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Abstract. In this article we study the fundamental category (Goubault and Raussen, 2002; Goubault,
2000) of a partially ordered topological space (Nachbin, 1965; Johnstone, 1982), as arising in, e.g.,
concurrency theory (Fajstrup et al., 1999). The “algebra” of dipaths modulo dihomotopy (the fun-
damental category) of such a po-space is essentially finite in a number of situations: We define a
component category of a category of fractions with respect to a suitable system, which contains all
relevant information. Furthermore, some of these simpler invariants are conjectured to also satisfy
some form of a van Kampen theorem, as the fundamental category does (Goubault, 2002; Grandis,
2001). We end up by giving some hints about how to carry out some computations in simple cases.

Mathematics Subject Classifications (2000): 18A32, 54F05, 55Q05, 55U40, 68N30, 68Q85.

Key words: po-space, dihomotopy, fundamental category, category of fractions, component,
invertible morphism, lr-system, pure system, weakly invertible morphism.

1. Introduction

The aim of this paper is to show how to compute some algebraic topological
invariants relevant to questions about concurrent and distributed systems.

A class of examples, which will be used throughout this text, generating geo-
metrical invariants, arises from a toy language manipulating semaphores. Using
Dijkstra’s notation [3], we consider processes to be sequences of locking opera-
tions Pa on semaphores a and unlocking operations V a. In this introduction, we
consider only binary semaphores, ensuring mutual exclusion of accesses, but in fur-
ther examples, we will also model and use counting semaphores, or k-semaphores
(k > 1) which can be accessed concurrently by up to k processes.

� A preliminary version of this work was presented and discussed at the Seminar Structures for
Computable Topology and Geometry at Schloss Dagstuhl. Part of this work was accomplished while
the first two authors were visiting Ecole Polytechnique, France.

This work was completed during an academic visit of the third author to the computer science
department of Macquarie University, Sydney. Acknowledgments are due to the members of Sydney
Category Theory Seminar for numerous discussions on the subject. Part of this work was done while
the fourth author was visiting Aalborg University, with support from BRICS and Paris 7.
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Figure 1. The Swiss Flag example – two processes sharing two resources.

In the example where two processes share two resources a and b:

T1 = Pa.Pb.V b.V a,

T2 = Pb.Pa.V a.V b

the geometric model is the “Swiss flag”, Figure 1, regarded as a subset of R
2 with

the componentwise partial order (x1, y1) ≤ (x2, y2) if x1 ≤ y1 and x2 ≤ y2. The
(interior of the) horizontal dashed rectangle comprises global states that are such
that T1 and T2 both hold a lock on a: this is impossible by the very definition of a bi-
nary semaphore. Similarly, the (interior of the) vertical rectangle consists of states
violating the mutual exclusion property on b. Therefore both dashed rectangles
form the forbidden region, which is the complement of the space X of (legal) states.
This space with the inherited partial order provides us with a particular po-space X

[16, 13], as defined in Section 2.
Moreover, legal execution paths, called dipaths, are increasing maps from the

po-space �I (the unit segment with its natural order) to X. The partial order on X

thus reflects (at least) the time ordering on all possible execution paths.
Many different execution paths have the same global effect: In the “Swiss Flag”

example, for any execution path shaped like the one at the left of Figure 2, T1 gets
hold of locks a and b before T2 does. To give a specific example, assume that T1

does b := b + 1 and T2 does b := b ∗ 2, and that we start with 2 as an initial
value for b. All execution paths below the hole will end up with the value b = 6,
since T1 will do b = 2 + 1 = 3 and then only after will T2 do b = 3 ∗ 2 = 6.
In fact, there are only two essentially different execution paths from the initial
point (0, 0) to the final point (1, 1), that fully determine the computer-scientific
behaviour of the system: one is the type of dipaths just discussed, the other one
runs to the left and above the central hole (see picture at the right-hand side of



COMPONENTS OF THE FUNDAMENTAL CATEGORY 83

Figure 2. Essential schedules for the swiss flag.

Figure 3. Deadlocks and unreachables.

Figure 2). In terms of schedules of executions, the latter corresponds to executions
in which T2 is the first to read and write (after having got the corresponding locks)
on a and b, before T1 does (ending up with result b = 2 ∗ 2 + 1 = 5). These are
in fact the only two classes of dipaths from (0, 0) to (1, 1) modulo “continuous
deformations” that do not reverse time, i.e., up to dihomotopy as defined in [5] and
in Section 2, and these are the only paths of execution which are relevant to the
computation of the possible final values that our toy concurrent program can reach.
This fact is indeed general, and is not at all limited to the example. For determining
the possible outcome of a concurrent program (modelled in a suitable way, as for
our PV programs), only the dihomotopy classes of dipaths count, and it is thus
natural, both on the mathematical side and for computer-scientific purposes, to try
to characterize these classes.

We are not only interested in maximal dipaths modulo deformation. Other in-
teresting dipaths, in our example space start in the initial point (0, 0) and end in a
deadlock, cf. the first picture of Figure 3, or start in an unreachable state and end
in the final point (1, 1), cf. the right-hand side of Figure 3. In fact, all continuous
increasing paths entering the lower concavity below the holes is bound to end at
the intersection of the two forbidden rectangles, which is the deadlock. This lower
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concavity is called the unsafe region. Now, formally reversing the order of time
on the two coordinates results in the picture, on the right-hand side of Figure 3.
Notice that the unsafe region, once time has been reversed, is in fact what we call
the unreachable states. It is the set of points which cannot be reached from the
initial point (with the initial ordering).

In general, one of the important invariants of a concurrent system is its fun-
damental category [9, 10], classifiying dipaths between any pair of points up to
dihomotopy, i.e., a directed version of the fundamental groupoid [2] of a topologi-
cal space. A drawback of the fundamental category is that it is less easy to compute
than the fundamental groupoid or the fundamental group. There are similarities
though, for instance there is a van Kampen theorem in the directed case [9, 11].

Our aim is to go further in the study of the algebraic properties of the fundamen-
tal category in order to manipulate and compute it for a variety of systems. In nice
cases, the relevant information in the fundamental category is essentially finite.
This is shown using a construction based on categories of fractions [6], which
are briefly explained in Section 3. The principle is to formally “invert” systems
of “inessential” morphisms in the fundamental category. Of course, we should be
able to deduce from this construction, applied to the Swiss flag example, at least
the regions of unsafe and unreachable states, and also that we have two classes of
maximal dipaths.

