Control Flow Structures of Concurrent Programs are Higher Dimensional Mathematical Objects

Emmanuel Haucourt

Wednesday $13^{\text {th }}$ April 2016

A Toy Language

from Dijkstra's "Cooperating Sequential Processes" paper

A Toy Language

from Dijkstra's "Cooperating Sequential Processes" paper

Resource Declarations

A Toy Language

from Dijkstra's "Cooperating Sequential Processes" paper

A Toy Language

from Dijkstra's "Cooperating Sequential Processes" paper

A Toy Language

Resource Declaration

A Toy Language

Resource Declaration

- sem: <int> <set of identifiers>

A Toy Language

Resource Declaration

- sem: <int> <set of identifiers>
- sync: <int> <set of identifiers>

A Toy Language

Resource Declaration

- sem: <int> <set of identifiers>
- sync: <int> <set of identifiers>
- var: <identifier> = <constant>

A Toy Language

The Hasse / Syracuse algorithm
var: $\quad x=7$
proc:

$$
p=()+[x=1]+C(q)
$$

proc:

$$
\begin{aligned}
q= & (x:=x / 2 ; C(p))+[x \% 2=0]+ \\
& (x:=3 * x+1 ; C(p))
\end{aligned}
$$

init: p

Building the Control Flow Graph

of the Hasse-Syracuse algorithm

Building the Control Flow Graph

of the Hasse-Syracuse algorithm

Building the Control Flow Graph

of the Hasse-Syracuse algorithm

Building the Control Flow Graph

of the Hasse-Syracuse algorithm

Building the Control Flow Graph

of the Hasse-Syracuse algorithm

Building the Control Flow Graph

of the Hasse-Syracuse algorithm

Building the Control Flow Graph

of the Hasse-Syracuse algorithm

Reducing the Control Flow Graph

of the Hasse-Syracuse algorithm

Reducing the Control Flow Graph

of the Hasse-Syracuse algorithm

Reducing the Control Flow Graph

of the Hasse-Syracuse algorithm

An Execution Trace

on a control flow graph

An Execution Trace

on a control flow graph

the current value of x is 7

An Execution Trace

on a control flow graph

the current value of x is 7

An Execution Trace

on a control flow graph

the current value of x is 22

An Execution Trace

on a control flow graph

the current value of x is 22

An Execution Trace

on a control flow graph

the current value of x is 22

An Execution Trace

on a control flow graph

the current value of x is 22

An Execution Trace

on a control flow graph

the current value of x is 11

An Execution Trace

on a control flow graph

the current value of x is 11

An Execution Trace

on a control flow graph

the current value of x is 11

An Execution Trace

on a control flow graph

the current value of x is 11

An Execution Trace

on a control flow graph

the current value of x is 34

An Execution Trace

on a control flow graph

the current value of x is 34

An Execution Trace

on a control flow graph

the current value of x is 34

An Execution Trace

on a control flow graph

the current value of x is 34

An Execution Trace

on a control flow graph

the current value of x is 17

An Execution Trace

on a control flow graph

the current value of x is 17

An Execution Trace

on a control flow graph

the current value of x is 17

An Execution Trace

on a control flow graph

the current value of x is 17

An Execution Trace

on a control flow graph

the current value of x is 52

An Execution Trace

on a control flow graph

the current value of x is 52

An Execution Trace

on a control flow graph

the current value of x is 52

An Execution Trace

on a control flow graph

the current value of x is 52

An Execution Trace

on a control flow graph

the current value of x is 26

An Execution Trace

on a control flow graph

the current value of x is 26

An Execution Trace

on a control flow graph

the current value of x is 26

An Execution Trace

on a control flow graph

the current value of x is 26

An Execution Trace

on a control flow graph

the current value of x is 13

An Execution Trace

on a control flow graph

the current value of x is 13

An Execution Trace

on a control flow graph

the current value of x is 13

An Execution Trace

on a control flow graph

the current value of x is 13

An Execution Trace

on a control flow graph

the current value of x is 40

An Execution Trace

on a control flow graph

the current value of x is 40

