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Abstract
The notion of categorical model of linear logic is now well studied and established around the notion
of linear-non-linear adjunction, which encompasses the previous notions of Seely categories, Lafont
categories and linear categories. These categorical structures have counterparts in the realm of
∞-categories, which can thus be thought of as weak forms of models of linear logic. The goal of this
article is to formally introduce them and study their relationships. We show that ∞-linear-non-linear
adjunctions still play the role of a unifying notion of model in this setting. Moreover, we provide
a sufficient condition for a symmetric monoidal ∞-category to be Lafont. Finally, we illustrate
our constructions by providing models: we construct linear-non-linear adjunctions which generalize
well-known models in relations (and variants based on profunctors or spans), domains and vector
spaces. In particular, we introduce a model based on spectra, a homotopical variant of abelian
groups.
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Introduction

Toward higher-dimensional models of linear logic. The introduction of linear logic [20]
was motivated by the study of semantics of λ-calculus [21] and many instances of such
semantics have been considered for this logic (phase semantics, coherence spaces, domains,
game semantics, etc.). In order to structure and unify their study, categorical axiomatizations
of what a model of linear logic should be have been proposed: Lafont categories [34], Seely
categories [45], linear categories [26] and linear-non-linear adjunctions [7], as well as ∗-auto-
nomous [45, 5] variants for the classical case, see [11, 41, 38] for surveys on the topic and the
relationships between them. More recently, the study of several categorical structures has
prompted higher-categorical generalizations of the notion of model: even though those do
not form categories, but rather bicategories, we can recognize there variants of the familiar
structures that are usually found in models of linear logic. We can for instance name
generalized species of structures [16, 14], or polynomial functors [32, 18, 13]. Those have
motivated the recent introduction of bicategorical models for (differential) linear logic [15].
More recently, higher-dimensional generalizations of those models, polynomial/analytic
functors in particular, have been considered in the settings of ∞-categories [19] and homotopy
type theory [23]. Those are a motivation for the introduction of ∞-categorical models of
linear logic in this paper.

∞-categories. The notion of ∞-category originates in the study of homotopy theory, and it
has recently garnered an interest from computer science because of its tight relationship with
homotopy type theory [47]. It can be thought of as a generalization of the notion of category
where we take higher-dimensional coherences into account: this means that, when introducing
a structure, we should ask for isomorphisms instead of equalities, those isomorphisms should
satisfy coherences, themselves satisfying further coherences, and so on. Because of this, usual
structures (such as the very definition of ∞-category) require specifying an infinite amount
of data. There are various formalisms making this idea precise, we consider here the one of
quasicategories developed by Joyal [29]. It was considerably expanded by Lurie [35, 36], up
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to the point that we can nowadays almost work as in the 1-categorical setting, justifying
every step by preexisting ∞-categorical results.

∞-categorical models of linear logic. In this article, we introduce ∞-categorical variants of
the main categorical models of linear logic: linear-non-linear adjunctions, Lafont categories,
Seely categories, and linear categories. We also show that, as advocated by Melliès in the
1-categorical setting [38], linear-non-linear adjunctions play a unifying role for those various
structures. Although, there is no formal connection (yet) to the syntax of linear logic (in
the usual sense of denotational semantics), we consider that those relationships are a good
indication that we are considering the relevant structures. This has allowed us to come up
with new models of linear logic, which generalize already known 1-categorical ones, but are
of a quite different nature and exhibit interesting new phenomena: cocomplete ∞-categories
and cocontinuous functors (generalizing complete semilattices), ∞-categories and profunctors
(generalizing relations), spectra (generalizing abelian groups).

Plan of the paper. After recalling basic notions of ∞-categories (Section 1), we introduce
and compare the various ∞-categorical generalizations of models of linear logic: linear-non-
linear adjunctions, among which Seely and linear categories (Section 2.1), Lafont categories
(Section 2.2), and ∗-autonomous categories (Section 2.3). We then recall 1-categorical models
of linear logic: polynomials (Section 3.1), domains (Section 3.2) and modules (Section 3.3).
We then construct ∞-categorical generalizations of those models in cocomplete ∞-categories
(Section 4) and spectra (Section 5).

1 ∞-categories

We very briefly recall the setting of ∞-categories, in the formalism of quasi-categories [29].
Providing a complete introduction is out of the scope of this paper, and we refer to the
foundational books of Lurie [35, 36] for a complete reference. Our main goal here is to
provide reference to ∞-categorical generalizations of well-known constructions and properties
in the 1-categorical world, which we will use in the following.

Simplicial sets. Given a natural number n, we write [n] = {0, . . . , n}. We write ∆ for the
category of simplices whose objects are natural numbers and morphisms f : m → n are
functions f : m → n. The category ∆̂ of presheaves over this category has simplicial sets as
objects. Given an object n ∈ ∆, we write ∆n for the simplicial set obtained as the image
of n under the Yoneda embedding, and Λn

k for the k-th horn, which is the simplicial set
obtained from ∆n by removing the k-th face and its top-dimensional cell, with 0 ≤ k ≤ n;
an inner horn being a horn with 0 < k < n. Writing I : ∆ → Cat for the functor which to n
associates the totally ordered set [n], any category C induces a simplicial set, called its nerve,
defined by N(C) = Cat(I−, C), which will allow considering a 1-category as an ∞-category,
which we sometimes leave implicit.

∞-categories. An ∞-category C is a simplicial set such that every inner horn has a filler [35,
Def 1.1.2.4] (and ∞-groupoids are defined similarly by requiring that every horn has a filler).
It can be thought of as a weak variant of the notion of category where the expected laws, such
as associativity, hold only up to coherent higher cells (the 0-cells correspond to the objects
and the 1-cell to the morphisms of the category). A functor is a morphism of simplicial sets.
Any two ∞-categories C and D induce an ∞-category Fun(C, D) (also denoted [C, D]) given
by the internal hom in ∆̂, whose objects are the functors from C to D [35, Prop 1.2.7.3]. The
morphisms in this ∞-category are called natural transformations. A functor F : C → D is an
equivalence when there is a functor G : D → C and two invertible natural transformations
G ◦ F ≃ idC and F ◦ G ≃ idD [35, Prop 1.2.4.1]. We write Cat for the ∞-category of
∞-categories [35, Def 3.0.0.1], and S for the ∞-category of ∞-groupoids [35, Def 1.2.16.1],



E. Harington and S. Mimram 3

which we sometimes refer to as spaces. In the following, we use homotopical as synonymous for
“∞-categorical”, because of the tight relationships with homotopy theory [44]. In particular,
all (co)limits in ∞-categories are homotopy (co)limits [35, Sec 1.2.13].

Adjunctions. Any two objects A and B of an ∞-category C induce a hom ∞-groupoid HomC(A, B)
(or C(A, B)) [35, Prop 1.2.2.3]. An adjunction between two ∞-categories C and D consists
of functors F : C → D and G : D → C, together with a natural transformation η : idC → G◦F

such that for every objects A, B ∈ D, the composite D(FA, B) C(GFA, GB) C(A, GB)G− −◦ηA

is an equivalence of ∞-groupoids [35, Def 5.2.2.7].
The existence of adjoint functors is often obtained in the following situation. An

∞-category is accessible when it is the completion under filtered colimits of a small ∞-
category [35, Def 5.4.2.1], and presentable when it moreover has small colimits [35, Def 5.5.0.1].
The adjoint functor theorem then states that a functor between presentable ∞-categories is
a left adjoint if and only if it preserves colimits [35, Cor 5.5.2.9].