In fact we want a little more than that. Our aim is to decompose the fundamental
category into big chunks as the regions 1 to 10 in Figure 4. Basically, inside these
regions, or components, nothing important happens: first of all, there is at most
one dihomotopy class of dipaths between any two points in the same component.
Moreover, composing with morphisms (= dihomotopy classes of dipaths) within
these regions does not affect the “shape” of the future nor of the past. We will con-
sider the category of fractions with these morphisms formally inverted. A certain
quotient of the fundamental category with respect to this system of “inessential”
morphisms forms then the category of components, which, in our example is the
following finite category:

5 8
g′

2
10

7

g′
1

g1
9

g2

3
f ′

2
4

1

f ′
1

f1
2

f2

6

together with relations g′
2◦g′

1 = g2◦g1 and f ′
2◦f ′

1 = f2◦f1 (compare with, e.g.,
[8]). In some sense, this category of components finitely presents the fundamental
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Figure 4. The components of the Swiss flag.

category. In particular, we can infer from this component category, all dihomotopy
information because of a lifting property, see Propositions 3 and 7.

In general it is not obvious how to characterize the inessential morphisms, i.e.,
the morphisms which should be inverted formally. This leads to a more specific
calculus of fractions, in particular left and right categories of fractions as defined in
Section 4. Moreover, as shown in [6], finite limits and finite colimits are preserved
when taking left and right categories of fractions. We can view equalizers, sums
and products (when they exist, at least locally in some subcategories) as expressing
particular equations between dipaths modulo dihomotopy which the category of
fractions we construct has to preserve.

We then apply this “abstract nonsense” to various topological situations, arising
from questions regarding dihomotopies. Last but not least, we give some hints
about how to compute these invariants for simple spaces like some compact subsets
of R

n with the componentwise ordering. This is done in Section 5.
There are two importants points that need to be outlined, particularly with

respect to earlier work [18, 10]:
First, the “inessential” morphisms used to be defined with respect to sets of

initial and final points. Dipaths were considered as pieces of dipaths between a set
of initial points and a set of final points. The new definitions allow us to be more
natural, without any reference to specific sets of points. This also tackles some of
the problems with the “homotopy history equivalence” relation as defined in [5]
which also needed to be bipointed by sets of initial and final points. In some sense,
Proposition 6 shows that the new definition of inessential morphisms allows us to
encompass all possible choices of initial and final sets.

Another modification arises from the fact that the fundamental category does
not satisfy cancellation properties, in general. This is the reason for introducing
the additional concept of a pure system (cf. Definition 4.3): For instance, the fun-
damental category of a cube minus an inner cube (see Section 6) is not trivial (as
its fundamental group). Close to the inner deleted cube, there are local obstruc-
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tions to directed homotopy of directed paths. But these are cancelled out under
any long enough extensions, in the future as well as in the past. In general it is
not clear whether composites of essential morphisms can become inessential. To
avoid this, we ask a system of morphims to be inverted to satisfy the pureness
property from Definition 4.3. And furthermore, this property has some very nice
consequences as we show in Section 5. Unfortunately, it is not clear in general how
to construct significant systems of inessential morphisms satisfying this pureness
property.

2. Basic Definitions

The framework for the applications we have in mind is mostly based on the simple
notion of a po-space:

DEFINITION 1. (1) A po-space is a topological space X with a (global) closed
partial order ≤ (i.e., ≤ is a closed subset of X × X).

(2) A dimap f : X → Y between po-spaces X and Y is a continuous map that
respects the partial orders (is non-decreasing).

(3) A dipath f : �I → X is a dimap whose source is the interval �I with the usual
order.

Po-spaces and dimaps form a category. To a certain degree, our methods apply
to the more general categories of lpo-spaces [5] (with a local partial order), of flows
[7] and of d-spaces [11], but for the sake of simplicity, we stick to po-spaces in the
present paper. Dihomotopies between dipaths f and g (with fixed extremities α

and β in X) are dimaps H : �I × I → X such that for all x ∈ �I , t ∈ I ,

H(x, 0) = f (x), H(x, 1) = g(x), H(0, t) = α, H(1, t) = β.

A dihomotopy is to be understood as a 1-parameter family of dimaps without
order requirements in the second I -coordinate.� Now, we can define the main object
of study of this paper:

DEFINITION 2. The fundamental category is the category �π1(X) with:

– as objects: the points of X,
– as morphisms, the dihomotopy classes of dipaths: a morphism from x to y is a

dihomotopy class [f ] of a dipath f from x to y.

Concatenation of dipaths factors over dihomotopy and yields the composition of
morphisms in the fundamental category. A dimap f : X → Y between po-spaces
induces a functor f# : �π1(X) → �π1(Y ), and we obtain thus a functor �π1 from the
category of po-spaces to the category of categories.

� This is slightly different for d-spaces, but coincides in important cases.
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The fundamental category of a po-space generalizes the fundamental group
π1(X) of a topological space X (a single object = base point; morphisms = ho-
motopy classes of loops). It is often an enormous gadget (with uncountably many
objects and morphisms) and possesses less structure than a group. It is the aim
of this paper to “shrink” the essential information in the fundamental category to
an associated component category, that in many cases is finite and possesses a
comprehensible structure.

3. Categories of Fractions and Component Categories

Many of the tools we need for the study of the fundamental category can in fact
be applied to at least all small categories. These are the notions of categories of
fractions, of left and right calculi of fractions and of pure systems. The first two
notions are well-known in the category theory literature [6, 1] and were already
applied to the analysis of fundamental categories in [18, 10]. The new notion in
this paper is that of pure systems yielding far more satisfactory applications.

3.1. CATEGORIES OF FRACTIONS

In the sequel, we will only consider small categories (most of the results would still
hold with locally small categories [15], but we do not need these in the applications
to the fundamental category).

DEFINITION AND LEMMA ([1]). Let C be a category.
(1) A subset � ⊂ Mor(C) is called a system of morphisms of C if

(i) ∀x object of C, Idx ∈ �,
(ii) ∀σ1 : x −→ x′, σ2 : x′ −→ x′′ ∈ �, σ2 ◦ σ1 ∈ �.

(In other words, the objects of C together with � form a wide subcategory of C.)
(2) Given a system � of morphisms� in C, there is, up to isomorphism of cat-

egories, a unique category (denoted C[�−1]) and a functor P� : C −→ C[�−1],
such that:

– ∀σ ∈ �,P�(σ ) is an isomorphism of C[�−1].
– For any functor F : C −→ D such that if σ is an isomorphism of C then

F(σ ) is an isomorphism of D , there is a unique functor G : C[�−1] −→ D
such that the following diagram commutes:

C
F

P�

D

C[�−1]
G

� Note that the assumptions in (1) are not necessary for the existence of a category of fractions.
Considering only those � that are subcategories of C will make things simpler in the rest of the
paper, and we do not lose generality by this.
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In fact, each morphism of C[�−1] can be represented in the form σ−1
1 ◦a1 ◦· · ·◦

σ−1
k−1 ◦ ak where each ai is a morphism of C and σ−1

i denotes the formal inverse of
σi ∈ �, cf. [6, 1].

