∞ -categorical models of linear logic

Elies Harington Samuel Mimram

École Polytechnique

3rd of june 2025 LHC days

(E) < (E)</p>

 ∞ -categories are rich in interesting phenomena, especially some with a *linear flavor* (module spectra, stable ∞ -categories).

Goal : axiomatize categorical models of linear logic in ∞ -categories.

- \bullet ∞ -categories : objects, morphisms, higher morphisms between morphisms, etc.
- categorical models of linear logic : lots of heavy categorical structures

The **property** of a diagram commuting is replaced by the **data** of a higher isomorphism. Such data must itself be subject to further conditions, that become more data, etc.

Arguments based on explicit computations don't generalize well to this setting. The ideas and concepts that easily generalize are the more **unbiased**, **abstract** ones.

Remark

Here, ∞ -category means ($\infty, 1$)-category: all morphisms of dimension > 1 will be invertible.

1 Categorical semantics of linear logic

2 Linear logic in ∞ -categories

313 DQC

How to do denotational semantics in a category $\ensuremath{\mathcal{C}}$:

Syntax	Categorical semantics
Formulae A	Object $\llbracket A \rrbracket$ of $\mathcal C$
Proof π of $A \vdash B$	Morphism $\llbracket \pi rbracket : \llbracket A rbracket o \llbracket B rbracket$ in $\mathcal C$
Cut elimination $\pi \rightsquigarrow \pi'$	Equality of morphisms $\llbracket \pi \rrbracket = \llbracket \pi \rrbracket'$
Additional syntactic constructions	Additional categorical structure

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Intuitionistic linear logic

	Examples of rules	
Formulas	$A \vdash A$ (ax)	$\frac{\Gamma \vdash A \Delta, A \vdash C}{\Gamma, \Delta \vdash C} $ (cut)
$F ::= A \mid B \mid \ldots$		$\Gamma, \Delta \Gamma \subset$
A & B		
$ A \otimes B$	$\frac{\Gamma, A, B \vdash C}{\Gamma, A \otimes B \vdash C} (\otimes L)$	$\frac{\Gamma \vdash A \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} (\otimes R)$
$ A \multimap B$	1,710 21 0	.,
\mid 1 \mid $ op$	$\Gamma \land \vdash P$	
! <i>A</i>	$\frac{\Gamma, A_i \vdash B}{\Gamma, A_1 \& A_2 \vdash B} (\& L_i)$	$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \& B} (\&R)$
	· , · · · · · · · · · · · · · · · · · ·	
Contexts $\Gamma ::= A_1, \dots, A_n$ Judgements $\Gamma \vdash B$	$\frac{\Gamma \vdash A \Delta, B \vdash C}{\Gamma, \Delta, A \multimap B \vdash C} (\multimap L)$	$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} (\multimap R)$

Formulas A interpreted as objects $\llbracket A \rrbracket \in C$. $\llbracket A \otimes B \rrbracket =$? Need a *(symmetric) monoidal structure* on C: A functor $- \otimes - : C \times C \to C$ and an object $1 \in C$ with natural isomorphisms

$$X \otimes Y \simeq Y \otimes X,$$

 $(X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z),$
 $X \otimes 1 \simeq X \simeq 1 \otimes X$

satisfying some axioms.

Due to $[\Gamma, A, B \vdash C] (\otimes L)$, can define $[A_1, \ldots, A_n] := [A_1 \otimes \cdots \otimes A_n] = [A_1] \otimes \cdots \otimes [A_n]$

1 = + 1 = + = = + 1 = + 1

We can use the rules

$$\frac{A, B \vdash C}{A \otimes B \vdash C} (\otimes L) \qquad \qquad \frac{A, B \vdash C}{A \vdash B \multimap C} (\multimap R)$$

to show we need bijections

 $\mathsf{Hom}_{\mathcal{C}}(\llbracket A \rrbracket \otimes \llbracket B \rrbracket, \llbracket C \rrbracket) \simeq \mathsf{Hom}_{\mathcal{C}}(\llbracket A \rrbracket, \llbracket B \multimap C \rrbracket)$

Ask for C to be monoidal closed : $(X \otimes -) \dashv (X \multimap -)$.

