Control Flow Structures of Concurrent Programs are Higher Dimensional Mathematical Objects

Emmanuel Haucourt

Wednesday 13th April 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

from Dijkstra's "Cooperating Sequential Processes" paper

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

from Dijkstra's "Cooperating Sequential Processes" paper

Resource Declarations

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

from Dijkstra's "Cooperating Sequential Processes" paper

Resource Declarations

Process Declarations

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

from Dijkstra's "Cooperating Sequential Processes" paper

Resource Declarations Process Declarations Bootup

<□ > < @ > < E > < E > E のQ @

Resource Declaration

Resource Declaration

o sem: <int> <set of identifiers>

Resource Declaration

- o sem: <int> <set of identifiers>
- o sync: <int> <set of identifiers>

Resource Declaration

- o sem: <int> <set of identifiers>
- o sync: <int> <set of identifiers>
- o var: <identifier> = <constant>

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

A Toy Language The Hasse / Syracuse algorithm

var: x = 7

proc: p = ()+[x=1]+C(q)

init: p

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

of the Hasse-Syracuse algorithm

of the Hasse-Syracuse algorithm

(日)、

æ

of the Hasse-Syracuse algorithm

・ロト ・ 雪 ト ・ ヨ ト

E 996

of the Hasse-Syracuse algorithm

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

of the Hasse-Syracuse algorithm

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

of the Hasse-Syracuse algorithm

of the Hasse-Syracuse algorithm

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Reducing the Control Flow Graph

