$\infty\text{-}\mathsf{categorical}$ models of linear logic

Elies Harington Samuel Mimram

École Polytechnique

June 19 2025

	ington

June 19 2025

▶ < ∃ ▶</p>

-

1 Categorical semantics of linear logic

(2) The theory of ∞ -categories

(3) Linear logic in ∞ -categories

▶ < ∃ ▶</p>

How to do denotational semantics in a category $\ensuremath{\mathcal{C}}$:

Syntax	Categorical semantics	
Formulae A	Object $\llbracket A \rrbracket$ of $\mathcal C$	
Proof π of $A \vdash B$	Morphism $\llbracket \pi \rrbracket : \llbracket A \rrbracket o \llbracket B \rrbracket$ in \mathcal{C}	
Cut elimination $\pi \rightsquigarrow \pi'$	Equality of morphisms $\llbracket \pi \rrbracket = \llbracket \pi \rrbracket'$	
Additional syntactic constructions	Additional categorical structure	

▶ < ∃ ▶</p>

Intuitionistic linear logic

	Examples of rules	
Formulas	$A \vdash A$ (ax)	$\frac{\Gamma \vdash A}{\Gamma \land \Delta \vdash C} (cut)$
$F ::= A \mid B \mid \ldots$		$\Gamma, \Delta \vdash C$
A & B		
$ A \otimes B$	$\frac{\Gamma, A, B \vdash C}{\Gamma, A \otimes B \vdash C} (\otimes L)$	$\frac{ \Gamma \vdash A \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B} (\otimes R)$
$ A \multimap B$.,	.,
\mid 1 \mid $ op$	$\Gamma \land \vdash B$	
! <i>A</i>	$\frac{\Gamma, A_i \vdash B}{\Gamma, A_1 \And A_2 \vdash B} (\& L_i)$	$\frac{\Gamma \vdash A}{\Gamma \vdash A \& B} (\& R)$
) 1	
Contexts $\Gamma ::= A_1, \dots, A_n$ Judgements $\Gamma \vdash B$	$\frac{\Gamma \vdash A \Delta, B \vdash C}{\Gamma, \Delta, A \multimap B \vdash C} (\multimap L)$	$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} (\multimap R)$

★ ★ E ★ ★ E ★ E ★ 9 Q Q

< □ > < 四

Formulas A interpreted as objects $\llbracket A \rrbracket \in C$. $\llbracket A \otimes B \rrbracket =$? Need a *(symmetric) monoidal structure* on C: A functor $- \otimes - : C \times C \to C$ and an object $1 \in C$ with natural isomorphisms

$$X \otimes Y \simeq Y \otimes X,$$

 $(X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z),$
 $X \otimes 1 \simeq X \simeq 1 \otimes X$

satisfying some axioms.

Due to $[\Gamma, A, B \vdash C] (\otimes L)$, can define $[A_1, \ldots, A_n] := [A_1 \otimes \cdots \otimes A_n] = [A_1] \otimes \cdots \otimes [A_n]$

A ≡ ► A ≡ ► ∃ ≡ ■ 000

We can use the rules

$$\frac{A, B \vdash C}{A \otimes B \vdash C} (\otimes L) \qquad \qquad \frac{A, B \vdash C}{A \vdash B \multimap C} (\multimap R)$$

to show we need bijections

 $\mathsf{Hom}_{\mathcal{C}}(\llbracket A \rrbracket \otimes \llbracket B \rrbracket, \llbracket C \rrbracket) \simeq \mathsf{Hom}_{\mathcal{C}}(\llbracket A \rrbracket, \llbracket B \multimap C \rrbracket)$

Ask for C to be monoidal closed : $(X \otimes -) \dashv (X \multimap -)$.

$$\operatorname{Hom}_{\mathcal{C}}(X \otimes Y, Z) \simeq \operatorname{Hom}_{\mathcal{C}}(X, Y \multimap Z)$$

The proofs

$$\frac{\overline{A_i \vdash A_i}}{\overline{A_1 \& A_2 \vdash A_i}} \overset{(ax)}{(\&L_i)}$$

will be interpreted as "projection" morphisms $\pi_i : \llbracket A_1 \& A_2 \rrbracket \to A_i$. Thus we interpret & as the cartesian product in C.

$$\llbracket A \And B \rrbracket := \llbracket A \rrbracket \times \llbracket B \rrbracket$$

► < Ξ ► Ξ Ξ < < </p>

Linear implication:

$$A \multimap B$$

Cannot duplicate or erase hypothesis *A* in proof

Non-linear (intuitionistic) implication:

 $!A \multimap B$

Can duplicate or erase hypothesis A in proof.