EXAMPLE 1. In algebraic topology, one considers the category of CW-complexes
or of simplicial sets with formal inverses to the system of “weak equivalences”,
i.e., those maps which induce isomorphisms of all homotopy groups. This cate-
gory of fractions is called the homotopy category or the category of “homotopy
types” [6].

3.2. COMPONENT CATEGORIES

Any morphism of the form s−1
1 ◦ s2 ◦ · · · ◦ s−1

2k−1 ◦ s2k, sj ∈ �, k ∈ N is called a
�-zig-zag morphism. The set ZZ(�) of all �-zig-zag morphisms forms a system
of morphisms contained in the invertibles of the category of fractions, denoted
Inv(C[�−1]). Equality holds if � contains the invertibles Inv(C) of the original
category C. In fact, C[(� ∪ Inv(C))−1] = C[�−1]. The subcategory of C[�−1]
with all objects, the morphisms of which are given by the zig-zag morphisms
ZZ(�), forms in fact a groupoid.

Two objects x, y ∈ Ob(C) are called �-related – x �� y – if there exists
a zig-zag-morphism from x to y. This definition corresponds to usual path con-
nectedness with respect to paths in � only – but regardless of orientation. Being
�-related is an equivalence relation; the equivalence classes will be called the �-
connected components – the path components with respect to �-zig-zag paths, i.e.,
the components of the groupoid above. This can be rephrased by saying that �� is
the equivalence relation generated by the relation x ≡ y if there exists σ : x → y

in �.
Next, consider the smallest equivalence relation on the morphisms of C[�−1]

generated (under composition, when they make sense) by

α � α ◦ s, α � t ◦ α for α ∈ Mor(x, y).

Remark that equivalent morphisms no longer need to have the same source or
target. In particular, every morphism in � is equivalent to the identities in both
its source and its target; hence, all zig-zag morphisms within a component are
equivalent to each other.

Dividing out the morphisms in � within C, we arrive at a component category:
The objects of the component category π0(C;�) are by definition the �-connected
components of C; the morphisms from [x] to [y], x, y ∈ Ob(C), are the equiva-
lence classes of morphisms in

⋃
x ′��x,y ′��y MorC[�−1](x′, y′). The composition of

[β] ◦ [α] for α ∈ MorC[�−1](x, y) and β ∈ MorC[�−1](y′, z) is given by [β ◦ s ◦ α]
with s any zig-zag morphism from y to y′. The equivalence class of that composi-
tion is independent of the choices of representatives α and β (by definition) and of
the choice of the zig-zag path s by the preceeding remark.
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The overall idea is thus as follows: Having fixed a suitable system � of “weakly
invertible” morphisms, we decompose the study of C into the study of

– the component category encompassing the global effects of irreversibility and
– the components with a groupoid structure given by the �-zig-zags.

The original category C and the component category π0(C;�) are related by a

functor π0(�) : C
P�→ C[�−1] → π0(C;�); the last arrow is the quotient functor.

As noticed by Marco Grandis and the anonymous referee, this extends the case
of quotients of groupoids by normal groupoids (see [12]), at least in the case
when the only endomorphisms in the category C are the identities (hence every
subgroupoid is normal), as will be the case in most of what follows. Also, the
component category can be seen as a pushout: let T be the functor which associates
to a set S the trivial groupoid on S (one invertible arrow for each element of S). Let
K be the set of connected components of �. Let R� be the functor which to each
arrow σ of � associates the identity on the component of the domain and range of
σ in the groupoid T (K). Then π0(C, �) is part of the following pushout diagram:

�
⊆

R�

C

π0(�)

T (K) π0(C;�)

3.3. FUNCTORS

Let � denote a system of morphisms in the category C and ϒ a system of mor-
phisms in the category D . To ensure that a functor F : C → D induces a
well-defined functor between the categories of fractions C[�−1] → D[ϒ−1] and
then between the categories of components π0(C, �) and π0(D, ϒ), we need to
assume that F(�) ⊆ ϒ . This is not at all automatically satisfied in easy geometric
examples with systems of weakly invertible morphisms. But one can always refine
a given system to ensure this condition:

LEMMA 1. F induces

– a functor F�,ϒ from C[(� ∩ F−1(ϒ))−1] to D[ϒ−1],
– a functor π0F�,ϒ from π0(C, � ∩ F−1(ϒ)) to π0(D, ϒ).

Proof. Obvious. ✷
Particularly important is the case of an inclusion i : �1 ↪→ �2 of systems of

morphisms within the same category C. The identity on C leads immediately to
the functor i�1 �2 : C[�1]−1 → C[�2]−1 and to the functor

π0i�1 �2 : π0(C, �1) → π0(C, �2)

which reflects an inverse to a refinement. In general, it is useful to understand the
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structure of wide sub-categories of fractions of C[�−1] where we invert fewer
morphisms than the ones of �.

LEMMA 2. Let L� be the poset of categories of the form C[*−1] where * ⊆ �,
with the inclusion of morphisms as partial order. L� is a complete lattice.

Proof. Let (�i)i∈I a family of systems of morphisms. It is easy to see that
C[(⋂i∈I �i)

−1] is the greatest lower bound in L� .
Let the least system of morphisms stable under composition of the underlying

category, containing all �i be denoted by
⊎

i∈I �i . Then C[(⊎i∈I �i)
−1] is the

least upper bound of the families of categories C[�−1
i ]. ✷

In fact, the induced functor of Lemma 1 is the largest functor agreeing with F ,
meaning that it is couniversal with respect to inclusion maps C[*−1] ↪→ C[�−1]
(which are the maps induced by set-theoretic inclusion maps * ↪→ �). If one
uses the components with respect to a system � of morphisms as the basis for a
topology on the objects, then Lemma 1 states that we can always take the greatest
such topology making F continuous.

4. Calculi of Fractions

4.1. WEAKLY INVERTIBLE MORPHISMS

In the case of the fundamental category C = �π1(X) of a po-space (X,≤), we
want to define morphisms to be “weakly invertible” if no “decision” is taken. This
means that composition on the left and on the right with such morphims induce
(natural) bijections between sets of morphisms. This idea can be formulated for
general small categories:

Let C→x (respectively Cy→) denote the full subcategory of C consisting of
objects z such that C(z, x) �= ∅ (respectively C(y, z) �= ∅), and consider first
the Yoneda functor: YC : C → Ĉ, where Ĉ is the category of presheaves over C.