of the Hasse-Syracuse algorithm

Reducing the Control Flow Graph

of the Hasse-Syracuse algorithm

Reducing the Control Flow Graph

of the Hasse-Syracuse algorithm

on a control flow graph

on a control flow graph

the current value of \boldsymbol{x} is 7

on a control flow graph

the current value of \boldsymbol{x} is 7

on a control flow graph

the current value of x is 22

on a control flow graph

the current value of x is 22

on a control flow graph

the current value of \boldsymbol{x} is 22

on a control flow graph

the current value of x is 22

on a control flow graph

the current value of x is 11

on a control flow graph

the current value of x is 11

on a control flow graph

the current value of \boldsymbol{x} is 11

on a control flow graph

the current value of x is 11

on a control flow graph

the current value of x is 34

on a control flow graph

the current value of x is 34

on a control flow graph

the current value of x is 34

on a control flow graph

the current value of x is 34

on a control flow graph

the current value of \boldsymbol{x} is 17
on a control flow graph

the current value of \boldsymbol{x} is 17

on a control flow graph

the current value of \boldsymbol{x} is 17

on a control flow graph

the current value of \boldsymbol{x} is 17

on a control flow graph

the current value of x is 52

on a control flow graph

the current value of ${\tt x}$ is 52

on a control flow graph

the current value of ${\tt x}$ is 52

on a control flow graph

the current value of ${\tt x}$ is 52

on a control flow graph

the current value of x is 26

on a control flow graph

the current value of x is 26

on a control flow graph

the current value of x is 26

on a control flow graph

the current value of x is 26

on a control flow graph

the current value of x is 13

on a control flow graph

the current value of x is 13

on a control flow graph

the current value of x is 13

on a control flow graph

the current value of x is 13

on a control flow graph

the current value of x is 40

on a control flow graph

the current value of x is 40

on a control flow graph

the current value of x is 40

on a control flow graph

the current value of x is 40

on a control flow graph

the current value of x is 20

on a control flow graph

the current value of x is 20

on a control flow graph

the current value of x is 20

on a control flow graph

the current value of x is 20

on a control flow graph

the current value of x is 10

on a control flow graph

the current value of x is 10

on a control flow graph

the current value of x is 10

on a control flow graph

the current value of x is 10

on a control flow graph

the current value of \boldsymbol{x} is 5

on a control flow graph

the current value of \boldsymbol{x} is 5

on a control flow graph

the current value of \boldsymbol{x} is 5

on a control flow graph

the current value of \boldsymbol{x} is 5

on a control flow graph

the current value of x is 16

on a control flow graph

the current value of x is 16

on a control flow graph

the current value of x is 16

on a control flow graph

the current value of x is 16

on a control flow graph

the current value of \boldsymbol{x} is 8
on a control flow graph

the current value of \boldsymbol{x} is 8

on a control flow graph

the current value of \boldsymbol{x} is 8

on a control flow graph

the current value of \boldsymbol{x} is 8

on a control flow graph

the current value of x is 4

on a control flow graph

the current value of x is 4

on a control flow graph

the current value of x is 4

on a control flow graph

the current value of x is 4

on a control flow graph

the current value of \boldsymbol{x} is 2

on a control flow graph

the current value of \boldsymbol{x} is 2

on a control flow graph

the current value of \boldsymbol{x} is 2

on a control flow graph

the current value of \boldsymbol{x} is 2

on a control flow graph

the current value of \boldsymbol{x} is $\boldsymbol{1}$

on a control flow graph

the current value of \boldsymbol{x} is $\boldsymbol{1}$

on a control flow graph

the current value of \boldsymbol{x} is $\boldsymbol{1}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

on a control flow graph

the current value of \boldsymbol{x} is $\boldsymbol{1}$

on a control flow graph

the current value of \boldsymbol{x} is $\boldsymbol{1}$

higher dimensional graphs

higher dimensional graphs

higher dimensional graphs

higher dimensional graphs

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

æ

higher dimensional graphs

higher dimensional graphs

K₀

higher dimensional graphs

higher dimensional graphs

・ロト ・ 一 ト ・ モト ・ モト

æ

higher dimensional graphs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

higher dimensional graphs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Tensor product of precubical sets

Given precubical sets K and K' of dimension p and q, the set of d-cubes for $0 \le d \le p + q$

$$(K \otimes K')_d = \bigsqcup_{i+j=d} K_i \times K'_j$$

For $x \otimes y \in K_i \times K'_j$ with i + j = d the k^{th} face map, with $0 \leq k < d$, is given by

$$\partial_k^{\pm}(x \otimes y) = \begin{cases} \partial_k^{\pm}(x) \otimes y & \text{if } 0 \leq k < i \\ x \otimes \partial_{k-p}^{\pm}y) & \text{if } i \leq k < d \end{cases}$$

A Toy Language

Synchronization: the $W(_)$ instruction

sync:	1 b
proc:	p = W(b)
init:	2p

・ロト ・聞ト ・ヨト ・ヨト

æ

・ロト ・聞ト ・ヨト ・ヨト

æ

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Discrete paths

are "continuous"

Discrete paths

are "continuous"

are "continuous"

are "continuous"

are "continuous"

are "continuous"

are "continuous"

are "continuous"

are "continuous"

are "continuous"

are "continuous"

are "continuous"

are "continuous"

Discrete path on a model of dimension N

A sequence of points p_0, \ldots, p_K s.t. for all $k \in \{1, \ldots, K\}$ one has

for all
$$n \in \{1, ..., N\}$$
 $\partial^+ p_n(k-1) = p_n(k)$ or $p_n(k) = p_n(k-1)$

or

for all $n \in \{1, \ldots, N\}$ $p_n(k-1) = \partial p_n(k)$ or $p_n(k) = p_n(k-1)$

sync: 1 b

(ロ)、(型)、(E)、(E)、 E) の(の)

Forbidden points

due to synchronization

Each point
$$p=(p_1,\ldots,p_d)$$
 such that

$$0 < \operatorname{card} \{k \in \{1, \ldots, d\} \mid \operatorname{label}(p_k) = \mathbb{V}(b) \} \leq \operatorname{arity}(b)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

is forbidden.