-

Rules for the exponential

$$\frac{\Gamma, A \vdash B}{\Gamma, !A \vdash B} \text{ (der)}$$
$$\frac{!\Gamma \vdash A}{!\Gamma \vdash !A} \text{ (prom)}$$

$$\frac{\Gamma, !A, !A \vdash B}{\Gamma, !A \vdash B} \text{ (contr)}$$
$$\frac{\Gamma \vdash B}{\Gamma, !A \vdash B} \text{ (weak)}$$

The exponential $! \rightsquigarrow$ a functor $! : C \rightarrow C$. Promotion and dereliction rules $\rightsquigarrow !$ is a *comonad*.

$$\frac{\underline{|A \vdash |A}^{(ax)}}{\underline{|A \vdash |A \otimes |A}^{(ax)}} \xrightarrow{\underline{|A \vdash |A \otimes |A}^{(ax)}}_{(\otimes R)}$$

$$\frac{\underline{|A, |A \vdash |A \otimes |A}^{(ax)}}{\underline{|A \vdash |A \otimes |A}^{(contr)}}$$

Similarly, $|A \vdash 1$.

Cut elimination shows that this gives a comonoid structure on $[\![!A]\!].$

B A B A B B B A A A

The category Rel :

- Objects: sets X, Y, \ldots
- Morphisms: relations $R \subseteq X \times Y$
- Tensor product: cartesian product of underlying sets $X \times Y$
- Linear implication: also cartesian product of underlying sets, since

$$\operatorname{\mathsf{Rel}}(X \times Y, Z) \simeq \operatorname{\mathsf{Rel}}(X, Y \times Z)$$

- Cartesian product: disjoint union of underlying sets $X \sqcup Y$
- Exponential comonad: multisets Mul(X) on X (finite lists up to reordering, finite subsets with repetitions)
- is a sound model of linear logic.

Image: A test in te

Example: the bicategorical model of species [Fio+08; FGH24]

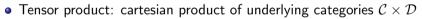
- Objects: categories $\mathcal{C}, \mathcal{D}, \dots$
- Morphisms: profunctors $F, G : \mathcal{C} \times \mathcal{D}^{op} \to \mathsf{Set}$
- 2-morphisms: natural transformations $F \Rightarrow G$
- \bullet Tensor product: cartesian product of underlying categories $\mathcal{C}\times\mathcal{D}$
- \bullet Linear implication: $\mathcal{C}^{\mathsf{op}}\times\mathcal{D}$
- \bullet Cartesian product: disjoint union of underlying categories $\mathcal{C}\sqcup\mathcal{D}$
- Exponential comonad: free symmetric monoidal category on underlying category Sym(C)
- is a sound *bicategorical model of linear logic*. Bicategory: hom-categories instead of hom-sets.

3 P A 3 P 3 1 2 1 2 0 0 0

Example: the homotopical model of template games [Mel19a; Mel19b]

(with trivial template for simplicity)

- Objects: categories $\mathcal{C}, \mathcal{D}, \ldots$
- Morphisms: spans of *isofibrations* $\mathcal{C} \xleftarrow{F} \mathcal{X} \xrightarrow{G} \mathcal{D}$
- 2-morphisms: morphisms of spans $C \xrightarrow[F']{F'} \mathcal{X} \xrightarrow[\alpha]{G'} \mathcal{D}$



- \bullet Linear implication: same as tensor product $\mathcal{C}\times\mathcal{D}$
- \bullet Cartesian product: disjoint union of underlying categories $\mathcal{C}\sqcup\mathcal{D}$
- Exponential comonad: free symmetric monoidal category on underlying category Sym(C)

is a sound "homotopical model of linear logic".

"Homotopical model": Quillen model structure on hom-categories.

Increasing interest in homotopical structures in models of linear logic. \rightarrow find a general framework to fit such new models ?

- Idea: work directly with ∞ -categories.
- ∞ -categories: the *language* of homotopy theory.
- \bullet Goal: find how to axiomatize models of linear logic in $\infty\text{-categories}.$

In ∞ -categories, computational definitions don't work well: the **property** of a diagram commuting is replaced by the **data** of a higher isomorphism.

 \rightarrow need a way to package the categorical structure of models of LL in an <code>abstract</code>, "unbiased" way.

Multiple axiomatizations exist.

> A ∃ ► ∃ ∃ = < < </p>

Seely categories

Definition ([See97])

A Seely category is a

- () symmetric monoidal closed category $(\mathcal{C},\otimes,1,\multimap)$
- ② with finite products (& and \top),
- **③** a comonad $(!, \delta, \varepsilon) : \mathcal{C} \to \mathcal{C}$,

• isomorphisms $m_{A,B}^2$: $!(A \& B) \simeq !A \otimes !B$ and m^0 : $!\top \simeq 1$ so that $!: (\mathcal{C}, \&) \to (\mathcal{C}, \otimes)$ is a symmetric monoidal functor

Point 5 is too ad hoc to have a natural ∞ -categorical generalization.

Definition ([Ben+97])

A linear category is :

- \bullet a symmetric monoidal closed category ($\mathcal{L},\otimes,1),$
- together with a lax symmetric monoidal comonad ((!, m), δ, ε),
- and a natural commutative comonoid structure $d_A : !A \rightarrow !A \otimes !A$, $e_A : !A \rightarrow 1$,

such that d_A and e_A are coalgebra morphisms for ! and δ is a comonoid morphism.

Less ad hoc, but still a lot of structure.

글 에 에 글 어

Linear-non-linear adjunctions

$$\text{Every linear category } (\mathcal{L},\otimes,1,!,\dots) \text{ induces } (\mathcal{L}^!,\times) \xrightarrow{\perp} (\mathcal{L},\otimes).$$

 $\mathcal{L}^!$ category of coalgebras for the comonad !.