$$\operatorname{Hom}_{\mathcal{C}}(X \otimes Y, Z) \simeq \operatorname{Hom}_{\mathcal{C}}(X, Y \multimap Z)$$

The proofs

$$\frac{\overline{A_i \vdash A_i}}{A_1 \& A_2 \vdash A_i} (\text{ax})$$

will be interpreted as "projection" morphisms $\pi_i : \llbracket A_1 \& A_2 \rrbracket \to A_i$. Thus we interpret & as the cartesian product in C.

$$\llbracket A \& B \rrbracket := \llbracket A \rrbracket \times \llbracket B \rrbracket$$

300 E E A E A E A CO

Linear implication:

$$A \multimap B$$

Cannot duplicate or erase hypothesis *A* in proof

Non-linear (intuitionistic) implication:

 $!A \multimap B$

Can duplicate or erase hypothesis A in proof.

-

9/30

Rules for the exponential

$$\frac{\Gamma, A \vdash B}{\Gamma, !A \vdash B} \text{ (der)}$$
$$\frac{!\Gamma \vdash A}{!\Gamma \vdash !A} \text{ (prom)}$$

$$\frac{\Gamma, !A, !A \vdash B}{\Gamma, !A \vdash B} \text{ (contr)}$$
$$\frac{\Gamma \vdash B}{\Gamma, !A \vdash B} \text{ (weak)}$$

The exponential $! \rightsquigarrow$ a functor $! : C \rightarrow C$. Promotion and dereliction rules $\rightsquigarrow !$ is a *comonad*.

$$\frac{\overline{|A \vdash |A}^{(ax)}}{|A \vdash |A \otimes |A|} \xrightarrow{(ax)}_{(\otimes R)} (\otimes R)$$

$$\frac{|A, |A \vdash |A \otimes |A|}{|A \vdash |A \otimes |A|} (\text{contr})$$

Similarly, $!A \vdash 1$.

Cut elimination shows that this gives a comonoid structure on $[\![!A]\!].$

1 = 1 + = 1 = 1 = 0 Q G

Many ways to package all the previous structures in simpler axiomatizations.

Goal: find an axiomatization that can easily be transposed to the ∞ -categorical setting.

Seely categories

Definition ([See97])

A Seely category is a

- () symmetric monoidal closed category $(\mathcal{C},\otimes,1,\multimap)$
- ② with finite products (& and \top),
- **③** a comonad $(!, \delta, \varepsilon) : \mathcal{C} \to \mathcal{C}$,

• isomorphisms $m_{A,B}^2$: $!(A \& B) \simeq !A \otimes !B$ and m^0 : $!\top \simeq 1$ so that $!: (\mathcal{C}, \&) \to (\mathcal{C}, \otimes)$ is a symmetric monoidal functor

Point 5 is too ad hoc to have a natural ∞ -categorical generalization.

Definition ([BBDPH97])

A linear category is :

- \bullet a symmetric monoidal closed category ($\mathcal{L},\otimes,1)$,
- together with a lax symmetric monoidal comonad ((!, m), δ, ε),
- and a natural commutative comonoid structure $d_A : !A \rightarrow !A \otimes !A$, $e_A : !A \rightarrow 1$,

such that d_A and e_A are coalgebra morphisms for ! and δ is a comonoid morphism.

Less ad hoc, but still a lot of structure.

Linear-non-linear adjunctions

$$\text{Every linear category } (\mathcal{L},\otimes,1,!,\dots) \text{ induces } (\mathcal{L}^!,\times) \xrightarrow{\perp} (\mathcal{L},\otimes).$$

 $\mathcal{L}^!$ category of coalgebras for the comonad !.

The morphisms in $\mathcal{L}^!$ represent the non-linear morphisms of linear logic ($!A \multimap B$).

Definition ([Ben95])

A linear-non-linear adjunction is an adjunction

$$(\mathcal{M}, \times) \xrightarrow[]{L}{\stackrel{\perp}{\longleftarrow}} (\mathcal{L}, \otimes)$$

between a cartesian category \mathcal{M} and a symmetric monoidal closed category \mathcal{L} , where the left adjoint $L : \mathcal{M} \to \mathcal{L}$ is strongly monoidal $L(X \times Y) \simeq LX \otimes LY$.