DEFINITION 3. We say that a morphism σ : x → y in C is weakly invertible on
the left (respectively on the right) if for all objects z, YC(σ ) (respectively YCop(σ ))
is a natural isomorphism when restricted to C→x (respectively on C

op
→y = Cy→).

We say that σ is weakly invertible if σ is weakly invertible both on the left and on
the right.�

Less abstractly formulated, we ask that all maps (for all v, z ∈ C):

C(y, z) C(x, z) C(v, x) C(v, y)

g g ◦ σ h σ ◦ h

� The fact, that we look only at restrictions of the Yoneda functor on C→x and Cy→ is of primary
importance: otherwise we would define the weakly invertible morphism to be the isomorphisms in
the original category, by Yoneda’s lemma.
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are set-theoretic bijections:

z

x
σ y

!

v

!

whenever C(y, z) �= ∅ (respectively, on the right-hand side, C(v, x) �= ∅).
Obviously,

LEMMA 3. The weakly invertible morphisms in C form a system of morphisms
(cf. Definition 1).

As an example, consider the po-space of Figure 5, which is �I × �I minus the
interior of a square.

All morphisms with end-points within the closed square region A or D are
weakly invertible in the sense above. Similarly, all morphisms with both end points
within the open regions B, resp. C, are weakly invertible.

4.2. CALCULI OF LEFT AND RIGHT FRACTIONS

Whether a morphism s ∈ C(x, y) is weakly invertible or not depends only on the
morphisms with a target reachable from y, resp. with a source that can reach x.
This condition is thus, in general too weak to compare objects with respect to all
ingoing and outgoing morphisms.

EXAMPLE 2. In Figure 6, the “vertical” morphism s is weakly invertible, but
“taking” this morphism represents a decision (in particular to end in a deadlock or
to have the possibility of ending in the final state).

Figure 5. A simple po-space and components containing only weakly invertible morphisms.
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This defect can be repaired by an extra condition to the system � to be chosen.
This “lr” condition moreover allows us to represent morphisms in the category of
fractions and in the component category in a much easier way:

DEFINITION 4 ([1]). Let C be a category. A system � of morphisms in C is said
to admit a right calculus of fractions (for short: is an r-system) if it satisfies (in
addition to properties (i) and (ii) from Definition 4):

(iii) ∀γ : y′ −→ x′, ∀σ : x −→ x′ ∈ �, ∃σ ′ : y −→ y′, ∃γ ′ : y −→ x such that
σ ◦ γ ′ = γ ◦ σ ′, i.e. the following diagram is commutative:

y

∃σ ′∈� ∃γ ′

y′

∀γ

x

∀σ∈�

x′

(iv) ∀γ1, γ2 : x −→ y, ∀σ : y −→ y′ ∈ � such that

σ ◦ γ1 = σ ◦ γ2, ∃σ ′ : x′ −→ x ∈ �

such that γ1 ◦ σ ′ = γ2 ◦ σ ′

x′ ∃σ ′∈�X
x

∀γ1

∀γ2

y
∀σ∈�X

y′

Property (iii) will be called the extension property for calculi of right fractions. A
left calculus of fractions is defined similarly. We will also call such a system � an
r-system, respectively l-system, respectively lr-system for left and right fractions.

A straightforward consequence of the extension property for calculi of right
fractions – and explaining the name – is that every morphism of C[�−1] can be
written as [(aσ−1)] for certain morphisms a of C and σ ∈ �.

As for ordinary fractions, f s−1 and gt−1 can represent equivalent morphisms
in the category of fractions C[�−1]. In fact they do if one can find morphisms
x : X → I and y : X → J in C such as in the following commutative diagram:

B

I

f

s

X
x y

J

g

t

A
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and such that sx (= ty) is in �. Now the composite of equivalence classes of
f s−1 : A → B with gt−1 : B → C is the class of morphism (g ◦ h)(s ◦ r)−1 as
pictured in the following diagram:

C

J

g

t

K

h

r

B

I

f

s

A

The object K and the morphisms h and r arise from the extension property of
calculi of right fractions.

For the properties of the component category with respect to an lr-system, cf.
Section 5.2.

LEMMA 4. The class of weakly invertible morphisms on the right satisfy prop-
erty (iv) of calculi of right fractions. The class of weakly invertible morphisms on
the left satisfy property (iv) of calculi of left fractions.

Proof. Let s : z → x be a weakly invertible on the right and f, g : x → y such
that f ◦ s = YCop(s)(f ) = g ◦ s = YCop(s)(g).

As s is weakly invertible on the right, YCop(s) is a bijection from C(x, y) to
C(z, y) so we must have f = g. Just take t = Idy which is weakly invertible on
the right (by (i)): this gives property (iv) of right-fractions.

The dual of (iv) is proven similarly by using YC(s). ✷
It is not true in general that the class of weakly invertible morphisms is a calcu-

lus of left or right fractions. An example is the fundamental category of the Swiss
flag again, Figure 1. Every morphism is weakly invertible in regions 1, 2, 3, 5,
6, 8, 9 and 10 of Figure 4 but there is no way to “detect” regions 4 and 7. Look
at Figure 6, if we suppose s to be weakly invertible, p is the dipath shown on
this figure, we cannot find a way that property (iii) is satisfied. So if we impose
the lr properties, then we are bound to subdivide furthermore the regions, to find
regions 4 and 7. There are examples for which the only left and right calculus of
fractions included in the weak-invertibles is the set of identities, making the retract
of the fundamental category no simpler than the fundamental category itself (see
Figure 9).
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Figure 6. How to find the components with lr conditions.

Figure 7. Weakly invertible morphisms need not be pure.

4.3. PURE SYSTEMS

Why not just stop here? If we look at simple examples, the category of components
seems alright. For instance the component category of the weakly invertible mor-
phisms (defining here a left and right category of fractions of Definition 3) for the
po-space from Figure 5 is just the free category on the graph delineated in Figure 8.

But now, consider the po-space consisting of the left part of Figure 7, i.e.,
�I × �I × �I minus the interior of a cube. Then all morphisms in the interior of the 26
regions delineated in the right-hand side of the same figure are weakly invertible.
But any dipath from the initial to the final point is weakly invertible as well, com-
posed of the composition of a number of non-weakly invertible morphisms going
from one of the 26 regions to a neighbouring one (we will come back to the full

C D

A B

Figure 8. The category of components of a simple po-space.
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calculation in Section 6). This means that the component category given by invert-
ing the weakly invertible morphisms would actually have some endomorphisms
which would not be the identity. In the concrete case here, when we impose the
lr-conditions, the problem disappears, but it is not at all clear, that this is true in
general.