Symmetric monoidal ∞-categories. We write Fin∗ for the 1-category where an object
is a natural number and a morphism f : m → n is a function f : [m] → [n] such that
f(0) = 0. A symmetric monoidal ∞-category C is a functor M : Fin∗ → Cat (we simply
write Fin∗ instead of N(Fin∗)) such that the canonical map Mn → (M1)n (given by the
cartesian structure of Cat) is an equivalence [36, Ex 2.4.2.4]. We should mention that,
technically, we use the equivalent formulation as a cocartesian fibration p : C⊗ → Fin∗
satisfying suitable properties [36, Def 2.0.0.7]. The notion of cocartesian fibration generalizes
to ∞-categories the traditional notion of Grothendieck opfibration [35, Sec 2.4] and C⊗ is an
∞-category constructed from C, whose objects are tuples of objects in C [36, Cons 2.1.1.7].
The opposite of a symmetric monoidal ∞-category has a canonical structure of symmetric
monoidal ∞-category using the equivalence op : Cat → Cat [36, Rem 2.4.2.7]. A symmetric
monoidal ∞-category C is closed when the functor A ⊗ − : C → C admits a right adjoint [36,
Def 4.1.1.15], which we generally denote A ⊸ −. Given a functor F : C → D between
symmetric monoidal ∞-categories, a monoidal structure consists in natural isomorphisms
exhibiting the fact that the functor preserves the monoidal structure, see [36, Def 2.1.3.7].

Monads. A commutative monoid in a monoidal ∞-category p : C⊗ → Fin∗ is a section
m : Fin∗ → C⊗ satisfying a suitable condition [36, Def 2.1.3.1]. In particular, a commutative
monoid in the ∞-category Cat is a symmetric monoidal ∞-category [36, Rem 2.4.2.6]. The
notion of cocommutative comonoid is defined dually as a commutative monoid in the opposite
monoidal ∞-category Cop. The notion of (non-commutative) monoid can be defined similarly,
by taking a variant of the ∞-category Fin∗ [36, Def 4.1.1.6]. A monad T on an ∞-category C
is a monoid object in the monoidal ∞-category Fun(C, C) [36, Def 4.7.0.1]. Any adjunction
between ∞-categories induces a monad in the expected way [36, Prop 4.7.3.3]. Moreover, any
monad T on an ∞-category C determines an ∞-category CT of T -algebras [36, Def 4.2.1.13].
The Kleisli ∞-category CT associated to a monad can be described as the essential image of
the free algebra functor C → CT (constructed in [36, Sec 4.2.4]), see [25, Def 4.1].

2 ∞-categorical models of linear logic

The notion of categorical model for the multiplicative fragment of intuitionistic linear logic
is clear: it consists of a category L which is symmetric monoidal closed (to model the tensor
and linear arrow of linear logic). In order to model additives, the category L should be
cartesian (independently of being monoidal). Finally, in order to model exponentials, the
category should moreover be equipped with a comonad ! : L → L, the exponential modality,
equipped with various coherence isomorphisms satisfying suitable coherence laws. Several
axiomatizations of this modality have been proposed in the literature, among which Lafont
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categories [34], Seely categories [45] and linear categories [26], see [11, 38] for a survey. As
for any comonad, an exponential comonad can be decomposed as an adjunction, which can
be seen as a particular way of “presenting” the comonad. In particular, we have the two
extremal ways of decomposing the comonad as the adjunction with the Kleisli category, and
the category of coalgebras of the comonad. The properties that such adjunctions should
satisfy can be axiomatized as the linear non-linear (lnl) adjunctions introduced by Benton [7],
and those have been advocated as a unifying framework for the models of linear logic by
Melliès [38]. Again, we insist on the fact that the adjunction is additional data, all that
matters is the comonad it induces. We observe here that the various notions of categorical
model are difficult to generalize to ∞-category, but it is much easier to do so with the
associated reformulations as lnl, which is the point of view we adopt here. Finally, we
investigate ∗-autonomous ∞-categories, which allow modeling classical linear logic.

2.1 Linear-non-linear adjunctions
The notion of linear-non-linear (lnl) adjunction [7] straightforwardly adapts to the setting
of ∞-categories. It consists in a suitable adjunction between a category L, corresponding to
the “linear” formulas, and a category M which provides the “multiple” structure. The model
of linear logic actually lives in the linear category: the multiplicative one is here to ensure
that it is equipped with an exponential modality, namely the comonad ! ≡ LM induced by
the adjunction.

▶ Definition 1. An ∞-categorical linear-non-linear adjunction is an adjunction

M L
L

⊥
M

(1)

between a cartesian ∞-category M and a symmetric monoidal closed ∞-category L, together
with a structure of symmetric monoidal functor on L.

▶ Remark 2. The notion of lnl adjunction is a particular case of the one of resource
modality [39] which, in our setting can be defined as an adjunction as in (1) between monoidal
∞-categories M and L, together with a monoidal structure on the functor L (not supposing
that M is cartesian nor that L is closed).
It might be surprising at first that no condition is required on M . In fact, since L is
symmetric monoidal, M is automatically lax symmetric monoidal [36, Cor 7.3.2.7]. The
following formalizes the fact that objects in the image of the exponential modality can be
copied and erased:

▶ Proposition 3. In an lnl adjunction, every object ! A is equipped with a canonical structure
of a commutative comonoid.

Proof. By [36, Cor 2.4.3.10], because M is cartesian, every object is a commutative comonoid,
and the symmetric monoidal functor L functor transports the commutative monoid structure
to L. ◀

Seely categories. One of the most widely used notions of categorical model of linear logic
is given by the notion of Seely category. The original definition [45] was missing an axiom
which was identified later on [9]. It consists in a symmetric monoidal closed category L
with finite products equipped with a comonad !, which is a symmetric monoidal functor
satisfying a particular axiom. As is, this definition does not easily generalize to ∞-categories,
because there is no obvious way of generating the associated higher coherences. However,
the alternative characterization of Seely categories as lnl adjunctions given in [38, Prop 24
and 25] does. The following definition is based on that.
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▶ Definition 4. An lnl adjunction (1) is Seely when L is cartesian (independently of being
monoidal) and the comparison functor L! → M from the Kleisli ∞-category of the comonad
! ≡ LM on L is an equivalence of ∞-categories.

It can be shown that a right adjoint functor G : D → C identifies D to the Kleisli ∞-
category C! (where ! is the comonad induced by the adjunction) if and only if it is essentially
surjective [25, Thm 7.2]. As a consequence, we have the following alternative characterization:

▶ Proposition 5. An lnl adjunction (1) is Seely if and only if L is cartesian and M is
essentially surjective.