 ${\mathcal L}$ "linear" category, ${\mathcal M}$ "multiplicative" (non-linear) category.

Elies Harington

▶ ★ 글 ▶ 글|님

$$(\mathcal{M},\times) \xrightarrow[]{L}{\stackrel{L}{\longleftarrow}} (\mathcal{L},\otimes)$$

Induced comonad $LM : \mathcal{L} \to \mathcal{L}$ makes \mathcal{L} into linear category.

Multiple choices of \mathcal{M} may yield the same comonad : there is **more** structure than strictly needed.

But it is packaged in a more minimalistic way.

Only notions needed: monoidal functor, cartesian products, adjunctions.

A special case : Lafont categories

!A must be a (commutative) comonoid.

Definition

 $(\mathcal{L}, \otimes, !)$ is a Lafont category if !A is the cofree commutative comonoid on A for every A.

Definition

Write $Comon(\mathcal{L})$ for the category of commutative comonoids in \mathcal{L} .

Proposition

The category $Comon(\mathcal{L})$ is cartesian. If \mathcal{L} is Lafont, there is a linear-non-linear adjunction

$$(\mathsf{Comon}(\mathcal{L}), \times) \xrightarrow{\perp} (\mathcal{L}, \otimes).$$

NOO ELE NENNENNOO

Example: the relational model

The category Rel :

- Objects : sets X, Y, \ldots
- Morphisms : relations $R \subseteq X \times Y$
- Tensor product : cartesian product of underlying sets $X \times Y$
- Linear implication : also cartesian product of underlying sets, since

 $\mathsf{Rel}(X \times Y, Z) \simeq \mathsf{Rel}(X, Y \times Z)$

- Cartesian product : disjoint union of underlying sets $X \sqcup Y$
- Exponential comonad : multisets Mul(X) on X (finite lists up to reordering, finite subsets with repetitions)

Proposition

 (Rel, \times, Mul) is Lafont.

i.e. Mul(X) is the cofree commutative comonoid on X in Rel.

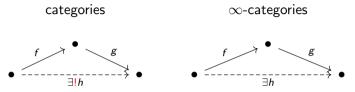
Elies Harington

Categorical semantics of linear logic

2 Linear logic in ∞ -categories

Content of our article [HM25]

∞ -category theory [Lurb, Lur18]



 ∞ -groupoids correspond to homotopy types (topological spaces up to homotopy equivalence) Can define:

- ∞ -categories of functors
- natural transformations
- $\bullet\,$ hom-functors $\mathcal{C}^{\mathsf{op}}\times\mathcal{C}\to\mathcal{S}$
- adjunctions
- (co)limits

Every category "is" and $\infty\text{-category}$

Monoidal ∞ -categories [Lura]

 $\mathsf{Fin}\mathsf{Set}_*$ the category of finite sets and partial maps.

Definition

A commutative monoid in an ∞ -category C is a functor F : FinSet_{*} $\rightarrow C$ such that $F(\{1, \ldots, n\}) \simeq F(\{1\})^n$.

Definition

A symmetric monoidal $\infty\text{-}\mathsf{category}$ is a commutative monoid in $\infty\mathsf{Cat}.$

Possible to define commutative monoids in symmetric monoidal ∞ -categories.

Definition

 $\mathsf{Mon}(\mathcal{C})$ the ∞ -category of commutative monoids in a symmetric monoidal ∞ -category \mathcal{C} .

Every symmetric monoidal category "is" a symmetric monoidal ∞ -category

・ロト ・ 理 ・ エヨ ・ ・ ヨヨ ・ クタマ

Definition

An LNL adjunction in $\infty\mbox{-}{\rm categories}$ is an adjunction

$$(\mathcal{M},\times) \xrightarrow[]{L}{\stackrel{\perp}{\longleftarrow}} (\mathcal{L},\otimes)$$

between a cartesian ∞ -category \mathcal{M} and a symmetric monoidal closed ∞ -category \mathcal{L}^{\otimes} , such that the left adjoint L is strong monoidal.

Proposition

The right adjoint is lax monoidal.