So we try to eliminate such pathologies by imposing some extra condition at
the calculus of invertibles, that we now define:

DEFINITION 5. A system of morphisms � within a category C is called pure if

(v) for all σ ∈ �, if we can decompose σ as g ◦ f then g and f must be in � too.

Another way to phrase this property is that no invertibles can be decomposed
using a non-invertible, in particular Mor(C) \ � is closed under composition. In
some ways, a real inessential morphism should be a morphism that does not make
any decision, not only from start to end point but also on the way: some decisions
cancel out but we want to have the “atomic” ones. This technical condition will also
prove extremely useful in the proofs of most propositions in Sections 5.2 and 5.3.

4.4. MAXIMAL SYSTEMS

In the following, we will mainly be concerned with pure lr-systems of morphisms.
A system of morphisms always contains a largest subsystem which is lr, but there
is no reason that there should be a maximal pure lr subsystem.

Given a system of morphisms � in a category C. The least subsystem �′ ⊂ �

that has the l-, r-, lr-property, consists just of the identity morphisms Idx . But there
is also always a greatest such system:

LEMMA 5. Let (�i)i∈I a family of systems of morphisms so that ∀i ∈ I , �i

satisfies all the conditions of the right (left, respectively) calculus of fractions
and �i ⊂ �. Then

⊎
i∈I �i ⊂ � satisfies all the conditions of the right (left,

respectively) calculus of fractions.
Proof. The first and second conditions are clearly satisfied. The rest is easily

done by induction on the number of compositions of morphisms. ✷
If we are lucky enough to start with a pure subcategory � (meaning that factor-

ization of morphisms are always within �) of weakly invertible morphisms, then
it is the case that the greatest lr-subcategory is still pure. This is of course in that
case the “maximal pure lr-system” in �:

PROPOSITION 1. Let � be any pure subcategory of the weakly invertible mor-
phisms in a category C (with unique identity endomorphisms). Then the greatest
left and right calculus of fractions in � for C is a pure calculus of fractions.

Proof. We take any sub-lr-system �′ of � and we suppose it is not pure. Then
there exists σ = f1◦f2 with f1 or f2 not in �′. Consider �′′ the category generated
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by �′ and f1 (similarly for f2). Then it can be shown that it is a lr-system, including
strictly �′, but included in �. This proves that the greatest lr-system (which always
exists by Lemma 5) in � has to be pure. ✷

In the general situation, one may proceed as follows: We work with pairs (C, �)

of categories and admissible systems of weakly invertible morphisms (admissible
means lr, pure lr etc.) Call a functor F : (C1, �1) → (C2, �2) with F(�1) ⊆ �2

an elementary equivalence if

– C1 = C2 or
– π0F�1�2 : π0(C1, �1) → π0(C2, �2) is an equivalence of categories

the first of which reflects refinements, cf. Section 3. Regard the equivalence relation
on these pairs generated by elementary equivalences. Then the component category
with respect to any admissible system of morphisms is equivalent to the original
category with the system of identities. Of course, it is still interesting to ask for as
large as possible admissible systems (as coarse as possible component categories),
although these might not be unique.

5. Properties of Systems of Weakly Invertible Morphisms and
Corresponding Components

5.1. WEAKLY INVERTIBLE MORPHISMS AND HISTORIES

There is a strong link between factorization properties in C and weak invertibil-
ity (as categories of fractions and factorization systems do have in general, see
[1]), which will have a strong geometric and concurrency theoretical meaning: the
homotopy histories of [5]. First, we need a definition:

DEFINITION 6. Given two objects x0, x1 in C and f : x0 → x1 a morphism in
C, the history hx0,x1[f ] of f is defined as

hx0,x1[f ] = {x ∈ C | ∃f0 : x0 → x, f1 : x → x1 with f = f1 ◦ f0}.
Two objects x, y ∈ C are history equivalent (for a given x0 and x1, noted

x ∼x0,x1 y, if x ∈ hx0,x1[f ] ⇔ y ∈ hx0,x1[f ] for all f : x0 → x1).

LEMMA 6. Let C be a category where the only endomorphisms are identities.
Then, σ : x → y has surjective composition on the left (as weakly invertible on
the left, in Definition 3, except we only require surjectivity) and on the right if and
only if,

– x ∼x0,x1 y for all x0 and x1 such that C(x0, x) �= ∅ and C(y, x1) �= ∅,
– σ is the only morphism from x to y in C.
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Proof. Easy diagram chasing. The second condition of the lemma is of course
needed geometrically: take for instance the square minus one square in Figure 5.
Regions A and D are in the same homotopy-history equivalence classes. This is
implied by the surjectivity of left composition with σ by the same argument as the
one of Proposition 2. ✷

This implies that weak invertibility refines the notion of homotopy history equiv-
alence of [5]. In the case where C is the fundamental category of a sub-pospace of
R

2, the two notions are in fact equivalent (see [17]).
When applied to the fundamental category of po-spaces, this means that the

essential schedules in a concurrent system are separated out by the notion of com-
ponent. Notice that this is true also for partial schedules and not just the maximal
ones as in, e.g., [10] and [5].

5.2. GENERAL PROPERTIES OF SYSTEMS OF WEAKLY INVERTIBLE

MORPHISMS

In this section, we state and prove essential properties of the partition into com-
ponents of a small category C that a system � of weakly invertible morphisms
induces. The most important case we have in mind is the fundamental category
C = �π1(X) of a po- or d-space X together with a maximal pure lr-system of
weakly invertible morphisms in C from Section 4.4. Several properties are true for
more general systems, and they will thus be stated with a minimal set of conditions.

First an easy formal consequence of the definitions:

LEMMA 7. The weakly invertible morphisms in C × D are products of weakly
invertible morphisms in C with weakly invertible morphisms in D .

PROPOSITION 2. Let � consist of weakly invertible morphisms and let
s ∈ �(x, y). Then the maps

C(x, x)
s#

C(x, y) C(y, y)
s#

are bijections.
If, in particular, C(x, x) = {Idx},� then C(x, y) = �(x, y) = {s}. In other

words: The components in the component category π0(C;�) have unique endo-
morphisms.

Proof. Immediate from definitions. ✷
PROPOSITION 3. Let � denote an l-system of morphisms in C.

(1) For every f ∈ C(x, y) and every x′ ∼� x there exists y′ ∼� y and f ′ ∈
C(x′, y′) such that f ′ ∼� f .

� This condition is always satisfied for the fundamental category of a po-space.
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(2) Let [f ]� ∈ π0(C;�)([x]�, [y]�) and let x′ ∈ [x]� . Then there exists y′ ∈ [y]�
and f ′ ∈ C(x′, y′) such that [f ′]� = [f ]� .