A Toy Language

conflicting assignments

var:	x = 0
proc: proc:	p = (x := 1) q = (x := 2)
init:	рq

due to race condition

the value of ${\tt x}$ is ~0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

due to race condition

the value of ${\bf x}$ is $\ 0$

due to race condition

the value of ${\tt x}$ is ~0

due to race condition

the value of \boldsymbol{x} is $\ ?$

that however meets a forbidden point

the value of ${\tt x}$ is ~0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

that however meets a forbidden point

the value of ${\tt x}$ is ~0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

that however meets a forbidden point

the value of ${\tt x}$ is ~0

that however meets a forbidden point

the value of \boldsymbol{x} is $\ 1$

that however meets a forbidden point

the value of \boldsymbol{x} is $\ 2$

that however meets a forbidden point

the value of \boldsymbol{x} is $\ 2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
that however meets a forbidden point

the value of \boldsymbol{x} is $\ 2$

that however meets a forbidden point

the value of \boldsymbol{x} is $\ 2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

avoiding forbidden points

the value of ${\tt x}$ is ~0

avoiding forbidden points

the value of ${\tt x}$ is ~0

avoiding forbidden points

the value of ${\tt x}$ is ~0

avoiding forbidden points

the value of \boldsymbol{x} is $\ 1$

avoiding forbidden points

the value of \boldsymbol{x} is $\ 1$

avoiding forbidden points

the value of \boldsymbol{x} is $\ 2$

avoiding forbidden points

the value of \boldsymbol{x} is $\ 2$

avoiding forbidden points

the value of \boldsymbol{x} is $\ 2$

avoiding forbidden points

the value of \boldsymbol{x} is $\ 2$

Forbidden points

due to race conditions

A point $p = (p_1, \ldots, p_d)$ is a race condition when there exist $i \neq j$ such that

- both $\lambda_i(p_i)$ and $\lambda_j(p_j)$ are assignments trying to alter the same variable or

- $\lambda_i(p_i)$ tries to alter a free variable of $\lambda_j(p_j)$ or $\lambda_j(\alpha)$ for some arrow α such that $\partial^{-}\alpha = p_j$.

In that case the point p is forbidden.

The replacement property

for admissible execution traces

Replacement

Any admissible execution trace that meets a race condition is "equivalent" to an admissible execution trace which avoids all of them.

A Toy Language

Desynchronization: the P(_) and V(_) instructions

sem:	1 a
proc:	p = P(a); V(a)
init:	2p

sem: 1 a

മ

sem: 1 a

sem: 1 a

sem: 1 a

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

of processes and programs

of processes and programs

A process π is conservative when for all paths and all semaphores s, the amount of tokens of type s held by the process at the end of the execution trace only depends on its arrival point.

of processes and programs

A process π is conservative when for all paths and all semaphores s, the amount of tokens of type s held by the process at the end of the execution trace only depends on its arrival point. In that case the process π comes with a potential function F_{π}

 $F_{\pi}: \{\text{semaphores}\} \times \{\text{points}\} \rightarrow \mathbb{N}$

of processes and programs

A process π is conservative when for all paths and all semaphores s, the amount of tokens of type s held by the process at the end of the execution trace only depends on its arrival point. In that case the process π comes with a potential function F_{π}

 $F_{\pi}: {\text{semaphores}} \times {\text{points}} \to \mathbb{N}$

A program Π is conservative when so are its processes π_1, \ldots, π_d

of processes and programs

A process π is conservative when for all paths and all semaphores s, the amount of tokens of type s held by the process at the end of the execution trace only depends on its arrival point. In that case the process π comes with a potential function F_{π}

$$F_{\pi}: \{ \mathsf{semaphores} \} imes \{ \mathsf{points} \} o \mathbb{N}$$

A program Π is conservative when so are its processes π_1, \ldots, π_d and its potential function is given by