(B)

Proposition

In a cartesian ∞ -category, every object admits a unique commutative comonoid structure. (comultiplication is given by the diagonal map $X \to X \times X$)

Since strongly monoidal functors preserve commutative comonoids, we get

Corollary

In an LNL adjunction between ∞ -categories,

$$(\mathcal{M}, imes) \xrightarrow[]{L}{\stackrel{\perp}{\longleftarrow}} (\mathcal{L}, \otimes)$$

For every object $x \in \mathcal{L}$, !x := LMx inherits a canonical commutative comonoid structure.

0 0 0 E E A E A E A E A

Let

$$(\mathcal{M}, \times) \xrightarrow[]{L}{\stackrel{\mathcal{L}}{\xleftarrow{}}} (\mathcal{L}, \otimes)$$

be an LNL adjunction between ∞ -categories, where C has cartesian products. Since right adjoints preserve limits, M is strongly monoidal from (\mathcal{L}, \times) to (\mathcal{M}, \times) . Hence the composite $! = LM : \mathcal{L} \to \mathcal{L}$ is strongly monoidal $(\mathcal{L}, \times) \to (\mathcal{L}, \otimes)$.

In particular this gives Seely isomorphisms $!(A \times B) \simeq !A \otimes !B$, $!\top = 1$.

300 E E 4 E + 4 E

Lafont ∞ -categories

A monoidal structure on an ∞ -category C determines a monoidal structure on C^{op} via the self-equivalence op : ∞ Cat $\rightarrow \infty$ Cat.

Definition (Commutative comonoids)

Given a SM ∞ C C, the ∞ -category Comon(C) is defined as Mon(C^{op})^{op}.

Theorem

The ∞ -category Comon(C) is cartesian and the forgetful functor Comon(C) $\rightarrow C$ is strongly monoidal from the cartesian structure to the monoidal one.

Corollary

If $Comon(\mathcal{C}) \to \mathcal{C}$ has a right adjoint, it induces an LNL adjunction $(Comon(\mathcal{C}), \times) \xrightarrow{\perp} (\mathcal{C}, \otimes)$

Definition

In that case, we say that ${\mathcal C}$ is a Lafont $\infty\mathchar`-category.$

Elies Harington

The following has been shown in 1-category theory by Mellies, Tabareau, Tasson[MTT].

Theorem Let (\mathcal{L}, \otimes) be a symmetric monoidal ∞ -category, and $X \in \mathcal{C}$. If for all $A \in C$. $A\otimes \prod (X^{\otimes n})^{\mathfrak{S}_n} \to \prod (A\otimes X^{\otimes n})^{\mathfrak{S}_n}$ $n \in \mathbb{N}$ $n \in \mathbb{N}$ is an equivalence, then $(X^{\otimes n})^{\mathfrak{S}_n}$ $n \in \mathbb{N}$ is the cofree commutative comonoid on X.

It follows easily from more general results of Lurie [Lura].

남태로 소문 제 소문 제

25 / 30

Example : ∞ -categorical generalized species

(∞) -category	Rel	Prof
Objects	Sets X, Y	$\infty ext{-categories} \ \mathcal{C}, \mathcal{D}$
Linear morphisms	$\begin{array}{c} Relations \\ R: X \times Y \to Bool \end{array}$	$\begin{array}{c} \infty\text{-profunctors} \\ \mathcal{C}\times\mathcal{D}^{op} \to \inftyGrpd \end{array}$
Lafont exponential	Mul(X) multisets on underlying set	$Sym(\mathcal{C})$ free symmetric monoidal ∞ -category
Non-linear morphisms	$\begin{array}{c} ``multi-relations'' \\ Mul(X) \times Y \to Bool \end{array}$	`` ∞ -generalized species'' Sym($\mathcal{C}) imes \mathcal{D}^{op} o \infty$ Grpd
Extensional objects	$\begin{array}{l} Complete \ lattices \\ P(X) = Bool^{X} \end{array}$	$\begin{array}{l} Presheaf \propto -categories \\ \mathcal{P}(\mathcal{C}) \mathrel{\mathop:}= Fun(\mathcal{C}^{op}, \infty Grpd) \end{array}$
Extensional morphisms	Maps $P(X) \rightarrow P(Y)$ that preserve arbitrary joins	Functors $\mathcal{P}(\mathcal{C}) o \mathcal{P}(\mathcal{D})$ that preserve small colimits
Extensional non-linear morphisms	?	Analytic functors ?