An Execution Trace

on a control flow graph

the current value of x is 40

An Execution Trace

on a control flow graph

the current value of x is 40

An Execution Trace

on a control flow graph

the current value of x is 20

An Execution Trace

on a control flow graph

the current value of x is 20

An Execution Trace

on a control flow graph

the current value of x is 20

An Execution Trace

on a control flow graph

the current value of x is 20

An Execution Trace

on a control flow graph

the current value of x is 10

An Execution Trace

on a control flow graph

the current value of x is 10

An Execution Trace

on a control flow graph

the current value of x is 10

An Execution Trace

on a control flow graph

the current value of x is 10

An Execution Trace

on a control flow graph

the current value of x is 5

An Execution Trace

on a control flow graph

the current value of x is 5

An Execution Trace

on a control flow graph

the current value of x is 5

An Execution Trace

on a control flow graph

the current value of x is 5

An Execution Trace

on a control flow graph

the current value of x is 16

An Execution Trace

on a control flow graph

the current value of x is 16

An Execution Trace

on a control flow graph

the current value of x is 16

An Execution Trace

on a control flow graph

the current value of x is 16

An Execution Trace

on a control flow graph

the current value of x is 8

An Execution Trace

on a control flow graph

the current value of x is 8

An Execution Trace

on a control flow graph

the current value of x is 8

An Execution Trace

on a control flow graph

the current value of x is 8

An Execution Trace

on a control flow graph

the current value of x is 4

An Execution Trace

on a control flow graph

the current value of x is 4

An Execution Trace

on a control flow graph

the current value of x is 4

An Execution Trace

on a control flow graph

the current value of x is 4

An Execution Trace

on a control flow graph

the current value of x is 2

An Execution Trace

on a control flow graph

the current value of x is 2

An Execution Trace

on a control flow graph

the current value of x is 2

An Execution Trace

on a control flow graph

the current value of x is 2

An Execution Trace

on a control flow graph

the current value of x is 1

An Execution Trace

on a control flow graph

the current value of x is 1

An Execution Trace

on a control flow graph

the current value of x is 1

An Execution Trace

on a control flow graph

the current value of x is 1

An Execution Trace

on a control flow graph

the current value of x is 1

Precubical sets

higher dimensional graphs

Precubical sets

higher dimensional graphs

Precubical sets

higher dimensional graphs

Precubical sets

higher dimensional graphs

Precubical sets

higher dimensional graphs

Precubical sets

higher dimensional graphs

Precubical sets

higher dimensional graphs

Precubical sets

higher dimensional graphs

Precubical sets

higher dimensional graphs

Precubical sets

higher dimensional graphs

Tensor product

of precubical sets

Given precubical sets K and K^{\prime} of dimension p and q, the set of d-cubes for $0 \leqslant d \leqslant p+q$

$$
\left(K \otimes K^{\prime}\right)_{d}=\bigsqcup_{i+j=d} K_{i} \times K_{j}^{\prime}
$$

For $x \otimes y \in K_{i} \times K_{j}^{\prime}$ with $i+j=d$ the $k^{t h}$ face map, with $0 \leqslant k<d$, is given by

$$
\partial_{k}^{ \pm}(x \otimes y)= \begin{cases}\partial_{k}^{ \pm}(x) \otimes y & \text { if } 0 \leqslant k<i \\ \left.x \otimes \partial_{k-p}^{ \pm} y\right) & \text { if } i \leqslant k<d\end{cases}
$$

A Toy Language

Synchronization: the W (_) instruction
sync: 1 b
proc: $\quad \mathrm{p}=\mathrm{W}(\mathrm{b})$
init: 2p

Tensor product

of control flow graphs

Discrete paths

are "continuous"

Discrete path on a model of dimension N

A sequence of points p_{0}, \ldots, p_{K} s.t. for all $k \in\{1, \ldots, K\}$ one has
for all $n \in\{1, \ldots, N\} \partial^{+} p_{n}(k-1)=p_{n}(k)$ or $p_{n}(k)=p_{n}(k-1)$
or
for all $n \in\{1, \ldots, N\} p_{n}(k-1)=\partial p_{n}(k)$ or $p_{n}(k)=p_{n}(k-1)$