Statement (2) should be interpreted as a lifting property, lifting morphisms from
the component category π0(C;�) to the original category C.

Proof. Immediate from the definition of an l-system. ✷
There is of course an analogous statement for liftings in r-families of mor-

phisms.

PROPOSITION 4. Let � denote a pure l-system of weakly invertible morphisms.
Let C(x, x) = {Idx} and let x ∼� y. If

x
f

z
g

y,

then f, g ∈ � and z ∼� x.
Proof. Since x ∼� y with � an l-system, there exist morphisms σ ∈ �(x, u),

τ ∈ �(y, u) in the diagram

x
f

σ

z
g

y

τ

u .

By Proposition 2, these are the only morphisms beween x and u, resp. y and u. In
particular, τ ◦ g ◦ f = σ . Since σ is pure, we conclude that f, g ∈ �. ✷

Again, there is an analogous property (with an analogous proof) for pure r-
families of weakly invertible morphisms.

The result can be understood as a “diconvexity” property of the components.
Here is a negative formulation of the result: If x �∼� z and C(z, y) �= ∅, then
x �∼� y. You never return to a component that you have left.

PROPOSITION 5. Let � denote a pure l-system of morphisms in C, let
σ, τ ∈ �(x,−). There exists a solution of the extension problem

σ ′· ·
τ

x
σ

·
τ ′

with both morphisms σ ′, τ ′ ∈ �.
Proof. From the extension condition we get σ ′ ∈ � and τ ′ ∈ C such that

τ ′ ◦ σ = σ ′ ◦ τ ∈ �. Since � is pure, τ ′ has to be in �, as well. ✷
Again, there is an analogous statement for extensions with respect to pure r-

families of morphisms.
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COROLLARY 1. Let � denote a pure l-system (resp. r-system) of morphisms in
C. Every morphism in the subcategory generated by � in C[�]−1 can be repre-
sented in the form σ−1

1 ◦ σ2 (resp. σ1 ◦ σ−1
2 ), σi ∈ �, 1 ≤ i ≤ 2.

Proof. The same proof as for the expression of general morphisms using the
�-extension property from Proposition 5. ✷

For a pure system �, the lifing property from Proposition 3 can be sharpened:

PROPOSITION 7. Let � be a pure l-system (or pure r-system) within C. Let
C1, C2 ⊂ Ob(C) denote two components such that the set of morphisms
(in π0(C;�)) is finite. Then, for every x1 ∈ C1 there exists x2 ∈ C2 such that
the quotient map

C(x1, x2) → π0(C;�)(C1, C2), f #→ [f ]
is onto. If � is a pure lr-system of weakly invertible morphisms with

C(x, x) = {Idx}
for all x ∈ Ob(C), the quotient map is even a bijection.

Proof. By repeated application of Proposition 3, all n morphisms from C1 to C2

can be lifted to morphisms f1, . . . , fn with source in x1 and targets in y1, . . . , yn ∈
C2. By repeated application of Corollary 1, there exist morphisms σi ∈ � from
yi to the same target x2 ∈ C2, 1 ≤ i ≤ n. The quotient map is onto, since
σi ◦ fi � fi, 1 ≤ i ≤ n.

To prove injectivity, assume fi ∈ C(x1, x2) with

[f1] = [f2] ∈ π0(C;�)(C1, C2).

Then, there exist x0 ∈ C1, x3 ∈ C2 and morphisms σi ∈ �(x0, x1), τi ∈ �(x2, x3),
1 ≤ i ≤ 2, such that τ1 ◦ f1 ◦ σ1 = τ2 ◦ f2 ◦ σ2 ∈ C(x0, x3). By Proposition 2,
σ1 = σ2 and τ1 = τ2. Since σ1 and τ1 are weakly invertible, we conclude: f1 =
f2 ∈ C(x1, x2). ✷

Another useful interpretation is as follows: the components are the appropriate
counterparts of connected components in the classical case. As a matter of fact,
dihomotopy classes can be read if we use a bipointing, as in, e.g., [11], and not
just a base point as in the classical case. Ideally we would like to be able to change
the pair of base points chosen, without changing the classes of dipaths between
these points, as long as they stay in the same components and as long as they are
consistent: the “end” base point should be reachable (by a dipath) from the “start”
end point. Proposition 7 does not quite give this for a general pure lr-system, but
we suggest that one should look for extra requirements which make it hold – for
instance being in an appropriate subcategory of po-spaces. In the 2-dimensional
mutual exclusion models, cf. [17] and [10], it is certainly true. The set of com-
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ponents should be called the set of diconnected components (a �π0 in some sense)
and the algebraic structure of dipaths between diconnected components is really
the counterpart of the fundamental group (or groupoid). In fact, in the classical
case of the fundamental groupoid π1, π0 can be read from it as its set of connected
components (see, e.g., [6]).

Another application of Proposition 5 shows that any component can possess at
most one maximal, resp. minimal object:

DEFINITION 7. Let D ⊆ Ob(C). An object m ∈ D is a minimal element in D, if
C(x,m) �= ∅ ⇒ x = m or x /∈ D. A maximal element is defined similarly.

COROLLARY 2. Let � be a pure l-system (or pure r-system) within C. Every
component with respect to � can at most have one maximal and one minimal
element.

REMARK 1. From easy geometric examples as Example 5, we know that a
component in general need not possess a minimal or maximal element. Ques-
tion: Is there always an infimum (supremum) for every component? Are those
unique? We conjecture that some of the results of [14] could be useful for proving
this.

In the presence of maximal or minimal elements for the objects of the whole
category, several nice properties can be proved to hold without the pureness as-
sumption. The first lemmas are relevant for the unsafe regions in deadlock analysis
(cf. [4]):

DEFINITION 8. For x ∈ Ob(C), let x→, resp. x← denote the set of maximal
(minimal) elements x0, y0 ∈ Ob(C) with C(x, x0) �= ∅ (C(y0, x) �= ∅), i.e., the
maximal elements reachable from x (minimal elements that can reach x).

LEMMA 8. Let � denote an r-system of morphisms in C, and let �(x, y) �= ∅.
Then x→ = y→. If � is an l-system, then x← = y←.

Proof. Consider an extension problem

y

x

σ∈�

f
x0

with x0 a maximal element. The right vertical arrow has to be an endomorphism of
x0, and hence x0 can be reached from y. ✷
LEMMA 9. Let � denote an l-system of morphisms in C and let x0 denote a
maximal element of Ob(C). If �(x, x0) �= ∅ and C(x, y) �= ∅, then �(y, x0) �= ∅.
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In other words: If x and x0 are �-equivalent, then every y reachable from x is
�-equivalent to x.

Proof. Consider an extension problem

y

x

f

σ∈� x0.