315

-∢ ⊒ ▶

Another criterion for existence of cofree comonoids

Definition

An $\infty\text{-category}\ \mathcal{C}$ is presentable if

- it is closed under small colimits
- there is a small set of objects $S \subset C_0$ such that every object is a *filtered colimit* of objects of S

Theorem

Let C be a symmetric monoidal presentable ∞ -category such that $\forall x \in C$, the functor $x \otimes -: C \to C$ preserves small colimits. Then C is Lafont (it admits cofree comonoids).

But in general there is no nice formula in this context.

Example			
Spectra (abelian groups), module spectra (modules).			
		<日> <四> <回> <回> 通言 <	200
Elies Harington	∞ -categorical models of linear logic	3rd of june 2025 27	7 / 30

Conclusion :

- Building upon the heavy machinery of ∞ -categories developed, we generalized two notions of models of linear logic to the ∞ -categorical setting (Lafont categories and LNL adjunctions).
- We constructed new such models analogous to variants of the relational model and bicategorical models of species and polynomials.

Future work :

- \bullet Give direct definitions of linear $\infty\text{-}categories$ and Seely $\infty\text{-}categories,$ and show they induce LNL adjunctions.
- Explicit comparison of our generalized ∞ -species and analytic functors.
- Generalize to $(\infty, 2)$ -categorical setting to model differential linear logic.
- Try to fit advanced homotopical constructions with linear flavour (Goodwillie calculus ?) into this new setting.

- Nick Benton, Gavin Bierman, Valeria De Paiva, and Martin Hyland, *Term assignment for intuitionistic linear logic (preliminary report)*.
- P. N. Benton, A mixed linear and non-linear logic: Proofs, terms and models, Computer Science Logic (Berlin, Heidelberg) (Leszek Pacholski and Jerzy Tiuryn, eds.), Springer Berlin Heidelberg, 1995, pp. 121–135.
- Elies Harington and Samuel Mimram, ∞ -categorical models of linear logic, 2025.
 - Jacob Lurie, *Higher algebra*.
- Image: Migher topos theory, Annals of mathematics studies, no. no. 170, Princeton University Press, OCLC: ocn244702012.
- Jacob Lurie, *Kerodon*, https://kerodon.net, 2018.

- Paul-André Melliès, Nicolas Tabareau, and Christine Tasson, *An explicit formula for the free exponential modality of linear logic.*
- R. Seely, Linear logic, -autonomous categories and cofree coalgebras, Contemporary Mathematics 92 (1997).

- ∢ ⊒ →

Intensional	Extensional
category Rel	full subcat of SupLat on the $P(X), X \in Set$
category Porel	full subcat of SupLat on the $P(X)$, $X \in Poset$
Mul(X) free commutative monoid on underlying (po)set	free commutative comonoid in SupLat
non-linear maps $Mul(X) o Y$?
FC(X) free poset with finite joins on X	P(X) exponential induced by LNL adjunction Scott $\xrightarrow{\perp}$ SupLat
non-linear maps $FC(X) o Y$	Scott-continuous maps $P(X) o P(Y)$

▲ 国 ▶ | ▲ 国 ▶ |

$\infty\text{-}\mathsf{categories}$ with colimits

Let \mathbb{K} be a class of simplicial sets. Write $\infty Cat_{\mathbb{K}}$ for the sub- ∞ -category of ∞Cat on ∞ -categories that admit colimits indexed by simplicial sets in \mathbb{K} , and functors that preserve such colimits.

Special cases : ∞Cat_{cc} for \mathbb{K} = all simplicial sets ("cc" for cocontinuous), ∞Cat_{filtr} for filtered simplicial sets, ∞Cat_{sift} for sifted simplicial sets.

Proposition

The ∞ -category $\infty Cat_{\mathbb{K}}$ admits a symmetric monoidal closed structure whose tensor products classifies functors $\mathcal{C} \times \mathcal{D} \to \mathcal{E}$ that preserve \mathbb{K} -colimits *independently in both variables*. Moreover, if $\mathbb{K} \subseteq \mathbb{K}'$, the forgetful functor $\infty Cat_{\mathbb{K}'} \to \infty Cat_{\mathbb{K}}$ admits a strongly monoidal left adjoint.