Concurrent execution trace

sync: 1 b

Not admissible concurrent execution trace

 sync: 1 b

Not admissible concurrent execution trace

 sync: 1 b

Not admissible concurrent execution trace

 sync: 1 b

Not admissible concurrent execution trace

 sync: 1 b

Forbidden points

due to synchronization

Each point $p=\left(p_{1}, \ldots, p_{d}\right)$ such that

$$
0<\operatorname{card}\left\{k \in\{1, \ldots, d\} \mid \operatorname{label}\left(p_{k}\right)=\mathrm{W}(\mathrm{~b})\right\} \leqslant \operatorname{arity}(\mathrm{b})
$$

is forbidden.

A Toy Language

conflicting assignments
var: $\quad x=0$
$\begin{array}{ll}\text { proc: } & p=(x:=1) \\ \text { proc: } & q=(x:=2)\end{array}$
init: p q

Not admissible execution trace

due to race condition

the value of x is 0

Not admissible execution trace

due to race condition

the value of x is 0

Not admissible execution trace

due to race condition

the value of x is 0

Not admissible execution trace

due to race condition

the value of x is ?

Admissible execution trace

that however meets a forbidden point

the value of x is 0

Admissible execution trace

that however meets a forbidden point

the value of x is 0

Admissible execution trace

that however meets a forbidden point

the value of x is 0

Admissible execution trace

that however meets a forbidden point

the value of x is 1

Admissible execution trace

that however meets a forbidden point

the value of x is 2

Admissible execution trace

that however meets a forbidden point

the value of x is 2

Admissible execution trace

that however meets a forbidden point

the value of x is 2

Admissible execution trace

that however meets a forbidden point

the value of x is 2

Admissible execution trace

avoiding forbidden points

the value of x is 0

Admissible execution trace

avoiding forbidden points

the value of x is 0

Admissible execution trace

avoiding forbidden points

the value of x is 0

Admissible execution trace

avoiding forbidden points

the value of x is 1

Admissible execution trace

avoiding forbidden points

the value of x is 1

Admissible execution trace

avoiding forbidden points

the value of x is 2

Admissible execution trace

avoiding forbidden points

the value of x is 2

Admissible execution trace

avoiding forbidden points

the value of x is 2

Admissible execution trace

avoiding forbidden points

the value of x is 2

Forbidden points

due to race conditions

A point $p=\left(p_{1}, \ldots, p_{d}\right)$ is a race condition when there exist $i \neq j$ such that - both $\lambda_{i}\left(p_{i}\right)$ and $\lambda_{j}\left(p_{j}\right)$ are assignments trying to alter the same variable or

- $\lambda_{i}\left(p_{i}\right)$ tries to alter a free variable of $\lambda_{j}\left(p_{j}\right)$ or $\lambda_{j}(\alpha)$ for some arrow α such that $\partial^{-} \alpha=p_{j}$.

In that case the point p is forbidden.

The replacement property

for admissible execution traces

Replacement

Any admissible execution trace that meets a race condition is "equivalent" to an admissible execution trace which avoids all of them.

A Toy Language

Desynchronization: the $P\left({ }_{-}\right)$and $V()_{\text {) }}$ instructions

sem: 1 a

proc: $\quad p=P(a) ; V(a)$
init: 2p

Admissible concurrent execution trace

sem: 1 a

Admissible concurrent execution trace

sem: 1 a

Ω

Admissible concurrent execution trace

sem: 1 a

Not admissible concurrent execution trace

sem: 1 a

Not admissible concurrent execution trace

sem: 1 a

Not admissible concurrent execution trace

sem: 1 a

Not admissible concurrent execution trace

sem: 1 a

The potential functions

of processes and programs

The potential functions

of processes and programs

A process π is conservative when for all paths and all semaphores s, the amount of tokens of type s held by the process at the end of the execution trace only depends on its arrival point.