The morphisms in $\mathcal{L}^!$ represent the non-linear morphisms of linear logic ($!A \multimap B$).

Definition ([Ben95])

A linear-non-linear adjunction is an adjunction

$$(\mathcal{M}, \times) \xrightarrow[]{L}{\stackrel{\perp}{\longleftarrow}} (\mathcal{L}, \otimes)$$

between a cartesian category \mathcal{M} and a symmetric monoidal closed category \mathcal{L} , where the left adjoint $L : \mathcal{M} \to \mathcal{L}$ is strongly monoidal $L(X \times Y) \simeq LX \otimes LY$.

 ${\mathcal L}$ "linear" category, ${\mathcal M}$ "multiplicative" (non-linear) category.

Elies Harington

$$(\mathcal{M},\times) \xrightarrow[]{L}{\stackrel{L}{\longleftarrow}} (\mathcal{L},\otimes)$$

Induced comonad $LM : \mathcal{L} \to \mathcal{L}$ makes \mathcal{L} into linear category.

Multiple choices of \mathcal{M} may yield the same comonad : there is **more** structure than strictly needed.

But it is packaged in a more **minimalistic** way.

Only notions needed: monoidal functor, cartesian products, adjunctions.

A special case : Lafont categories

!A must be a (commutative) comonoid.

Definition

 $(\mathcal{L}, \otimes, !)$ is a Lafont category if !A is the cofree commutative comonoid on A for every A.

Definition

Write $Comon(\mathcal{L})$ for the category of commutative comonoids in \mathcal{L} .

Proposition

The category $Comon(\mathcal{L})$ is cartesian. If \mathcal{L} is Lafont, there is a linear-non-linear adjunction

$$(\mathsf{Comon}(\mathcal{L}), \times) \xrightarrow{\perp} (\mathcal{L}, \otimes).$$

The relational model Rel is Lafont.

Proposition

 $(\text{Rel}, \times, \text{Mul})$ is Lafont. i.e. Mul(X) is the cofree commutative comonoid X in Rel.

▶ ∢ ⊒ ▶

-

Categorical semantics of linear logic

2 The theory of ∞ -categories

$\fbox{3}$ Linear logic in ∞ -categories

Almost all results in this section are from Joyal and Lurie's work [Joy08; Lur09; Lur17; Lur18] or straightforward corollaries.

Elies	

Image: A test in te

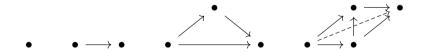
ELE DOG

In categories, there is a unique way to compose morphisms.

In an ∞ -category, various compositions may exist, and they are only related by higher isomorphisms between them.

To define ∞ -categories, we need "shapes" for morphisms (cells) of arbitrary dimensions, and how they relate to one another.

Many possible choices, but the most developed one is that of simplices.



Simplicial sets

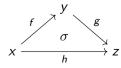
Definition (Simplex category)

 Δ denotes the category with objects the linear orders $[n] = \{0 < \cdots < n\}$ with $n \in \mathbb{N}$, and monotonous maps between them.

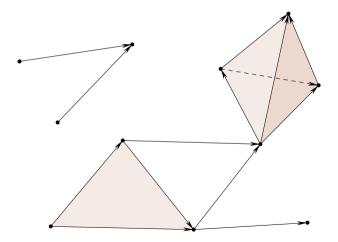
Definition

A simplicial set is a functor $X : \mathbf{\Delta}^{op} \to Set$. Their category is written sSet.

- elements of X_0 are thoughts of as vertices of X
- $f \in X_1$ is thought of as an edge. The inclusions $\{0\} \hookrightarrow \{0,1\}$ and $\{1\} \hookrightarrow \{0,1\}$ give F a source and target vertices d_0f and d_1f .
- $\sigma \in X_2$ is thought of as a filled triangle witnessing that "h is a composition of f and g"



Simplicial sets: a drawing



June 19 2025

★ ★ E ★ ★ E ★ E ★ 9 Q Q

Definition

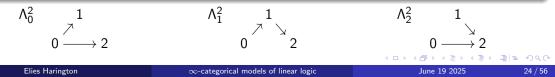
For every $n \in \mathbb{N}$ there is a simplicial set Δ^n such that

 $\forall X, \operatorname{Hom}(\Delta^n, X) \simeq X_n.$

 Δ^n is called the standard *n*-simplex.

Definition

Let n > 1, $0 \le k \le n$. The horn Λ_k^n is the subsimplicial set of Δ^n obtained by removing the unique cell of dimension n and the cell of dimension (n-1) opposite to the vertex k. The horn is an *inner horn* if 0 < k < n, and an *outer horn* if k = 0 or k = n.



Definition

Every category C determines a simplicial set NC called its **nerve**. The *n*-simplices in NC are given by sequences of composable morphisms in C.

 $d_0 \sigma \longrightarrow d_1 \sigma \longmapsto d_{n-1} \sigma \longrightarrow d_n \sigma$

The action of morphisms in Δ is given by composition and discarding in \mathcal{C} .