Proposition

If $\mathbb K$ consists only of sifted simplicial sets, then the previous monoidal structure is cartesian. That is the case for $\infty\mathsf{Cat}=\infty\mathsf{Cat}_{\emptyset},\,\infty\mathsf{Cat}_{\mathsf{filtr}}$ and $\infty\mathsf{Cat}_{\mathsf{sift}}.$

Cocompletion-based LNLs

There is a chain of strongly monoidal left adjoints

where the monoidal structures on all but ∞Cat_{cc} are cartesian.

Moreover they are all monoidal closed, in particular we get 4 LNL adjunctions, and hence 4 exponential comonads on $\infty Cat_{cc}.$

Write $!_f$ for the one induced by the adjunction with ∞Cat_{filtr} and similarly for $!_s$ and ∞Cat_{sift} .

Theorem

For a small ∞ -category C, $!_s \mathcal{P}(C) = \mathcal{P}(C^{\sqcup})$, where C^{\sqcup} is the free cocompletion of C under finite coproducts.

Theorem

For a small ∞ -category C, $!_f \mathcal{P}(C) = \mathcal{P}(C^{fin})$, where C^{fin} is the free cocompletion of C under finite colimits.

Elies Harington

We defined $!_s$ and $!_f$ at the extensional level (cocomplete ∞ -categories).

Intensional	Extensional
$Profunctors\; \mathcal{C} \times \mathcal{D}^op \to \mathcal{S}$	Cocontinuous functor $\mathcal{P}(\mathcal{C}) ightarrow \mathcal{P}(\mathcal{D})$
Completion under finite coproducts comonad on Prof	$!_{\sf s}$ comonad on $\infty{\sf Cat}_{\sf cc}$
Completion under finite colimits comonad on Prof $!_{f}$ comonad on ∞ Cat _{cc}	
At the level of posets, finite coproducts and finite colimits coincide. Hence we have two	
generalizations of the comonad FC on Porel.	

3

Image: A image: A

Theorem

The full sub- ∞ -category of ∞ Cat_{cc} on presheaf ∞ -categories admits cofree commutative comonoids.

Moreover, the presheaf construction $\infty Cat \rightarrow \infty Cat_{cc}$ maps free commutative monoids to cofree commutative comonoids : $!\mathcal{P}(\mathcal{C}) = \mathcal{P}(Sym(\mathcal{C}))$, where $Sym(\mathcal{C}) := \coprod_{n \in \mathbb{N}} \mathcal{C}^n /\!\!/ \mathfrak{S}_n$ is the free symmetric monoidal ∞ -category on \mathcal{C} .

Intensional		Extensional
$Profunctors\; \mathcal{C} \times \mathcal{D}^op \to \mathcal{S}$	Co	continuous functors $\mathcal{P}(\mathcal{C}) o \mathcal{P}(\mathcal{D})$
Free symmetric monoidal categ comonad on Prof	ory Cofre	e commutative comonoid on ∞Cat_{cc}
Non-linear morphisms		
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$^{p} ightarrow \mathcal{S}$	Analytic ∞ -functors ?
		· 니 / · · · · · · · · · · · · · · · · ·

0- ∞ analogy

0-categories	∞ -categories
set $X \in Set$	∞ -groupoid $X\in \mathcal{S}$
poset <i>E</i>	$\infty ext{-category} \; \mathcal{C}$
Fibred relation $R \subseteq X \times Y$	$Span\ Z\to X\times Y$
Indexed relation $X imes Y o$ Bool	Functor $X imes Y o \mathcal{S}$
Monotonous relations $E imes F^{op} o$ Bool	$Profunctor\ \mathcal{C}\times\mathcal{D}^op\to\mathcal{S}$
Free suplattice $P(E) := (E^{op} \to Bool)$	$Presheaf \ \infty\text{-category} \ \mathcal{P}(\mathcal{C}) \mathrel{\mathop:}= Fun(\mathcal{C}^{op}, \mathcal{S})$
Suplattice morphism	Small colimit-preserving functor
Scott-continuous map	Filtered-colimit preserving functor (or sifted-colimit preserving)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ④●●