The potential functions

```
of processes and programs
```

A process π is conservative when for all paths and all semaphores s, the amount of tokens of type s held by the process at the end of the execution trace only depends on its arrival point. In that case the process π comes with a potential function F_{π}

$$
F_{\pi}:\{\text { semaphores }\} \times\{\text { points }\} \rightarrow \mathbb{N}
$$

The potential functions

```
of processes and programs
```

A process π is conservative when for all paths and all semaphores s, the amount of tokens of type s held by the process at the end of the execution trace only depends on its arrival point. In that case the process π comes with a potential function F_{π}

$$
F_{\pi}:\{\text { semaphores }\} \times\{\text { points }\} \rightarrow \mathbb{N}
$$

A program Π is conservative when so are its processes π_{1}, \ldots, π_{d}

The potential functions

```
of processes and programs
```

A process π is conservative when for all paths and all semaphores s, the amount of tokens of type s held by the process at the end of the execution trace only depends on its arrival point. In that case the process π comes with a potential function F_{π}

$$
F_{\pi}:\{\text { semaphores }\} \times\{\text { points }\} \rightarrow \mathbb{N}
$$

A program Π is conservative when so are its processes π_{1}, \ldots, π_{d} and its potential function is given by

$$
F_{\Pi}\left(s,\left(p_{1}, \ldots, p_{d}\right)\right)=\sum_{k=1}^{d} F_{\pi_{k}}\left(s, p_{k}\right)
$$

The potential functions

```
of processes and programs
```

A process π is conservative when for all paths and all semaphores s, the amount of tokens of type s held by the process at the end of the execution trace only depends on its arrival point. In that case the process π comes with a potential function F_{π}

$$
F_{\pi}:\{\text { semaphores }\} \times\{\text { points }\} \rightarrow \mathbb{N}
$$

A program Π is conservative when so are its processes π_{1}, \ldots, π_{d} and its potential function is given by

$$
F_{\Pi}\left(s,\left(p_{1}, \ldots, p_{d}\right)\right)=\sum_{k=1}^{d} F_{\pi_{k}}\left(s, p_{k}\right)
$$

If $F_{\Pi}(s, p)>\operatorname{arity}(s)$ for some semaphore s, then p is forbidden.

Conservative process

example

Not conservative process

example

Discrete model

sem: 1 a

Discrete model

sem: 1 a

Discrete model

sem: 1 a

Discrete Model

sync: 1 b

Locally ordered spaces

Directed atlas \mathcal{U}

Locally ordered spaces

Directed atlas \mathcal{U}
For all points p,

Locally ordered spaces

Directed atlas \mathcal{U}
For all points p, for all directed neighborhoods A and B of p,

Locally ordered spaces

Directed atlas \mathcal{U}
For all points p, for all directed neighborhoods A and B of p, there exists a directed neighborhood C of p such that $C \subseteq A \cap B$ and $\leqslant\left._{A}\right|_{C}=\leqslant C=\leqslant\left._{B}\right|_{C}$.

The directed circle

as a local pospace

Directed geometric realization

Main property

1_L: \{Precubical sets $\} \rightarrow\{$ Locally ordered spaces $\}$

Directed geometric realization

Main property

1_L: \{Precubical sets $\} \rightarrow\{$ Locally ordered spaces $\}$

$$
\left.U(1 K \downharpoonright)=\bigsqcup_{d \in \mathbb{N}} K_{d} \times\right] 0,1\left[^{d}\right.
$$

Directed geometric realization

Main property

1_L: \{Precubical sets $\} \rightarrow\{$ Locally ordered spaces $\}$

$$
\left.U(1 K l)=\bigsqcup_{d \in \mathbb{N}} K_{d} \times\right] 0,1\left[^{d}\right.
$$

The main property

$$
\mid K^{(1)} \otimes \cdots \otimes K^{(n)} \downharpoonright \cong \upharpoonleft K^{(1)} \downharpoonright \times \cdots \times 1 K^{(n)} \downharpoonright
$$

The continuous model

of a conservative program

Let $G^{(1)}, \ldots, G^{(n)}$ the control flow graphs of the program.

The continuous model

of a conservative program

Let $G^{(1)}, \ldots, G^{(n)}$ the control flow graphs of the program.
For all $d \in \mathbb{N}$, the set F_{d} of forbidden points of dimension d.

