \end{cases}$
morphism f from \overrightarrow{X} to $\overrightarrow{X'}$: continuous and order preserving maps
PoTop \longrightarrow PoSet
 \downarrow \downarrow \downarrow
Haus \longrightarrow Set

Theorem

- The directed compact unit segment is exponentiable in PoTop
- PoTop is complete and cocomplete
- PoTop is symmetric monoidal closed
- CGPoTop is a Cartesian closed reflective subcategory of PoTop
- CPoTop is a (complete and cocomplete) Cartesian closed reflective subcategory of

CGPoTop cogenerated by the directed compact unit segment

- PoTop has no loop

- Real line with standard order and topology : $\overrightarrow{\mathbb{R}}$
- Subset of a pospace (in particular [0, 1])
- Geometric realization of a graph
- Cartesian Product
- Closed subsets of a metric space together with inclusion

- paths on \overrightarrow{X} : morphisms from $\overrightarrow{[0,1]}$ to \overrightarrow{X}
- arrows of $\Gamma_{\overrightarrow{X}}$: paths on \overrightarrow{X}
- source and target of a path γ on, \overrightarrow{X} : $\gamma(0)$ and $\gamma(1)$

- **1** The image of a dipath α on a pospace \overrightarrow{X} is either isomorphic (in PoSpc) to $\overline{[0,1]}$ or $\{*\}$ (hence no directed *Peano* curve).
- 2 Two dipaths sharing the same image are dihomotopic.

Some paths around a cubic hole P(a).V(a) | P(a).V(a) | P(a).V(a) with $\alpha_a = 3$

- Composition on $F(\Gamma_{\overrightarrow{X}})$ denoted by \circ
- Given $\gamma = (\gamma_n, \ldots, \gamma_1)$ a path on $\Gamma_{\overrightarrow{X}}$, we define the following path on \overrightarrow{X}

$$(\nu(\gamma))(t) = \begin{cases} \gamma_k(nt-k) & \text{si } t \in [\frac{k}{n}, \frac{k+1}{n}[\text{ et } k < n-1] \\ \gamma_n(nt-n+1) & \text{si } t \in [\frac{n-1}{n}, 1] \end{cases}$$

Morphism h from $[0,1]^2$ to \overrightarrow{X} such that U(h) is a homotopy from γ to δ

17

Directed homotopy an example

A subtlety directed homotopy is not classical homotopy

œ

Loop-Free category or small categories without loops (LfCat) : $C[x,x] = \{id_x\}$ and $(C[x,y] \times C[y,x] \neq \emptyset \implies x = y)$

> One-Way category (OwCat) : $C[x, x] = {id_x}$

 \mathcal{C} one-way \iff sk(\mathcal{C}) is loop-free

 $LfCat \longrightarrow OwCat \longrightarrow Cat$

Let \sim be the congruence over $F(\Gamma_{\overrightarrow{x}})$ generated by

 $\left\{ \left((\gamma_n, \ldots, \gamma_1), (\delta_p, \ldots, \delta_1) \right) \mid \text{there is a dihomotopy from } \nu(\gamma) \text{ to } \nu(\delta) \right\}$

The fundamental category $\overrightarrow{\pi_1}(\overrightarrow{X})$ is $F(\Gamma_{\overrightarrow{X}})/\sim$ and we have

$$\vec{\pi_1}(\vec{X} \times \vec{Y}) \cong \vec{\pi_1}(\vec{X}) \times \vec{\pi_1}(\vec{Y})$$
$$\vec{\pi_1}(\vec{X}) \text{ is loop-free}$$

van Kampen theorem

A detailed example

$x \in$	$y \in$	$\overrightarrow{\pi_1}(\overrightarrow{X})[x,y]$
A	Α	$\{\sigma_{x,y}\}$
B_1	B_1	$\{\sigma_{x,y}\}$
<i>B</i> ₂	B_2	$\{\sigma_{x,y}\}$
С	С	$\{\sigma_{x,y}\}$
A	B_1	$\{r_{x,y}\}$
A	B_2	$\{h_{x,y}\}$
B_1	С	$\{h'_{x,y}\}$
<i>B</i> ₂	С	$\{r'_{x,y}\}$
B_1	B_2	Ø
<i>B</i> ₂	B_1	Ø
A	C	$\{u_{x,y}, d_{x,y}\}$

With $r'_{y,z} \circ h_{x,y} = u_{x,z}$, $h'_{y,z} \circ r_{x,y} = d_{x,z}$ and 3 points x, y, z of the square such that $x \sqsubseteq y \sqsubseteq z$; if $x \nvDash y$ then $\overline{\pi_1}(\overrightarrow{X})[x,y] = \emptyset$.

Yoneda morphism $\sigma \in \mathcal{C}[x, y]$ preserving the past and the future I

future if $C[y, z] \neq \emptyset$, then $C[y, z] \longrightarrow C[x, z]$ is a bijection and $\gamma \longmapsto \gamma \circ \sigma$ past if $C[z, x] \neq \emptyset$, then $C[z, x] \longrightarrow C[z, y]$ is a bijection $\delta \longmapsto \sigma \circ \delta$

Yoneda system Σ of a small category C preserving the past and the future II

- (1) Σ is stable under composition,
- 2 Σ contains all the isomorphisms of C,
- \bigcirc all the elements of Σ are Yoneda morphisms and
- Σ is stable under change and cochange of base.

œ

Theorem

- 2 " $\exists z \ \Sigma[x, z] \times \Sigma[y, z] \neq \emptyset$ " defines an equivalence relation $x \sim y$
- Siven any ∼-equivalence class K, the full subcategory of C whose set of objects is K is a non empty lattice
- If a \sim b, then the following square is both a pullback and a pushout in C.

Theorem

The collection, ordered by inclusion, of the Yoneda systems of a one-way category, forms a locale whose maximum is denoted $\overline{\Sigma}$. Beside, its minimum is the collection of all isomorphisms of C.

The category of components of a loop-free category ${\cal C}$ is the quotient ${\cal C}/\overline{\Sigma}$

Theorem

A loop-free category ${\mathcal C}$ is a non empty lattice iff its category of components is $\{*\}$

Theorem

- **1** the collection Σ is pure in C ($\beta \circ \alpha \in \Sigma \Rightarrow \beta, \alpha \in \Sigma$),
- 2 the category $\mathcal{C}/_{\Sigma}$ is loop-free and the category $\mathcal{C}[\Sigma^{-1}]$ is one-way
- 3 the categories $C[\Sigma^{-1}]$ and $C/_{\Sigma}$ are equivalent and
- the category $C[\Sigma^{-1}]$ is fibered over the base $C/_{\Sigma}$.

The category of components of the swiss flag

Interior of the pospace

Category of components

Flattened

The components category of a 2-semaphore : P(a) . V(a) | P(a) . V(a) | P(a) . V(a) avec $\alpha_a = 3$

Theorem (J. Hashimoto -T. Balabonski)

The monoid of (isomorphism classes of) non empty, connected, finite, loop-free categories is countable and free

Example of product parallel "independent" composition

The Directed Circle Obects : S^1 Morphisms : $S^1 \times \mathbb{N} \times S^1$ Identities : (x,0,x) for $x \in S^1$