$$F_{\Pi}(s,(p_1,\ldots,p_d))=\sum_{k=1}^d F_{\pi_k}(s,p_k)$$

of processes and programs

A process π is conservative when for all paths and all semaphores s, the amount of tokens of type s held by the process at the end of the execution trace only depends on its arrival point. In that case the process π comes with a potential function F_{π}

$$F_{\pi}: \{ \mathsf{semaphores} \} imes \{ \mathsf{points} \} o \mathbb{N}$$

A program Π is conservative when so are its processes π_1, \ldots, π_d and its potential function is given by

$$\mathcal{F}_{\Pi}(s,(p_1,\ldots,p_d)) = \sum_{k=1}^d \mathcal{F}_{\pi_k}(s,p_k)$$

If $F_{\Pi}(s, p) > \operatorname{arity}(s)$ for some semaphore s, then p is forbidden.
example

・ロト ・四ト ・ヨト ・ヨト

example

・ロト ・聞ト ・ヨト ・ヨト

example

<ロト <回ト < 注ト < 注ト

example

・ロト ・聞ト ・ヨト ・ヨト

example

臣

・ロト ・四ト ・ヨト ・ヨト

example

臣

・ロト ・四ト ・ヨト ・ヨト

example

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

example

・ロト ・四ト ・ヨト ・ヨト

example

・ロト ・四ト ・ヨト ・ヨト

example

æ

・ロト ・聞ト ・ヨト ・ヨト

example

・ロト ・聞ト ・ヨト ・ヨト

- 2

example

・ロト ・聞ト ・ヨト ・ヨト

example

<ロト <回ト < 注ト < 注ト

example

æ

<ロ> (四) (四) (日) (日) (日)

example

æ

<ロ> (四) (四) (日) (日) (日)

example

<ロト <回ト < 注ト < 注ト

example

<ロト <回ト < 注ト < 注ト

example

・ロト ・聞ト ・ヨト ・ヨト
sem: 1 a

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

sem: 1 a

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

sem: 1 a

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

sem: 1 a

sem: 1 a

★□> <圖> < E> < E> E のQ@

sem: 1 a

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

sem: 1 a

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

くして 「「」 (山下) (山下) (山下) (山下)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Directed atlas $\ensuremath{\mathcal{U}}$

Directed atlas \mathcal{U}

For all points p,

Directed atlas $\ensuremath{\mathcal{U}}$

For all points p, for all directed neighborhoods A and B of p,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Directed atlas $\ensuremath{\mathcal{U}}$

For all points p, for all directed neighborhoods A and B of p, there exists a directed neighborhood C of p such that $C \subseteq A \cap B$ and $\leq_A \mid_C = \leq_C = \leq_B \mid_C$.

as a local pospace

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

as a local pospace

・ロト ・聞ト ・ヨト ・ヨト

æ

as a local pospace

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

as a local pospace

æ

as a local pospace

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Directed geometric realization

Main property

 $\texttt{I_l} : \{ \mathsf{Precubical sets} \} \to \{ \mathsf{Locally ordered spaces} \}$

Directed geometric realization

 $\begin{array}{l} |_|: \big\{ \mathsf{Precubical sets} \big\} \to \big\{ \mathsf{Locally ordered spaces} \big\} \\ \\ U(|\mathsf{K}|) &= \bigsqcup_{d \in \mathbb{N}} \mathsf{K}_d \times]0, 1[^d \end{array}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Directed geometric realization Main property

$$\texttt{I_l} : \{ \mathsf{Precubical sets} \} \rightarrow \{ \mathsf{Locally ordered spaces} \}$$

$$U(|\mathcal{K}|) = \bigsqcup_{d \in \mathbb{N}} \mathcal{K}_d \times]0, 1[^d]$$

The main property $|K^{(1)} \otimes \cdots \otimes K^{(n)}| \cong |K^{(1)}| \times \cdots \times |K^{(n)}|$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

of a conservative program

Let $G^{(1)}, \ldots, G^{(n)}$ the control flow graphs of the program.