The continuous model

of a conservative program

Let $G^{(1)}, \ldots, G^{(n)}$ the control flow graphs of the program.
For all $d \in \mathbb{N}$, the set F_{d} of forbidden points of dimension d.

$$
K=G^{(1)} \otimes \cdots \otimes G^{(n)}
$$

The continuous model

of a conservative program

Let $G^{(1)}, \ldots, G^{(n)}$ the control flow graphs of the program.
For all $d \in \mathbb{N}$, the set F_{d} of forbidden points of dimension d.

$$
K=G^{(1)} \otimes \cdots \otimes G^{(n)}
$$

The continuous model

$$
\left.\bigsqcup_{d \in \mathbb{N}}\left(K_{d} \backslash F_{d}\right) \times\right] 0,1\left[^{d}\right.
$$

From discrete to continuous

sem: 1 a
sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

From discrete to continuous

sem: 1 a sync: 1 b

Weakly directed homotopy of directed paths

L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map $h:[0, r] \times[0, q] \rightarrow X$ such that

Weakly directed homotopy of directed paths

L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map $h:[0, r] \times[0, q] \rightarrow X$ such that

1) the mappings $h(0,-)$ and $h(r,-)$ are constant

Weakly directed homotopy of directed paths

L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map $h:[0, r] \times[0, q] \rightarrow X$ such that

1) the mappings $h(0,-)$ and $h(r,-)$ are constant
2) the mappings $h(-, s)$ are directed paths

Weakly directed homotopy of directed paths

L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map $h:[0, r] \times[0, q] \rightarrow X$ such that

1) the mappings $h(0,-)$ and $h(r,-)$ are constant
2) the mappings $h(-, s)$ are directed paths

Weakly directed homotopy of directed paths

L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map $h:[0, r] \times[0, q] \rightarrow X$ such that

1) the mappings $h(0,-)$ and $h(r,-)$ are constant
2) the mappings $h(-, s)$ are directed paths

Weakly directed homotopy of directed paths

L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map $h:[0, r] \times[0, q] \rightarrow X$ such that

1) the mappings $h(0,-)$ and $h(r,-)$ are constant
2) the mappings $h(-, s)$ are directed paths

Weakly directed homotopy of directed paths

L. Fajstrup, É. Goubault, and M. Raussen (1998)

A weakly directed homotopy is a continuous map $h:[0, r] \times[0, q] \rightarrow X$ such that

1) the mappings $h(0,-)$ and $h(r,-)$ are constant
2) the mappings $h(-, s)$ are directed paths

Substantiating the continuous models

Main theorem

Adequacy
The "actions" of weakly dihomotopic directed paths are the same. A directed path is an execution trace iff it is weakly dihomotopic with an execution trace.

Tetrahemihexacron

a.k.a. 3D Swiss Cross
sem: 1 a
proc:

$$
p=P(a) ; V(a)
$$

init: 3p

Floating cube

influence of arity
sem: 2 a
proc:

$$
p=P(a) ; V(a)
$$

init: 3p

The dining philosophers

with its deadlock attractor

```
sem: 1 a b c
proc:
    x = P(a);P(b);V(a);V(b)
    y = P(b);P(c);V(b);V(c)
    z = P(c);P(a);V(c);V(a)
```

init: $\quad \mathrm{x}$ y z

The Lipski algorithm

has no deadlock
sem: 1 x y $\mathrm{z} u$ v w

init: p q r

Regions

over G_{1}, \ldots, G_{d}

A one dimensional block over G is a finite union of connected components of $1 G \downarrow$.

Regions

over G_{1}, \ldots, G_{d}

A one dimensional block over G is a finite union of connected components of $1 G \downarrow$.

A block of dimension $d \in \mathbb{N}$ over G_{1}, \ldots, G_{d} is a Cartesian product of one dimensional blocks B_{k} over G_{k} for $k \in\{1, \ldots, d\}$.

Regions

A one dimensional block over G is a finite union of connected components of $1 G \downarrow$.

A block of dimension $d \in \mathbb{N}$ over G_{1}, \ldots, G_{d} is a Cartesian product of one dimensional blocks B_{k} over G_{k} for $k \in\{1, \ldots, d\}$.