Example

The inclusion $\{0,1,2\}\simeq\{1,2,4\}\hookrightarrow\{0,1,2,3,4\}$ gives the action

$$x_0 \xrightarrow{f} x_1 \xrightarrow{g} x_2 \xrightarrow{h} x_3 \xrightarrow{k} x_4 \qquad \mapsto \qquad x_1 \xrightarrow{g} x_2 \xrightarrow{h \circ k} x_4$$

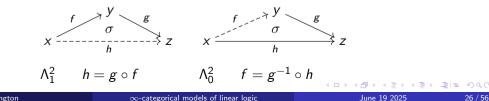
▲冊▶▲≡▶▲≡▶ ≡⊨ のQ@

Categories as simplicial sets

Proposition

A simplicial set X is isomorphic to the nerve of a category if and only if for every 0 < k < n, n > 1, and morphism $D : \Lambda_{\mu}^{n} \to X$, there **exists a unique** cell $\sigma \in X_{n}$ making the following diagram commute.

It is the nerve of a groupoid if and only if this condition also applies when $0 \le k \le n$, n > 0.



Definition

An ∞ -category is a simplicial set X such that there **exists a (non-necessarily unique)** lift with respect to every inclusion of inner horn $\Lambda_k^n \hookrightarrow \Delta^n$:

It is an ∞ -groupoid if it admits lifts also for outer horn inclusions. The vertices of an ∞ -category are called *objects*, its edges are called *morphisms*.

Example

The nerve of a category is an ∞ -category, the nerve of a groupoid is an ∞ -groupoid. The nerve functor $N : Cat \to \infty Cat$ is fully faithful.

Elies Harington

 ∞ -categorical models of linear logic

June 19 2025

Definition

In an ∞ -category \mathcal{C} , given a triangle $\sigma \in \mathcal{C}_2$

we say that σ witnesses that **h** is a composition of **g** and **f**.

Proposition

In an ∞ -category \mathcal{C} , composition of morphisms always exists, and is generally not unique.

▲冊▶▲三▶▲三▶ 三三 のQQ

Homotopy between morphisms

Let ${\mathcal C}$ be an $\infty\text{-category.}$

Definition

Let $x \in C_0$. There is an identity morphism $id_x : x \to x$ given by the action of C on the only map $\{0,1\} \to \{0\}$.

Let $f, g: x \to y$ be morphisms in \mathcal{C} .

Definition

A homotopy between f and g is a 2-cell $\sigma \in C_2$ of the following shape

$$x \xrightarrow{f \xrightarrow{\gamma} \sigma \xrightarrow{id_y}} g \xrightarrow{q} y \xrightarrow{q} x \xrightarrow{g} y$$
 or
$$x \xrightarrow{id_x \xrightarrow{\gamma} \sigma \xrightarrow{f}} y$$

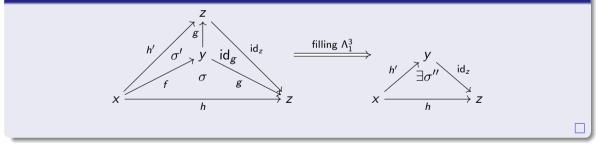
f and g are *homotopic* (written $f \sim g$) if there exists a homotopy between f and g.

「「「」(「」)(「」)(「」)(「」)(「」)

Proposition

Let $f: x \to y$, $g: y \to z$, and $h, h': x \to z$ two compositions of g and f. Then $h \sim h'$.

Proof.



-

Proposition

The relation \sim is an equivalence relation.

Proposition

Composition is unique up to homotopy.

Proposition

Composition is associative and unital up to homotopy.

All proofs: playing with horn filling conditions In particular, can define the **homotopy category** hC with same objects as C, and morphisms are morphisms in C up to homotopy.

A functor between ∞ -categories is just a morphism of simplicial sets.

Proposition

The category sSet is cartesian closed (as a presheaf category), with internal hom given by

$$Fun(X, Y)_n := \operatorname{Hom}_{sSet}(\Delta^n \times X, Y)$$

Proposition

If Y is an ∞ -category (resp. ∞ -groupoid), then Fun(X, Y) is an ∞ -category (resp. ∞ -groupoid).

The objects of Fun(X, Y) are exactly the morphisms of simplicial sets $X \to Y$.

Definition

Let $F, G: X \to Y$ be morphisms of simplicial sets, with Y an ∞ -category. A natural transformation is morphism $\alpha: F \to G$ in Fun(X, Y). Equivalently, $\alpha: \Delta^1 \times X \to Y$ such that $\alpha_{|\{0\} \times X} = F$ and $\alpha_{|\{1\} \times X} = G$.

Definition

A functor $F : \mathcal{C} \to \mathcal{D}$ is an equivalence of ∞ -categories if there exists $G : \mathcal{D} \to \mathcal{C}$ and natural isomorphisms $G \circ F \to id_{\mathcal{C}}$, $F \circ G \to id_{\mathcal{D}}$.

Hom ∞ -groupoid

Let x, y be objects of an ∞ -category C. Write $Hom_C(x, y)$ or simply Hom(x, y) for the following pullback in sSet.