of a conservative program

Let $G^{(1)}, \ldots, G^{(n)}$ the control flow graphs of the program. For all $d \in \mathbb{N}$, the set F_d of forbidden points of dimension d.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

of a conservative program

Let $G^{(1)}, \ldots, G^{(n)}$ the control flow graphs of the program. For all $d \in \mathbb{N}$, the set F_d of forbidden points of dimension d.

$$K = G^{(1)} \otimes \cdots \otimes G^{(n)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

of a conservative program

Let $G^{(1)}, \ldots, G^{(n)}$ the control flow graphs of the program. For all $d \in \mathbb{N}$, the set F_d of forbidden points of dimension d.

$$K = G^{(1)} \otimes \cdots \otimes G^{(n)}$$

sem: 1 a sync: 1 b

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q () ·

sem: 1 a sync: 1 b

V(a) ≁ -> é **~** . ~ x:=y ×. P(a) > 2 Σ. →•-→•-→•-→•-₩(Ъ) z:=1 7 5. ŝ, > ⇒. ⇒. ⇒. ×. y:=0 W(b) P(a) Z=:X V(a)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

sem: 1 a sync: 1 b

ロト・日本・モート・モー・ショー・ショー・ショー・ショー・

sem: 1 a sync: 1 b

5 D Q Q

sem: 1 a sync: 1 b

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q () ●

sem: 1 a sync: 1 b

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q () ·
sem: 1 a sync: 1 b

sem: 1 a sync: 1 b

sem: 1 a sync: 1 b

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

sem: 1 a sync: 1 b

sem: 1 a sync: 1 b

▶ ▲ 臣 ▶ 臣 ● 의 ۹ ()

sync: 1 b sem: 1 a

sem: 1 a sync: 1 b

sem: 1 a sync: 1 b

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

sem: 1 a sync: 1 b

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A weakly directed homotopy is a continuous map $h: [0, r] \times [0, q] \rightarrow X$ such that

A weakly directed homotopy is a continuous map $h: [0, r] \times [0, q] \rightarrow X$ such that

1) the mappings h(0, -) and h(r, -) are constant

A weakly directed homotopy is a continuous map $h: [0, r] \times [0, q] \rightarrow X$ such that

- 1) the mappings h(0, -) and h(r, -) are constant
- 2) the mappings h(-, s) are directed paths

A weakly directed homotopy is a continuous map $h: [0, r] \times [0, q] \rightarrow X$ such that

1) the mappings h(0, -) and h(r, -) are constant

2) the mappings h(-, s) are directed paths

A weakly directed homotopy is a continuous map $h: [0, r] \times [0, q] \rightarrow X$ such that

1) the mappings h(0, -) and h(r, -) are constant

2) the mappings h(-, s) are directed paths

A weakly directed homotopy is a continuous map $h: [0,r] \times [0,q] \to X$ such that

1) the mappings h(0, -) and h(r, -) are constant

2) the mappings h(-, s) are directed paths

A weakly directed homotopy is a continuous map $h: [0,r] \times [0,q] \to X$ such that

1) the mappings h(0, -) and h(r, -) are constant

2) the mappings h(-, s) are directed paths

Substantiating the continuous models

Main theorem

Adequacy

The "actions" of weakly dihomotopic directed paths are the same. A directed path is an execution trace iff it is weakly dihomotopic with an execution trace.

Tetrahemihexacron

a.k.a. 3D Swiss Cross

Floating cube

influence of arity

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The dining philosophers

with its deadlock attractor

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

The Lipski algorithm

has no deadlock

sem: 1 x y z u v w

proc:

 $\begin{array}{l} p \; = \; P(x) \, ; P(y) \, ; P(z) \, ; V(x) \, ; P(w) \, ; V(z) \, ; V(y) \, ; V(w) \\ q \; = \; P(u) \, ; P(v) \, ; P(x) \, ; V(u) \, ; P(z) \, ; V(v) \, ; V(x) \, ; V(z) \\ r \; = \; P(y) \, ; P(w) \, ; V(y) \, ; P(u) \, ; V(w) \, ; P(v) \, ; V(u) \, ; V(v) \end{array}$

init: pqr

A one dimensional block over G is a finite union of connected components of |G|.