A region of dimension $d \in \mathbb{N}$ over G_{1}, \ldots, G_{d} is a finite union of d-blocks over G_{1}, \ldots, G_{d}.

Regions

A one dimensional block over G is a finite union of connected components of $\backslash G \downarrow$.

A block of dimension $d \in \mathbb{N}$ over G_{1}, \ldots, G_{d} is a Cartesian product of one dimensional blocks B_{k} over G_{k} for $k \in\{1, \ldots, d\}$.

A region of dimension $d \in \mathbb{N}$ over G_{1}, \ldots, G_{d} is a finite union of d-blocks over G_{1}, \ldots, G_{d}.

If X and Y are regions over G_{1}, \ldots, G_{d} and $G_{1}^{\prime}, \ldots, G_{d^{\prime}}^{\prime}$ then $X \times Y$ is a region over $G_{1}, \ldots, G_{d}, G_{1}^{\prime}, \ldots, G_{d^{\prime}}^{\prime}$.

Maximal blocks

Main results

Maximal subblocks and Boolean structure

Main results

Maximal subblocks and Boolean structure

Maximal subblocks

$X \subseteq \upharpoonleft G_{1} \downharpoonright \times \cdots \times 1 G_{d} \downarrow$ is a region iff it has finitely many maximal subblocks.

Main results

Maximal subblocks and Boolean structure

Maximal subblocks

$X \subseteq 1 G_{1} \downharpoonright \times \cdots \times 1 G_{d} \downarrow$ is a region iff it has finitely many maximal subblocks.

Boolean structure

The collection of regions over G_{1}, \ldots, G_{d} form a Boolean subalgebra of the powerset of $1 G_{1} \downharpoonright \times \cdots \times 1 G_{d} \downarrow$.

Main results

Unique decomposition

Main results

Unique decomposition

Prime decomposition
Up to coordinates reordering, any region can be written as a Cartesian product of irreducible regions in a unique way. This is the prime decomposition of it.

Main results

Unique decomposition

Prime decomposition

Up to coordinates reordering, any region can be written as a Cartesian product of irreducible regions in a unique way. This is the prime decomposition of it.

Parallelization of code
The prime decomposition of the continuous model of some program provides a decomposition of the program as a parallel compound of "observationally independent" programs.

Main result

Effectiveness

An algorithm (Nicolas Ninin)

Let M_{1}, \ldots, M_{b} be the maximal subblocks of $X^{c}=\mid G_{1} \downharpoonright \times \cdots \times 1 G_{d} \backslash \backslash X$. Let \sim be the equivalence relation on $\{1, \ldots, d\}$ generated by $i \sim j$ when there exist $k \in\{1, \ldots, b\}$ such that

$$
\operatorname{proj}_{i}\left(M_{k}\right) \neq 1 G_{i} \downarrow \text { and } \operatorname{proj}_{j}\left(M_{k}\right) \neq 1 G_{j} \downarrow
$$

The prime decomposition of X is given by the \sim-equivalence classes.

Parallelizing a program

sem: 1 a b
sem: 2 c
proc:

$$
p=P(a) ; P(c) ; V(c) ; V(a)
$$

proc:

$$
\mathrm{q}=\mathrm{P}(\mathrm{~b}) ; \mathrm{P}(\mathrm{c}) ; \mathrm{V}(\mathrm{c}) ; \mathrm{V}(\mathrm{~b})
$$

init: 2p 2q

Parallelizing a program

sem:	$1 \mathrm{a} b$
sem:	2 c

proc:
$\mathrm{p}=\mathrm{P}(\mathrm{a}) ; \mathrm{P}(\mathrm{c}) ; \mathrm{V}(\mathrm{c}) ; \mathrm{V}(\mathrm{a})$
init: 2p
sem: 1 a b
sem: 2 c
proc:
$\mathrm{q}=\mathrm{P}(\mathrm{b}) ; \mathrm{P}(\mathrm{c}) ; \mathrm{V}(\mathrm{c}) ; \mathrm{V}(\mathrm{b})$
init: 2q

Lisbeth Fajstrup • Eric Goubault Emmanuel Haucourt • Samuel Mimram Martin Raussen

Directed Algebraic Topology and Concurrency