Proposition

 $\operatorname{Hom}_{\mathcal{C}}(x, y)$ is an ∞ -groupoid whose objects are given by morphisms $f : x \to y$ in \mathcal{C} and whose morphisms are given by homotopies.

Proposition

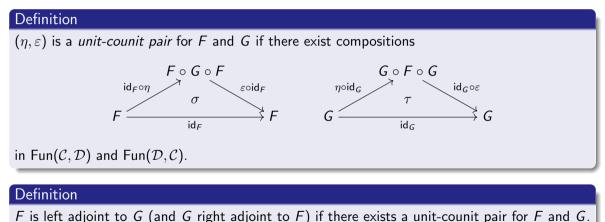
The existence of composite of morphisms in C can be enhanced to the choice of a functor $Hom(x, y) \times Hom(y, z) \rightarrow Hom(x, z)$.

Elies Harington

Adjunctions

Elies Harington

Let $F : \mathcal{C} \to \mathcal{D}$, $G : \mathcal{D} \to \mathcal{C}$ be functors between ∞ -categories, and $\eta : id_{\mathcal{C}} \to G \circ F$, $\varepsilon : F \circ G \to id_{\mathcal{D}}$ be natural transformations.



 ∞ -categorical models of linear logic

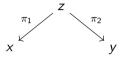
ヘロマ 不可 マイビマ ふぼう ふしゃ

35 / 56

June 19 2025

(Co)limits

Let $x, y \in \mathcal{C}$ and ∞ -category. A product of x and y is a diagram



such that for all $z' \in \mathcal{C}$, the induced map

$$\mathsf{Hom}(z',z) \to \mathsf{Hom}(z',x) imes \mathsf{Hom}(z',y)$$

is an equivalence of ∞ -groupoids.

Remark

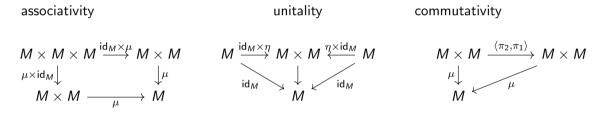
The universal property is up to equivalence, while in 1-categories it's up to isomorphism.

General limits and colimits can be defined along those lines.

36 / 56

- $\bullet \,$ \infty-categories have objects, morphisms, homotopies
- existence of compositions
- uniqueness up to homotopy
- $\bullet\,$ Hom- $\infty\mathchar`-groupoids instead of Hom-sets$
- universal properties are up to equivalence
- adjunctions can be defined as usual

In a category C with finite products, a commutative monoid is an object M together with maps $\mu: M \times M \to M$, $\eta: 1 \to M$, such that the following commute.



In an $\infty\mbox{-}{\rm category},$ need further coherence conditions on the data of homotopies, in every dimension.

How to specify everything in a homogeneous way ?

Monoids in categories

The previous definition of commutative monoid is *biased* : many other operations than μ and η exist in monoids.

$$\begin{split} M^5 &\to M^2 \\ (x_1, x_2, x_3, x_4, x_5) &\mapsto (\mu(x_3, x_1), \mu(x_2, x_5)) \end{split}$$

Every partial map $f: \{1, \dots, m\} \to \{1, \dots, n\}$ induces a map
 $M^m \to M^n \\ (x_i)_{1 \leq i \leq m} \mapsto \big(\prod_{f(i)=j} x_i\big)_{1 \leq j \leq n} \end{split}$

Write FinSet_{*} for the category of finite sets $\{1, \ldots, n\}$ and partial maps.

Proposition Commutative monoids in C correspond to functors F : FinSet_{*} $\rightarrow C$ such that $F(\{1, \ldots, n\}) \simeq F(\{1\})^n$. Elies Harington ∞ -categorical models of linear logic June 19 2025 39/56

Definition

A commutative monoid in an ∞ -category C is a functor $F : NFinSet_* \to C$ such that $F(\{1, \ldots, n\}) \simeq F(\{1\})^n$.

This is for monoids with respect to cartesian products.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Fun fact

A symmetric monoidal category is exactly a commutative (pseudo)monoid in the bicategory of categories.

Proposition

There is an ∞ -category ∞ Cat whose objects are ∞ -categories, morphisms are functors, homotopies are natural isomorphisms, etc.

This ∞ -category admits cartesian products, given by the cartesian product of the underlying simplicial sets.

Definition

A symmetric monoidal ∞ -category is a commutative monoid M in ∞ Cat, i.e. $M: NFinSet_* \rightarrow \infty$ Cat. Its underlying ∞ -category is M(1).

正明 人的圣人的圣人 医圣人口圣

With more effort, possible to define :

- ullet commutative monoids in symmetric monoidal $\infty\mbox{-categories}$
- strong monoidal functors $(F(x \otimes y) \simeq F(x) \otimes F(y) + \text{higher structure})$
- lax monoidal functors (with maps $F(x) \otimes F(y) \rightarrow F(x \otimes y)$ + higher structure) and show (lax) monoidal functors preserve monoids.