In particular, any lnl adjunction (1) with L cartesian induces a Seely one by restricting M
to the essential image of M .

Linear categories. Instead of considering adjunctions with Kleisli categories, one can also
consider the other extreme case of adjunctions with categories of coalgebras: those correspond
to linear categories [38, Prop 29 and 30]. Below, the comparison functor is defined in [36,
Def 4.7.3.4].

▶ Definition 6. An lnl adjunction (1) is linear when the comparison functor M → L! to
the ∞-category of coalgebras is an equivalence.

2.2 Lafont categories
An important class of models is given by Lafont categories where the exponential modality
is given by the cofree commutative comonoid construction (we have seen in Proposition 3
that ! always provides commutative comonoids). Given a symmetric monoidal ∞-category C,
we write Mon(C) for the ∞-category of commutative monoids in C [36, Def 2.1.3.1] and
Comon(C) ≡ Mon(Cop)op the ∞-category of commutative comonoids in C (in this paper, all
(co)monoids considered are commutative).

▶ Definition 7. A Lafont ∞-category is a symmetric monoidal closed ∞-category C such
that the forgetful functor Comon(C) → C is a left adjoint.

▶ Proposition 8. Any Lafont ∞-category C induces an lnl adjunction between C and
Comon(C).

Proof. The ∞-category Comon(C) is cartesian, because the opposite ∞-category Mon(Cop)
is cocartesian [36, Prop 3.2.4.7]. Moreover, the forgetful functor Comon(C) → C has a
canonical symmetric monoidal structure [36, Ex 3.2.4.4]. ◀

In situations where the monoidal structure on C is compatible with some limits, the cofree
commutative comonoid on an object A can be computed explicitly using limits, see [40]. A
similar construction holds in the setting of ∞-categories.

▶ Proposition 9. Let C be a symmetric monoidal ∞-category with countable limits such
that, for every object X, the tensor product functor X ⊗ − : C → C preserves countable
limits. Then C is Lafont, and the free commutative comonoid on an object A is given by∏

n∈N(A⊗n)Σn , where (A⊗n)Σn is the object of invariants by the group action of Σn on A⊗n

(i.e. the limit of the diagram B Σn → C classifying this group action).

Proof. This statement is exactly dual to [36, Ex 3.1.3.14]. ◀

The monoidal categories typically appearing in linear algebra are more often compatible
with colimits than with limits (that is for instance the case of categories of R-modules). In
such situations, we can still construct a structure of Lafont category when C is presentable,
although the free commutative comonoid does not admit a nice formula as above.
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▶ Theorem 10. Let C be a symmetric monoidal presentable ∞-category such that for every
object A ∈ C, the tensor product functor A ⊗ − : C → C preserves small colimits. Then
Comon(C) is presentable and C is Lafont.

Proof of Theorem 10. Since C is presentable and A ⊗ − : C → C preserves small colimits, it
admits a right adjoint, so C is monoidal closed. If we suppose that Comon(C) is presentable,
the forgetful functor U : Mon(Cop) → Cop preserves (and even creates) small limits by [36,
Cor 3.2.2.5], so the forgetful functor Uop : Comon(C) → C preserves small colimits. By the
adjoint functor theorem for presentable ∞-categories [35, Cor 5.5.2.9], it must admit a right
adjoint, and we have a structure of Lafont ∞-category on C.

We are left with showing that Comon(C) is presentable. Note that this does not imme-
diately follow from a presentability criterion for ∞-categories of monoids [36, Cor 3.2.4.5],
since Comon(C) is defined as the opposite of an ∞-category of monoids, and presentability
is not a self-dual notion. Nevertheless, we can adapt the proof of [36, Cor 3.2.3.5]. We say
an ∞-category C is copresentable if its opposite ∞-category is presentable, and similarly
for coaccessible. Our goal is to show that Mon(Cop) is copresentable, i.e. admits small
limits and it is coaccessible. The ∞-category Mon(Cop) admits small limits, once again by
[36, Cor 3.2.2.5] (since C admits small colimits by virtue of being presentable, Cop admits
small limits). It can be shown to be coaccessible by [35, Thm 5.4.7.11], see Lemma 37 for
details. ◀

In the case of vector spaces, the construction of free commutative comonoids (often called
coalgebras in this context) dates back to Sweedler [46], and Barr [4] for modules.

2.3 ∗-autonomous categories
In this section, we consider a symmetric monoidal closed ∞-category C (with ⊗ as tensor
and ⊸ as internal hom) equipped with a distinguished object ⊥. For an object A ∈ C, we
write A∗ ≡ A ⊸ ⊥. The notion of model for classical linear logic is given by the following
notion.

▶ Definition 11 (∗-autonomous ∞-category). The object ⊥ ∈ C is dualizing if the internal
hom functor (−)∗ : Cop → C is an equivalence of ∞-categories. An ∞-category equipped with
a dualizing object is called ∗-autonomous.

Note that the dualizing object is part of the data: a given ∞-category might admit multiple
non-isomorphic dualizing objects, see Remark 35. We have the following alternative definition:

▶ Proposition 12. The object ⊥ ∈ C is dualizing if and only if for every object A ∈ C, the
canonical map A → A∗∗ is an isomorphism in C.

Proof. Since C is symmetric monoidal, we have the following isomorphisms

HomC(A, B∗) ≃ HomC(A ⊗ B, ⊥) ≃ HomC(B ⊗ A, ⊥) ≃ HomC(B, A∗) ≃ HomCop(A∗, B)

natural in A and B, and the functor (−)∗ : Cop → C is thus left adjoint to (−)∗ : C → Cop.
The canonical map A → A∗∗ is the unit of this adjunction (as a morphism in C) and also its
counit (as a morphism in Cop). An adjunction is an equivalence if and only if its unit and
counit are isomorphisms, which gives the desired result. ◀

▶ Proposition 13. Suppose (C, ⊥) is ∗-autonomous. If the forgetful functor Mon(C) → C
admits a left adjoint F (i.e. admits free commutative monoids), then C is Lafont (i.e. admits
cofree commutative comonoids). Moreover, the underlying object of the free comonoid on
X ∈ C is given by (F (X∗))∗.
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Proof. Since F : C → Mon(C) is a left adjoint, F op : Cop → Mon(C)op is a right adjoint.
Using the equivalence (−)∗ : C ≃ Cop and passing to ∞-categories of monoids, we get
Mon(C)op ≃ Mon(Cop)op = Comon(C). Hence the composite

Comon(C) Mon(Cop)op Mon(C)op Cop C= Mon((−)∗)op

≃

F op

(−)∗

≃

⊣

defines a right adjoint to the forgetful functor Comon(C) → C. Unfolding this composition,
we also get the desired formula for the free comonoid on X. ◀

We conclude this section with a small lemma that will be useful in the proof of Theorem 23.
For any pair of objects A, B ∈ C, write εB : B ⊗ (B ⊸ A) → A for the evaluation
map, i.e. the counit of the adjunction B ⊗ − ⊣ B ⊸ − evaluated at A. Similarly, write
ηB

A : A → B ⊸ (B ⊗ A) for the unit of the same adjunction.