Again, the right vertical arrow has to be an endomorphism of x0, and hence there
is a �-morphism from y to x0. ✷
PROPOSITION 8. Let � denote an l-system of weakly invertible morphisms in
C and let x0 denote a maximal element of Ob(C) with C(x0, x0) = {Idx0}. If
�(x, x0) �= ∅ and C(x, y),C(y, z),C(y, x0) are all non-empty, then all these sets
consist of a single element.

In other words: If x and x0 are �-equivalent, the category is trivial between x

and x0 (no non-trivial dihomotopy between x and x0 in the fundamental category).

Proof. Any composition x
f→ y

g→ z
h→ x0 is equal to the unique morphism

σ ∈ �(x, x0) by Proposition 2. By Lemma 9, �(y, x0) �= ∅ �= �(z, x0), and by
Proposition 2, C(z, x0) = �(z, x0) = {h}, C(y, x0) = �(y, x0) = {h ◦ g}. Since
h ◦ g is weakly invertible, f is the only element of C(x, y); since h is weakly
invertible, g is the only element of C(y, z). ✷

5.3. TOPOLOGICAL PROPERTIES

More precise information on components relies on topological properties on top of
the categorical ones. From now on we investigate a topological category C, i.e., the
objects Ob(C) form a topological space X. Additionally, a system � of morphisms
in C is given.

DEFINITION 9. (1) Let U denote an open set in X and x, y ∈ U . A morphism
f ∈ C(x, y) is called a U -morphism if

f = f2 ◦ f1, f1 ∈ C(x, z), f2 ∈ C(z, y) ⇒ z ∈ U.

The set of all such U -morphisms from x to y will be denoted CU(x, y).
(2) An open set U ⊂ X is called �-simple if

(a) x, y ∈ U ⇒ |CU(x, y)| ≤ 1.
(b) For all x ∼� y ∈ U there exists z ∈ U such that CU(x, z ∩ �(x, z) �= ∅ �=

CU(y, z ∩ �(y, z).
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DEFINITION 10. Two �-components C1 and C2 are called neighbours if there
are

(1) a morphism with source in C1 and target in C2 and
(2) a �-simple open set U containing an element p ∈ C1 ∩ ∂C2 such that every

g ∈ C(p, x2), x2 ∈ C2 decomposes as g = g2 ◦ g1 with g1 ∈ CU(p, z) and
z ∈ C2 (or the symmetric condition with p ∈ ∂C1 ∩ C2).

PROPOSITION 9. Let (C, �) denote a category with an lr-system of weakly in-
vertible morphisms. Let C1 and C2 denote two neighbouring �-components such
that C(xi, xi) = {Idxi

} for some xi ∈ Ci . Then, Mor(C1, C2) has exactly one
element in the component category π0(C;�).

Proof. Choose an element p ∈ C1∩∂C2 as in Definition 10(2). By Proposition 3,
every morphism from C1 to C2 is equivalent to one with source p; by Defini-
tion 10(1), there exists such a morphism. By assumption in Definition 10(2), every
such morphism decomposes as s ◦ f with f a U -morphism and s a �-morphism
within C2 (use Proposition 2) and is hence equivalent to the U -morphism f .

Consider two U -morphisms f, f ′ with source p. By Definition 9, there are U -
morphisms s, s′ ∈ � such that s ◦ f = s′ ◦ f ′. Thus f � s ◦ f = s′ ◦ f ′ � f ′. ✷

The result allows to interpret the component category as a directed graph (rather
than a multigraph) with relations. If, in particular, every morphism decomposes into
morphisms between neighbour components (as for the fundamental category of a
po-space), one may use the classes of these unique morphisms between neighbour
components as generators for the component category.

6. Examples

In the case of Figure 9, the only left and right calculus of fractions included in
the weakly invertible morphisms is easily shown to consist of the identities only.
As a consequence, the category of components with respect to this greatest lr-
system of weakly invertible morphisms in this case is isomorphic to the original
category!

The po-spaces arising from 2-dimensional mutual exclusion models, i.e., a
square, from which a number of isothetic rectangles (with edges parallel to the
square) have been deleted (as the forbidden region), are handled completely in
[17] and [10]: A system of morphisms is a pure lr-system of weakly invertible
morphisms if no such morphism crosses a system of line segments emerging from
(certain of) the minima, resp. maxima of the rectangles that constitute the forbidden
region.
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Figure 9. A po-space with no nontrivial weakly invertibles.

6.1. THE SURFACE OF A 3-CUBE

Now for a more intricate example, treated in full details. The faces of the 3-cube C,
or equivalently, the 3-cube minus an interior 3-cube, has 26 components. Points on
the faces of the 3-cube are {(x, y, z) ∈ �I 3 | {x, y, z}∩ {0, 1} �= ∅}. Let C = �π1(C).
Observe that

– There are two elements in C((0, 0, a), (1, 1, a)), C((0, a, 0), (1, a, 1))) and
C((a, 0, 0), (a, 1, 1)) when a �∈ {0, 1}. For instance the composition of arrows
from (0, 0, a) to (0, 1, a) and then to (1, 1, a) is different from going from
(0, 0, a) to (1, 0, a) and then to (1, 1, a). They are different, since all dipaths
from (0, 0, a) to (1, 1, a) has the third coordinate a ∈ ]0, 1[, and since the
interior of the cube is missing.

– Between other pairs of points, there are at most one morphism.
– All morphisms α : (x1, x2, x3) → (y1, y2, y3) such that xi = 0 ⇒ yi = 0 and

xi = 1 ⇒ yi = 1 are weakly invertible. This is easy to see by the geometry
of the cube – the future and past of (x1, x2, x3) and (y1, y2, y3) have the same
geometry.

By the last property, we can restrict attention to the 26 classes of points represented
by (x, y, z) ∈ {0,−, 1}3 \ (−,−,−) where the coordinate − just means an interior
point of ]0, 1[. We will see, that none of the morphisms between these points are
in the system �. We will omit the commas and write (0 − 1) for (0,−, 1).

6.1.1. The Weakly Invertible Morphisms

We will find the arrows which are not weakly invertible. Since C((00−), (11−))

has 2 elements and C((00−), (1−−)) has one element, the arrow (1−−) → (11−)

is not weakly invertible. Similarly, there is only one element in C((00−), (111)),
so the arrow (11−) → (111) is not weakly invertible. Hence (the lack of) weak
invertibility implies that no arrow from an upper face (1−−), (−1−) or (−−1)
to an upper edge (11−), (1−1) or (−11) is in �, and similarly for all maps from
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lower edges to lower faces. Lack of weak invertibility also implies that maps from
upper edges to (1, 1, 1) or from (0, 0, 0) to lower edges are not in �.