1) Categorical semantics of linear logic

2) The theory of ∞ -categories

(3) Linear logic in ∞ -categories

Content of our article [HM25]

▶ < ∃ ▶</p>

-

Definition

An LNL adjunction in $\infty\mbox{-categories}$ is an adjunction

$$(\mathcal{M},\times) \xrightarrow[]{L}{\stackrel{\perp}{\longleftarrow}} (\mathcal{L},\otimes)$$

between a cartesian ∞ -category \mathcal{M} and a symmetric monoidal closed ∞ -category \mathcal{L}^{\otimes} , such that the left adjoint L is strong monoidal.

Proposition

The right adjoint is lax monoidal.

Proposition

In a cartesian ∞ -category, every object admits a unique commutative comonoid structure. (comultiplication is given by the diagonal map $X \to X \times X$)

Since strongly monoidal functors preserve commutative comonoids, we get

Corollary

In an LNL adjunction between ∞ -categories,

$$(\mathcal{M},\times) \xrightarrow[]{\stackrel{L}{\longleftarrow}} (\mathcal{L},\otimes)$$

For every object $x \in \mathcal{L}$, !x := LMx inherits a canonical commutative comonoid structure.

Let

$$(\mathcal{M},\times) \xrightarrow[]{L}{\stackrel{\mathcal{L}}{\xleftarrow{}}} (\mathcal{L},\otimes)$$

be an LNL adjunction between ∞ -categories, where C has cartesian products. Since right adjoints preserve limits, M is strongly monoidal from (\mathcal{L}, \times) to (\mathcal{M}, \times) . Hence the composite $! = LM : \mathcal{L} \to \mathcal{L}$ is strongly monoidal $(\mathcal{L}, \times) \to (\mathcal{L}, \otimes)$.

In particular this gives Seely isomorphisms $!(A \times B) \simeq !A \otimes !B$, $!\top = 1$.

Lafont ∞ -categories

A monoidal structure on an ∞ -category C determines a monoidal structure on C^{op} via the self-equivalence op : ∞ Cat $\rightarrow \infty$ Cat.

Definition (Commutative comonoids)

Given a SM ∞ C C, the ∞ -category Comon(C) is defined as Mon(C^{op})^{op}.

Theorem

The ∞ -category Comon(C) is cartesian and the forgetful functor Comon(C) $\rightarrow C$ is strongly monoidal from the cartesian structure to the monoidal one.

Corollary

If $Comon(\mathcal{C}) \to \mathcal{C}$ has a right adjoint, it induces an LNL adjunction $(Comon(\mathcal{C}), \times) \xrightarrow{\perp} (\mathcal{C}, \otimes)$

Definition

In that case, we say that ${\mathcal C}$ is a Lafont $\infty\mbox{-category}.$

Elies Harington

The following has been shown in 1-category theory by [MTT].

Theorem Let (\mathcal{L}, \otimes) be a symmetric monoidal ∞ -category, and $X \in \mathcal{C}$. If for all $A \in C$. $A\otimes \prod (X^{\otimes n})^{\mathfrak{S}_n} \to \prod (A\otimes X^{\otimes n})^{\mathfrak{S}_n}$ $n \in \mathbb{N}$ $n \in \mathbb{N}$ is an equivalence, then $(X^{\otimes n})^{\mathfrak{S}_n}$ $n \in \mathbb{N}$ is the cofree commutative comonoid on X.

It follows easily from more general results of Lurie [Lur17].

Example : ∞ -categorical generalized species

(∞) -category	Rel	Prof
Objects	Sets X, Y	$\infty ext{-categories} \ \mathcal{C}, \mathcal{D}$
Linear morphisms	$\begin{array}{c} Relations \\ R: X \times Y \to Bool \end{array}$	$\begin{array}{c} \infty\text{-profunctors} \\ \mathcal{C}\times\mathcal{D}^{op}\to\inftyGrpd \end{array}$
Lafont exponential	Mul(X) multisets on underlying set	$Sym(\mathcal{C})$ free symmetric monoidal ∞ -category
Non-linear morphisms	``multi-relations'' Mul(X) imes Y o Bool	`` ∞ -generalized species'' Sym(\mathcal{C}) $ imes \mathcal{D}^{op} o \infty$ Grpd
Extensional objects	$\begin{array}{l} Complete \ lattices \\ P(X) = Bool^{X} \end{array}$	$\begin{array}{l} Presheaf \propto -categories \\ \mathcal{P}(\mathcal{C}) \mathrel{\mathop:}= Fun(\mathcal{C}^{op}, \infty Grpd) \end{array}$
Extensional morphisms	Maps $P(X) \rightarrow P(Y)$ that preserve arbitrary joins	Functors $\mathcal{P}(\mathcal{C}) \to \mathcal{P}(\mathcal{D})$ that preserve small colimits
Extensional non-linear morphisms	?	Analytic functors ?

▶ ∢ ⊒ ▶

-

Another criterion for existence of cofree comonoids

Definition

An $\infty\text{-category}\ \mathcal{C}$ is presentable if

- it is closed under small colimits
- there is a small set of objects $S \subset C_0$ such that every object is a *filtered colimit* of objects of S

Theorem

Let C be a symmetric monoidal presentable ∞ -category such that $\forall x \in C$, the functor $x \otimes -: C \to C$ preserves small colimits. Then C is Lafont (it admits cofree comonoids).