▶ Lemma 14. Let A be objects of C, and f : A
∼−→ A∗∗ an isomorphism. If the following

square commutes

A∗ ⊗ A A ⊗ A∗ ⊥

A∗ ⊗ A∗∗ ⊥

σ

A∗⊗f

εA
⊥

εA∗
⊥

where σ comes from the symmetry of the monoidal structure, then the canonical morphism
A → (A ⊸ ⊥) ⊸ ⊥ is an isomorphism.

Proof. We have the following commuting diagram:

A (A∗ ⊸ (A∗ ⊗ A)) (A∗ ⊸ (A ⊗ A∗)) A∗∗

A∗∗ (A∗ ⊸ (A∗ ⊗ A∗∗)) A∗∗

ηA∗
A

f

A∗⊸σ

A∗⊸(A∗⊗f)

A∗⊸εA
⊥

ηA∗
A∗∗ A∗⊸εA∗

⊥

The left square commutes by naturality of ηA∗ . The right square commutes by assumption
and functoriality of A∗ ⊸ −. The composition of the bottom line is homotopic to the
identity by the zig-zag identity for the adjunction (A∗ ⊗ −) ⊣ (A∗ ⊸ −), in particular it
is an isomorphism. Since f is also an isomorphism, the composite of the top line, i.e. the
canonical map A ⊸ A∗∗, must also be an isomorphism. ◀

3 Models of linear logic in 1-categories

In this section, we briefly recall some traditional models of linear logic, that we generalize
to the ∞-categorical setting later on. We first provide two models based on the powerset
monad on Set, and then one based on vector spaces (or, rather, modules). As we have seen
in previous section, there are two canonical ways to construct lnl adjunctions. Namely,
starting from a “linear” category equipped with a suitable comonad, one can either consider
the category of coalgebras, or the category of free coalgebras, as the corresponding “multiple”
category: this is the idea behind the notions of linear and Seely lnl adjunctions. There are
actually two other canonical ways to construct lnl adjunctions. We can, dually, start from
a “multiple” category equipped with a suitable monad and construct the “linear” category
as the category of algebras, or free algebras, of the monad. Moreover, we can alternatively
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perform those constructions in order to build richer models. Let us illustrate this on three
examples.

Poly

Rel

Set

⊥

P
⊥

Dom

CSL

Set

⊥

P
⊥

CoalgR

ModR

Set

⊥

⊥

3.1 Relational polynomials
We write Set for the category of sets and functions, and Rel for the category of sets and
relations: a morphism f : A → B is a relation f ⊆ A × B. This category is symmetric
monoidal when equipped with the set-theoretic cartesian product on objects. It is easily
checked to be self-dual compact closed, and thus closed as a monoidal category. This category
is also cartesian, with product being given by set-theoretic disjoint union (this is in fact
a biproduct). The canonical inclusion functor F : Set → Rel is symmetric monoidal, and
admits a right adjoint G : Rel → Set which sends a set A to the powerset P(A) and a relation
f : A → B to the function which to X ∈ P(A) associates {y ∈ B | ∃x ∈ X.(x, y) ∈ f}. The
monad induced on Set is the powerset monad, whose Kleisli category is precisely Rel. Namely,
the isomorphism is given on hom-sets by (A → P(B)) ≃ (A → (B → 2)) ≃ (A × B → 2)
where 2 is the set with two elements. We have thus constructed an lnl adjunction between
Set and Rel.

Consider the free commutative monoid monad M on Set. There is a distributive law
λ : M ◦ P → P ◦ M between the two monads (given a set A, λA sends a formal product of
subsets X1 . . . Xn to the subset of formal products {x1 . . . xn | xi ∈ Xi}), and the monad M
thus lifts to the Kleisli category Rel [6]. Since Rel is self-dual this monad, that we denote !,
is also a comonad. We write Poly for the co-Kleisli category: a morphism P : A → B is a
relation P : ! A → B, which can be thought of as encoding a family of polynomials( ∑

((a1,...,an),b)∈P

Xa1 . . . Xan

)
b∈B

which take variables typed in A and returns polynomials typed in B, and composition
corresponds to the expected one for polynomials. Note that each polynomial contains at
most once a monomial, i.e. we have “boolean coefficients”, but might consist of an infinite
sum. This category is cartesian, with cartesian product given by set-theoretic disjoint union
on objects. The resulting adjunction between Poly and Rel forms a Seely category lnl
adjunction. It turns out that Rel is also a Lafont category, and the comonad just described
is isomorphic to the one given by the free commutative comonoid in Rel. Higher-categorical
variants of this model have been considered in the literature such as generalized species of
structures [16], operads [10] or polynomial functors [33, 23].

3.2 Domains
As a variant of the previous construction, we can start from the category algebras of the
powerset monad on Set (instead of the associated Kleisli category). This is equivalent to
the category CSL of complete (sup) semilattices and sup-preserving functions. Indeed, an
algebra f : ! A → A induces a partial order on A given by x ≤ y whenever f({x, y}) = y,
and, given X ⊆ A, its least upper bound is given by f(X). As for any category of algebras,
there is an adjunction where the right adjoint CSL → Set sends a complete semilattice to
the underlying set, and the left adjoint Set → CSL sends a set to the power set semilattice,
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ordered by inclusion. The category CSL is cartesian with the usual cartesian product of
posets (or categories). It is also monoidal for the tensor A ⊗ B representing functions from
A × B which preserve sups in each coordinate [17]: it can be constructed as the set of
downward closed subsets I of A×B such that for X ⊆ A and Y ⊆ B such that X ×Y ⊆ I we
have (

∨
X,

∨
Y ) ∈ I. This tensor product has an internal hom (given by HomCSL equipped

with the pointwise ordering), giving rise to a ∗-autonomous category which is not compact
closed [5].

The category Dom of domains is the category of directed-complete (sup) semi-lattices and
Scott continuous functions (preserving the sups of directed sets). This category is cartesian
closed, and the forgetful functor CSL → Dom admits a symmetric monoidal left adjoint, thus
giving an lnl adjunction. This construction is hinted at in [1, Section 8.3.3].

3.3 Modules
We finally present a model based on vector spaces, which is arguably one of the reasons
why linear logic is called so. For the sake of generality, we actually consider modules over
a ring. Given a commutative ring R, we recall that an R-module is an abelian group
(M, +, 0) together with a scalar multiplication operation − · − : R × M → M satisfying
a · (m + m′) = am + am′, (a + b) · m = am + bm and (ab) · m = a · (b · m). A morphism of
R-modules is a morphism of the underlying abelian groups f : M → M ′ which is compatible
with the scalar multiplication. We write ModR for the category of R-modules and R-module
morphisms. In particular, when R ≡ Z, ModZ is the category Ab of abelian groups, and,
when R ≡ k is a field, Modk is the category Vectk of k-vector spaces.