Similarly, �((xy−), (11−)) = ∅, when xy �= 11 and �((00−), (xy−)) = ∅,
when xy �= 00 since there are no weakly invertible morphisms. Permuting the
coordinates gives 24 other instances of this.

Notice that the system of weakly invertible morphisms is not pure.

6.1.2. The Maximal lr-System in the Weakly Invertible Morphisms

1. We study maps from any (abc) �= (111), which is not an upper edge, to (111).
These are weakly invertible, but they are not in �: Suppose s : (abc) → (111)
is in � and suppose c �= 1. Let f : (abc) → (11−). Then the lr-property
implies that we can complete the diagram

(111)
g

(xyz)

(abc)

s

f
(11−)

σ

with σ ∈ �. Since (xyz) has to be (111), g is the identity.
But �((11−), (111)) = ∅, so the diagram cannot be completed with σ ∈ �.
Hence �((abc), (111)) = ∅ when (abc) �= (111) and similarly for maps from
(000). Notice that this is a concrete example of Proposition 8.

2. Any morphism s : (ab0) → (11−) is weakly invertible, since (ab0) is not
reachable from (00−). But suppose s ∈ �. Then the lr-property is violated: Let
f : (00−) → (11−) be one of the two morphisms. Then the lr-property says
that there are maps σ ∈ � and g completing the diagram:

(00−)
f

(11−)

(xyz)

σ

g
(ab0)

s

but since (xyz) is below (00−) and (ab0), we conclude that (xyz) = (000)
and we know that �((000), (00−)) = ∅. Hence s �∈ �. Together with what we
found in 1), we have seen that no map to an upper edge, and symmetrically, no
map from a lower edge is in �.

3. Now for maps from and to intermediate edges: Suppose first, we map to an
upper face. The morphism t : (1−0) → (1−−) is weakly invertible. If it is in
�, then we can complete the diagram

(1−0) t

f

(1−−)

g

(110) σ
(xyz)
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with σ ∈ �. But then (xyz) ∈ {(11−), (111)} and we know there is no such σ .
So t �∈ �. The only other option, which is not already covered above, is to map
to an intermediate vertex s : (1−0) → (110); use the diagram above – now
assuming f = s ∈ �. Symmetrically, no map from or to an intermediate edge
is in �.

4. Maps from and to faces: Maps from an upper face or to a lower face are covered
above. Now suppose s : (abc) → (1−−) is in �, and suppose (abc) is not an
edge – these are covered above. Then suppose

(abc) < (10−) (else (abc) < (01−),

so this case is similar). Let f : (abc) → (10−) and do the diagram. There are
no (nontrivial) morphisms from (10−), so s �∈ �. The other cases follow in a
similar way.

5. The last case we have to check is maps between intermediate vertices, since
maps to and from all other types is covered above: Let s : (100) → (110).
If s ∈ �, the diagram with f : (100) → (1−0) should have a completion
with σ : (1−0) → (xyz) �= (1−0) and there are no such morphisms from an
intermediate edge.

Hence, in this case, the biggest lr-system in the weakly invertible morphisms
is in fact pure, since the morphisms between the 26 types of points are all in the
complement of �.

7. Conclusion and Future Work

We hope to achieve an effective calculation of the component categories of the fun-
damental category of reasonable po-spaces by applying Marco Grandis’ directed
version [11] of a van Kampen theorem for directed spaces. More precisely, let
X = X1 ∪ X2 and let �0, �1 and �2 denote admissible (lr, pure lr) systems of
weakly invertible morphisms in the fundamental categories �π1(X1 ∩ X2), �π1(X1)

and �π1(X2). The task is to derive an admissible system �12 of weakly invertible
morphisms in �π1(X) – and thus derive a suitable component category for the union.
For the time being, we can only state the following conjecture:

Let i1 : X1 ∩ X2 → X1 and i2 : X1 ∩ X2 → X2 be the canonical inclusion
morphisms (respectively

i∗1 : �π1(X1 ∩ X2) → �π1(X1) and i∗2 : �π1(X1 ∩ X2) → �π1(X2)

the induced functors between the corresponding fundamental categories).
Our claim is:

CONJECTURE 1 (van Kampen on components). The greatest left and right cal-
culus of fractions (cf. Lemma 5) in the pushout > of �1 and �2 above
I12 := i∗1

−1(�1) ∩ i∗2
−1(�2) ∩ �0 as below:�

� The induced functors from i∗1 and i∗2 on the invertible morphisms, still denoted the same way,
are the ones of Lemma 1.
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Figure 10. A pushout of two po-spaces.

I12
i∗1

i∗2

�1

�2 >

is denoted �̄12. Then the system

�12 = {s ∈ �π1(X) | P�̄12
(s) ∈ ZZ(�̄12)},

containing all morphisms that are identified with zig-zag morphisms in the cat-
egory of fractions with respect to �̄12, is the admissible system describing the
“inessential” morphisms of the fundamental category �π1(X).

As an example of this conjectural van Kampen theorem, consider the situation
of Figure 10 with two copies of Figure 5 glued together along a common boundary.
Figure 10 shows the corresponding pushout diagram of po-spaces X1 and X2.

The left part of Figure 11 shows the union of the components of X1 and X2.
Extension properties imposed by the property to be left and right systems imply that
some of the inessential morphisms should no longer be considered as inessential
in the union of the two spaces. The greatest left and right system (which is pure) is
shown in the right part of Figure 11.

As a second example, consider a rectangle X as the union of X1, a rectangle
without an inner square (Figure 5), and X2 filling in that inner square (with a
collar). The intersection X1 ∩ X2 is dihomeomorphic to X1. This example shows
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Figure 11. The inessential morphims after pushout.

that it is necessary to “complete” �̄12 in the category of fractions to arrive at the
result �12 = π1(X).

The system �12 in the conjecture is an lr-system almost by definition. Probably,
one needs additional assumptions (e.g., X1 “below” X2 or vice versa) to make sure
that it consists of weakly invertible morphisms and/or satisfies pureness.

For application purposes, we would like to exploit the van Kampen conjecture
to arrive at a geometrically based algorithm detecting the components in a mu-
tual exclusion model (cf. Section 1) from a description of the forbidden region,
as a generalisation of our algorithm detecting deadlocks, unsafe and unreachable
regions [4].

Last but not least, we believe that our construction based on a category of
fractions of the fundamental category of a po-space has close connections to some
kind of universal covering of the fundamental category of a pospace (as defined
in, e.g., [12]). In fact, the category of components enjoys a certain lifting property.
The set of weakly-invertibles itself is defined through suitable representations of
the fundamental category: they are well-known to be in one to one correspondence
with coverings of that category [12].
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