But in general there is no nice formula in this context.

Example					
Spectra (abelian groups), module spectra (modules).					
		・日・・四・・尚・・尚・ 御子	900		
Elies Harington	∞ -categorical models of linear logic	June 19 2025	50 / 56		

- Building upon the heavy machinery of ∞-categories developed, we generalized two notions of models of linear logic to the ∞-categorical setting (Lafont categories and LNL adjunctions).
- We constructed new such models analogous to variants of the relational model and bicategorical models of species and polynomials.

Image: A image: A

- \bullet Give direct definitions of linear $\infty\text{-}categories$ and Seely $\infty\text{-}categories,$ and show they induce LNL adjunctions.
- Explicit comparison of our generalized ∞ -species and analytic functors.
- Generalize Mellies' span model (template games) to this new setting (in connection with polynomial functors [HM24])
- \bullet Generalize to $(\infty,2)\text{-categorical setting to model differential linear logic.$
- Try to fit advanced homotopical constructions with linear flavour (Goodwillie calculus ?) into this new setting.

- [Ben+97] Nick Benton **andothers**. "Term Assignment for Intuitionistic Linear Logic (Preliminary Report)". **in(february** 1997).
- [Ben95] P. N. Benton. "A mixed linear and non-linear logic: Proofs, terms and models". in Computer Science Logic: byeditorLeszek Pacholski and Jerzy Tiuryn. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pages 121–135. ISBN: 978-3-540-49404-1.
- [FGH24] M. Fiore, N. Gambino and M. Hyland. Monoidal bicategories, differential linear logic, and analytic functors. version: 2. 23 may 2024. DOI: 10.48550/arXiv.2405.05774. arXiv: 2405.05774[cs,math]. URL: http://arxiv.org/abs/2405.05774 (urlseen 22/06/2024).

[Fio+08] M. Fiore andothers. "The cartesian closed bicategory of generalised species of structures". in Journal of the London Mathematical Society: 77.1 (february 2008), pages 203-220. ISSN: 00246107. DOI: 10.1112/jlms/jdm096. URL: http://doi.wiley.com/10.1112/jlms/jdm096 (urlseen 29/06/2023).

- [HM24] Elies Harington and Samuel Mimram. "Polynomials in homotopy type theory as a Kleisli category". in Electronic Notes in Theoretical Informatics and Computer Science: Volume 4 - Proceedings of MFPS XL, 11 (december 2024). ISSN: 2969-2431. DOI: 10.46298/entics.14786. URL: https://entics.episciences.org/14786.
- [HM25] Elies Harington and Samuel Mimram. ∞-categorical models of linear logic. 2025.
 [Jov08] Andre Joval. NOTES ON QUASI-CATEGORIES. 2008.

References III

[Lur09] Jacob Lurie. Higher topos theory. Annals of mathematics studies no. 170. OCLC: ocn244702012. Princeton, N.J: Princeton University Press, 2009. 925 pagetotals. ISBN: 978-0-691-14048-3 978-0-691-14049-0.

[Lur17] Jacob Lurie. Higher Algebra. 18 september 2017. URL: https://people.math.harvard.edu/~lurie/papers/HA.pdf (urlseen 07/09/2023).

- [Lur18] Jacob Lurie. Kerodon. https://kerodon.net. 2018.
- [Mel19a] Paul-André Mellies. "Categorical combinatorics of scheduling and synchronization in game semantics". in Proceedings of the ACM on Programming Languages: 3 (POPL 2 january 2019), pages 1–30. ISSN: 2475-1421. DOI: 10.1145/3290336. URL: https://dl.acm.org/doi/10.1145/3290336 (urlseen 16/06/2025).

[Mel19b] Paul-Andre Mellies. "Template games and differential linear logic". in 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS): 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Vancouver, BC, Canada: IEEE, june 2019, pages 1–13. ISBN: 978-1-7281-3608-0. DOI: 10.1109/LICS.2019.8785830. URL: https://ieeexplore.ieee.org/document/8785830/ (urlseen 16/12/2022).

- [MTT] Paul-André Melliès, Nicolas Tabareau **and** Christine Tasson. "An explicit formula for the free exponential modality of linear logic". **in**().
- [See97] R. Seely. "Linear Logic, -Autonomous Categories and Cofree Coalgebras". inContemporary Mathematics: 92 (november 1997). DOI: 10.1090/conm/092/1003210.

1 3 1 4 3 1 3 1 3 1 4 3 4 4 5 1 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4

Intensional	Extensional	
category Rel	full subcat of SupLat on the $P(X)$, $X \in Set$	
category Porel	full subcat of SupLat on the $P(X)$, $X \in Poset$	
Mul(X) free commutative monoid on underlying (po)set	free commutative comonoid in SupLat	
non-linear maps $Mul(X) o Y$?	
FC(X) free poset with finite joins on X	P(X) exponential induced by LNL adjunction Scott $\xrightarrow{\perp}$ SupLat	
non-linear maps $FC(X) o Y$	Scott-continuous maps $P(X) o P(Y)$	

< 国 > < 国 > .

고 노

$\infty\text{-}\mathsf{categories}$ with colimits

Let \mathbb{K} be a class of simplicial sets. Write $\infty Cat_{\mathbb{K}}$ for the sub- ∞ -category of ∞Cat on ∞ -categories that admit colimits indexed by simplicial sets in \mathbb{K} , and functors that preserve such colimits.

Special cases : ∞Cat_{cc} for \mathbb{K} = all simplicial sets ("cc" for cocontinuous), ∞Cat_{filtr} for filtered simplicial sets, ∞Cat_{sift} for sifted simplicial sets.

Proposition

The ∞ -category $\infty Cat_{\mathbb{K}}$ admits a symmetric monoidal closed structure whose tensor products classifies functors $\mathcal{C} \times \mathcal{D} \to \mathcal{E}$ that preserve \mathbb{K} -colimits *independently in both variables*. Moreover, if $\mathbb{K} \subseteq \mathbb{K}'$, the forgetful functor $\infty Cat_{\mathbb{K}'} \to \infty Cat_{\mathbb{K}}$ admits a strongly monoidal left adjoint.

Proposition

If $\mathbb K$ consists only of sifted simplicial sets, then the previous monoidal structure is cartesian. That is the case for $\infty\mathsf{Cat}=\infty\mathsf{Cat}_{\emptyset},\,\infty\mathsf{Cat}_{\mathsf{filtr}}$ and $\infty\mathsf{Cat}_{\mathsf{sift}}.$

Cocompletion-based LNLs

There is a chain of strongly monoidal left adjoints

where the monoidal structures on all but ∞Cat_{cc} are cartesian.

Moreover they are all monoidal closed, in particular we get 4 LNL adjunctions, and hence 4 exponential comonads on $\infty Cat_{cc}.$

Write $!_f$ for the one induced by the adjunction with ∞Cat_{filtr} and similarly for $!_s$ and ∞Cat_{sift} .

Theorem

For a small ∞ -category C, $!_s \mathcal{P}(C) = \mathcal{P}(C^{\sqcup})$, where C^{\sqcup} is the free cocompletion of C under finite coproducts.

Theorem

For a small ∞ -category C, $!_f \mathcal{P}(C) = \mathcal{P}(C^{fin})$, where C^{fin} is the free cocompletion of C under finite colimits.

Elies Harington

We defined $!_s$ and $!_f$ at the extensional level (cocomplete ∞ -categories).

Intensional	Extensional	
$Profunctors\; \mathcal{C} \times \mathcal{D}^op \to \mathcal{S}$	Cocontinuous functor $\mathcal{P}(\mathcal{C}) ightarrow \mathcal{P}(\mathcal{D})$	
Completion under finite coproducts comonad on Prof	$!_{\sf s}$ comonad on $\infty{\sf Cat}_{\sf cc}$	
Completion under finite colimits comonad on Prof	$!_{\sf f}$ comonad on $\infty {\sf Cat}_{\sf cc}$	
At the level of posets, finite coproducts and finite colimits coincide. Hence we have two		
generalizations of the comonad FC on Porel.		

▶ < ∃ ▶</p>

-

Theorem

The full sub- ∞ -category of ∞ Cat_{cc} on presheaf ∞ -categories admits cofree commutative comonoids.

Moreover, the presheaf construction $\infty Cat \rightarrow \infty Cat_{cc}$ maps free commutative monoids to cofree commutative comonoids : $!\mathcal{P}(\mathcal{C}) = \mathcal{P}(Sym(\mathcal{C}))$, where $Sym(\mathcal{C}) := \coprod_{n \in \mathbb{N}} \mathcal{C}^n /\!\!/ \mathfrak{S}_n$ is the free symmetric monoidal ∞ -category on \mathcal{C} .

Intensional		Extensional
$Profunctors\; \mathcal{C} \times \mathcal{D}^op \to \mathcal{S}$		Cocontinuous functors $\mathcal{P}(\mathcal{C}) ightarrow \mathcal{P}(\mathcal{D})$
Free symmetric monoidal category comonad on Prof		Cofree commutative comonoid on ∞Cat_{cc}
Non-linear morphisms		
$\fbox{Genralized ∞-species Sym}(\mathcal{C}) \times \mathcal{D}^{op} \to \mathcal{S}$		Analytic ∞ -functors ?

0- ∞ analogy

0-categories	∞ -categories
set $X \in Set$	∞ -groupoid $X\in \mathcal{S}$
poset <i>E</i>	$\infty ext{-category} \; \mathcal{C}$
Fibred relation $R \subseteq X \times Y$	$Span\ Z\to X\times Y$
Indexed relation $X imes Y o$ Bool	Functor $X imes Y o \mathcal{S}$
Monotonous relations $E imes F^{op} o$ Bool	$Profunctor\ \mathcal{C}\times\mathcal{D}^op\to\mathcal{S}$
Free suplattice $P(E) := (E^{op} \to Bool)$	$Presheaf \ \infty\text{-category} \ \mathcal{P}(\mathcal{C}) \mathrel{\mathop:}= Fun(\mathcal{C}^{op}, \mathcal{S})$
Suplattice morphism	Small colimit-preserving functor
Scott-continuous map	Filtered-colimit preserving functor (or sifted-colimit preserving)