The category ModR admits a symmetric monoidal structure given by the tensor product
of R-modules: the R-module A ⊗ B represent bilinear functions from A × B. The ring R,
seen as an R-module with multiplication as scalar multiplication, is a neutral element. The
forgetful functor U : ModR → Set has a left adjoint R[−] : Set → ModR, sending a set X to
the free R-module R[X] ≡

⊕
x∈X R, which is symmetric monoidal (with Set equipped with

its cartesian monoidal structure), thus giving rise to the lnl adjunction on the left, which
specializes to the two other lnl adjunctions when R ≡ Z and R ≡ k:

Set ModR

R[−]

⊥
U

Set Ab
Z[−]

⊥
U

Set Vectk

k[−]

⊥
U

Note that ModR is also a Lafont category (see [27, Section 2.4], [4], or [46, Thm 6.4.3]
for the case of vector spaces), which can be recovered as a consequence of Theorem 10, but
the Lafont comonad is different from the one just described and in general hard to describe.
This is however not a ∗-autonomous category (and thus not a model of classical linear logic):
since it is presentable, ∗-autonomy would imply that its opposite is also presentable, and
thus that it is a poset [2, Thm 1.64]. This limitation can be overcome by restricting to
finite-dimensional vector spaces over fields which are finite [48] or in characteristic 2 [27,
Sec 2.4] (in order to keep the exponential finite) or considering topological vector spaces [31].

4 Models in ∞-categories with colimits

∞-categorical domains. In this section, we construct an ∞-categorical model by generalizing
the model of domains recalled in Section 3.2. Basically, we replace (sup-complete) posets
by (cocomplete) ∞-categories, continuous functions by colimit-preserving functors, and
Scott-continuous by filtered-colimit-preserving functors.
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Given a class K of (small) simplicial sets, we write Cat(K) for the ∞-category of (possibly
large) ∞-categories that admit K-colimits and functors that preserve such colimits. In the
case where K is the collection of filtered ∞-categories, we write Catfiltr ≡ Cat(K). When
K is the class of all (small) simplicial sets, we write Catcc ≡ Cat(K) for the ∞-category of
cocomplete ∞-categories.

▶ Proposition 15. Given any two classes of simplicial sets K ⊆ K′ we have an adjunction

Cat(K) Cat(K′)⊥ between symmetric monoidal ∞-categories where U : Cat(K) → Cat(K′)

is the forgetful functor and the left adjoint PK′

K : Cat(K′) → Cat(K) is symmetric monoidal.

Proof. By [35, Cor 5.3.6.10], the forgetful functor U admits a left adjoint. By [36, Cor 4.8.1.4],
the ∞-category Cat(K) (and similarly for Cat(K′)) admits a symmetric monoidal structure,
where the tensor C ⊗ D represent functors from C × D which preserve K-colimits in each
variable, and this monoidal structure is closed [36, Rem 4.8.1.6]. Finally, the left adjoint PK′

K
admits a structure of symmetric monoidal functor [36, Rem 4.8.1.8]. ◀

▶ Theorem 16. There is a linear non-linear adjunction Catfiltr Catcc .
U

⊣

Proof. By Proposition 15, we only need to show that the monoidal structure on Catfiltr is
cartesian. Every filtered ∞-category is sifted [35, Ex 5.5.8.3], and we conclude with [36, Rem
4.8.1.5]. More explicitly, this comes from the fact that a functor C × C′ → D preserves sifted
colimits if and only if it preserves sifted colimits in both variables [35, Prop 5.5.8.6]. ◀

▶ Remark 17. With the model of Section 3.2 and Proposition 15 in mind, we could have
considered different generalizations of the notion of directed families. For instance, we could
have taken sifted ∞-categories instead of filtered ones and obtained another lnl adjunction.
Finally, one could also replace Catfiltr by Cat and obtain yet another lnl adjunction, and
even Cat by S by taking the underlying core of an ∞-category. To sum all of this up, there
really is a chain of symmetric monoidal left adjoints

S Cat Catfiltr Catsift Catcc

⊣ ⊣ ⊣ ⊣

where the monoidal structures on S, Cat, Catfiltr and Catsift are all cartesian.

∞-categorical relations. We now investigate an ∞-categorical version of the model of
relations presented in Section 3.1. The natural generalization of the powerset monad on Set
is the free cocompletion monad P on Cat, which exists by general arguments (we can take
P ≡ PsSet

∅ as defined in Proposition 15). When C is a small ∞-category, P(C) coincides with
the presheaf ∞-category Ĉ ≡ Fun(Cop, S). We have seen in previous section that Catcc plays
a analogous role to the CSL category (the category of algebras of the powerset monad), and
we should thus recover a ∞-categorical counterpart to Rel by restricting to “free algebras”,
i.e. objects of the form P(X) for X ∈ S. It turns out to be convenient to consider the
following variant of this construction:

▶ Definition 18. We write Catprof for the full subcategory of Catcc spanned by ∞-categories
of the form Ĉ for some small ∞-category C.

▶ Remark 19. The notation Catprof is due to the fact that [Ĉ, D̂]cc ≃ [C, D̂], the ∞-category
of profunctors from C → D. Hence one might be tempted to see Catprof as an ∞-category
whose objects are small ∞-categories and morphisms are profunctors. This intuition is almost
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right, up to a slight subtlety: two non-equivalent small ∞-categories C and D may yield
the same presheaf ∞-category Ĉ ≃ D̂. It turns out that this happens precisely if C and D
have the same idempotent completion [37, Prop 8.5.5.5], so we can think of Catprof as the
∞-category of small idempotent complete ∞-categories and profunctors between them.

▶ Proposition 20. The symmetric monoidal structure on Catcc restricts to Catprof . Moreover,
we have 1̂ ≃ S and Ĉ ⊗ D̂ ≃ Ĉ × D.

Proof. The free cocompletion functor (̂−) : Cat → Catcc is symmetric monoidal, and the
monoidal structure on Cat is cartesian by [36, Rem 4.8.1.5], in particular we get isomorphisms
S ≃ 1̂ and Ĉ ⊗ D̂ ≃ Ĉ × D. It remains to show that the monoidal structure on Cat preserves
smallness: the terminal ∞-category is clearly small and the cartesian product of small
∞-categories is still a small ∞-category. ◀

▶ Theorem 21. The ∞-category Catcc admits small colimits, and the monoidal structure is
compatible with small colimits.

Proof. The proof can be done as the one of [36, Prop 4.8.4.2], but without the smallness
assumption on the class of simplicial sets K. See Appendix A.2 for details. ◀

▶ Lemma 22. The forgetful functor Mon(Catcc) → Catcc has a left adjoint Symcc. The
free monoid on a presheaf ∞-category Ĉ is given by ̂Sym(C) where Sym denotes the free
symmetric monoidal ∞-category construction (i.e. the left adjoint to Mon(Cat) → Cat).

Proof. That the forgetful functor Mon(Catcc) → Catcc admits a left adjoint follows from [36,
Ex 3.1.3.14] and Theorem 21. Again invoking [36, Ex 3.1.3.14], the ∞-category Cat with
its cartesian symmetric monoidal structure admits free monoids. In other words, we can
form free symmetric monoidal ∞-categories (and they can be computed using the usual
formula

∐
n Cn//Σn, the disjoint union of the homotopy quotients of Cn under the action

of the symmetric group of degree n). Moreover, the left adjoint P to the forgetful functor
U : Catcc → Cat being symmetric monoidal, its right adjoint is lax symmetric monoidal [36,
Cor 7.3.2.7], so they induce an adjunction

Mon(Cat) Mon(Catcc)

Mon(P)

Mon(U)

and the commutativity of the following square of forgetful right adjoint functors shown below
on the right implies the commutativity of the square of their left adjoints (on the left below).

Mon(Cat) Mon(Catcc) Mon(Cat) Mon(Catcc)

Cat Catcc Cat Catcc

Mon(P) Mon(U)

Sym
P

Symcc
U

This means that the functor P preserves the “freeness” of monoids. If C is a small ∞-category,
so is Sym(C), and P(Sym(C)) = ̂Sym(C), which gives the desired result. ◀

▶ Theorem 23. Catprof is a Lafont ∞-category. The free commutative comonoid on Ĉ
is Ŝym C.

▶ Remark 24. The authors of [16] have described a cartesian closed bicategory in which
objects are small categories and morphisms are profunctors Sym C −7→ D (called generalized
species). In [15], they extend upon this result by explicitly building a “bicategorical model”
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of differential linear logic, based on the comonad Sym on the bicategory of small categories
and profunctors. As discussed at the beginning of this function, Catprof can thought of
as the ∞-category of small ∞-categories and ∞-profunctors. The formula given by the
theorem for the free commutative monoid on Ĉ shows that this model is an ∞-categorical
generalization of the one of [15]. Note however that their model is bicategorical in a full
(2, 2)-categorical sense, while our ∞-categories are just (∞, 1)-categories. We expect our
model to be generalizable to the (∞, 2)-categorical setting and the results of [15] to hold
there.

▶ Remark 25. Restricting Catprof to ∞-categories of the form X̂ where X is an ∞-groupoid
still yields a Lafont ∞-category (in view of the formula for the comonad). Then, we have
Catprof(X̂, Ŷ ) ≃ Fun(X × Y, S) ≃ S/X×Y ≃ Span(X, Y ), the ∞-category of spans between
X and Y . In view of this, this model restricted to ∞-groupoids can be seen as a fully
homotopy coherent version of the “wild” model of spans and polynomial functors described
by the authors in [23].

Proof of Theorem 23. In view of the formula for the left adjoint to the forgetful functor
Mon(Catcc) → Catcc given for presheaf ∞-categories in Lemma 22, we see that the free/-
forgetful adjunction restricts to one between Catprof and Mon(Catprof). To obtain Lafont
model, we are going to use Proposition 13 and we are left with showing that Catprof is
∗-autonomous. Having done that, the formula for the free commutative comonoid will also
follow from Proposition 13 and the observation that (Sym Cop)op ≃ Sym C.

We now show that S = 1̂ is a dualizing object in Catprof . For every small ∞-category C,
we write よC : C → Ĉ for the yoneda embedding. We write [−, −]cc for the internal hom in
Catcc. Given a cocomplete ∞-category D, the restriction functor −◦よC : [Ĉ, D]cc → [C, D] is
an equivalence, with inverse LanよC

: [C, D] → [Ĉ, D]cc given by left Kan extension along よC
[35, Thm 5.1.5.6].

Let C be a small ∞-category. Write f for the composite of the following sequence of
equivalences of ∞-categories

Ĉ [Cop, S] [Ĉop, S]cc [[C, S], S]cc [[Ĉ, S]cc, S]cc

F LanよCop (F ) F (G 7→ F (G ◦よC))

= =

To show that the canonical morphism Ĉ → [[Ĉ, S]cc, S]cc is an equivalence, it suffices to
show that f satisfies the commutativity condition of Lemma 14. Since the tensor product of
∞-categories with colimits classifies functors that preserve colimits in both variables, this
reduces to showing that the following diagram of ∞-categories commute.

[Ĉ, S]cc × Ĉ

[Ĉ, S]cc × [Ĉop, S]cc S

[Ĉ, S]cc × [[Ĉ, S]cc, S]cc

[Ĉ,S]cc×LanよCop

(F,G)7→F (G)

[Ĉ,S]cc×(−◦(−◦よC))

(F,G) 7→G(F )

Simplifying furthermore through the equivalence LanよC
: Ĉop → [Ĉ, S]cc, this amounts to

showing that the two following maps Ĉop × Ĉ → S are naturally isomorphic:

(F, G) 7→ LanよC
(F )(G) (F, G) 7→ LanよCop (G)(F )
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According to [24, Prop 4.8], those left Kan extensions can be computed as weighted colimits,
which themselves can be defined as coends, so that the desired isomorphism becomes∫ c∈C

F (c) × G(c) ≃
∫ c∈Cop

G(c) × F (c)

This isomorphism itself follows from the symmetry of the cartesian product together with the
self-duality of coends, which can be seen easily through the definition of coends as colimits
indexed on the twisted arrow ∞-category Tw(C) [24, Cor 3.8] together with the equivalence
Tw(C) ≃ Tw(Cop) [37, Tag 03JL]. ◀

▶ Remark 26. The reader may recognize the formula
∫ c∈C

F (c) × G(c) as the definition of the
tensor product of the copresheaf F with the presheaf G. This tensor product is characterized
as being cocontinuous in both its arguments and being the Hom functor Cop × C → S when
restricted to representable (co)presheaves. In a sense, we just proved that the evaluation
functors Ĉ∗ × Ĉ(∗∗) → S simply reduce to extensions of the Hom functor, which can be
thought of as a generalization of the Yoneda lemma.

5 Spectra

Having generalized models of linear logic based on domains and relations in Section 4, we
now turn to ∞-categorical versions of linear algebraic models. Using the cartesian symmetric
monoidal structure on S, one can consider the ∞-category Mon(S) (or simply Mon) of
commutative monoids in S. A commutative monoid M ∈ Mon is said to be a commutative
group if for every x ∈ M , the multiplication map x · − : M → M is an isomorphism of
∞-groupoids. The full subcategory of Mon spanned by the commutative groups is written
Grp(S) (or simply Grp). To generalize the lnl adjunction between Set and Ab to the
∞-categorical setting, we could look for an lnl adjunction between S and Grp. The first
step would thus be to find a symmetric monoidal structure on Grp. We could do this directly,
but we prefer to take a small detour to explore a bigger ∞-category of interest in homotopy
theory: the ∞-category of spectra [36, Def 1.4.3.1].

We write S∗ for the ∞-category of pointed ∞-groupoids, i.e. ∞-groupoids X equipped
with a distinguished object ⋆X . Given X ∈ S∗, we write Ω X = HomX(⋆X , ⋆X) for its loop
space, and πn(X) ≡ π0(Ωn X) where π0(X) is the set of connected components of X.

▶ Definition 27. A spectrum is a sequence of pointed ∞-groupoids (Xn)n∈N together with
pointed isomorphisms Xn ≃ Ω Xn+1 for every n ∈ N. The ∞-category Sp of spectra is
by definition the limit of the infinite tower of ∞-categories · · · S∗ S∗

Ω Ω . The forgetful
functor Sp → S∗, (Xn) 7→ X0 is called the infinite loopspace functor and is written Ω∞.

Let (Xn) be a spectrum. We have π0(X0) ≃ π1(X1), so π0(X0) comes equipped with a
group structure. But we also have π0(X0) ≃ π2(X2), so this group structure is abelian. In a
sense, the infinite sequence of deloopings of X0 equip it with a commutative group structure,
and indeed if all the Xi are connected, then their data is precisely equivalent to the data of
a commutative group structure on X0.

▶ Definition 28. A spectrum in which Xn is connected when n ≥ 1 is said to be connective.
The full subcategory of Sp spanned by the connective spectra is written Spcn.

Spectra can be thought of as a generalization of the notion of commutative group, in the
sense that we have an equivalence of ∞-categories Grp ≃ Spcn [36, Rmk 5.2.6.26]. The
infinite loopspace functor Ω∞ has a left adjoint Σ∞ : S∗ → Sp [36, proof of Prop 1.4.3.4],
whose essential image is contained in Spcn. Under the previous equivalence, Σ∞ should be
thought of as computing the “free homotopy commutative group” on a pointed space X ∈ S∗.

The ∞-category of pointed ∞-groupoids is monoidal [36, Rmk 4.8.2.14]:

https://kerodon.net/tag/03JL
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▶ Theorem 29. There is a symmetric monoidal structure on S∗, entirely characterized by
its unit being the 0-sphere S0 (i.e. the discrete 2-point space with a distinguished point) and
by its tensor product preserving small colimits in both variables. This tensor product is the
smash product of pointed spaces.

There is also a monoidal structure on spectra [36, Cor 4.8.2.19, Lem 7.1.1.7]:

▶ Theorem 30. There is a symmetric monoidal structure on Sp: its unit is the object
S ≡ Σ∞ S0 (the sphere spectrum) and its tensor product preserves small colimits in both
variables. Moreover S is connective and the tensor product preserves connective spectra, so
this structure restricts to a symmetric monoidal structure on Spcn.

▶ Theorem 31. There is a chain of symmetric monoidal left adjoints

S S∗ Spcn Sp

(−)+ Σ∞

Ω∞ cn

⊣ ⊣ ⊣

where the symmetric monoidal structure on S is the cartesian one, the one on S∗ is given by
the smash product of Theorem 29, and the ones on Spcn and Sp are inherited are the ones of
Theorem 30. In particular, there is an lnl adjunction between spaces and spectra.

Proof. Using the machinery of [36, Section 4.8.2], writing PrL for the symmetric monoidal
∞-category of presentable ∞-categories and cocontinuous functors (inheriting the monoidal
structure from the one of Proposition 15) [36, Prop 4.8.1.15], we have that (S, 1), (S∗, S0) and
(Sp,S) are idempotent objects of PrL [36, Prop 4.8.2.11, Prop 4.8.2.18]. The concontinuous
functors (−)+ and Σ∞ respectively map 1 ∈ S to S0 ∈ S∗, and S0 ∈ S∗ to S ∈ Sp, therefore,
by [36, Prop 4.8.2.9], they lift to symmetric monoidal functors between the induced monoidal
structures. The inclusion Spcn → Sp is symmetric monoidal by Theorem 30. The fact that
this inclusion has a right adjoint can be seen in multiple ways, for instance we can invoke
the adjoint functor theorem using the fact that the inclusion preserves colimits, and showing
that Spcn is presentable by identifying Grp as a strongly reflective subcategory of Mon and
using the equivalence Grp ≃ Spcn. ◀

▶ Remark 32. With more effort, this chain of adjunctions could be made to include the
factorization S∗ → Mon → Grp. The ∞-category Mon is the ∞-category of the S-models of
the Lawvere theory of commutative monoids [8], so one can show that for any presentable
∞-category C, Mon ⊗ C ≃ Mon(C). In particular, Mon ⊗ Mon ≃ Mon(Mon), which can be
shown to be equivalent to Mon. This means that Mon is also an idempotent object of PrL,
which is enough to conclude. We could also do the same reasoning with Grp to show that
it is idempotent independently from it being a subcategory of Sp. We conjecture this kind
of argument to be a generalization to the ∞-categorical setting of a standard reasoning
giving closed symmetric monoidal structures on categories of models of commutative algebraic
theories [42, 30].
▶ Remark 33. Following the preceding remark, if X is a pointed connected space, i.e. π0(X) = 1,
then the free commutative monoid on X is already a group by the James construction [12]!
This fact can be used to give a formula for the comonad Σ∞ Ω∞ X when X is a connec-
ted supension spectrum (i.e. lying in the image of Σ∞): under that assumption, we have
Σ∞ Ω∞ X ≃

⊕
n≥1 X

⊗n
Σn

[3, Ex 1.2.6], which looks like the formula for the free commutative
algebra (with specified unit) on X (note that the free commutative algebra is in general a
monad, not a comonad). For that reason, the comonad Σ∞ Ω∞ has been conjectured to be
an exponential comonad for a homotopical model of linear logic in the context of Goodwillie’s
calculus of functors [43]. However, the monoidal structure on S∗ is not cartesian, so its
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adjunction with Sp is not lnl. Instead, taking the comonad Σ∞ Ω∞(−)+ induced by the
adjunction between S and Sp gives the formula

Σ∞ Ω∞ X+ ≃ Σ∞ Ω∞ X ⊕ S ≃
⊕
n≥0

X⊗n
Σn

for X a connected suspension spectrum. The added term n = 0 makes the right handside
equivalent to the free commutative algebra on X.

This phenomenon is truly exclusive to the homotopical setting: if one wanted to obtain a
similar result for abelian groups for instance, the result is still true but the assumption of X
being connected is only satisfied by the trivial group. In general there is no reason to expect
the “free commutative group on a commutative group” comonad and the “free commutative
algebra” monad to coincide.
▶ Remark 34. Note that the symmetric monoidal ∞-category Sp satisfies the hypotheses
of Theorem 10, so in particular it is Lafont. However, similarly to the 1-categorical case of
R-modules (or vector spaces), the comonad induced by the cofree commutative comonoid
and the one induced by the adjunction with S are wildly different.
▶ Remark 35. The ∞-category Sp is not ∗-autonomous, as it is presentable (see the discussion
at the end of Section 3.3). However, it is known in stable homotopy theory that every finite
spectrum is dualizable (with a finite dual), so the ∞-category of finite spectra is compact
closed. We do not get in more detail here about finite spectra or compact closedness here,
but note that this should imply ∗-autonomy with the unit spectrum S as a dualizing object.
Moreover using the equivalence Σ : SpFin ⇄ SpFin : Ω, this also implies that every ΣnS, with
n ∈ Z, is a dualizing object. This gives an example of a ∗-autonomous ∞-category with
multiple dualizing objects.
▶ Remark 36. Beyond the lnl adjunctions we described in this paper, the chains of adjunctions
of Remark 17, Theorem 31 and Remark 32 all give examples of resource modalities [39]. In
particular, the chain of adjunctions

S S∗ Sp

(−)+ Σ∞

Ω∞

⊣ ⊣

decomposes the linear exponential comonad Σ∞ Ω∞(−)+ into an affine exponential (−)+
on S∗ followed by a relevant exponential Σ∞ Ω∞ on Sp. From the point of view of linear
logic, this corresponds to considering separately the dynamics of weakening and contraction,
see also [28].

6 Future work

In the proof of Theorem 23, we have shown that the symmetric monoidal ∞-category Catprof
is ∗-autonomous. We actually expect it to be compact closed, i.e. that all objects admit
duals in the sense of [36, Sec 4.6]. We should also prove that compact closedness implies
∗-autonomy as in the 1-categorical case, but we do not expect any surprises there.

As said in Remark 24, we expect that the (∞, 1)-category Catprof can be enhanced to
an (∞, 2)-category (for instance using its monoidal closure together with the lax monoidal
forgetful functor Catcc → Cat), and that it should form an (∞, 2)-categorical model of
differential linear logic, in a sense appropriately generalized from [15].

It has also been conjectured that Goodwillie’s calculus of functors [22, 36] should be
an (∞, 2)-categorical model of differential linear logic in some sense, and we hope that the
theory we developed in this paper can be a first step towards the solving of that conjecture.



E. Harington and S. Mimram 16

References
1 Samson Abramsky and Achim Jung. Handbook of Logic in Computer Science, volume 3,

chapter Domain theory. Clarendon Press, Oxford, 1994.
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A Appendix

A.1 Proof of Theorem 10
▶ Lemma 37. Given a symmetric monoidal presentable ∞-category C such that the functor
A ⊗ − : C → C preserves small colimits for every object A ∈ C, the ∞-category Comon(C) is
accessible.

Proof. To show that Comon(C) is accessible, we use [35, Thm 5.4.7.11] which, given a
well-behaved ambient large ∞-subcategory of Cat, provides sufficient conditions for the ∞-
category of sections of a (locally) cocartesian fibration p : X → S sending some distinguished
morphisms in S to p-cocartesian morphisms in X to be in this class. Here, we will take
the ∞-category Coacc of coaccessible ∞-categories and coaccessible functors as ambient ∞-
category and we will consider p : (Cop)⊗ → Fin∗ to be the monoidal structure of C with inert
morphisms as distinguished ones, so that the ∞-category of sections is precisely Mon(Cop).
We first need to show that Coacc satisfies the hypothesis of the theorem.

(a) By [35, Prop 5.4.7.3], Acc admits small limits and the forgetful functor Acc → Cat
preserves small limits. By duality (the equivalence −op : Cat → Cat restricts to an
equivalence Coacc ≃ Acc), Coacc also has small limits and the functor Coacc → Cat
preserves them.

(b) Given a coaccessible ∞-category A, we have Fun(∆1, A)op ≃ Fun(∆1, Aop) (because
(∆1)op ≃ ∆1), which is accessible by [35, Prop 5.4.4.3], and Fun(∆1, A) is coaccessible.

(c) Given coaccessible ∞-categories A and B, a functor F : A → Fun(∆1, B) is coaccessible
if and only if the two functors A → B induced by restricting to the vertices of ∆1 are
coaccessible. This is because coaccessibility is a limit-preservation property, and limits in
functor ∞-categories are computed pointwise [35, Cor 5.1.2.3].

We now show that the map p : (Cop)⊗ → Fin∗ satisfies the hypotheses of the theorem.

(i) By definition of being a symmetric monoidal ∞-category, the functor p : (Cop)⊗ → Fin∗ is
a cocartesian fibration, and thus a categorical fibration and a locally cocartesian fibration.

(ii) The fiber of p over [n] ∈ Fin∗ is isomorphic to (Cop)n, which is coaccessible because Cop

is coaccessible and by (a).
(iii) Given a pointed map f ∈ HomFin∗([m], [n]), the induced functor F (Cop)m → (Cop)n

induced by the monoidal structure on Cop is opposite to the functor Cm → Cn induced
by the monoidal structure on C. This latter functor is accessible by virtue of [36, Lem
3.2.3.4], so F is coaccessible.

By [35, Thm 5.4.7.11], Mon(Cop) is thus coaccessible, so that Comon(C) is accessible. ◀

A.2 Proof of Theorem 21
Proof of Theorem 21. The proof follows the one of [36, Prop 4.8.4.2], but without the
smallness assumption on the class of simplicial sets K. To keep track precisely of size
issues, fix Grothendieck universes U0 ∈ U1 ∈ U2. The ∞-category Catcc is by definition
the ∞-category of U1-small ∞-categories that admit U0-small colimits. Given a diagram
χ : J → Catcc, proposition 4.8.4.2 of [36] guarantees that there exists U2-small ∞-category
C which is a colimit of this diagram, with an explicit description given in the proof of [35,
Prop 5.3.6.2]. We need to show that it is actually (essentially) U1-small.

To construct the ∞-category C, first take a colimit D of the composition χ
χ−→ Catcc → Cat.

Let D̂ denote the ∞-category of U1-small presheaves on D, i.e. D̂ is the U2-small free
cocompletion of D under U1-small colimits. Then we need to “force” the cocones in D̂ coming
from colimiting cocones in the ∞-category of the diagram χ to become coliming cocones.
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This is done by taking S-local objects in D̂ for a well-chosen class of morphisms S, this defines

a reflective subcategory D D̂
r⊣ The ∞-category C is finally obtained by considering

the smallest full subcategory of D containing the image of D ↪→ D̂ r−→ D and closed under
U0-small colimits.

The ∞-category D̂ is locally U1-small since it is a ∞-category of U1-small presheaves [35,
Ex 5.4.1.8], so C is also locally U1-small (as a full subcategory of a locally small ∞-category).
To show it is (essentially) U1-small, it suffices to show that the set of equivalence classes of its
objects is U1-small. Write C0 for the image of the functor D ↪→ D̂ r−→ D. Since D is U1-small,
so is C0. By definition, C is the smallest full subcategory of D containing C0 and closed under
U0-small colimits. We describe C more explicitly as the union of a monotonous sequence (Cα)
of subcategories of D, where α takes values in all U0-small ordinals. When α = α′ + 1, define
Cα to be the the full subcategory of D on objects that are colimits of U0-small diagrams in
Cα′ . When α = lim αi, define Cα to be the union of the Cαi

. Write ϵ for the smallest ordinal
of cardinality that of U0. We claim that C = Cϵ. Clearly, every Cα is a full subcategory of C.
It thus suffices to show that Cϵ is closed under U0-small colimits. Let ξ : K → Cϵ a U0-small
diagram in Cϵ. Since K is U0-small, the colimit of ξ belongs to Cα for some |K| < α < ϵ, and
hence also belongs to Cϵ. This concludes the proof that Catcc admits U0-small colimits.

To prove that the monoidal structure is compatible with colimits, it suffices to notice that
Catcc is monoidal closed, i.e. the functor C ⊗ − : Catcc → Catcc has a right adjoint, given
by Funcc [36, Rem 4.8.1.6], and that left adjoints preserve any existing colimits [35, Prop
5.2.3.5]. ◀
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