A one dimensional block over G is a finite union of connected components of |G|.

A block of dimension $d \in \mathbb{N}$ over G_1, \ldots, G_d is a Cartesian product of one dimensional blocks B_k over G_k for $k \in \{1, \ldots, d\}$.

A one dimensional block over G is a finite union of connected components of |G|.

A block of dimension $d \in \mathbb{N}$ over G_1, \ldots, G_d is a Cartesian product of one dimensional blocks B_k over G_k for $k \in \{1, \ldots, d\}$.

A region of dimension $d \in \mathbb{N}$ over G_1, \ldots, G_d is a finite union of *d*-blocks over G_1, \ldots, G_d .

A one dimensional block over G is a finite union of connected components of |G|.

A block of dimension $d \in \mathbb{N}$ over G_1, \ldots, G_d is a Cartesian product of one dimensional blocks B_k over G_k for $k \in \{1, \ldots, d\}$.

A region of dimension $d \in \mathbb{N}$ over G_1, \ldots, G_d is a finite union of *d*-blocks over G_1, \ldots, G_d .

If X and Y are regions over G_1, \ldots, G_d and $G'_1, \ldots, G'_{d'}$ then $X \times Y$ is a region over $G_1, \ldots, G_d, G'_1, \ldots, G'_{d'}$.

Maximal subblocks and Boolean structure

Maximal subblocks and Boolean structure

Maximal subblocks

 $X \subseteq |G_1| \times \cdots \times |G_d|$ is a region iff it has finitely many maximal subblocks.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Maximal subblocks and Boolean structure

Maximal subblocks

 $X \subseteq |G_1| \times \cdots \times |G_d|$ is a region iff it has finitely many maximal subblocks.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Boolean structure

The collection of regions over G_1, \ldots, G_d form a Boolean subalgebra of the powerset of $|G_1| \times \cdots \times |G_d|$.

Unique decomposition

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Unique decomposition

Prime decomposition

Up to coordinates reordering, any region can be written as a Cartesian product of irreducible regions in a unique way. This is the prime decomposition of it.

Unique decomposition

Prime decomposition

Up to coordinates reordering, any region can be written as a Cartesian product of irreducible regions in a unique way. This is the prime decomposition of it.

Parallelization of code

The prime decomposition of the continuous model of some program provides a decomposition of the program as a parallel compound of "observationally independent" programs.
Main result

Effectiveness

An algorithm (Nicolas Ninin)

Let M_1, \ldots, M_b be the maximal subblocks of $X^c = |G_1| \times \cdots \times |G_d| \setminus X$. Let \sim be the equivalence relation on $\{1, \ldots, d\}$ generated by $i \sim j$ when there exist $k \in \{1, \ldots, b\}$ such that

 $\operatorname{proj}_i(M_k) \neq |G_i|$ and $\operatorname{proj}_j(M_k) \neq |G_j|$

The prime decomposition of X is given by the \sim -equivalence classes.

Parallelizing a program

sem: 1 a b sem: 2 c

init: 2p 2q

proc: p = P(a); P(c); V(c); V(a)

proc:

q = P(b); P(c); V(c); V(b)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Parallelizing a program

sem: 1 a b	sem: 1 a b
sem: 2 c	sem: 2 c
<pre>proc:</pre>	proc:
p = P(a);P(c);V(c);V(a)	q = P(b);P(c);V(c);V(b)
init: 2p	init: 2q

Lisbeth Fajstrup · Eric Goubault Emmanuel Haucourt · Samuel Mimram Martin Raussen

Directed Algebraic Topology and Concurrency

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで