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Chapter 1

Introduction and Thesis Structure

1.1 Introduction

The main subjects of this thesis are wireless ad hoc networks and their mathematical models.
A wireless ad hoc network is a self organizing network, where mobile users are connected in an
ad hoc manner and message routes form multihop paths. The possible applications for mobile
ad hoc networks include the solutions for military, emergency and rescue operations, since they
are often conducted in areas without any existing telecommunication infrastructure and they
demand decentralized network management to increase reliability.

At the present time the number of wireless networks in the world is increasing rapidly.
More and more new products for wireless local area networks (WLANs) are presented every
day. Most of current laptops are now sold with an integrated wireless network card. A large
number of personal digital assistants and mobile phones also have access to wireless technology.
The introduction of inexpensive WLAN routers allowed many households to install Internet
access points. In fact, WLANs start competing with cell phones in the domain of Internet
connections. If several years ago the only way to access the Internet from a mobile device was
to use an internal modem inside a cell phone, nowadays, in many town ”spots”, like cafés and
libraries, a connection via LEAN is also possible. Even in the sphere of voice connections mobile
cell phones start being pressured by WLANs, as the number of voice-over-IP (VoIP) solutions
grow.

To illustrate this we present an excerpt from ComputerWeekly.com wireless special report
“Remote revolution” (14 March, 2006): Analyst firm Gartner warns that by 2009 there will be
a fundamental shift in the economics and value of the voice connection. It predicts that voice
over IP and wireless will dominate and 99% of new voice connections and 70% overall will be
wireless. IDC research shows that 66% of the European working population is equipped with
mobile devices and predicts that by 2007 there will be 99.3 million mobile-enabled workers in
Europe. Also it is worth noting that the general tendency of converging between WLAN and
cell phone services and technologies is accelerating.

The mobility of wireless devices opens the way to completely new applications. A new
term m-business has appeared to describe the commercial transactions done via mobile devices.
According to the study, there were 94.9 million mobile commerce users in 2003 who will grow to
1.67 billion users by 2008 says strategies research group Telecom Trends International in 2004.
There is a vast literature on the mobile services and commerce, see, for example, [16].

One common feature that unites practically all current wireless solutions is the existence of a
base stations infrastructure. Mobile devices need a fixed base station or an access point in order
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Chapter 1. Introduction and Thesis Structure

to be connected and form a network. The fixed station serves as a network management device,
it synchronizes the mobile devices, authorises them to participate in the network, and routes
the messages. Such an organisation has several drawbacks, including a poor scaling capacity.
A simple illustration of the latter is when a mobile cell phone stops working because of the
large number of people trying to access the same base station, for example, during big concerts,
festivals and demonstrations. It might seem as an issue of small importance to the audience of a
concert, but the law enforcement or medical assistance forces may need a more reliable network
cover.

A different problem is the need itself in the base stations. The emergency response teams
during large scale natural disasters or the army during military operations may lack completely
of the infrastructure and support for the information networks. Therefore, there is a demand for
an ad hoc network organisation that would connect participants without additional installations.
At the same time such network should, as it mentioned above, allow a massive scaling in number
of users.

A possible answer to these problems are multihop mobile ad hoc networks (MANET). It
is useful sometimes to think of the wireless network organizations on the examples of another
shared communication medium: audio waves. Let us consider, a railway station full with
people and borrow the names from cryptological literature. If Alice, who is at this moment
at one corner of the station wants to talk to Bob, whose exact position is not known, she has
several possibilities:

1. Try to shout her message to Bob. The first problem of such an approach is that other
people inside will have difficulty to speak to each other as the environment will become
quickly too noisy.

2. Another simple solution is to move closer to Bob. The problems arising are that Alice,
maybe, cannot move at this particular moment because she is busy talking to her neighbor
Carol. Or she simply does not know where Bob is.

3. There is another solution: to address the message to an information desk, which would
listen to the message of Alice and relay it to Bob via loudspeakers installed in the station.
This example is analogue to the current widespread solutions based on Wi-Fi. Such an
approach allows to extend the network to the outer world and keep the communication
organized.

4. Multihop solution: Alice knows a chain of people inside the station, who are able to relay
her message to Bob. Such a chain would normally start with a neighbor of Alice, therefore,
she starts by sending her message to that neighbor. After several relays the message would
reach Bob.

The last approach is analogue to the way the multihop ad hoc radio networks behave. This
reduces the interference within the network and allows to economize the energy consumption.
The latter is highly important for small devices, who have limited battery resources and this
opens the way to another type of application for the wireless connectivity, the sensor networks.

Different electronic devices, like fire or intrusion detection sensors, can be made of a size
of a couple of millimeters and remain inexpensive in production cost. Distributed over a large
area, a network of such devices can monitor different events. The problem then arises: how
to collect the data? Miniature devices can be equipped with wireless access cards, but their
energy resources will be limited because of their form factor. Therefore, the routing should be
optimized. Again, the base station managing the whole network cannot always be adequate.
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If the number of bases is small, then the reliability of the detection system will suffer and the
sensors will need to cover long distance transmissions. If this number is increased, then the
solution might become obtrusive and costly. This implies the need for multihop paths, in order
to deliver the monitored information to a control center. The sensor network are distinguished
in a different class from the MANET, as they are not mobile. The monitoring activity makes
the traffic flow somewhat predictable, opening, thus the way to a greater degree of optimization.

A number of protocols were created to manage the communications within MANETs. Some
of them inherit the ad hoc nature of the network and use simple route discovery schemes, routing
the messages as soon as paths are discovered. Others create a logical structure over the physical
network optimizing the communications or searching for the optimal routes.

There is no absolute winner between the different types of the routing methods. Different
practical scenarios may favour different styles of routing. The number of participants, mobility,
traffic pattern, location of the nodes, environment obstacles, all these parameters are important
to consider for an optimal routing. To unify these values together into a single model is a
difficult, but important task. In this thesis we will see three layers of ad hoc networks: link
availability (physical layer), media access (MAC) layer and network layer, which characterised
by ad hoc network routing protocols. Therefore, TCP and IP, despite all their interest, are
not included into the current study. Let us start with reviewing some historical examples, how
analytical models were useful to the real world applications.

1.2 Analytical Modeling of Communication Networks

A mathematical modeling of communication networks started with the works of Agner Krarup
Erlang on the telephone traffic at the beginning of 20th century [40, 41]. At that time each
telephone call had to be re-directed manually from the telephone station to its proper destina-
tion. Erlang showed how to predict the load on a telephone station and estimate the necessary
equipment depending on the number of subscribers. His works founded the whole domain of
applied probability, now called queuing theory. The results from the queuing theory are applied
routinely in the design of new network protocols. Erlang studied the calls from the following
point of view. The calls waiting to be re-directed or served, form the queue and depend on
the way and the frequency the calls appear and on the speed and ability of an operator. It
also depends on the number of operators the station employ. The queuing theory describes
call arrivals and the duration of each service by corresponding stochastic processes. As it was
concluded from experimental data a call is best described by a Poisson process and its duration
by an exponential law distribution. The number of telephone operators necessary to serve a
given number of subscribers can be calculated as a function of the parameters of these two laws.

Another cornerstone work was done by Claude Shannon, who presented the mathematical
theory of communication in 1948 [85]. He demonstrated the theoretical limits on the speed
of information transmission over a noisy channel. He writes in his article: “The fundamental
problem of communication is that of reproducing at one point either exactly or approximately
a message selected at another point”. Although he was not the first to measure information
numerically ([74, 75, 47]), his mathematical theory [85, 86] gave a formal definition of the
communication system and showed how message coding can be accounted for and introduced
the entropy for information. As we will see it later in Sec. 2.2 this theory is particularly
important for highly competitive wireless medium, where the noisy channel can be used to
model the interfering signals from all neighboring devices.

In most cases, the network analytical models consider asymptotic behaviour for a great
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number of nodes. As the figures in the introduction suggest, it is not completely unrealistic
scenarios for future applications. In the field of wireless communications, analytical modeling
takes a particular importance as thorough simulations are difficult to accomplish. Firstly, their
computational complexity is high. Secondly, as a complex system it has a large number of
parameters and their inter-relations or impact on the network behaviour are not necessary
known. Whereas, analytical models might often shed light on those relations and simplify
the choice of correct parameters. In general, their computational complexity, even in difficult
situations, when no closed form solution can be found, stays lower than those of simulations.
Therefore, often such models serve as a first round approximation to the real life situations.
However, they allow to demonstrate many properties of the corresponding networks and expose
their potential problems. The scaling properties of network design is a natural example, where
analytical models may help a lot. In fact, it corresponds to finding asymptotic behaviour of the
corresponding system and as it often happens in mathematics, asymptotic expressions are easier
to find than the exact solutions. The simulations in their turn, normally, suffer from an increase
in number of nodes or in transmitted packets, their running time is increased correspondingly
to their algorithms.

An interesting issue connected to the wireless medium is the impact of flooding on the
performance. Flooding is a way to make a message reach all nodes in a network by forcing
every node to repeat the message. It is used mostly to exchange necessary routing information,
for example, to find a new path. In this case special control messages flood the whole network.
If in a wired network such a method can be quite productive, in a wireless environment this can
cause massive congestion. Since the effect of a single transmission cannot be limited only to the
sender-receiver pair, but its signal can disturb the transmissions of other neighbouring nodes. It
seems that the faster, flooding is going, the more nodes transmit at the same time, therefore, the
noisier the environment gets. Imagine, a railway station, where all people start quickly repeating
the same message straight after they learn the message from somebody else. The noise will be
such that the normal dialogs will be interrupted from time to time, by such flooding waves. The
noisy environment limits a possible transmission distance and it can completely block a link
between two nodes. Therefore, the first problem is that this diffusion mechanism is error prone,
because the message will not necessary arrive to all nodes in the network. The second problem
is far more important – flooding may invalidate existing routes. If flooding is not progressing
too rapidly, interference noise is less, but it introduces additional communication delays. The
impact of the flooding is difficult to predict without some generalised view on the network and
its traffic. This opens the field for analytical models. A large part of the work in this thesis
concerns the issues of flooding in a wireless multihop network.

Mobility of ad hoc networks constitutes an additional challenge for a study of their perfor-
mance. The exact pattern of movements is rarely known and it depends on network employment.
There are several models used mostly by simulation software to predict the mobility of nodes.
They include random waypoints model, random walk, random walk on a fixed geometric graph
and others. Sometimes, it is possible to find some characteristics of these models, for example,
the link duration, which can be calculated knowing the velocity vectors of the nodes. However,
the probability, that one node will eventually meet another or the time, when it might happen,
are the properties difficult to estimate. For the purposes of analytical modeling, the mobility is
usually taken into account implicitly. It is often assumed, that nodes move relatively slowly and
during the studied period of time their positions practically do not change. Hence, the network
is represented by a random snapshot of the positions of the nodes. Another assumption may
be to include mobility as the probability of link breakage, the higher mobility is, the higher is
this probability. The explicit inclusion of the mobility properties is difficult and in this thesis
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we take the implicit approach.

In the following sections, let us present the structure of the thesis and the contributions it
brings.

1.3 Thesis Organization

One of the goals of this thesis is to present the analytical models of different parts of commu-
nication systems and to show how they can be made working together. The structure of the
thesis reflects this idea. We start with the link availability modeling or what is called a physical
layer, followed by a description of protocols for the multiple access to shared medium, then
we study the propagation of a flooding wave in a multihop network. Then, we consider two
classical protocols of ad hoc networks and compare them in analytical terms. We finish with a
work on the scale-free growing network model and PageRank. Let us present the content of the
chapters in greater details.

Starting with the physical layer, we study in Chapter 2 link availability models in the context
of wireless ad hoc networks. The existence of a direct link between two nodes in networks
normally means that a direct transmission of a signal between these two nodes is possible. But
in the wireless environment the success of a transmission depends on many events. The distance
between the nodes, obstacles in the way of wave propagation, walls surrounding the sources and
the power of the signal, all these parameters can vary and the link availability will be changing
with them. It is especially true for a mobile environment. We distinguish two types of general
models of the wireless environment: outdoor and indoor models. In the former we find that
the signal power at reception depending on the distance between the sender and the target. It
corresponds to the physical properties of the propagation of a radio signal. In the latter this
power does not depend on the distance, since the indoor environment is characterized by a high
number of obstacles, that make the distance rather irrelevant to the signal propagation.

Chapter 3 contains a review on medium access (MAC) protocols and some performance
analysis examples. Medium access protocols are responsible for providing mechanisms of shared
utilisation of the common medium by multiple participants. Often they include some error
correction technique to fight the collisions between multiple transmissions. In particular, we
present the most popular MAC protocols used in current wireless networks. We study some
properties of these protocols and their performance models. As an illustration we build a model
for the CSMA/CA protocol using an existing Markovian representation of its exponential backoff
mechanism on top of a link availability model presented in the previous chapter. Then, we
address the issue of the MAC layer performance for the case of a classical flooding. Flooding
is used to broadcast a message through the whole network. In its classical, non-optimized form
every node is forced to repeat the message once. It was remarked, that it is a source of great
instability of the network performance. However, its simplicity attracted many protocols to use
it, at least in a limited form.

Flooding, as a part of route discovery mechanism, belongs to higher level protocols than
MAC protocols. In Chapter 4 we study a problem of path lengths in multihop networks, where
these paths are discovered using a classical flooding mechanism. The goal of this work was to
extend the one-dimensional study [32] to the plane motion. It was partially achieved and we
present a Markovian model of path discovery via flooding. The probabilistic process represents
a ”winning” node that is to be included into a new path between a sender and a destination.
We show how to find the distribution of its stationary state, obtaining thus the value of an
average hop length for a path, under these restrictions.
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In Chapter 5 we apply the physical model of geometrical random graph based on the SIR
inequality to the comparison of two different protocols for ad hoc networks, AODV [80] and
OLSR [31]. The chapter starts with general description of the protocols for wireless ad hoc
networks. Then, we provide details on AODV and OLSR mechanisms. We study their per-
formance using a fixed point approach. We assume, that the network is balanced and working
under the same load for both protocols. As they create different amounts of control traffic,
the total traffic will be also different, affecting the transmission range in the SIR based link
availability model. But the amount of traffic in turn depends on the transmission range. To
cover the same distance with a smaller transmission range the nodes will be forced to relay
messages more often. Thus we obtain equations describing total traffic of these protocols and,
then, we study their solutions.

Chapter 6 studies PageRank [25] reputation measure on a scale free growing network model
of Barabasi and Albert [14]. The model was proposed with the goal to better understand the
evolution of World Wide Web and to explain the power law for degree distribution of Web
pages. It is based on preferential attachment mechanism, where newly appearing nodes connect
themselves to the existing ones with probability proportional to the number of links those nodes
have. PageRank can be interpreted as a frequency of Web page visits by a random surfer and
thus it reflects the popularity of a Web page. In the chapter six we find an analytical expression
for the expected PageRank value in a scale free growing network model as a function of the
age of the growing network and the age of a particular node. PageRank can also be seen as
a reputation system, where a popularity of arbitrary node serves him as a reputation measure
for all other nodes [30]. Reputation system are seen as a new paradigm for authorisation and
security in different kinds of networks. For example, the famous auction site ebay.com has a
reputation system that helps sellers and buyers to reduce risks during transactions. Of course,
it is difficult to expect from an ad hoc network that it would evolve as Web graph. However,
ad hoc network assumes quite a high degree of collaboration among the users. We can imagine
that, in systems, where users would like to secure their transmission and make them more
reliable, they will be forced to choose some friendly nodes to do the relaying of their messages.
Therefore, kind of upper layer will be needed and it will be based on the relations between the
users. Therefore, Web graph and ad hoc networks are the examples of social networks. As a
general result it was remarked that many social networks also have power law distribution of
the node degrees. This connects our study on PageRank and scale free growing network models
to the world of ad hoc networks.

1.4 Contributions

In 2.5.2 we present a new model of short range communication network that is based on a
random graph, but where the link availability depends on the traffic load in the network. The
model allows to replace a difficult SIR based calculation of short range model by a random
graph representation. But contrary to classical random graph model, where the edge existence
is controlled by a random variable that depends only on the number of nodes, this new model
makes the edges dependent on the network load. It is analogous to the model unifying the
geometric random graph and SIR based models, described in [49]. To illustrate its application,
we present an example of this model for a particular random distribution in 2.5.3.

The study of the path lengths for flooding based protocols is presented in Sec. 4.3.2. In [32]
the authors show how to find a hop length of a path discovered via flooding in one dimensional
case. We have studied this problem in two dimensions. Under the assumptions that we impose,
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the stationary distribution is found for the Markov chain, that describes a sequence of points,
which lay on a newly discovered route. The hop length follows from this result. The work was
published in [63]. The difference of this work from other path length studies is that, they were
mostly interested in a shortest route obtainable in a given model of link availability. Whereas,
the flooding imposes an additional constraint as the nodes on the path cannot be chosen globally.
Rather, they are established hop by hop via a process, that can be seen as a local competition.

A new framework for comparison of ad hoc protocols in a realistic physical model is presented
in Section 5.5. We consider the overhead of control messages of each protocol. Assuming that
both of them work at a given level of a useful load, the total load of the network at arbitrary
time slot is then calculated. The link availability depends on the load at the same settings, thus
making the comparison possible. The work was published in [62]. In its overhead estimation
part, our solution is similar to the work [54], where the overhead of OLSR was found, but
without relation to any link availability model. In general our approach is similar to the one
used in [3] for local evaluation of link state routing in ad hoc networks, but contrary to this
work we are looking to calculate the situation globally.

In Chapter 6 the exact expression is found for the average PageRank as a function of the
age of nodes and the age of the model in a scale-free growing network model. The mean field
method is then applied to estimate the probability distribution of PageRank in this model.
Compared to the work [77] where the similar solution was estimated, the exact expression we
find allows us to have a deeper insight into the evolution of PageRank with the age and capture
some important details, including the dependence of PageRank on the damping factor constant.
Also, the probability distribution obtained via mean field method gives a good approximation,
checked with simulations, when it is based on the exact solution for the average PageRank.
This work has been done together with Konstantin Avrachenkov [6].
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Chapter 2

Link Availability Models of Wireless
Multihop Networks

In this chapter we collect together different analytical models used to predict the behaviour of
the multihop radio networks. The reader will find the following topics in this chapter:

• Physical aspects: the wireless environment constraints, signal fading with the distance,
interference issues related to highly competitive scenarios.

• Transmission modeling: link availability with the respect to limitations of a physical layer.
It includes the Bernoulli random graph model, the geometric random graph model, STIRG
and the SIR based geometric random graphs.

2.1 Introduction

In general an analytical model of a wired or wireless network contains two important parts

• Traffic pattern. Network behaviour depends on the traffic amount and on such charac-
teristics as message duration, frequency, the network total load or the number of active
connections. In general, traffic pattern is unknown, therefore, these characteristics are
described using some kind of stochastic modeling and the tools of queue analysis.

• The link availability mechanism. To analyse a network we need to know how to estimate
that a message can be successfully sent between two nodes. For wired networks the
solution is to consider the graph that corresponds to the wire connections. In wireless
networks the link availability is more difficult to manage. In addition to the natural
constraints on the link performance that are distance between the nodes, mobility of the
nodes and energy consumption there is another limitation put on the wireless links. The
link availability depends not only on the two nodes participating in a given link but also
on other nodes whose transmissions can interfere with the messages sent over the link.
Such are the characteristics of the shared wireless medium.

These uncertain links make a fundamental difference in the representations of wired and
wireless networks. While the former graphs can be modeled by normal graphs, the latter, in
general, can not be defined as graphs with fixed edges, some uncertainty is needed.
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Chapter 2. Link Availability Models of Wireless Multihop Networks

2.2 Physical Layer. Link Availability Modeling

Successful reception of a message depends on many conditions. Antenna design, signal coding
technique, available radio frequencies, multiplexing determine whether a signal can be success-
fully received and decoded. But such parameters constraints include the geographical positions
of the nodes and the obstacles on the way of the wave propagation.

Signal propagation and decoding constraints are often modeled by the following conditions:

• Condition on Distance. It is based on the simple condition that we can successfully
decode a signal if it is sufficiently powerful. Therefore, we fix a threshold Pth and we
compare the signal with this bound. This approach is good enough for the low interference
(competitive) environment. It ignores most of the details of the signal reception especially
the interference and, therefore, it is contested by many researchers as a realistic multihop
network model.

• SIR Inequality Signal treatment more adapted for the competitive ad hoc network nature
is to use signal to interference noise ratio (SINR1 ) condition of the successful reception
of a signal from a node i to arbitrary node j is defined by the following formula:

Piκij∑
k 6=i θkiPkκkj +N

≥ K (2.1)

where

– N is the receiver thermal noise power at the access port

– Pk is the transmitter power used by k

– κij is the power gain2 between i and j. It models the signal fading and possible ob-
stacles on the way between i and j. As it is difficult to include into the consideration
all real obstacles, therefore, κij is often taken as a function of the distance d(i, j)
between i and j and, then, it takes form of

κij = l (d(i, j)) (2.2)

where l(·) is called attenuation function and it is often taken in form of l(x) = x−α.
Although it is often noted that the power gain should be having more compact
support rather than simply a power function [12].

– θki is the normalised crosscorrelation between the signals from the nodes k and i
at the access port receiver. It is the effective fraction of the received signal power
from transmitter k that contributes to the interference. This depends mostly on the
multiple access scheme that was chosen to control the network:

∗ TDMA(time division multiple access) and FDMA (frequency division multiple
access) are orthogonal schemes. Therefore, θki can take only two values 0 and 1.

∗ For CDMA θki can take values in between of 0 and 1.

We describe the multiple access schemes in Sec. 3.1 of Chapter 3.

1Sometimes we meet the following abbreviation: SNR for signal to noise ratio and SIR for signal to interference

ratio. The former then assumes that the interference is included in N . The latter corresponds to the case of
N = 0.

2κ stands for κερδoς, “gain” in Greek
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2.3. Unit disk model

In fact, the condition 2.1 asymmetric: if a node i can hear some other node j, it does not
necessary mean that the node j can also hear i under the same conditions. Being rather
specific for the wireless medium, this asymmetry actually turn into a challenge for many
routing protocols, as their algorithms need to explicitly state that the links are assumed
symmetric. For example, in [82] author argues that unidirectional links can jeopardise the
performance of distance vector (see Section 5.1) type of routing protocols.

The second condition follows from the fundamental result of C. Shannon [85] in information
theory, that the capacity of a noisy channel is bounded by C

C = W log

(
1 +

P

WN0

)
(2.3)

where W is bandwidth of the channel in Hz and P is the received signal power in watts, N0 is
noise spectral density in W/Hz, the term N = WN0 is the total noise power in watts. Note,
that in P + N should be a total signal received by a station and it is true for (2.1). Another
assumption hidden in (2.3) is that the SNR does not depend on the frequency and in this case it
is effectively proportional to W . In many models, the condition (2.3) is implicit, mostly because
the spectrum width is assumed constant and the SIR inequality K < P

N (in this expression N
expresses interference as noise), with K constant, provides a lower bound for the capacity of a
single link.

2.3 Unit disk model

It was probably one of the first models proposed for ad hoc networks. The model is based on the
simple approach that a link between two nodes exists if they are within a distance r. Therefore,
what determines characteristics of such a model is the position of the nodes. In many cases the
model is considered with the nodes distributed within a unit disk, which gives the model its
name. The distribution of the points is described by a uniform distribution. It is a binomial
point process Ψ of n points distributed in a compact region X , such way that the number of the
nodes in some subregion A ⊂ X follows the binomial distribution:

IP[k points inside of A] =

( |A|
|X |

)k (
1 − |A|

|X |

)n−k

where | · | is the area.

Definition 2.1. A binomial point process Ψ of n points is formed by n independent points
ξ1, . . . , ξn uniformly distributed in the same compact set X :

IP (ξ1 ∈ A1, . . . , ξn ∈ An) =
|A1| . . . |An|

|X | (2.4)

for A1, . . . , An Borel subsets of X .

A binomial point process is close to an intuitive notion of a random distribution of nodes in
some region. However, it is sometimes difficult to handle due to the fact that the points are not
completely independent. For example, the distribution of the number of points of Ψ in some
region A ⊂ X is not independent from the number of points in X \ A. Thus, a standard and
often implicit approach is to approximate the binomial point process by a Poisson point process
(P.p.p.) of corresponding intensity n/|X |.

11



Chapter 2. Link Availability Models of Wireless Multihop Networks

Figure 2.1: Illustration to the unit disk (geometric random graph) model.

Definition 2.2. A stationary Poisson point process Φ can be defined as a point process with
Poisson distribution of point-counts: the number of points of Φ in a bounded Borel set B has a
Poisson distribution of mean λ|B|d for some constant λ. And λ is called intensity or density of
Φ.

We denote the vertices of the P.p.p. Φ as {Vi}. Two nodes Vi and Vj are considered to have
a direct link if

d(Vi, Vj) ≤ r (2.5)

where d(·, ·) is the Euclidean distance in IR2.

Thus we obtain a graph G(V,E) where the edges E are between directly connected nodes.
Sometimes this graph is called a random geometric graph Gr(V,E). On Fig. 2.1 we present an
illustration to this model. For the right image the transmission range r was increased, leaving
the node positions intact. The number of links has also increased in the graph G(V,E). Remark,
that this model has links symmetrical by its definition.

The unit disk model is a particular case of the stationary Boolean model in IR2:

Definition 2.3. (see [89]) Suppose Φ = {x1, x2, x3, . . .} is a stationary Poisson point process of
intensity ν. For a given dimension d let Ξ1,Ξ2,Ξ3, . . . be a sequence of independent identically
distributed random compact sets in IRd, independent from Φ. The Boolean model Ξ is then
constructed as follows:

Ξ =
∞⋃

n=1

(Ξn + xn) (2.6)

given that the following condition is satisfied

IE(|Ξ0 ⊕K|d) <∞ for all compact K (2.7)

where Ξ0 denotes a random compact set of the same distribution as Ξn, but independent of
them and of the process Φ; | · |d is Lebesgue measure in IRd and ⊕ is Minkowski addition:
A⊕B = {y | y = a+ b, a ∈ A, b ∈ B}

The Boolean model is also known as the Poisson germ-grain model. The unit disk model
can be represented as a particular case of the Boolean model, where Ξi are the disks of a fixed
radius r with probability 1 (or r/2, in which case we consider the disks touching each other to
correspond to two connected nodes). We list some properties of this model(see [89]):

• The Boolean model is stationary (translation-invariant) and isotropic (rotation-invariant).
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2.3. Unit disk model

• The probability that a point o ∈ IR2 is within the transmission range of one of the nodes
of the model is equal to

P [o ∈ Ξ] = 1 − exp(−νπr2) (2.8)

• The spherical contact distribution function, which can be defined as the distribution of
the distance from the origin of coordinates to Ξ, conditioned by the fact that the origin
of coordinates is not in Ξ writes:

Hs(x) = 1 − exp(−νxπ(2r + x)) (2.9)

In network terms it is the distance between any point to a closest region covered by
transmissions from arbitrary node.

These properties can be directly generalised to the cases when the transmission regions are
represented by a disk of random radius or by a random convex figure. A random disk corresponds
to differences in energy supply of the nodes, i.e. the nodes with stronger antenna or more battery
capacity can transmit a signal farther away. Whereas the random convex figure can also model
natural obstacles or antenna performance [10].

The unit disk model has two principle parameters: the intensity of the underlying Poisson
process ν and the transmission radius r. In the following sections we will concentrate on the
following properties of the ad hoc network represented as a unit disk model:

• The connectivity: whether the network has several components, or isolated nodes or it is
fully connected. This question can also be reformulated as “find conditions on r and ν
such that the network is connected with high probability.”

• Throughput capacity of the network. It can be defined as the theoretically possible through-
put of a connection between two random nodes. The upper level protocols are not taken
into consideration and the capacity is calculated as a volume of the information that can
be possibly transfered between two nodes over a multihop route.

One of the earliest works on the connectivity in multihop networks is [28]. The question was
studied in one dimension: consider the Poisson point process of intensity λ in R; all the stations
can transmit a message to the right and at some moment one node starts a transmission; then
the farthest to right point within a transmission range relays the message further. The problem
consist of determining the minimal radius with which the message will be spread to +∞. As
the authors called it is a “broadcast percolation problem”. They obtain a recursive expression
for the critical transmission radius.

Almost ten years later independently P. Gupta, P.R. Kumar [44] and M. Penrose [78] pub-
lished their studies of the problem in two dimensions. They base their solutions also on the
percolation theory of P.p.p. in two dimensions [67]. They follow the common scheme of the
approximation of the binomial point process of n points inside of some compact region of unit
area in IR2 (unit disk [44] and unit square [78]) by a Poisson point process of a corresponding
density n. We will show here the theorem from P. Gupta and P.R. Kumar [44]. Let D1/

√
π be a

disk of unit area in R
2 (its radius is 1/

√
π). Then by G(n, r(n)) we will understand a geometric

random graph formed by n points uniformly in D1/
√

π with transmission threshold r(n).

Theorem 2.1. (from [44]) Graph G(n, r(n)) with πr2(n) = log n+c(n)
n is connected with proba-

bility one as n→ ∞ if and only if c(n) → ∞)
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Chapter 2. Link Availability Models of Wireless Multihop Networks

The percolation theory used in two dimensions concerns a geometric random graph GP (λ, r(λ))
in R

2, where the nodes distributed according to the Poisson law of intensity λ and the radius
is r(λ). Also there is a condition on GP (λ, r(λ)) that the origin of coordinates is a node of this
graph. The result states that the origin is either isolated or it is connected to an infinite graph
component with probability 1 when the intensity λ increases λ → ∞. It reduces the problem
of the connectivity to the existence of isolated nodes. However, the case of a geometric random
graph inside a compact region, for example D1/

√
π, carries an additional difficulty of the border

effects.
From the condition: a point is isolated if there is no others points within the distance r, we

can do the following estimate. As all the points are independent, the probability for a typical3

point to be connected to any other point of P.p.p of intensity n is

IP[no neighbors] = exp(−nπr2) (2.10)

In a region of a unit area the average number of points is n and we want the probability that
n points are not isolated to be equal to 0

1 − n exp(−nπr2) = 0 (2.11)

therefore we obtain

πr2 =
log n

n
(2.12)

The theorem 2.1 is much more precise as it gives the necessary and sufficient conditions. Now
if we write the direct estimation for r(n) we obtain

r(n) = O

(√
log n

n

)
(2.13)

In addition to a simple connectivity, in [78] M. Penrose study also the k-connectivity of
the random geometric graph. This work can be useful for routing problems, such as multi-path
routing.

The problem of the network connectivity can also be set differently: how many neighbors
do the nodes need to keep the graph connected? The answer to this question was presented in
[93], where the authors showed that the nodes need O(log n) neighbors. In simplified terms it
can be seen from (2.12) as πr2n is the average number of neighbors. In [93] we find a proof that
the logarithmic order on number of neighbors is the sufficient and necessary condition for the
connectivity.

At this point we can consider the throughput capacity of a geometric random graph, these
results were presented by Gupta and Kumar in [45]. The throughput of λ(n) bit/s for each node
is feasible if there is a spatial and temporal scheme for scheduling transmissions, such that by
operating the network in multi-hop fashion and buffering at intermediate nodes when awaiting
transmission, every node can send λ(n) bits/s on average to its chosen (random) destination
node. That is, there is a T < ∞ such that in every time interval [(i − 1)T, iT ] every node can
send Tλ(n) bits to its corresponding destination node.

The throughput capacity is defined as the order of almost surely feasible throughput. The
interference was included into the consideration by restricting the nodes allowed to transmit
at the same time to be at the distance cr where c is some constant. Often such approach to

3This term can be made precise by the means of the Palm distribution theory [89, 11]. But for the case of
stationary Poisson point process it stays close to what intuition suggests
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2.4. SIR based Modeling for Geometrical Models

modeling gets the name protocol model, as it is also the case in [45]. They impose the following
two conditions: the distance between communicating nodes is less or equal to r and the distance
from other nodes to the receiver is greater or equal to (1 + ∆)r, where ∆ > 0. The destination
nodes are chosen at random.

Theorem 2.2. (see [45]) In the case of a planar disk the order throughput capacity is

λ(n) = O

(
1√

n log n

)
(2.14)

The authors showed fine estimations for the constants in 1√
n log n

. The routing scheme

is based on the use of Voronoi tessellation, where size of Voronoi cells is chosen to fit some
constraints. The source-destination pairs are chosen at random and the path between them is
approximated by the Voronoi cells. In Section 4.2, we will shortly review a result on the length
of the paths, based on the Voronoi tessellation, where corresponding definitions will be given.
But here, we just note that the exact proof of Theorem 2.2 is quite laborious. However, to see
where this asymptotic arises from we may follow the logic used to prove the lower bound in
the Theorem 2.2: the possible number of the nodes transmitting at the same time is of order

1
πc2r2(n)

. Suppose that the average euclidean length of the path is L̄, then the length of the path

in hops is L̄/r(n). Therefore we can express the total charge of n routes on the network as

L̄

r(n)
λ(n)n =

C

r2(n)
(2.15)

as the transmission radius of the connected network is of order
√

log n
n then we obtain

λ(n) =
C

L̄nr(n)
= O

(
1√

n log n

)

As n→ ∞ the throughput capacity of every path is reducing to 0, although the overall capacity
of the network is of order

√
n/ log n and it is growing to infinity ([50]).

2.4 SIR based Modeling for Geometrical Models

The flaw of the unit disk model is its insensitiveness to the traffic load changes. The situation,
when the network is highly loaded and all nodes have many messages to transmit, can be
compared to a room with many people speaking altogether. We know that in this case we can
possibly be heard by only our closest neighbors. Whereas, if nobody in the room pronounce
a word, our whisper would reach everybody. The similar behaviour we would expect from the
network in the shared wireless medium. But these scenarios are impossible in the unit disk
model, as our messages can be received only within a disk of fixed radius r and they do not
spread or disturb any other communications farther away.

More realistic signal reception (link availability) model is based on the SIR inequality. As
in the unit disk model, the positions of the nodes are represented by a Poisson point process.
There is no really a widely accepted title for this model, therefore, we will call it mostly SIR
based model.
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Chapter 2. Link Availability Models of Wireless Multihop Networks

2.4.1 Links availability in SIR model

We describe this model, balancing between the definitions and results that can be found in the
works of Ph. Jacquet [49] and F. Baccelli, B. B laszczyszyn and P. Muhlethaler [12].

Let us consider the Poisson point process X = {Xi} of intensity λ in IR2. The emitting
power of the nodes is denoted by Pi, in general case these are the random variables [12]. In
other terms {Xi, Pi} is a marked Poisson point process, where Xi are the points and Pi are
their marks. We also denote by Ci the cell around the node i, where the transmission from i
can be successfully received:

Ci =

{
x :

Pil (d(x,Xi))

N + γ
∑

j 6=i θi,jPjl (d(x,Xj))
≥ K

}
(2.16)

Then, the coverage probability is the probability that a point x, located at distance R from
the point 0, is inside of C0:

pR = IP[x ∈ C0] = IP

[
P0 ≥ K

N +
∑

i>0 θ0,iPil(d(i, 0))

l(R)

]
(2.17)

Note, that the sum
∑

i>0 Pil(d(i, 0)) is the Poisson shot-noise [12] (we denote it by IX ) and
the Laplace transformation φIX is known.

φIX (ξ) = exp

(
−λ
∫

IR2

1 − IE[e−ξP l(|x|)]
)

(2.18)

For general distribution of {Pi}, pR is difficult to find [12].

• But in the case, when Pi has an exponential distribution with the mean 1/µ, it can be
calculated directly (with some simplification: θij ≡ 1 and N ≡ 0):

pR =

∫ ∞

0
e−µsK/l(R)dP [IX < s] = φIX (µK/l(R)) (2.19)

For the case, when l(x) = x−α

pR = exp
(
−λR2K2/α(2πΓ(2/α)Γ(1 − 2/α))/2

)
(2.20)

• In the case when the Pi ≡ const = 1 [49], it takes more difficult form.

pR =

∫ ∞

0

K

l(R)
dP [IX < s] (2.21)

As it is not the exponential distribution, one need to find the inverse Laplace transfor-
mation of φIX to compare the interference with signal received. It was calculated in
asymptotic (r → ∞) in [49]:

pR = 1 − λπK2/αR2 +O(R3) (2.22)

Note, that the expressions above are relevant to the cases of α > 2. In fact, it is the condition
that an average shot noise is finite. As the number of points is unbounded, it is not always
the case. On average, there are λπ(2R + 1) points of P.p.p. of intensity λ in a stripe between
two disks DR+1 and DR. Therefore, their collective power is approximately 2π

Rα−1 and the total
interference from all nodes of the network is 2π

∑
R

1
Rα−1 . This sum converges only if α > 2.
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2.4.2 Connectivity

First of all we need to define the connectivity of the SIR based model. Normally, it is understood
as a possibility for a message issued by some node in the network to reach any other node. This
property depends on how close positions of the nodes are, but it also depends on the level of
communication traffic generated across the network. In a busy network we expect the links
between the neighbours to be often interrupted by surrounding nodes. The approach taken in
[37] to consider the question of connectivity is the following. The authors define Poisson Signal
To Interference Ratio Graph (STIRG), which is based on the nodes distributed according Poisson
point process and the links are defined using SIR inequality. An edge between two nodes Xi

and Xj exists in STIRG iff the node Xi ∈ Ci and Xj ∈ Ci, where Ci and Cj are the cells where
the signals from Xi and Xj can successfully received, as it is defined in (2.16). Thus the links
are symmetric.

A superposition of multiple STIRGs over some finite period of time gives a straightforward
approach in defining the link availability and the network connectivity. With this definition
the authors in [37] find the numerical solution for the connectivity threshold function which
depends on the constant γ of decoding abilities of the protocol in use and the threshold K. In
their work the authors of [37] showed that each node of STIRG can have at most 1 + 1/γK
neighbors. This result holds in general case when the signal attenuation function is not fixed
and the transmission powers of the nodes can be different. Thus degree of the STIRG has an
upper bound equal to 1 + 1

Kγ .

With the help of the percolation theory they prove that in the STIRG based model of an
ad hoc network a feasible throughput of a random multihop path is O( 1√

n log n
), where n is a

number of nodes in a unit disk. This corresponds to the result of P. Gupta and P.R.Kumar [45]
presented in the next section.

2.4.3 Throughput Capacity in the SIR based model

The fundamental result of P. Gupta and P.R. Kumar [45] says that

Theorem 2.3. Two constants c and c′ exist, such that

IP

[
λ(n) =

cR√
n log n

is feasible

]
= 1 (2.23)

and

IP

[
λ(n) =

c′R√
n

is feasible

]
= 0 (2.24)

The proof is based on a presentation of the scheduling scheme, that makes corresponding to
(2.23) throughput feasible.

The limitation on the bandwidth of ad hoc network is coming from the fact that to reduce the
interference noise the nodes are to reducing the transmission range, but this leads to the longer
routes and thus more transmissions. The idea of Grossglauser and Tse[43] is to distribute the
parts of a message between many relay nodes. These nodes will come close at some point of time
to the corresponding receiver and then they will transmit its part of the message. Interestingly,
it was shown that the simplest schedule, when every sender waits until it is close to the receiver
node and just then it transmits the message, does not give a satisfying result. Without relaying

the achievable throughput is still decreasing to 0 at least as fast as n
1

1−α/2 . But for a scheduling
policy that allows two hop relaying the authors showed that the feasible throughput converges
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Chapter 2. Link Availability Models of Wireless Multihop Networks

to a positive constant O(1) as n → ∞. The nodes move accordingly to the process {Xi(t)}
which are independent, stationary and ergodic.

Now we will give some details how this result was achieved. The chosen scheduling policy is
the following: fix a parameter θ. At any time slot t there are θn sender nodes chosen randomly.
The rest (1 − θ)n nodes are potential receivers. A sender transmits its message using a unit
transmit power (e.i. for any i, Pi = 1). The receivers are chosen as a random set of size θn
from the “non-senders” and then only those feasible sender-receiver pairs retained, for which
the transmission successful (2.1 condition is satisfied). Let the number of such pairs be nt. In

the article it was shown that IE[nt]
n converges to a positive limit. It is based on the fact that

the received power at a nearest neighbor is of the same order as the interference noises. Which
is in its turn is based on the property of the sequence of n i.i.d. random variables, that if the
cumulative density function F (w) of these variables decays slower than w−1 as w → ∞, then
the largest of them is of the same order as the sum.

Such scheduling assures one hop communications. But in order to provide two hop relaying
there is a further two step scheme proposed. At even time slots the senders send parts of
their original messages to other nodes to relay (and the destinations if they happen to be close
enough). At odd time slots some chosen senders relay the previously stored messages to the
destination nodes, if they come close.

The biggest flaw of this approach is the long delays of the communication. It can take a
long time before a relay node will meet the destination node, even if they should meet as the
movement process is stationary and ergodic.

2.4.4 SIR based random geometric graph

Consider the network represented by P.p.p of intensity ν. Then, we will call the traffic density
the average number of packets transmitted per time slot per unit square. If the packet duration
is equal to 1 slot, then it means the average number of the nodes transmitting at any point. If
these nodes are random, then we can represent the transmitting nodes by P.p.p. with intensity
λ equal to the traffic density.

We assume that two nodes are connected, if they lay within the distance R and the cor-
responding coverage probability pR (cf. (2.17)) is greater than some fixed threshold value p0,
for example p0 = 1/3. This link model was first presented in [3]. From (2.22) we can find r:
pr = 1/3 at arbitrary level of traffic density

r(λ) =
r0√
λ

(2.25)

where r0 is the connectivity radius for λ = 1. For the values α = 2.5 and K = 10 , it was
calculated r0 ≈ 0.12 [3] (see appendix C in [8] for a short and elegant proof that r = O(1/

√
λ).)

Therefore, we can take as an assumption for this neighborhood model that two nodes of the
P.p.p. of intensity ν are connected if they are within the distance r(λ) from each other. This
replaces the STIRG graph with the geometrical graph where contrary to the unit disk model,
the transmission distance depends on the traffic density in the network.

The number of neighbors necessary for the connectivity of this graph can be estimated by
the order of O(log n), because such situation corresponds to the unit disk model, as r(λ) is fixed.
It means that we can estimate the maximum traffic density that leaves the network connected:

πr2(λmax)ν = πν
r2
0

λmax
= C log ν, or

λmax = O

(
ν

log ν

)
(2.26)
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Figure 2.2: Illustration to SIR based geometric random graph model.

Let us return to the graph Gλ described in 2.4.2 and the expression 2.25:

r(λ) =
r0√
λ

(2.27)

This model inherits all the positive points of the classical unit disk model and in addition it
answers the problems described at the beginning of this section. The radius of the transmission
range depends on the load of the network. Therefore, when the network is not loaded the
transmission range increases to infinity. Otherwise, if the load is high the range is decreasing.

The equation (2.26) with the estimation of the maximum traffic density can lead to the
capacity of a multihop network [50]. Note, that the average length of multihop routes at some

compact area of surface S can be estimated via O(
√

S
r(λ) ) = O(

√
λ). The number of sender-

receiver pair is O(ν). The throughput capacity C can be found as the total number of the
packets sent over the whole network divided by the average path length and the number of
sender-receiver pairs. It leads us to the result of P. Gupta and P.R.Kumar [45]:

Cmax = O
(√

λmax/ν
)

= O

(√
1

ν log ν

)
(2.28)

Let us consider this model in greater details. It has two main parameters: the density
of all nodes ν and the density of transmitters λ. All nodes are modeled by the P.p.p. of
intensity ν. It is a geometric graph model, where the transmission range is defined by r0√

λ
. The

transmitters can be described as via λ
ν -thinning of this P.p.p. It means that transmitters are

chosen according to Bernoulli probability distribution with the success probability λ/ν. This
makes the transmitters also distributed accordingly to P.p.p. of intensity λ [89]. On Fig. 2.2
we present an illustration to this model. Every step there are λ transmitting nodes per unit
area on average. 500 points were randomly distributed in a 200× 100 rectangle. The left image
contains 5 transmitting nodes and the right image has 10 nodes. We see on the right image,
that the graph becomes highly disconnected, because of the double increase of traffic density λ,
though the node density is not changed.

The model presented in [3] unites the random geometric model with the SIR inequality.
This approach allows to estimate the behaviour of the model with the respect of the network
traffic load. At the same time, it stays feasible with the respect of calculation complexity. We
illustrate the application of this model in Chapter 5.

2.4.5 Transmission, interference, carrier sense ranges

The volatility of STIRG makes it difficult to handle and, also, calculating only the transmission
radius does not give all the information needed, for example, to find the area where a signal is
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effectively interfering with others. Limiting them to the neighbours is not too realistic. Although
it is not true for a general signal attenuation function, but for those that decrease rapidly to 0,
one can think of avoiding taking into account the emitting nodes starting with some threshold
distance.

Thus, sometimes we can find the description of the multihop network links with the help of
two or three different ranges.

1. the transmission range R: the range inside which the nodes are able to receive or overhear
the packet transmissions.

2. the carrier sensing range Rcs: the range within which the nodes are able to sense the
signal, but not necessary decode it correctly.

3. the interference range Ri: the range where any other transmission will interfere with
correct reception.

The following inequalities are always true: R < Rcs and R < Ri. However [55] the relations
between Rcs and Ri are not clear in the case of Ri not being fixed and depend on the traffic in
the network. For example, in the network simulator NS2 [66] the default setting is Ri = 2.2Rcs.

The range of Ri is closely related to the spatial reuse property of the network. In [4] the
authors study the triangular mesh networks, where the distance between the nodes is equal to
Ri. They estimate the ratio between the ranges:

Ri

R
≥ 2√

3
(6Kζ(α− 1))1/α (2.29)

where ζ(s) =
∑∞

n=1
1
ns is zeta function of Riemann. This estimation can be used as the lower

bound on Ri for any node pattern, for which the nodes are at least Ri away from each other
[12].

2.5 Geometry-free Models

Under geometry-free we understand the networks links, which are not dependent on the distances
between the nodes. Such assumption is relevant to the short range networks, where many
nodes are located, for example, in a single building. The nodes are close from the geometrical
point of view. But random obstacles and walls partially block signals inside the building, as a
consequence the links between the nodes are rather random. A model analogue to the unit disk
model, in the geometry-free case, is random graph.

Let us consider a graph Gp, with n vertices. Its edges are defined in the following way: there
is an edge between vertices i and j, with probability p. This graph is called the Erdös-Rényi
random graph4. We present an illustration to the model on Fig. 2.3. We fix n = 50 and consider
the probability p equal to 0.05 on the left image and p = 0.1 on the right. Unsurprisingly, the
right image has a higher connectivity.

There is some ambiguity in modeling a network with some random structure. It is reflected
in the following example: let us consider n network users located together at some building.
The links between them are modeled via i.i.d. Bernoulli r.v. with probability of a link equal
to p. Then we can consider just one realisation of such distribution, and with the n growing
just add the users and their links to the model. In this case the probability p should not be

4Sometimes it is also called Bernoulli random graph
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Figure 2.3: Random graph model illustration.

changing as all users are equal in their capacity and luck in front of the environment obstacles.
The other way is to consider the graph with edges possibly changing every time and with the
probability p that can decrease with the growth of n. It is the difference at following a random
process (graph Gp) and its realisation.

The random graph model is rich with results as it was thoroughly studied since the middle of
20th century. One of the most important questions for the link availability models are whether
the network is connected. The famous result of Erdös and Rényi (1959) [39] states that the
p = log(n)/n is the threshold for the graph connectedness

Theorem 2.4.

Let c ∈ IR be fixed and let p = log n+c+o(1)
n . Then

IP(Gp is connected ) → exp(−e−c) (2.30)

clearly, if c→ ∞, then this probability converges to 1.
If the probability p is fixed, then the average path length on a random graph is bounded.

But if the probability satisfies some additional conditions the average path length can be found
using the following theorem

Theorem 2.5. (F.Chung and L. Lu[29]) If np ≥ c > 1 for some constant c, then almost surely
the average distance of Gp is (1 + o(1)) log n

lognp , provided that log n
lognp → ∞ as n→ ∞.

Note, that the same expression was found for the diameter of a random graph by Erdös and
Rényi.

The configuration, which corresponds to a minimal number of links in a wireless network
whilst keeping the network connected, is often considered as a best configuration for maximising
the throughput capacity. Since it minimises the interference between the nodes, what allows
to a higher number of nodes to transmit simultaneously. For the geometric random graph such
function is the connectedness threshold p(n) =

√
log(n)/n. Therefore, we can suppose that the

average path length for this optimal case is log n/ log log n.
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The problem of finding a maximal number of possible simultaneous transmissions in a ran-
dom graph appears to be a complicated task. The problem can be defined in the following
way: find a maximal number of pairs (transmitters and receivers), such that any receiver is con-
nected to a corresponding unique transmitter and it is not connected to any other transmitter.
Although, it is possible to estimate the probability that a random graph Gp contains a given
subgraph (cf. [5]), but the second part of the condition, which means that receivers should not
be connected to other transmitters to avoid interference, seems to be difficult to handle. To the
best of our knowledge this problem stays open.

2.5.1 Network with Random Connections

An interesting model was proposed in [42]. It is based on the random graph model, but the
probability of a successful transmission over a link is made dependent on the interference from
other nodes in the neighborhood.

Consider a complete graph Gn
′ with |V | = n nodes. Every edge (i, j) has a weight γi,j = γj,i,

where {γi,j} are positive i.i.d. random variables. Fix a parameter βn and denote by Gn(V,E)
the subgraph of Gn

′, that has the same vertex set, but the edges are chosen by the following
condition

E = {(i, j) : γi,j > βn} (2.31)

.

These edges are called good. If γi,j represent the power of the signal coming from the node
i and received at the node j, the condition means that the link i, j is sufficiently good and
does not contain many obstacles. Therefore, the nodes i and j will attempt to exchange their
messages directly. The links are assumed symmetrical, as γi,j = γj,i. In fact, this construction
Gn(V,E) is the classical random graph Gp with n vertices and p = IP[γ > βn]. In order to keep
such graph connected, βn should satisfy the following equation

1 − Fn(βn) =
log n+ wn

n
(2.32)

where wn → ∞ and Fn(γ) is the cumulative distribution function of γi,j .

Next step is to define the routes or the scheduling of the communications. Consider k vertex-
disjoint paths for k random source-destination pairs si, di. With high probability [7], there exist
k ≥ α1n

log np
log n vertex-disjoint paths, where α1 is a constant. Note, that the diameter of the

network is O
(

log n
log np

)
therefore, this number of the paths is close to the maximum.

A message will be successfully transmitted along a path i < k: i0 = si, i1, . . . ih = di from
node si to node di, if SIR inequality (2.1) is independently verified at every relay node on this
path. We denote the event that SIR is verified for a link ij , ij+1 by Ej

Ej =

[
Pγij ,ij+1

σ2 + P
∑

l 6=ij
γl,ij+1

> K

]
(2.33)

where P is the transmission power equal for all stations, and K is the SIR threshold constant.
Actually, K depends on n, therefore, we will write Kn. The throughput is defined in [42] as

T = (1 − ε)
k

h
log (1 +Kn) (2.34)
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where k/h the number of simultaneous transmissions during a single time slot (number of paths
divided by the path length in hops), and ε is fraction of dropped messages. In the context
of (2.34) ε is the probability that SIR condition is verified for all hops (ε = IP[∧h

i=1Ei]). The
value log (1 +Kn) is a sustainable throughput via a successful link, it is required since Kn is
considered variable and, therefore, we need to take into account the limit on the channel capacity
established by the fundamental theorem of Shannon on the capacity Cm of a noisy channel,
stated in (2.3). In many models, this condition is implicit, mostly because the spectrum width
is a constant and the SIR inequality K < P

N , with K constant, provides a lower bound for the
capacity of a single link. But in this model, if Kn → 0, then the possible throughput of a single
transmission is decreasing with the same speed Kn and, therefore, it needs to be taken into
account for the total throughput calculation.

The authors in [42] find the throughput for the general case of the distribution Fn, but for
our review we will just cite two resulting expressions.

• One is for the case when the probability distribution is given by

f(γ) = (1 − p)1I(γ = 1) + p1I(γ = 0) (2.35)

This equation suggests the natural choice of the threshold βn = 1 for the good edges: those
who has non-zero gain. For the optimal network utilisation p is chosen equal to the con-
nectivity threshold: p = log n+wn

n . It provides the order of k = O(n log log n
log n ) simultaneous

transmissions. The optimal SIR threshold is chosen to be of order O( 1
log log n)

Hence the throughput is given by [42]

T = aα
n

log n

log (log n+ wn)

log n+ wn
+O

(
1

log (log n+wn)

)
(2.36)

where a and α are constants and wn → ∞.

• Another example is fn(γ) = e−γ . It was shown that the throughput

T =
aα log n

4
+O

(
log n

n

)
(2.37)

is achievable for n→ ∞, where α < 1 and a < 1 are constants.

It is important to note that the threshold K should depend on n in order to achieve the
maximal throughput.

2.5.2 SIR based Random Graph

In the previous section we have seen a model where the routing can be done on edges of a
random graph, but the condition of the successful transmission was imposed in addition to the
existence of the edges and it depended on the transmissions of other nodes in the network. As
its authors remark [42] the routing is not necessarily limited to the good edges. Let us explore
this possibility slightly further, first re-writing the conditions determining the neighbors in such
model and then presenting the way of reducing the model to a straight random graph model
by integrating the SIR condition into the edge existence probability. This extension repeats the
logic of SIR based model for a geometric random graph proposed in the work [3], which was
studied in Section 2.4.2.
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Let us fix the SIR threshold K, as it is a parameter that depends mostly on the hardware and
multiplexing, and also coding schemes. We consider the network of n nodes and assume that
the signal gain κi,j between the nodes i and j is i.i.d. random variable defined by its cumulative
probability function F and the density function f = F ′. We suppose that the probability
density function exists, although for a general settings this condition can be removed. Also for
generality we make the power of the nodes Pi depend on the nodes. A transmission between
two nodes i and j is successful if the interference from other transmitting nodes is low:

Piκi,j∑
l 6=i 1I(El)Plκl,j

> K (2.38)

where El is an event, that the node l is transmitting at this time interval. In order to estimate
this event we will consider the following traffic pattern: we assume that all nodes at any time
have a message to transmit and the probability of the transmission at any step is equal to q,
where q is an external parameter that can depend on the load of the nodes or the physical and
MAC layer constraints. Therefore, we can write IP[El] = q and on average at arbitrary step
there are qn messages transmitted across the network. This probability q (or rather the value
qn) corresponds to the traffic density in [49, 3].

In short our goal is to replace the graph with random weights κi,j by a non-weighted graph
model, where an edge exists iff the corresponding weighted edge has a weight κ, such that
κ compared to the accumulated interference from other transmitting nodes satisfies the SIR
inequality with probability higher than some fixed parameter p0. If weight κ satisfies this
condition, then a bigger weight κ′ > κ also satisfies it. We denote by κ0 the minimal weight κ
for which this condition holds. As the weights are random, we calculate the probability that a
given edge would have a weight greater than κ0. We denote this probability by p. Therefore,
instead of a graph with random weights {κi}, the model is described by a random graph with
parameter p. Similar way in Section 2.4.4 we replaced a weighted geometric graph with random
weights (power gains), by a geometric random graph. Let us describe this model in more formal
definitions.

We fix a threshold probability 0 < p0 ≤ 1 and assume for the simplicity Pi ≡ 1. We will
include into our graph only the edges i, j, that have such gain κi,j, that the probability of
a successful transmission between i and j with traffic load q is greater than p0. If κ0 is the
minimal gain, for which this probability is greater than the threshold p0, then for all κi,j > κ0

the corresponding edge i, j will exist in the new model. Thus its existence depends on the
distribution F and the parameter q. Let us denote by p the probability IP[κi, j > κ0]. As gi,j

are distributed according to F , then

p = 1 − F (κ0) (2.39)

and κ0 is determined by

κ0 = min


κ : IP[κ > K

∑

l 6=j

1I(El)κi,l] = p0


 (2.40)

Note, that the graph defined in this way is a classical random graph Gp. For the given
threshold value p0 and the distribution F , the probability p depends on the traffic parameter
q. In fact, it is this dependence p = p(q) we are most interested in finding. We would expect
that a growing p(q) is a monotonically decreasing function.
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The explicit calculations of p(q) depend on F . As the term
∑

l 6=j 1I(El)κi,l is a sum of i.i.d.
random variables it can found in an explicit form for some distributions F using the Laplace
transform. Because of the independence of Ei and κi,j, the Laplace transform of the terms
1I(El)κi,l is simply

IEe−1I(El)κi,ls = qIEe−κi,ls + 1 − q (2.41)

Therefore,

φ̂n(s) = IEe−
P

l6=j 1I(El)κi,ls = (qIEeκi,ls + 1 − q)n−2 = (qf̂n(s) + 1 − q)n−2 (2.42)

where by f̂ we denote Laplace transform of f . It worths noting here, that we suppose that the
receiver node j is not transmitting.

To find probability of the success of a transmission over arbitrary link i, j we need to find
the inverse of the Laplace transformation and, then, estimate the probability that the gain κi,j

will be K times greater than the noise:

PS(κ) = IP[successful transmission over a link with the gain ≥ κ] =

∫ κ/K

0
φ(t)dt (2.43)

Then, we need to solve
PS(κ) = p0

to find the κ0.
The probability p = 1 − F (κ0) will give the parameter of the random graph Gp. This

resulting random graph Gp has the edges with the probability of successful transmission higher
than p0.

The probability p we obtain this way is a function of q and n: p(q, n). The classical theory
provides several threshold values of p for different graph properties: connectivity, coloring.
For example, the connectivity limit log n/n can be taken as the value p(q, n). Therefore, q is
constrained to be a particular function of n, that corresponds to the graph property.

Let us illustrate this approach with an example.

2.5.3 Illustration: Exponential Power Attenuation

Let us assume that gains κi,j are distributed exponentially: F (x) = 1−exp(−x). For a complete
SIR based model we would need to estimate whether a link gain κi,j will outweigh the sum of
noise at a node j coming from other nodes in the network at the same moment. In this case,
the existence of the edge (i, j) changes all the time and depends on the communications among
other nodes. Therefore, network state is not easily described.

One approach to restrict such network to a graph is to leave only those edges that provide
the probability of a successful transmission high enough. Therefore, let us fix p0.

The Laplace transform of the noise perceived in j coming from all other nodes
∑

i κ
′
i,j =∑

i 1I(Ei)κi,j can be found as

IEe−
P

l6=j 1I(El)κi,ls =

(
q

s+ 1
+ 1 − q

)n−2

=

(
1 − q

s

s+ 1

)n−2

(2.44)

where s > −1. It is possible to consider instead of (2.44) its asymptotic estimate:

∫ γ+i∞

γ−i∞

(
1 − q

s

s+ 1

)n

ds ≈
∫ γ+i∞

γ−i∞
e−qn s

s+1 ds (2.45)
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Figure 2.4: Numerical solution to (2.48) power gain equation

where γ > −1, n → ∞ and q → 0. This estimation holds as function (1 − z/n)n converges
uniformly to exp(−nz) for z defined on a compact region. In our case the function z

1+z maps
the vertical line (γ −∞i, γ + ∞i) to a circle, which is a compact space. As the functions inside
the integral converge uniformly, the integrals also converge.

Its inverse transform φn(t), which is an estimation for the probability density function of a
sum noises can be found as

φn(t) =

√
nq

t
e−nqe−tI1(2

√
nqt) + δ(t)e−te−nq (2.46)

where I is a modified Bessel function of the first kind and δ is Dirac function. Then we need to
find κ0, which satisfies the following equation

∫ κ0/K

0
φn(t)dt =

∫ κ0/K

0

√
nq

t
e−nqe−tI1(2

√
nqt)dt + e−nq = p0 (2.47)

Although (2.47) can be simplified:

e−nq

(
e−κ0/KI0

(
2
√
nqκ0/K

)
+

∫ κ0/K

0
e−tI0

(
2
√
nqt
)
dt

)
= p0 (2.48)

the closed form seems to be difficult to find and we will stop the calculations for this example
at this point. As an illustration, we provide a graph p(q) = exp(−κ0) based on the numerical
solution to (2.48) on Fig. 2.4 (K = 1 and p0 = 0.5). On x-axe we located nq, as it is clear that
κ0 depends rather on this value than simply on q. Note, that nq is an average number of the
nodes transmitting at arbitrary time slot. Therefore, the probability of a successful transmission
depends on the average number of competitors and not on the total number of nodes.

In this section we described a model of a short range multihop wireless network based on the
random graph, where the neighborhood depends on the traffic level. Though it seems to be a
promising approach the practical calculations are difficult to handle. For example, the capacity
of the network could be estimated via p(q) = log n

n condition, but p = p(q, n) should be obtained
in the closed form first. Often, the hard part of the calculations is to find the inverse Laplace
transform of (2.42), even in the asymptotic form exp(nqf̂n(s) − nq).
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This asymptotic approximation suggests that the traffic scheduling probability p should
depend on nq. In other words, p(q, n) is a function of the average number of neighbors p(q, n) ≈
p(nq).

A possible generalization of the model comprise modeling the transmission power. It can be
done by introducing a random distribution of the power. Of course, it may create an additional
difficulty for the analysis.

2.6 Short Classification of the Link Availability Models

The list of the models we present in this chapter does not pretend to be complete. There are
exist more specific models of physical link availability and protocol behaviour, for example, for
the fixed graph network structure. The goal of this presentation is to find the common and
also the distinctive characteristics of the models. In general, the link availability is based on
the distribution of power gains among the nodes and on the conditions of successful transmis-
sions, whether the former is distance based or not, and the latter is decided via a fixed bound
comparison or SIR inequality.

Therefore, the dependence of the power gains between nodes on distance is one of the criteria
of model classifications. In the models based on point processes in the plane, the geometrical
properties are respected and power gains are modeled by a signal attenuation function, which
depends on the distance distribution. The models of small networks in an environments with
obstacles are the opposite examples, there the gains are distributed randomly without any
geometrical constraints.

Another property of the power gain distribution is existence for a given node of a bound
on the number of nodes, whose transmission power may affect message reception of the given
node. In other words, whether the model should consider an arbitrary single transmission as
potentially capable to influence the communications between any other nodes or it is limited
only to neighboring nodes. In the case of the geometrical models this constraint can correspond
to considering the attenuation functions with an unbounded or a compact support. Usually the
neighbors of A are those nodes that can receive a message from A. Therefore, there is a gap
between the limitation of the signal influence to the neighboring nodes and all other nodes. We
consider a model where a signal disturbs not only the neighbors, but some other nodes as not
a part of the models with a limited signal influence.

In some cases link availability is considered dependent on the actual level of traffic load.
In this cases additional information characterising the traffic is needed. In many cases it is
described by a probability p of a node to transmit at arbitrary time slot. It gives a possibility
to describe the overall noise coming from nodes in the network at the same time, thus the
transmission range is also influenced. If the traffic load is not taken into consideration, then
transmission range is considered to be constant.

To summarise the models from this chapter let us present them and their properties in a
single table:

Geometrical Traffic Load Limited Signal Influence

Unit Disk + − +

STIRG + + −
Unit Disk + SIR + + +

Random Graph − − +

Random Gains − + −
Random Graph + SIR − + +
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As an interesting development for the analytical modeling of wireless network links we can
think of a hybrid model, which could integrate together short and long range network properties.
At least two ways can be suggested. The first one is to use a hierarchical approach, where
geometry dependent model connects multiple instances of geometry-free models. The second
approach for building a hybrid model can be a more complex representation of power gains,
where they would include two components: distance dependent random value and an additional
distance-independent random value. The further investigation can be an interesting subject for
a future work.
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Chapter 3

Models of Media Access (MAC)
Layer

The goal of this chapter is firstly to present several current MAC protocols and, secondly, to
study the properties of flooding in a wireless network with respect to MAC protocols.

We will review mostly Aloha and 802.11 DCF (CSMA/CA) protocols, to recall some well
known results on their performance evaluation and also to see how these protocols can be repre-
sented via probabilistic models and stochastic geometry. We also include some new development
for the Markov model of CSMA/CA, considered in the framework of the SIR based geometric
graph link availability model.

At the second half we will consider modeling flooding together with MAC layer. In many
MAC models the standard assumption is heavy traffic, i.e. nodes are busy all the time and they
constantly compete for the medium. Therefore, we try to find out how this assumption can be
close to the events happening in a flooding wave. We also consider in details how a flooding
wave can behave locally, supporting our ideas with simulations results. The latter will be used
in Chapter 5 for a comparison of two ad hoc network protocols.

3.1 Common MAC protocols in wireless networks

Medium access protocols are the algorithms, that allow to share a common medium among
many users [73]. In general the medium access protocols can be divided in three categories fixed
assignment (TDMA, FDMA), random access (ALOHA, CSMA/CA) and demand assignment
protocols. The last category is normally out of the scope of the ad hoc networks, as they assume
a central authority to schedule the transmission around. The IEEE 802.11 standard for wireless
local area networks (WLAN) encompasses the physical layer (PHY) and the lower portion of
the data link layer. Medium Access Controller (MAC) sublayer is the lower portion of the data
link layer.

The importance of the MAC protocols for ad hoc networks can be seen from the following
observation: the need in multihop routes is born out of the problems of sharing a medium.
Therefore, a good understanding of ad hoc network can not be obtained without taking into
account the corresponding MAC protocol. In general, MAC protocols apart of the access control
can include some features of the error detection or avoidance.

A number of MAC mechanisms is based on multiplexing schemes for the wireless and cellular
networks. There are several ways to separate user transmissions sharing the same medium : in
time, in frequency or using advanced signal coding. It corresponds to four well known multiple
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access propositions:

• TDMA - Time Division Multiple Access, Time division multiple access (TDMA) is a
transmission technology that allows a number of users to access a single radio-frequency
(RF) channel without interference by allocating unique time slots to each user within each
channel. GSM protocol for cell phones is one of the most known applications for TDMA
in wireless.

-
1 2

Time

• FDMA - Frequency Division Multiple Access. a transmission technology where the as-
signed frequency band for a network is divided into sub-bands which are allocated to
different users. This way every user has its own frequency band, which is not intersecting
with others.

One of the biggest problem of FDMA is frequency band utilisation. The channels cannot
be too close one to another, because transmitters output some energy outside the band
allocated to the channel. Therefore, some space between the channel is needed.

-

1 2 3 4 5 6

Frequency

• OFDMA - Orthogonal frequency division multiple access is a communications technique
that divides a communications channel into a number of equally spaced frequency bands.
A subcarrier carrying a portion of the user information is transmitted in each band.
Each subcarrier is orthogonal (independent of each other) with every other subcarrier.
Contrary to FDMA, the bands can intersect. This approach allows a better utilization of
the frequency band allocated to the network. At the present moment the number of OFDM
solutions is increasing rapidly. OFDMA multiple access is based on OFDM multicarrier
mechanism, which allows to send a message by splitting it in parts and then slowly sending
these parts in parallel over many low-rate (orthogonal) carriers. This approach leads to
a greater degree of robustness and a better frequency band re-utilization compared to
FDMA.

In [69] we find the list of the following advantages of the OFDM scheme :

– It is an efficient way to deal with multipath. In a radio channel a signal, because of
reflections and refractions, is received from many different paths. Therefore, it can
interfere with itself, thus confusing a receiver at its decoding stage. The received
copies of the signal might have different amplitudes and phases.

– it is possible to enhance the capacity of a channel by adapting the data rate per
subcarrier according to the SNR ratio.
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– it is robust against a narrowband interference, because only a small part of subcarriers
is affected by such event.

– it makes a single-frequency networks possible, which is attractive for the broadcasts.

On the contrary, the drawbacks include

– OFDM is more sensitive to frequency offset and phase noise.

– OFDM has a relatively large peak-to average power rate.

OFDM was included into design of the 802.11a,802.11g and also HiperLAN/2 protocols

for WLANs.

-

Frequency

• CDMA - in Code Division Multiple Access scheme every user has its one code sequence,
which is used to encode its message. The code allows to spread a signal along a large
spectrum of frequencies (spread-spectrum modulation). Therefore, the transmission band-
width should be larger than the information bandwidth (we might think of it in terms
of Shannon theorem 2.3). The receiver, knowing the code, is able to decode the signal
and recover the message. The cross-correlation between different codes are made mini-
mal and this allows to establish multiple access mechanism. Signals coming from different
sources can be distinguished, provided that competition is not too high. There is a number
of ways to perform such spread modulation: Direct-Sequence (DS), Frequency-Hopping
(FH), Time-hopping (TH) and several hybrid types. A dense description of CDMA can
be be found in [69].

All these multiple access mechanisms are based on their multiplexing analogues, which have
the names TDM, FDM, OFDM and CDM (“M” for multiplexing). The goal of multiplexing
techniques is to encode a single transmission signal, optimizing its speed and reliability, allowing
an efficient use of network resources. In order to do that, they divide the transmission into pieces
and multiplex them for an optimized transmission. This division of a single message can be,
then, replaced by multiple users leading to the corresponding multiple access scheme.

Of course, these schemes can receive a further optimization. For example, to improve the
reliability of the frequency division based multiple access mechanisms can include a frequency
hopping. The users change the allocated frequency band following some earlier defined schedule.
Then, in the environments where some parts of the frequency band meet more obstacles, such
scheduling will introduce an additional reliability.

In addition to medium sharing techniques described earlier, the MAC protocols can include
collision resolution mechanisms. One of the first MAC protocols for the packet radio networks is
Aloha. The protocol was developed by N. Abramson for the packet radio network that existed
in 1970 ([1]) at the University of Hawaii. The nodes separate their transmissions in time. If a
collision between several nodes occurs, then any node suffered from this collision resends the
packet later. The delay it takes is random and it is chosen uniformly from the interval [1, Taloha],
where Taloha is the maximum duration of the delay and it is a parameter of the protocol.

Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) is one of the MAC proto-
cols in the Wireless LAN standard 802.11. As its name states the protocol attempts to avoid the
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collisions. It introduces a two or four way handshake scheme, where the sender reserves a band-
width for some period of time and the receiver needs to confirm this reservation. Other nodes
in the neighborhood wait with their transmission until the reservation time will be finished. If
a reservation has not been successful, the sender node waits for a random time period.

Two classical difficulties, related to the collisions in a highly competitive wireless network,
the MAC protocols need to confront are the following:

• Hidden Terminal Problem. It is caused by asymmetric information, when nodes not
knowing about each other are trying to transmit their messages to the same node.

• Exposed Terminal Problem: a node assumes that it cannot transmit because it senses a
transmission, but, actually, the receiver is not in the range of this transmission and, thus,
it can receive it.

Aloha Protocol

Aloha protocol has two versions : the classical and the slotted Aloha.

• Let us consider a simplified model of the Aloha protocol. The overall load on the channel is
represented by a Poisson process of intensity Λ. The packet length is fixed. A transmission
of a packet of duration T starting at time t will be successful, if there are no other nodes
transmitting at the period [t − T, t + T ]. Therefore, the probability of the successful
transmission can be found as

IP[success] = e−2TΛ

Thus, the rate of the successful packets is ΛIP[success]. As the throughput λth is the
fraction of time when a useful information is carried, we obtain

λth = ΛTe−2ΛT

. This function is maximized at the point ΛT = 0.5, which corresponds to maxλth ≈ 0.18.

• Slotted Aloha: time is divided in slots and the duration of packet is equal to this time
slot. Before transmitting every node waits for the beginning of the slot, thus the packet
either overlaps within the same slot, or does not overlap at all. This allows to improve
the throughput up to λth = ΛT exp(−ΛT ) and maxλth ≈ 0.36.

A good introduction to the multiple access techniques with some performance analysis can be
found at [87]

To continue analysis of the Aloha protocol we consider a different constraint on the traffic
pattern of the network instead of Poisson arrivals: let us we assume a heavy traffic pattern.
In other words, a node has an infinite queue and as soon as it transmits a packet from its
top, it has another packet to transmit. In this case the Aloha protocol described earlier can
be considered as a simpler algorithm: the node at every slot decides whether to transmit the
packet at random, with probability p it does it and with probability 1 − p it does not.

Aloha studied in SIR based model

Let us consider Aloha protocol in terms of the SIR based geometric graph model of Section
2.4.4. We assume, that the network modeled by P.p.p. for the node positions and the traffic
pattern is the heavy traffic. Therefore, the emitting nodes (P.p.p. of intensity λem) always
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have a packet to transmit. In this case Aloha transmission schedule can be defined by Medium
Access Probability (MAP) p, i.e. the probability that at arbitrary slot any node will transmit
a packet. Therefore, the traffic density is equal to λ = pλem.

Then we take into the play the expressions found for the SIR model and determine the
probability function pR(λ), that is the probability that a signal will be successfully decoded for
the nodes at distance R in the network with the traffic density λ. The information we can obtain
is, for example, the maximal MAP p, such that the network has the greatest possible number
of transmissions per time slot or, in other words, best spatial reuse. The average number of the
emitters per unit area capable of transmitting within the distance R is equal to (see [12])

IEN(λ) = λpR(λ). (3.1)

Let us consider the simplified attenuation function l(R) = R−α and, in the case of the
constant transmitting power P ≡ 1 from (2.25) we obtain:

pλem =
r20
R2

(3.2)

The expression (3.2) gives the relation between MAP p and the transmission radius R in a
network controlled by Aloha MAC scheme, under the assumption of the heavy traffic. A small
step further is to suppose that MAP p is related to the number of neighbors M competing for
the channel: p = C2

M (C2 is some constant, which can be defined in an implementation of Aloha)
In SIR based model the average number of those neighbors can be estimated by M =

λemπ(CR)2, where C = Rcs/R is the ratio of carrier sense (or interference) range and the
transmission range (cf Section 2.4.5). Combining these expressions together with (3.2) gives the
following dependence between C and C2 in case of P ≡ 1:

C2 = r20C
2 (3.3)

It gives us directions on how to choose an optimal C2 for Aloha implementation, because
C is more a hardware characteristic. Recall, that r0 in (2.25) depends on the probability of a
successful reception, therefore, on the quality of the link. Therefore, Choosing C2 under this
limits will mean to under-utilise the bandwidth available or, in its turn, to increase reliability.
Otherwise, taking C2 larger than in (3.3) will reduce the quality of the link. Knowing the
dependence of r0 on p0 (see [3]), we can find the dependence of the reception probability on C0.
But as the closed form of this dependence is unknown, we leave p0 hidden inside of r0 in (3.3).

CSMA/CA

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol is in the base
of Distributed Coordination Function (DCF), which is a part of 802.11 protocol for Wireless
Local Area Networks. The default scheme of CSMA/CA is two-way handshake scheme - the
destination node immediately confirms successful reception with an acknowledgment message
(ACK). In addition to this rule there is an optional four way handshake scheme, with request-
to-send/clear-to-send (RTS/CTS) packets mechanism. The source node attempts to reserve
the channel with RTS packet and the destination, if it can, acknowledges this reservation by
sending CTS packet. Then the message is transmitted and acknowledged as in the previous
scheme. This approach not only allows to reduce the duration of collisions, as they mostly
occur during the RTS packets, which are short, but also to fight the hidden terminal problem.
Retransmission of collided packets is managed according to binary exponential backoff rules. If
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a collision occurs, the timer is chosen uniformly at random from the interval [1,W ], if a second
attempt is unsuccessful, the delay is chosen again uniformly at random but from the interval
[1, 2W ], and so on.

In reality the protocol is more complex, especially in its exponential backoff algorithm. For
example, consider a sender node, that started its random timer. The timer will only run down
when the channel is idle. There is also a number of additional delays, for example, the one after
transmissions, when the sender node is waiting with its timer stopped. When the delay runs
out, the node waits again before starting its reservation activity.

CSMA/CA studied under heavy traffic assumption

In work [17] G. Bianchi studies the backoff mechanism 802.11 DCF in what can be considered
as unit disk model. The traffic pattern is supposed to be heavy load. He presents a Markov
chain model that approximates the evolution of the delay timer with an important assumption
that at each transmission attempt, regardless of the number of retransmissions suffered, each
packet collides with constant and independent probability p. There are two other parameters:
the number of neighbors n (that makes from this model the “unit disk model”) and the minimal
timeout duration W .

Then, the parameter that can be calculated in this model, is the probability τ that the
station transmits a packet in a generic randomly chosen slot. The author shows that

p = 1 − (1 − τ)n−1 (3.4)

and

τ =
2(1 − 2p)

(1 − 2p)(W + 1) + pW (1 − (2p)m)
(3.5)

where m is the maximal number of backoff steps (m = log2 max backoff/W ). This system of
two equations has a unique solution τ ∗for p ∈ (0, 1) and τ ∈ (0, 1). These expressions have the
interest on their own, but also they allow to find the throughput and the maximal saturation
throughput. However, these exact expressions are quite long and the interested reader will find
them in [17]. Another interesting result in this work is that the maximal throughput does not
depends on number of competing nodes. The following approximation of the probability τ = 1

nK
is given, where K is square root of the average time in slots the channel is sensed busy during
a collision, which is the function of the packets’ lengths. Then, the probability Ptr that there is
at least one transmission at the considered time slot can be expressed as

Ptr = 1 − (1 − τ)n = 1 −
(

1 − 1

nK

)n

≈ 1 − exp

(
− 1

K

)
(3.6)

and the probability that a transmission occurring at the channel is successful is equal to

Ps =
nτ(1 − τ)n−1

Ptr
≈ 1

K(e1/K − 1)
(3.7)

This leads to the approximation of maximal achievable throughput Smax:

Smax =
E[P ]

Ts +
√
σTc + Tc(

√
Tc
2σ (e

2σ
Tc − 1) − 1)

(3.8)
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where Ts is average time the channel is sensed busy because of successful transmission, Tc is
the average time the channel is sensed busy by each station during a collision K =

√
Tc/σ, σ

is the duration of a slot, E[P ] average length of packets.
Another model analysing the DCF mechanism was proposed in [88]. It is simplified with

the respect the one in [17]. The Markovian model is used to describe the behavior of a node
surrounded by competitive neighbors. The time is slotted. The nodes assumed to be heavily
loaded, i.e. they always have some information to transmit. One of the main assumptions of
the model is the same as we find for most of the models, that the probability of a collision pc

for a node that is trying to transmit is constant.
Then, the backoff periods are modeled by a Markov chain where a state is the number

of the attempts in the backoff mechanism 1, 2, 3, . . . (The maximal number of attempts m is
assumed unlimited). This chain is described by the following probabilities: Pi,i+1 = pc (principle
assumption) and Pi,1 = 1−pc (the heavy load is assumed, therefore, the node has a new message
to transmit as soon as it sends its previous message); for all other i and j: Pi,j = 0. Also a

node will stay for an average time W02i+1
2 at state i.

A priori pc is unknown. But there is another parameter closely related to it: p which is the
probability that a given node will transmit at an arbitrary time slot. The relation between p
and pc is as follows:

pc = 1 − (1 − p)N (3.9)

p,pc are the functions of the initial size of the backoff maximal timeout W0, number of the nodes
N competing with the given node and the exponent of the backoff mechanism, which is often
equal to 2. The model is shown to be stable and the numerical values for p and pc are obtained.
We will cite one of the representations for p:

p =
2(1 − 2pc)

W0(1 − pc) + 1 − 2pc
(3.10)

after using (3.9) we obtain

p =
2(−1 + 2(1 − p)N )

W0(1 − p)N − 1 + 2(1 − p)N
(3.11)

whose solution in closed form is unknown. But, of course, any standard numerical method for
solving non-linear equations can be used for its solution.

Let us make a step further in this analysis and use the carrier sense range to evaluate the
number of nodes participating in the competition. We assume that the emitting nodes are
distributed according to P.p.p. with intensity λ. On average their number can be obtained

N = λπR2
cs

Analogous to our previous study of Aloha, we can make an assumption that Rcs = CRt for
some C (cf. Section 2.4.5). Therefore, using (2.25) to estimate the transmission range Rt, we
obtain

N = πC2r20
λ

λexp backoff
(3.12)

At this point let us go back to our model, that states that the effect of the backoff mechanism
on the network can be reduced to a scaling of the number of emitting nodes to pλ at an arbitrary
time slot. It has, in fact, the equivalent in the field of the stochastic geometry: p−thinning
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Figure 3.1: MAP probability p as function of C in (3.13)

of the P.p.p. The p-thinning Φ of a point process Φb can be obtained by deleting the points
with probability 1 − p, this deletion is independent of locations and possible deletions of any
other points of Φb [89]. A p-thinning of a Poisson point process of intensity λ is a Poisson point
process with intensity pλ. Therefore, we can consider

λexp backoff = pλ

thus obtaining

p =
2(−1 + 2(1 − p)πC2r2

0/p)

W0(1 − p)πC2r2
0
/p − 1 + 2(1 − p)πC2r2

0
/p

(3.13)

The numerical solution for p as function of C in the equation (3.13) is presented on the Fig.
3.1. We can observe, that even when the carrier sense range is small and, therefore, there is no
competition with other nodes, the backoff mechanism is

SIR modeling of CSMA/CA

In article [12] the authors make a comparison of Aloha protocol with CSMA/CA. The CSMA/CA
modeling is based on the spatial reuse property of this mechanism that allows to transmit to
the nodes that are Rcs (carrier sense range) away from each other.

Then, at arbitrary slot, the transmitting nodes under the control of CSMA/CA, can be ap-
proximated via Mattern hard-core process [89]. It is a dependent thinning of Poisson stationary
process Φb of intensity λb. The points of Φb are marked independently by random numbers
uniformly distributed over (0, 1). The dependent thinning retains the point x ∈ Φb with mark
m(x) if the sphere b(x, h) contains no points of Φb with marks smaller than m(x). Formally we
can write that the Mattern hard-core process Φ is given by

Φ = {x ∈ Φb : m(x) < m(y) for all y ∈ Φb ∩ b(x, h){x}} (3.14)

The intensity of Φ is equal to λ = pλb, where

p =
1 − exp(−λbπh

2)

λbπh2
(3.15)

(in general case of IRd, πh2 should be replaced by the volume of the corresponding disk)
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Figure 3.2: MAP probability p as function of C in (3.17)

In its application to CSMA/CA, this property approximates the RTS/CTS reservation
scheme, where some nodes reserve the channel and within the distance h = Rcs there is no
other nodes authorised to transmit. Let us fix the density of emitting nodes λ and the trans-
mission radius R. Rcs can be estimated by (2.29), therefore, the spatial intensity of CSMA/CA
is pλ, with h = Rcs in (3.15). The authors of [12] compare the two protocols for different
values of the degree α of the attenuation function. In particular, for α just greater than 2, the
optimised Aloha outperforms the CSMA/CA. Then, approximatively at the point α = 2.6, two
protocols are equal. After this point CSMA/CA takes a lead.

Up to this point we were considering R fixed, but thinking of Rcs = CRt = C r0√
λcsma

, we

obtain

λcsma =
1 − exp

(
−πλC2 r2

0

λcsma

)

π

λcsma
C2r20

(3.16)

λcsma = − πC2r20
log(1 − πC2r20)

λ (3.17)

Let us underscore the differences in the models in [17] and [88] from the Mattern hard-core
process modeling. One can think of first type models as the representation of the exponen-
tial backoff mechanism, without taking into account the RTS/CTS hand-shake. Whereas, the
second model ignores the backoff scheme completely and it describes the ways the nodes can
be separated in space by the hand-shake scheme. In fact the spatial reuse (3.14) corresponds
to the optimal CSMA/CA implementation, as it only describes the possibility to fit the nodes
separated by the distance Rcs in CSMA/CA-style. Therefore, it can be seen as the maximum
efficiency CSMA/CA can achieve using different scheduling. Fig. 3.3 shows the difference in
the probability of a successful transmission for the CSMA/CA hand-shake and the exponential
backoff timer approaches. We can see that the exponential backoff is under-utilising the carrier
sense zones, that are available under the hand-shake scheme.

3.2 Some insights on the flooding process

Consider the network, where the nodes participating in the flooding are represented by P.p.p.
of intensity ν in IR2. The classical flooding means that all of these nodes should broadcast the
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Figure 3.3: Comparison of MAP p as function of C in (3.13) and (3.17)

message upon receiving it. As we have seen at the previous chapter the MAC protocol controls
the ability of the nodes to transmit the message and, therefore, it influences the flooding process.
Let us demonstrate how the flooding can be seen from the point of view of the models with
fixed and traffic-dependable transmission radius.

Suppose that in some bounded region S all the nodes have already received the message,
but the number of nodes retransmitted the message is small enough so that we can assume that
all the nodes within S have yet to transmit the message. At every step there is a part of the
nodes that frees itself of the message after transmitting it, therefore, the intensity ν is reducing
with every step. Of course, this statement only makes sense in the case that the process stays
P.p.p.

Consider the model where we consider the transmission radius dependable on the traffic
density λ: r = A√

λ
, where A is a constant , this is the case, for example, when the we consider

the SIR model for the constant and exponentially distributed transmission power (cf (2.19) and
(2.21)). Therefore, r depends on density of the emitting nodes at the particular slot. Let us
assume that an arbitrary node transmits its message at time slot k with probability denoted
by pk. Then, the transmitting nodes and the silent nodes form Poisson point processes of the
intensities, which we will denote by λi and λ′i accordingly. Clearly, λi = piλ

′
i, λ

′
i+1 = (1 − pi)λ

′
i

and λ′0 = ν. The traffic density coincide with λi and its evolution can be written as

λ1 = p0ν (3.18)

λ2 = p1(1 − p0)ν

λ3 = p2(1 − p1)(1 − p0)ν

. . .

The average number of the nodes Ni competing with a given node for the medium at step i can
be found as Ni = λ′iπRcs(i), where Rcs(i) is the carrier sense range at the step i. Let us find
how Ni is changing with the time.

We assume that the carrier sense radius is proportional to the transmission radius Rcs =
CRt = Cr. Then Ni can be written as

Ni = λ′iπR
2
cs(i) = λ′iπC

2A
2

λi
=
πC2A2

pi
(3.19)

Therefore, if the corresponding MAC protocol would have a property of keeping MAP con-
stant at any time slot: pi ≡ p, then the flooding could be represented in terms of heavy load
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assumption. In fact, the number of competing nodes in this case would be kept constant. For
example, a MAC protocol, maximising the spatial reuse of a hand-shake scheme, has this prop-
erty, as we can see it from (3.17). For such protocol simplified flooding assumption corresponds
to the heavy load assumption.

3.3 Flooding in Simplified Probabilistic MAC protocol

This section can be seen as a preliminary work for a comparison of two ad hoc network protocols
in Chapter 5. As a path discovery phase of one of these protocols (AODV) is based on flooding,
we would like to learn some details of the flooding process. The framework we build in Chapter
5 for higher level network modeling is missing several crucial parameters. As their entirely
analytical estimation, to the best of our knowledge, is unknown, we will try to estimate them
from a sample of simulations based on a highly simplified MAC protocol. One such parameter
is path length and another is the probability of an error in a transmission over a single link
caused by a flooding wave.

As flooding represents one of the highest loads a network can experience, its influence on
the transmission error rate has a particular interest. Let us consider the following situation:
when nodes in some bounded area start relaying a flooding message, other messages should
suffer of a such increase in the traffic level. As we have seen it in Chapter 2, an increase in
traffic decreases transmission range between the nodes of the network. For a given link, we
are interested in investigating how long the transmission range will stay less than the length
of the link, because of the flooding message transmissions. We first present a simplified MAC
protocol, then we present the data from a simulation, where a message is disseminated via
flooding across a bounded area with a fixed number of nodes. We follow the evolution of the
traffic density in the chosen area and we estimate the results with analytical or semi-analytical
expressions, where it seems possible. The reason we present this work in the current chapter,
despite its close relation to Chapter 5, is that flooding performance depends heavily on MAC
layer protocol and the thesis structure reflects the different layers of an ad hoc network.

3.3.1 The flooding model

One of the important parameters for a flooding evolution is the node density ν. The more
dense the network is, the higher is the load per unit area. Consider a situation, when all nodes
in some neighbourhood almost simultaneously start re-transmitting a message. If there is no
controlling MAC protocol, the traffic density raise up to highest level - ν, which means that all
nodes transmit at the same time. The flooding in this case would stop after a first step or two.
Due to their own interference the retransmitting nodes would not have any neighbours capable
of receiving them.

There are multiple solutions for sharing the medium by the waiting nodes. In case of the
802.11 MAC layer, it is the Distributed Coordination Function (DCF [76]): prior to initiating
a transmission, a node chooses a random delay from a fixed interval. Then, at the end of its
waiting period, if the node finds the network still busy it chooses another random waiting time
from the double of the initial interval. This is called an exponential backoff algorithm. Some
protocols can use their own random delay (jitter) mechanisms.

What characteristics of the flooding are we interested in? From the point of view of the
network load it is the evolution of the traffic density, when a wave of flooding goes over some
bounded region S ′. In particular, we consider the period of time necessary for the traffic to
decrease to pre-flooding level. One of the major assumptions in this section is that on average
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the flooding wave, after several initial steps, moves over the network uniformly. More precisely a
gain of the flooding wave in number of new nodes acquiring the message is constant on average.
We denote this gain by X. Intuitively, a flooding spreads, in average, in all directions at the
same pace. We have performed simulations to see what happens to a network when a flooding
wave goes across a bounded area.

3.3.2 Simulation Conditions

To illustrate principal ideas and to simplify analysis, we make use of a simple randomised
medium access protocol of Aloha type, where the nodes transmit a message

• when they have something to transmit

• with probability p at any time slot

this probability does not depend on the time slot and fixed for the whole network.

Let us describe the parameters we have chosen for the simulation sample. In order to
simplify our simulations we consider a model where all nodes try to transmit the message with
a constant probability p = 0.025. This algorithm plays the role of the coordination function
between the nodes.When a node succeeds in transmitting a message it does not repeat it any
more. The transmit power of all nodes is 1 and the signal attenuation is r−α, where α = 2.5.
The network is contained in a square of size 200mx200m. The total number of nodes is 1000
(ν = 0.025). We are interested in an average propagation of the flooding wave. Starting in a
single point such wave, on average, will be spreading as a growing disk. In some small region, an
arc of a large circle can be approximated by a straight line. Therefore, we start our simulations
with 20 nodes on the left edge, ready to transmit a flooding message.

We also impose on the network a homogeneous background noise of power 0.0001dB. As we
can see from (2.1), this level of noise allows the direct communication at distance d ≈ 15.8m
or about 20 neighbours for the SIR threshold constant K = 10. In other terms we can find the
traffic density that would allow such radius of communication from (2.25): λnoise = r20/d

2 ≈
0.0000576. This corresponds to 2.3 messages in average in time slot over all network of 1000
nodes. This provides a reasonable value of the threshold λnoise that we can set as the parameter
for the flooding. We will be interested in the time until the traffic density of the flooding falls
under this level. The results of the simulations are presented in Fig. 3.4 and 3.5.

Let us discuss Fig. 3.4 in more details. By our assumption of linearity of the flooding
progression this curve should be composed of two straight lines: one corresponds to the event
when the flooding is gaining new nodes and another one to the event when there are no new
nodes left. This is not the case in this simulation due to the border effects. Nevertheless,
approximating the straight part of this curve in the interval [20,80] we can calculate that the
flooding is moving with the average gain X ≈ 8.08 nodes per time slot. Let us now analyse the
diagram on Fig. 3.5

On Fig. 3.5, we present the traffic density during the simulation. The horizontal line on
the graph corresponds to the background noise level λnoise. On the graph we can observe how
flooding crosses a bounded region. The second point, where the curve intersects the background
noise level, is the moment when the flooding traffic density has decreased sufficiently. For this
simulation it takes on average 164 steps. This value, of course, depends on the probability p.
When this probability is higher, the peak of the traffic density is also higher, but it takes less
time for the flooding to pass. Nevertheless, there is a bound after which some nodes of the
network can never receive the message. As we have seen in the example earlier, when p = 1, the
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Figure 3.5: Traffic density evolution (number of packets per unit square) with time

flooding will stop almost instantly as there would be too much noise created by the neighbouring
nodes for anyone to hear them. Therefore, the process of increasing p up to the bound at which
flooding is yet possible can be seen as the way to optimise the network.

3.3.3 Analytical Explanation of the simulation

The curve on Fig. 3.5 can be explained as follows. First of all, it can be decomposed into two
parts: ascending and descending. The ascending part corresponds to the progress of the wave
through the network, whereas the descending one reflects the event that there is no new nodes
receiving the message and the number of nodes wishing to retransmit decreases at rate p. Also
it is worth noting here that under the conditions of this model the average number of nodes
awaiting to transmit the message is proportional to the average number of transmitting nodes
(with coefficient 1/p).

During the ascending phase, if we denote by xn the average number of nodes awaiting to
transmit the message, there is following recursive expression for xn+1: xn+1 = xn(1 − p) + X,
where X is the average number of new nodes gained by the flooding at an arbitrary step (here
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Figure 3.6: Traffic density estimated by the semi-analytical curves from (3.21)

X = 8.08). We take x1 = X because of the linearity assumption. Therefore

xn+1 =
1 − (1 − p)n+1

p
X (3.20)

Let us denote by n0 the moment when all N nodes received the message. As some of them
have already re-transmitted it, we have xn0

< N . At the moment, when the sequence xn starts
to decrease: xn+1 = xn(1 − p) (for n > n0). Therefore the sequence {xn} can be written as

x0 = X (3.21)

xn+1 =
1 − (1 − p)n+1

p
X , 0 < n ≤ n0 (3.22)

xn+1 = xn0
(1 − p)n−n0 , n > n0 (3.23)

The value of n0 can be derived from the average gain of the flooding wave that we have
denoted by X: n0 = νS

X . We compare these two curves of xn with the simulation results on Fig.
3.6.

To find the point when the traffic level decreases to λnoise we need to solve the following
equation:

λnoise = xn0
(1 − p)n−n0

p

S
We put the coefficient p/S here to scale the number of nodes, wishing to transmit, to the traffic
density (number of transmitting nodes per unit area). We obtain

n = n0 +
log(λnoiseS) − log(xn0

p)

log(1 − p)
(3.24)

Therefore, using the average gain of the flooding wave X we can calculate the value of xn0
:

xn0
=

1 − (1 − p)
νS
X

+1

p
X (3.25)

Substituting (3.25) into (3.24), we obtain

n = n0 +
log(λnoiseS) − log

((
1 − (1 − p)

νS
X

+1
)
X
)

log(1 − p)
(3.26)
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Figure 3.7: Hop length dependence on the background noise

Using (3.26) we can determine the average interval of time necessary for flooding to pass.
We suppose that during this interval it is difficult for all other messages to be successfully trans-
mitted as the interference coming from flooding is too high. A general approach for transport
layer protocols to decide when a message should be dropped is to compare its waiting time
with a maximal threshold parameter (like, for example, NEXT HOP WAIT in RFC 3561 of
AODV). When the time is expired, the protocols stop re-transmission attempts and the mes-
sage is considered failed. Therefore, a longer period of flooding wave increases the probability
that messages will wait too long and they will eventually be dropped. Although, we do not have
the exact distribution for xn0

, only the average value, but in Chapter 5 we will try to estimate
message failure probability using the general ideas outlined in this section.

3.3.4 Hop Length Estimation

This section is more related to Chapter 5. For purposes of the comparison of ad hoc network
protocols we trace a simple curve approximating the hop length in the settings of this section.
The goal is to find the dependence of average hop length discovered via flooding process on
the background noise inside the system. This noise exclude the interference coming from the
flooding messages and, therefore, it is related to other communication messages transmitted
across the network.

The simulations, run with the same parameters as in Section 3.3.2, show that the average
value of the hop length can be found between the transmission range corresponding to the
background noise and the transmission range, which corresponds the traffic density of flooding.
hAODV depends on the node density ν, background noise λnoise and probability p, which is one
of the characteristics of the model. As in this model ν and p are fixed, the dependence we need
to evaluate is hAODV a a function of λnoise. We approximate the simulation results on Fig. 3.7
with the following expression:

hAODV (λnoise) =
8.2

λ0.1
noise

− 11.7 (3.27)

In fact, this curve fails to fit into the expression h = O(λ
−1/2
noise), as we hoped it would. This

can be explained by a border effect. In this zone, the traffic density of different subregions is
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not the same, while λnoise is an averaging measurement constant for all subregions. Hence the
logic r = O(1/

√
λ) does not work and we are forced to use the results of these simulations.

The study of flooding in this section can be seen as a preparation to the Chapter 5, where
we compare two routing ad hoc network protocols, AODV and OLSR. One can find flooding
mechanism in both protocols, but the former use it in a classical non-optimised way and all
nodes in the network participate. The latter, on the contrary, defines a subset of nodes, which
will provide relaying of diffused message. Therefore, in order to obtain such characteristics of
AODV as hop length and the flooding wave duration, we will use the results from this section.
In fact, in Chapter 4 we study the question of the path length, but the link availability model
used is the unit disk model. As we will see it, even in the case of this simpler model, the problem
stays difficult.

3.4 Conclusions

This chapter consists of three main subjects. The first topic is a presentation of medium
access MAC layer protocols and their features. We show different existing multiple access
schemes based on time and wavelength division, and also on advanced coding and multiplexing
techniques. Then, we consider collision resolution part of MAC protocols, presenting some
known analytical results concerning their performance. We also extend these models to include
more global view of a wireless network, where the number of neighbors or competitors for the
shared medium depends on the traffic level.

The last subject is to present some simulation results of a simplified MAC protocol. Its goal
is to illustrate how flooding can influence the network performance. As flooding is a common
mechanism for many ad hoc network protocols, the data we retrieve from these simulation will
be later used in a framework for comparison of ad hoc network protocols presented in Chapter
5.
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Chapter 4

Path Length Studied in a Unit Disk
Model

In this chapter we study the lengths of paths obtained via classical flooding in the unit disk model.
The following illustration explains the approach taken in this chapter: consider the moment when
a destination node receives a request for a route from a source node. For many routing protocols,
the destination node is obliged to reply immediately back along the newly found path. Therefore,
the chosen route is the first found path. While this path was being discovered, it was the first
node re-transmitting the request, that will enter into the resulting path. It is not necessary an
optimal solution. This node can be seen as a random winner of the competition over the shared
media. In this section we study how its position is distributed within a transmission region.
This study can be seen as a generalisation of [32]

4.1 Introduction

A Unit Disk Model is one of the simplest ways to describe a wireless multihop network. It
represents the nodes as points and the transmission region of every node is a disk of a fixed
radius. It is based on the assumption that two nodes are directly connected if the distance
between them is less than some threshold bound r. Working with this model we can scale all
distances so that r = 1 and therefore every node of the network has unit disk region where its
transmissions will be successfully received.

Such assumption, of course, is a simplification of the concept of the link availability between
two nodes in the real world. Without additional restrictions it does not take into account the
interference of the nodes. But on other hand the multihop nature of ad hoc networks is well taken
in the consideration. As the mobile devices tend to be limited in power consumption, their radio
range stays bounded and the threshold r is the parameter corresponding to this limitations. In
general the power restrictions of the nodes are not all the same. To take into account this case
there is a non-homogeneous version of the unit disk model where nodes 1, 2, 3, . . . have different
thresholds r1, r2, r3, . . .. The further generalisation can include the liberation of the covering
region shapes, to reflect different landscapes where the signal of a transmission is spreading not
equally in all directions.

As it is a model of link availability, many other parameters of the real life network can
be added to it in order to better reflect different scenarios that are modeled. The nodes’
positions can be either set fixed to form some graph, or be described by a random process.
The node mobility can also be included in this framework taking the coordinates of the nodes
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as functions of time. But at any moment of time the ad hoc network will be described by
a graph where the edges are determined by the distances between the nodes. Therefore if a
node transmits a message at some moment, all its neighbors on this graph are supposed to
receive this message correctly. The interference can be partially imposed here by restriction on
two neighbors transmitting at the same time. Such restrictions are more of a protocol level of
the model, as it is a rule of the behaviour for the nodes. In the further sections we describe
the analytical results known at this moment about the unit disk model in the stationary case
(without mobility directly included) and then we show the results on the length of the paths in
ad hoc networks which are using the flooding as the path discovery mechanisms.

4.2 Path Length Studies in Wireless Networks

The average path length is a property of the network which depends on the corresponding
routing protocol, which determines the routes using available information about the network
topology. Those protocols, which reduce routing overhead by limiting the topology learning
mechanisms, often choose a simple algorithm for path calculation, like, for example, first found
path approach. The protocols, which possess a necessary information about node links, try to
optimise the routes, finding a shortest (in the number of hops).

Analytical expressions for path length are difficult to find. In a unit disk model a lower
bound estimation for a shortest path length can be estimated as a fraction of euclidean distance
and the transmission range. But this approach is not taking into account the positions of the
nodes.

As another approach in a shortest path estimation we can consider the paths on Delaunay
graph. In a greatly simplified manner we can say that Delaunay graph of a set of points {xi}
is composed in plane, by connecting every point to its closest neighbors. In this case the path
between two arbitrary points xi and xj is chosen to approximate the corresponding segment
[xi, xj ]. Let us provide more formal definitions and cite the corresponding result from [90],
where these paths received a thorough examination.

Voronoi diagrams paths

The model which is described here is different from the unit disk model. Although the vertex set
is the same and it is represented by P.p.p., the links between the nodes are defined differently.

Definition 4.1. The Voronoi diagram with the nuclei set {xi} , xi ∈ IRd, for a given dimension
d is a family of subsets of IRd defined by

C(xi) = {y ∈ IRd : ‖y − xi‖ ≤ ‖y − xj‖, i 6= j} (4.1)

The Delaunay graph is a dual object to the Voronoi diagram.

Definition 4.2. The Delaunay graph constructed on the vertex set {xi} is the graph connecting
all the pairs of points (xi, xj) such that the Voronoi cells C(xi) and C(xj) share a (d− 1)-facet.

In the model which is considered here d = 2 and the nuclei set {xi} is distributed accordingly
to P.p.p. of a given intensity ν.

Let s and t be two points in IR2. Let C(xi1), C(xi2), . . . , C(xij ) be the sequence of the cells
successively crossed by the segment [s, t]. The sequence of the nuclei xi1 , xi2 , . . . , xij defines a
Markov path l on the Delaunay graph from xi1 to xij . The length of this path is the sum of the

distances between the points : |l| =
∑j

k=2 ‖xk−1, xk‖.
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In [90] it was shown that the length of average Markov path l between two given points s
and t in IR2 is expressed as

IE|l| =
4

π
‖s− t‖ (4.2)

4.3 Path length in the flooding based protocols

4.3.1 Introduction

In this section we will study one of the principle characteristics of flooding path discovery
mechanism - the path length in number of hops. We will propose a simplified theoretical model
to estimate the average path length for the routing protocols which are using flooding during
their path discovery phase. The starting point for this study is the article of Clausen, Jacquet
and Viennot [32] where a one-dimensional flooding model is evaluated. Here we study extensions
to a more complex and realistic model in two dimensions.

Flooding is an intuitive way to make a message reach all the users of a network by making
every station repeat the message once it receives it from a neighbor. The broadcast capabilities of
ad hoc networks inherited from a wireless layer help to implement this scheme. Many protocols
are using flooding as the main tool in their initial path discovery phase. In its general form
it can be found in AODV [80] , DSR [56] and other protocols. (Protocols, such as OLSR [31]
and TBRPF [83], with apparent mechanisms of route optimisation, are not in the scope of this
analysis.) But there are also a number of relatively new protocols that include randomness
in their flooding schemes, for example Gossip based protocols [46]. These protocols are much
closer to the model described here, especially if we consider its non-uniform case. The study of
the general flooding scheme in terms of redundancy, contention and collisions can be found in
[72] and its comparison to the variety of optimisation techniques in [92].

The one-dimensional case

The one-dimensional model analysed in [32] is the following. All mobile stations or users are
displayed on a straight line. A source node, located at coordinate 0, is looking for a route to
some destination node N . Thus it starts transmitting a route request to its neighbors, which
are trying to relay this request further until the destination node N is reached.

The set of points corresponding to the possible station locations is dense in [0,∞). The
covering region is the geometrical area where all “neighbors” of the station are located. In
this model the covering region C(x) for an emitting point x is [x, x + 1]. Thus the optimal
routing distance for the point x is equal to bxc + 1: it is the case if we choose the sequence of
intermediate nodes at the points 1, 2, . . . , bxc.

Flooding is modeled by a random process X0, X1, . . . , Xn, . . . where Xn is chosen uniformly
at random from C(Xn−1) = [Xn−1, Xn−1 + 1]. This random choice is applied in order to model
the interference between the stations within the same zone.

In order to find the path from 0 to N we actually select the subsequence of {Xn}, such that
there is no i with Xi+2 − Xi ≤ 1. Starting with i = 2 we do not take into account a point
Xi+1 if the next point Xi+2 is also covered by the transmission of Xi. Every Xn has also an
attributed hop counter mark Mn. Many routing protocols include such a counter field in their
route request messages. When a station receives the request for the first time it increases this
counter by 1 before retransmitting the message further.

In this model the sequence Mn based on Xn is defined through the following rule: Mn =
Mα1(n) + 1, for n ≥ 1, where α1(n) = min{k < n : Xn − Xk ≤ 1} (the sequence {Xn}
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Figure 4.1: Route search model

is non-decreasing). So the index α1(n) corresponds to the station from which the request
message has been received by Xn for the first time. Equivalently we could define α1(n) as
α1(n) = argmin{Mk : Xn −Xk ≤ 1}.

The analysis performed in [32] shows that on the average the route length for the destination
at distance N is equal to 4/3N as N → ∞. That is 1/3 of the relay nodes can be excluded
from an average 2N -hop path from 0 to N .

4.3.2 Model Settings and Results

We consider the ad hoc network in the unit disk model framework. The transmission range is
fixed and we will go even further by simplifying the transmission region shape.

Let’s first describe what we take as flooding in the case of the planar motion. The following
scheme explains the search for a new route in an ad hoc network :

• The source s broadcasts to its neighbors within a covering area C(s) a request for the
route to some destination node d. The request message contains a hop counter, set to 1
at the beginning.

• When a non-destination node receives a request it checks whether it sees it for the first
time: if not it ignores the message. Otherwise it increases the message hop counter by 1
and broadcasts this updated request further.

• When the destination d receives the request message, it sends a confirmation packet back
along the discovery path. We assume that the stations possess all necessary information
to implement this backtracking: the actual path is established during this phase. Thus d
chooses the first route discovered and the length of the route is equal to the value of the
hop counter of the message received by d.

At any time k = 0, 1, 2, . . . there is only one node Xk in this model which transmits the
message to all its neighbors inside the covering area C(Xk). The source node X0 = (0, 0)
is located at the origin of coordinates in IR2. We also need to define what the form of the
transmission region C(·) is and to define the rule how to choose a new broadcasting point in
this region. We make the assumption that nodes in the network form a dense set in the plane
as it was in the one-dimensional model described in the previous section.

We define C(X) as a square [x(X), x(X)+1]×[y(X), y(X)+1], where x(X) and y(X) are the
corresponding x- and y-coordinates. The square as generic shape simplifies the mathematical
evaluation; considering only one quadrant models oriented diffusion with a linear growth, since
only this quadrant will be useful for the route. At time n we choose Xn uniformly at random
from the area C(Xn−1) covered by the previous point Xn−1 (see Fig.4.1).
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Taking such transmission region shape we guarantee that the path obtained via such algo-
rithm will be loop free. It allows us to work with Markov chains as a loop free property limits
the hop number dependence of a node n to two precedent nodes n− 1, n− 2 and not the whole
history before n− 1, n− 2, n− 3, . . .. As we discuss it later, we could have taken any shape that
fits one quadrant, but the square simplifies a lot the calculations.

Let us now introduce the variable Mn which contains the value of the hop counter at point
Xn and hence it is the distance between 0 and n (in hops). According to the rule stated
previously M0 = 0 and Mn is defined by:

Mn = min{Mk|Xn ∈ C(Xk)} + 1 (4.3)

Our restrictions on the model in the choice of the covering area imply that Mn is a non-
decreasing sequence (loop-free property of the path). Our objective now is to find the probability
Pn,

Pn = IP[Mn = Mn−1 + 1]

for any given n. It will allow us to estimate the average value of the hop counter after n steps
and therefore the average distance to the point Xn.

The induced Markov chain

The form of transmission region C provides us with the nice property that for all i < j ≤ n,
C(Xi)∩C(Xn) ⊂ C(Xj)∩C(Xn). Thus the probability Pn+1 depends only on the two points Xn

and Xα(n), where α(n) = max{k|Mk = Mn−1}. If Xn+1 falls inside C(Xα(n)) then Mn+1 = Mn

and otherwise it increases. Thus, we have Pn+1 = 1 − |C(Xα(n)) ∩ C(Xn)|.
Furthermore, we can free the sequence {Mn} from the dependence on the coordinates of

{Xn}. Let us denote by Yn the random variable that corresponds to the position of the right-
upper corner of the square C(Xα(n)) expressed in the coordinates centered at Xn (see Fig.4.2).

Let us denote by X∆
n a point chosen uniformly at random in the unit square C(0): Xn+1 can

be represented as Xn+1 = Xn +X∆
n .

Thus we can now define the sequence {Yn} in terms of the X’s and X∆’s in the following
way

Yn+1 = ψ(Yn, X
∆
n ) (4.4)

where ψ : C(0) × C(0) → C(0) is the function defined by

ψ(Y,X) =





(x(Y ) − x(X), y(Y ) − y(X)),

if x(X) ≤ x(Y ) and y(X) ≤ y(Y )

(1 − x(X), 1 − y(X)), otherwise

(4.5)

where x(·) and y(·) denote the corresponding x− and y− coordinates.

In the first case, Xn+1 takes the place of Xn as a relay in C(Xα(n)) and α(n+ 1) = α(n); in
the second case, a new square is created with origin Xn+1 and the new point Yn+1 is such that
α(n + 1) = n. The two situations are shown in Fig. 4.2.

From (4.4) we can consider Yn as a general Markov chain, satisfying a stochastic difference
equation, with a continuous state space and discrete time.
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Figure 4.2: Evolution of sequence {Yn}

The analytical solution

To prove that there is a stationary distribution of Yn and find it we use the stochastic kernel
of this Markov process. We suppose that Yn has a density function which we denote by fn.
Because of the uniformity of X∆

n inside C(0) we have the following recurrence equation for fn:

fn(x, y) =

∫∫

G(x,y)
fn−1(u, v)dudv

+

∫∫

F (x,y)
fn−1(u, v)dudv (4.6)

where F (x, y) is C(0) \ [1 − x, 1] × [1 − y, 1] and G(x, y) is the rectangle [x, 1] × [y, 1] (Fig. 4.3).
The region G corresponds to a non-increasing hop number and F to an increasing one. The
region G is the set of all possible places for the point Yn to be at the North-East of a random
point Xn+1 drawn randomly in C(Xn). Similarly, F is defined as the complement of this set, as
illustrated in Fig. 4.3. Note that on the left image Yn = Yα(n) and (x, y) are the coordinates of
Yn relatively to Xn.

Let us observe the following facts for fn.

1. If fn is a density function we can rewrite (4.6) as

fn+1(x, y) =

∫ 1

x

∫ 1

y
fn(u, v)dudv + 1

−
∫ 1

1−x

∫ 1

1−y
fn(u, v)dudv. (4.7)

2. If f0 is a density function then fn also is a density function :
∫ 1

0

∫ 1

0
fn(x, y)dxdy = 1. (4.8)
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Figure 4.3: Integration areas for the recurrence equation
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3. The substitutions x 7→ 1 − x and y 7→ 1 − y lead to

fn(x, y) + fn(1 − x, 1 − y) = 2 (4.9)

The recurrence takes the form

fn+1(x, y) = 1 − 2xy +

∫ 1

x

∫ 1

y
fn(u, v)dvdu

+

∫ x

0

∫ y

0
fn(u, v)dvdu (4.10)

Theorem 4.1. The density function of the stationary distribution f ∗ exists and fn → f∗,
n→ ∞. Also f ∗ is differentiable.

Proof. As we prove in Appendix A functions Fn(x, y) =
∫ x
0

∫ y
0 fn converge to F ∗. As we can see

it from (4.10), these functions are differentiable and bounded (it can be proved by induction),

therefore, the limit is also differentiable. We denote f ∗ = ∂2F
∂x∂y .

The distribution functions converge in variation by Proposition A.1 , therefore, their densi-
ties converge to the density of the limit ([23], Th. 7, appendix 3):

∫
|fn − f∗| =

∫
|d(Pn − P )| → 0

Therefore f ∗ is the limit of f . f ∗ is determined almost surely.

As f∗(x, y) exists it should satisfy

f∗(x, y) =

∫ 1

x

∫ 1

y
f∗(u, v)dudv + 1

−
∫ 1

1−x

∫ 1

1−y
f∗(u, v)dudv (4.11)

After differentiation we obtain the partial differential equation

f∗xy = −2 + 2f ∗ (4.12)

This equation can be solved analytically using the Riemann method for hyperbolic partial
differential equations (see [94]). The general form of the solution can be expressed as

f∗(x, y) =

∫ y

0
I0(2

√
2x(y − η))φ(η)dη

+

∫ x

0
I0(2

√
2y(x− ζ))θ(ζ)dζ + 1 (4.13)

where I0 is the modified Bessel function of order 0, φ and θ being the boundary conditions :

f∗x = φ(x), for y = 0

f∗y = θ(x), for x = 0

In our case f ∗(x, y) is a symmetric function, therefore, φ(x) = θ(x) and, from (4.9), we
obtain f(x, 1 − x) = 1. Function φ is, then, defined implicitly as a solution of the following
integral equation:

∫ 1−x

0
I0

(
2
√

2x(1 − x− η)
)
φ(η)dη +

∫ x

0
I0

(
2
√

2(1 − x)(1 − η)
)
φ(η)dη = 1 (4.14)
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Figure 4.4: The density function f ∗(x, y)

Here, we find a numerical estimation of the solution using equation (4.7) iteratively; after a
several steps the estimation of the density function fn is

f∗(x, y) ≈ 2 − 1.428x − 1.428y + 0.417x2 + 2xy + 0.417y2 (4.15)

Then the steady state probability of increasing the hop number P∗ can be estimated numer-
ically as

P∗ = 1 −
∫ 1

0

∫ 1

0
xyf∗(x, y)dxdy ≈ 0.82176 (4.16)

Thus knowing a number N of the points participating in the flooding defined by {Xn}, we can
estimate the hop distance as P∗N :

Theorem 4.2. The steady state probability of hop counter increase can be found as

P∗ = 1 −
∫ 1

0

∫ 1

0
xyf∗(x, y)dxdy

Generalisation to non-uniform densities

In previous sections we have been considering the uniform distribution for the choice of the
next broadcasting node. It was a way to model the interference competition for the neighboring
nodes. But in a number of flooding algorithms the choice of the nodes that are going to relay
the message request is probabilistic and not necessary uniform. For instance, the nodes closer
to the borders of the covering area can have higher probability to broadcast next ([26, 84, 46]).
We can adapt our model to reflect these situations, by replacing the uniform distribution for
{X∆

n } with some other having a density function ϕ.

We recall the definition of Yn given by equation (4.4)

Yn = ψ(Yn−1, X
∆
n ) (4.17)

where X∆
n has a distribution function with a density ϕ on C(0). The function ϕ should satisfy

the condition that the chain Yn converges to a stationary distribution represented by a density
function f ∗N . If we want to keep the proof of Prop. A.1 we need to impose the following
restriction on ϕ: there should exist ξ : ϕ(Dξ(0) ∩ C(0)) > 0, where Dξ(0) is a disk of radius ξ
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and with a centre at 0. In this case we can take the probability measure µ as µ(Dξ(0)∩C(0)) = 1
and the proof will follow.

The recurrence relation (eq. 4.18) takes into account the change of the measure for X∆
n on

C

f∗N (x, y) =

∫ 1

x

∫ 1

y
f∗N (u, v)ϕ(u, v)dudv + 1

−
∫ 1

1−x

∫ 1

1−y
f∗N (u, v)ϕ(u, v)dudv (4.18)

In this case P∗ can also be represented as

P∗ = 1 −
∫ 1

0

∫ 1

0
Φ(x, y)f ∗N (x, y)dxdy (4.19)

where Φ(x, y) = IP
[
(X∆

n )x < x, (X∆
n )y < y

]
.

For example, in the case of the distribution defined by the density function ϕ = x+y
2 we

obtain, by numerical computation, that P∗ ≈ 0.9342.

4.3.3 Conclusions and Discussion

The model we have introduced and analysed has the following interpretation : consider a highly
dense community of users of an ad hoc network. Some node starts searching for an interlocutor
and it broadcasts around a request for a such connection. Other stations try to repeat this
request as soon as they receive it. At some time the destination node is reached. Then the
backtracking process is initiated which corresponds to a selection from the stations participating
in the planar flooding of one branch XN , XN−1, . . . , X0 such that XN is the destination, X0 is
the source and Xk is located in the covering area C(Xk−1) of Xk−1 for all 0 < k ≤ N . Then
this path is shortened by eliminating points Xk such that Xk−1 ∈ C(Xk+1), since even without
these points the connection between X0 to XN still holds.

Provided that one can estimate N and the probability P∗ of the elimination of the “useless”
nodes from the established connection then the path length can be estimated as P∗N . This
estimations are closely related to the possible covering areas.

The oriented covering area, chosen in this model, reflects its biggest frontal gain during a
planar flooding expansion toward the destination.

We compared the path length predicted by this model with the results of the simulation of the
generalised flooding {Zn} with the oriented square covering area. The flooding was implemented
choosing points Zn uniformly at random from ∪0≤i≤n−1C(Zi) - entire region previously covered.
We measured the number of hosp of the connections obtained via {Zn} to the points located
on the diagonal x = y. The results of this comparison are displayed in Fig.4.5.

The limitation of the covering area shape to the unit square might seem to be too restrictive,
but it gives an easy way for computing and estimating the optimisation factor.
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Chapter 5

Comparing Ad Hoc Network
Protocols

This chapter contains the description of the framework for comparison of ad hoc network pro-
tocols. The result is based on two models:

1. modeling the corresponding protocol by calculating the overall traffic composed of all con-
trol and information-related messages. This approach was taken in [54] to estimate the
overhead of the OLSR protocol.

2. link availability modeling, where the transmission range depends on the traffic density, as
it was discussed in the first chapter.

This method is similar to the one in [9]. In short, it can be illustrated in the following way: the
overall traffic generated by the protocol depends on the control and information messages issued
by the nodes of the network. The number of control messages can depend on the interference
level and, therefore, on the transmission range. For each protocol, the number of times these
messages are relayed is also a function of the transmission range. The transmission range in
its turn depends on the traffic density (in SIR based link mode), which, on the average, can
be estimated by the number of the control and information messages together transmitted at an
arbitrary time slot. Therefore, the traffic density can be expressed as a function of itself with
the network parameters fixed.

The goal of this chapter is to find the overall traffic density as a function of the density of
the nodes and of the network useful load.

5.1 Ad Hoc Network Protocols. General Overview.

Since the end of 1990s, when a multihop approach in the wireless networks has been growing
in popularity, a number of protocols for mobile ad hoc networks were proposed. The protocols
are mainly divided into two groups reactive and pro-active. The former try to find routes only
when a corresponding demand appears, thus limiting the routing information the nodes need to
store. In general, when a need for a new path arises, they flood the network with route request
messages. Whereas, the latter tend to fill the routing tables with the necessary information
before any potential demand comes up. In general pro-active routing is organised via some
mechanism of a regular exchange of the routing information.

The common opinion on the two types of protocols is that the reactive protocols provide
a better performance for highly mobile scenarios, where the paths are changing really rapidly
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and where the traffic load is not too high. They suffer from the increase of the traffic load
and of the number of nodes. The pro-active protocols, on the contrary, reduce delays for
new routes and they react better to the increasing number of nodes, but they suffer from too
rapid changes of topology. There exists also a variety of other ad hoc network protocols, that
includes hierarchical, geographical and hybrid protocols. Some of these solutions are based on
a way of learning the geographical positions of the participating nodes, for example, using the
global positioning system (GPS). Some other mix different routing strategies to optimise the
performance.

In this chapter we will study two protocols representing the reactive and the pro-active
routing solutions, ad-hoc on-demand distance vector routing (AODV) [80] and optimised links
state routing (OLSR) [31]. They are chosen because they include most of the features common
to their respective groups. Also these two protocols are chosen by IETF MANET group as
candidates for the future standards in mobile ad hoc networks.

Before presenting the protocols let us mention the general mechanisms they are based upon:
the distance vector routing and the link state routing. These algorithms are largely used in wired
networks (see, for example, [59]).

Distance vector routing is based on Bellman-Ford shortest path search algorithm. Nodes
keep a routing table of records of the form <destination, cost, next hop>. The neighboring
nodes will have cost 1. Assuming that the identity of other nodes is known, the routing cost for
them is set to ∞. Every node periodically broadcasts its routing table to its neighbors. When
arbitrary node receives such information from a neighbor, it updates its routing table checking,
whether the current cost can be decreased by routing via this neighbor. If it is possible, the
node updates its routing table to reflect this change.

Link state routing proposes to the nodes to keep a copy of the network map and update it
regularly. The routing tables then contain the information on the status of the links between
all nodes. The nodes diffuse a set of their link-state information throughout the whole network.
Such packets would contain the identity of the issuing node, its neighbors and the cost of routing
to them. After the end of the initial network discovery routine, all nodes should have the same
network image in their link-state tables. Then, if a need arises, every node can find the entire
shortest path in the table using Dijkstra algorithm.

Both routing methods have their strong and weak sides. But the wireless multihop envi-
ronment changes the goals and, thus, the evaluation of a routing paradigm. Therefore, it is
better to look at particular protocols and try to compare them. In what concerns AODV vs.
OLSR, there is a number of works that have done the performance comparison, for example,
see [34, 48].

5.2 AODV in Details

The protocol AODV (Ad Hoc On Demand Distance Vector) was presented by C.E. Perkins
and E. Belding-Royer in their work [80]. It was developed on the base of the protocol named
DSDV (Destination Sequenced Distance Vector) [79], which was an implementation of distance
vector routing method applied to ad hoc networks and which was a pro-active protocol. At
the present moment, the development of AODV is continued with protocol named DYMO [27],
which includes some further optimisations compared to AODV. Let us describe the different
phases of AODV functioning.
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Path Discovery

AODV is reactive (on demand) protocol based on distance vector routing. Therefore, when
the need arises and if a route to a destination node is unknown, the protocol starts the route
discovery process. It broadcasts the Route Request (RREQ) message throughout the network.
Every node, which does not know the route to the destination, should repeat the RREQ. When
a node, that has the route in its routing table or the destination itself receives the RREQ, the
reply message (RREP) is sent back backtracking the path to the source node. Thus RREP
is delivered via unicast, contrary to the broadcast of the RREQ. The RREQ contains route
sequence number in order to avoid getting back the information about the stale paths.

Processing RREPs, the source and all intermediate nodes cache the information about the
route to the destination in their respective routing tables. These records contain the destination,
the next hop node IP addresses and a route (destination) sequence number. This number is
used to prevent loops and to avoid obsolete entries. Additional information includes the list
of the precursor nodes, these nodes use the table owner node to relay the messages to the
corresponding destination. Each row has also lifetime entry associated with it.

To prevent unlimited broadcast throughout the whole network, the RREQ has a maximal
hop parameter. If the destination is not found within this limit, the RREQ is repeated with
the parameter increased.

Path maintenance

The protocol has route error detection and repair mechanism. If a node discovers that some
active link is broken it generates Route Error (RRER) message, which is broadcast to the
precursor nodes. The RRER is then relayed to the concerned source nodes. If the path is
needed, then the source node re-initiates route discovery.

Local Connectivity

To be independent from the MAC layer the AODV includes local connectivity management
mechanism. The nodes issue “Hello” messages to remind their neighbours that they are still
available for routing. Then the neighbours update their routing tables to refresh the lifetime
marks of the paths routed via these nodes. If the network layer under AODV (MAC layer)
has its own mechanism of the local connectivity control (it is the case, for example, for 802.11
protocol), then “Hello” messages need not to be used.

5.3 OLSR in Details

OLSR [31] is a proactive protocol, it means that the nodes update regularly the routing infor-
mation and, when a demand arises, they have the routing paths ready for the use.

OLSR adopts the link state routing strategy, optimising it for the wireless ad hoc networks.
An OLSR node broadcasts periodically the Topology Control (TC) messages containing the list
of its neighbours and these messages are diffused across the network. This is the classical link
state approach. OLSR improves the performance by making use of the broadcast nature of
the wireless networks, as it tries to minimise the number of nodes necessary to diffuse the TC
messages across the network. Every node selects a subset of its neighbours, called Multipoint
Relay (MPR) nodes. The MPR nodes are chosen to cover with their radio transmission range
all two-hop neighbours (neighbours of the neighbours). Therefore, the flooding of the network
with TC messages is done only via the MPR structure.
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OLSR does not demand the MPR set to be minimal and it was, actually, proved that to
find the minimal MPR set is NP problem ([91]). The technique of the MPR nodes selection
proposed in OSLR is based on the greedy style algorithm, which, in one interface case, can be
resumed as

1. First add to the MPR set the nodes that provide the unique links to some two-hop
neighbours.

2. Consequently add the nodes with the greatest number of the links with the two-hop
neighbours that are not covered by the previously selected MPR nodes.

When a node receives a TC message, it can add or update its information on the links ac-
cordingly. The paths are then calculated using a shortest path algorithm (for example, Dijkstra
algorithm).

Local Connectivity Control

The local connectivity management is based on the periodical distribution of “Hello” messages
by all participating nodes. These messages contain the information on neighbours and on
the MPR nodes selection. Also there is an additional functionality included to manage the
asymmetrical links, but as they are out of scope of our further analysis, therefore, we avoid
their description.

When a node receives the “Hello” message from a neighbour it updates its neighbour list,
two-hop neighbour and MPR selector lists. MPR selectors are those nodes, that have chosen
the given node as an MPR.

5.4 Studies of the Protocol Performance

OLSR

There is a number of works analysing the OLSR performance. We start our review with [51],
which is one of the first works where OLSR is compared to DSR. The network connections are
modeled by a classical random graph. It means that a direct link between two edges exists
with a probability p, which is the determining parameter of the model. This makes the model
mostly relevant to the indoor network where all nodes located within the transmission radius of
each other and where the random perturbations does not allow some nodes to correctly receive
transmissions. There is no geographical information about the positions of the nodes included
into the consideration.

The MPR selection is one of central parts of the protocol and it received a close attention.
Its algorithm was thoroughly studied in [91, 61] for its complexity. In [53] the analysis showed
that the average size of the MPR set tends to be smaller than O(M 1/3), where M is the number
of neighbours. Therefore, the overall structure of the MPR nodes that covers the network
allows to obtain a significant improvement in the diffusion of the information over the network,
compared to the simple flooding. The flooding techniques were analysed in [52, 9] in terms of
the overhead. In the second article the broadcast stage of OLSR was compared to its analogue
in Distributed Dynamic Routing (DDR) protocol.

The network performance under OLSR control was investigated in [33, 3]. In these works the
protocol traffic was estimated separating it into different types of messages (“Hello”, Topology
Control). Then there is an estimation on the number of the messages and their frequency.
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5.5 Direct Comparison at the Packet Level

AODV

AODV is a complex protocol with several types of control packets circulating between the nodes.
In our analysis, we will concentrate on the following subset of them:

• “Hello” messages. They were introduced into AODV to maintain the local connectivity.
These messages are transmitted periodically. We denote this frequency rate by χ.

• Route Request (RREQ) messages. These messages are participating in the discovery of
new routes and in repairing the old ones. Therefore they are “on demand” packets which
compose the flooding. We do not consider the local repair mechanism of AODV and
new path creation. The latter can be easily included into the additive traffic density
expression. We suppose that over some long period of time the frequency of flooding
waves is φ, which depends on the rate of the errors which occur due to the wireless traffic
congestion or interference problems.

• Normal traffic packets. They depend on the communication pattern of each network. We
assume that in our case we have Λ paths regularly communicating, with the frequency ω.

These messages compose the main part of the traffic. The equation of the traffic density over
some long period of time in the AODV network can be expressed in following way.

λAODV =
Nχ

S
+
φN

S
+
LΛω

hS
, or (5.1)

λAODV = νχ+ φν +
C1Λω

h
√
S

(5.2)

where N is the number of nodes, S is the area (N/S = ν), L is the average euclidean distance
between sender-destination pair of Λ paths (it is of order O(

√
S), i.e. L = C1

√
S, where the

constant C1 characterises the region), h is an average hop length. In this expression there are
two parameters that depends on other ones: flooding rate φ and hop length h.

The flooding rate φ should be proportional to the number of useful packets LΛω/h. These
packets or links can be interrupted by two events: by a random perturbation (thermal noise) or
by a flooding that interrupted the link. The latter can be considered as self-inflicted damage.
Let us denote the thermal component of φ by θ and the self-inflicted one by ε.

φ = θ + ε (5.3)

θ is a parameter of our model, whereas ε has to be determined using a flooding model we present
in the next section.

The hop length h also depends on the flooding characteristics, node density and the current
traffic density λ. This is because flooding is exactly the way AODV finds the paths.

OLSR

OLSR is a proactive protocol and as a consequence there is a lot of periodic activity to establish
the paths across the network. The “Hello” messages mechanism informs the nodes about their
2-hop neighbourhood. Then every node fixes a subset (Multi Point Relay nodes, MPR) of its
neighbours allowed to re-transmit its messages. This subset should be able to reach with its
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transmissions all the nodes at a two hop distance and it is also optimised in size. The node
choosing its MPRs is called MPR selector.

After this step, every node advertises itself across the network. This is performed by a
flooding the MPR neighbours of the node, then MPRs of MPRs, etc. Therefore, compared
to the classical AODV flooding the number of nodes and messages involved is much less. A
good optimisation is achieved using the following protocol rule: a node forwards a message only
received for the first time from its selector. We include into our simplified model the following
packets of OLSR (see [54], [53] for similar models)

• “Hello” messages. Their frequency rate is denoted by χ. In the case, when it is necessary
to avoid confusion with the AODV notations we will use subscripts AODV and OLSR.

• Topology Control (TC) messages. They compose the OLSR flooding and contain the
information about the issuing node and its MPR nodes. We denote the rate of TC
messages by τ .

• Normal information packets. We denote the number of communicating pairs by Λ, the
average distance between sender and receiver by L = C1

√
S, where S is the area of the

network and the average hop length we denote by h. The rate of the communication is
denoted by ω.

We can express the traffic density in the whole network over some long period of time by

λOLSR =
χN

S
+
NMPRNτ

S
+
LΛω

hS
, (5.4)

where NMPR is the number of nodes participating in MPR flooding. The study [53] of the
MPR nodes in the network showed that for M neighbours there are about M 1/3 of MPR nodes.
Therefore we can estimate NMPR in the following way: it is the probability of every node to

become an MPR multiplied by the number of nodes, i.e. M1/3N
M ([2]). As we can see it from

(2.25), the number of neighbours in its turn is determined by the node density and the traffic
density:

M =
πr20
λ

(5.5)

We suppose that the equation (5.4) describes the behaviour of the network in equilibrium.
When a perturbation occurs the network readjusts itself and if necessary, it recreates new routes.
Under such assumptions we can conclude that the hop length of the routes in OLSR corresponds
to the current level of traffic density and therefore can be taken as r0/

√
λOLSR.

Re-writing (5.4) (dropping the subscript of λOLSR) we obtain

λ = χν + 5

(
ν
πr20
λ

)−2/3

Nντ +

√
λC1Λω

r0
√
S

(5.6)

λ = χν + 5
(
πr20
)−2/3

λ2/3Nν5/3τ +
√
λ
C1Λω

r0
√
S

(5.7)

Although this equation is not solvable in radicals for λ, we can obtain its numerical solution,
which will be used in the comparison of two protocols further in this section.
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Protocol comparison

In this section we compare the traffic density of two protocols with the same useful load Λ. For
OLSR we will use directly the equation (5.7). However, the AODV equation (5.2) needs some
further calculations.

We assume that the network is in equilibrium. Therefore, there are Λ working connections
with the average traffic density λAODV . We suppose that the network uses for the flooding
packets the same probability coordination and we can apply the model of the section 3.3 to
AODV. We fix probability p = 0.025 and λnoise is the average traffic density across the network,
i.e. λnoise = λAODV . In this case we can use the estimation for the hop length from (3.27), as
the values of the traffic density traced in the approximated simulations are the same as λAODV .

The error rate ε is the second parameter of AODV and we have not found its explicit form.
This is the rate of the failures caused by flooding. It can be estimated as it corresponds to the
probability (rate) of the active link meeting a wave of the flooding.

ε =
C1Λω

√
Sφ

h
Pe (5.8)

where Pe is the probability of the event that flooding will interrupt the transmission at arbitrary
node. The interpretation of (5.8) is the following: the number of errors caused by flooding is
proportional to the number of links (the number of useful connections multiplied by the average
path length) ΛωC1

√
S/h and to the flooding rate φ. Substituting in the expression (5.3) the

value of ε by (5.8) and solving the resulting equation we obtain

φ =
θ

1 − C1Λω
√

S
h Pe

(5.9)

At this point we need another assumption to continue further our investigation. We assume
that Pe is a probability function which depends on the duration of the peak of the flooding wave
in some bounded region (taken from (3.26) ) and it depends on T ∗, the period which AODV
waits before declaring a packet lost. Pe is ascending in flooding peak duration and descending
in T ∗. We choose Pe to correspond these constraints as following:

Pe = exp


C2


n0 +

log(λnoiseS) − log
((

1 − (1 − p)
νS
X

+1
)
X
)

log(1 − p)


 /T ∗ + C3


 (5.10)

where C2 and C3 are normalising constants. This function can influence the form of the
final curve. But as long as the thermal noise θ is small enough, this influence is limited.

On Fig. 5.2 we see the final results that follow from OLSR (5.7) and AODV traffic density
equations. We restrain from writing the AODV function in whole as it is composed of multiple
parts: equation (5.2), (3.26),(3.27), (5.10), (5.9) and the parts corresponding to Pe (5.10) and to
hnoise (3.27) lack argumentation. Nevertheless, these curves allows to estimate the comparative
behaviour of two protocols.

The x-axe is the percentage of the nodes involved in some active connection (number of
the connections is then xN/100). Most of the parameters are shown in the table in Fig. 5.1.
The curves of AODV are calculated through a numerical computation with the values of θ =
1/100000 and θ = 1/10000. Whereas, OLSR has two curves with τ = 1/20000 and 1/10000.
These two parameters also make the comparison difficult. The values of θ and τ are related in
the sense that when there is θ error rate in the network, OLSR should raise the rate τ sufficiently
high, to repair the broken links with a minimal delay.
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Value AODV OLSR Description

0.00001 0.00001 Time slot duration
N 1000 1000 Number of nodes
S 200 200 Surface

C1 0.5 0.5 C1 = S/
√
L

r0 0.12 0.12
ω 1/10000 1/10000 Useful load rate
χ 1/2000 1/2000 Hello rate
τ NA 1/20000 OLSR TC refresh rate
T ∗ 0.005 AODV Link failure detection time
v 1.616 Speed of the flooding wave
p 0.025 Probability of the node transmission

Figure 5.1: The different parameters of two protocols used in comparison

On Fig. 5.2 the slope of AODV is greater than those of OLSR. The reason for this is that the
length of the paths of AODV are longer than those of OLSR. This is the L/h part in the initial
equations for both protocols (5.4) and (5.1). When θ increases AODV curve makes almost a
parallel shift up. OLSR has a similar reaction to the change of τ .

We can conclude from the graphs that at some values of θ and τ the protocols have a load at
which they perform equally. Before this point AODV performs better in terms of the overhead.
After this point it is OLSR that has less overhead. It is not too surprising as we can see it on
two extreme examples. In one case there is a zero useful traffic, therefore AODV does nothing,
which is much better than OLSR establishing the structure of the network. In the other case the
useful load is high, that makes the paths in AODV longer and the error rate higher, therefore
OLSR optimisation of the resources allows a better overhead. The approach of estimating the
traffic density of OLSR and AODV that we present here allows to consider the case in greater
details.

The framework presented in this chapter is not a complete analytical model, because there
are two important parameters that are approximated: AODV hop length and probability of
flooding to break a link. However, we present a deeper insight on the mechanism of the interac-
tion between flooding and the existing links and this approach allows us to compare the curves
of the traffic level of two different protocols.

Let us also note, that this framework is built around several models, which were described
in the previous chapters: SIR based random geometric graph and MAC layer modeling. Note,
that the use of a fixed random geometric graph (unit disk model) would not be a good choice
for such analysis, as our approach is based on the adaptation of an ad hoc network to changing
traffic conditions and unit disk model is insensitive to these changes. The Erdös-Rényi random
graph model suffers from the same shortage. However, the SIR based random graph described in
Section 2.5.2 potentially could be used in such framework. But its problem is difficulty of finding
the closed form equation, equivalent to (2.25) : r = O(1/

√
λ). The numerical computations

can be done, but they would be lacking the clarity of analytical expressions. In fact, such
comparison was possible because of the additive property of the traffic density. It allowed to
combine the different types of messages described in the protocols.
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Figure 5.2: Traffic density of AODV (θ = 1/10000 and θ = 1/100000) and OLSR (τ = 1/20000
and τ = 1/10000)
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Chapter 6

PageRank of Scale Free Growing
Networks

At first sight this last chapter is not relevant to ad hoc networks. The object of its study is the
Web graph and PageRank. However, the link between them exists. Starting with the general
ideas: ad hoc networks can be seen as cooperative societies. In the real world it is unlikely that
the nodes will link themselves to any unknown neighbors and rely their message forwarding on
them. Therefore, some kind of authorisation system will be needed, which will create inter-
dependency among the users and, therefore, a social network. One of the mechanisms actively
discussed at the present moment is reputation systems (see [58] for a up-to-date review). These
systems are based on the feedbacks of the members of a community on each other. PageRank,
as a measure of popularity of a particular node, is closely related to reputation evaluation.

This work was co-authored with K. Avrachenkov

6.1 Reputation Systems in Ad Hoc Networks

Large scale ad hoc networks need a mechanism, that would insure some level of network security
and also of collaboration among its users. Reputation systems may be a possible answer to this
demand.

As wikipedia.org defines it: A reputation system is a type of collaborative filtering al-
gorithm which attempts to determine ratings for a collection of entities, given a collection of
opinions that those entities hold about each other. An important working example of an explicit
reputation system, put in place by a commercial site, is the famous auction site ebay.com. After
each transaction users are invited to leave their opinions on their counterpart. Those opinions
are open for review to any other user. Therefore, potential customers (and sellers) can ver-
ify whether other clients were happy with a given seller (customer) and, therefore, base their
decision about what price to pay or about even participation in the bidding on this information.

Another example of reputation systems is PageRank. As the google.com site says it: PageR-
ank relies on the uniquely democratic nature of the web by using its vast link structure as an
indicator of an individual page’s value. In essence, Google interprets a link from page A to page
B as a vote, by page A, for page B. Also, every page has its own weight, which it puts into the
vote. Therefore, PageRank proposes a numerical evaluation of reputation [30].

The problems of authorisation and security are notorious for wireless networks. The absence
of any central point or any other stable infrastructure make things even more difficult for the
mobile ad hoc networks. There is a number of solutions for these problems proposed in the
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literature and one of possible approaches consist of establishing a reputation system in the
network, where the nodes would share the information of each other (see, for example, [64]).

In this chapter we study evolution of PageRank on a scale free growing network model. The
growing network model cannot be directly applied to the link availability modeling in ad hoc
networks, because it describes a social side of the Web graph evolution. Therefore, the results
we obtain are rather specific for some models of social networks. Nevertheless, this study might
have its interest for the future applications in ad hoc networks, for their reputation systems at
the protocol level.

6.2 Introduction to PageRank

Surfers on the Internet frequently use search engines to find pages satisfying their query. How-
ever, there are typically hundreds or thousands of relevant pages available on the Web. Thus,
listing them in a proper order is a crucial and non-trivial task. The original idea of Google
presented in [25] is to list pages according to their PageRank which reflects popularity of a
page. The PageRank is defined in the following way. Denote by n the total number of pages
on the Web and define the n× n hyperlink matrix P as follows. Suppose that page i has k > 0
outgoing links. Then pij = 1/k if j is one of the outgoing links and pij = 0 otherwise. If a page
does not have outgoing links, the probability is spread among all pages of the Web, namely,
pij = 1/n. In order to make the hyperlink graph connected, it is assumed that a random surfer
goes with some probability to an arbitrary Web page with the uniform distribution. Thus, the
PageRank is defined as a stationary distribution of a Markov chain whose state space is the set
of all Web pages, and the transition matrix is

P̃ = cP + (1 − c)(1/n)E, (6.1)

where E is a matrix whose all entries are equal to one and c ∈ (0, 1) is the probability of
following a link on the page and not jumping to a random page (it is chosen by Google to
be 0.85). The constant c is often referred to as a damping factor. The Google matrix P̃ is
stochastic, aperiodic, and irreducible, so there exists a unique row vector π such that

πP̃ = π, π1 = 1, (6.2)

where 1 is a column vector of ones. The row vector π satisfying (6.2) is called a PageRank
vector, or simply PageRank. If a surfer follows a hyperlink with probability c and jumps to a
random page with probability 1− c, then πi can be interpreted as a stationary probability that
the surfer is at page i.

Barabási and Albert [13] have proposed a scale free growing network model to understand
the evolution of the World Wide Web and in particular to explain the power law for in and out
degree distributions. Then, Bollobás et al. [20] have refined their model and proved rigorously
that in and out degree distributions satisfy power laws. Pandurangan et al. [77] applied the
”mean-field” heuristics from [13, 14, 15] to show that the PageRank distribution in the scale
free growing network model satisfies the power law with exponent 2. They have also proposed a
model where new nodes attach with weighted probability that takes into account the in degree
as well as PageRank. By studying two large samples of the Web, the authors of [77] found that
PageRank closely follows a power law with exponent 2.1.

In the present work we find an analytical expression for the expected PageRank value in a
scale free growing network model as a function of the age of the growing network and the age of
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a particular node. We prove that the average PageRank value does not depend on the number
of outgoing links. This fact helps us significantly, since we can deal with tree graphs instead of
directed acyclic graphs. Then, we derive asymptotics that shows that PageRank follows closely
a power law with exponent 2.08 in the middle range of its values. Finally, our expressions give
a mathematical insight for the choice of the damping factor c.

The structure of the chapter is as follows: in Section 6.3 we describe the scale free growing
network model, which is used in the present work, and its relation to the other scale free growing
network models. In Section 6.4 we derive an explicit formulae for PageRank for directed acyclic
graphs and tree graphs. In Section 6.5 we prove that in our model the average PageRank does
not depend on the number of outgoing links. Sections 6.6 and 6.7 provide auxiliary results
on the moment generating function of the nodes’ heights in subtrees and on the subtree size
distribution, which lead to the final results and asymptotics given in Section 6.8. The study
is concluded by Section 6.9, where we discuss the results and compare them with the related
results from the literature. Some techniques that we use in the present work are explained in
more detail in Appendices.

6.3 Scale Free Network Models

Inspired by the power law in and out degree distributions of the World Wide Web, Barabási
and Albert [13] have proposed growing network model with preferential attachment. In their
model a new node is attached to some old nodes with probability proportional to the in degree
of the old nodes. The authors of [13, 14, 15] have developed the “mean-field” heuristics, which
allowed them to derive approximations to the power law degree distributions. Then, Bollobás et
al. [20] have added some missing parts to the Barabási-Albert model and have shown rigorously
that the degree distributions of the scale free growing network model indeed satisfy power laws.
The model of [20] allows self loops and multiple links.

It turns out that there is an explicit analytic expression (it is given in the next section) for
the PageRank of directed acyclic graphs. Furthermore, Google when computes the PageRank
disregards the hyperlinks within the same Web page. Taking into account the above two reasons,
we have decided to work with the following scale-free growing network model: The time is
discrete. The network grows at the speed of one node per time step. We fix a parameter m,
the number of outgoing links from each node. At each time step a new node creates m links
to the existing nodes. Let us denote the growing network at arbitrary time step n by Gm

n . At
this point we need to define the way the links of a new node connect to the existing nodes. We
denote by dv(n) the in degree of node v at time step n.

• At step 0 the initial node 0 is created and it has no links. The initial node has weight m
by definition.

• Then, at the next time step 1 a new node has no other choice but to connect its m links
to the initial node. Node 1 receives the weight m and the weight of node 0 becomes 2m.

• A new node that appears after time step 1 connects each of its m edges independently
with probability proportional to the existing nodes’ weights equal to in degrees plus m.
Namely, the probability that node n connects to node v, v < n, is given by

IP[n→ v|Gm
n−1] =

dv(n− 1) +m
∑n−1

k=0(dk(n− 1) +m)
=

dv(n− 1) +m

2m(n− 1) +m
. (6.3)

67



Chapter 6. PageRank of Scale Free Growing Networks

For instance, node 2 connects with probability 2/3 to the initial node 0 and with proba-
bility 1/3 to node 1.

It is easy to see, that in the case of m = 1 the growing network G1
n is a tree. This fact will be

used extensively later in the chapter. We would like to note that the scale-free growing network
model of [36] is the closest model to ours. An interested reader can find a detail overview of
growing network models in the surveys [22, 35, 71].

6.4 PageRank of Growing Networks

Let us study the PageRank for growing networks with fixed outdegree m. We would like to
emphasize that in this section we do not assume any preferential attachment of new nodes.
It is only assumed that at each time step a new node is added to the network and makes m
links to previously created nodes. Thus, if the initial node does not have any outgoing links, a
growing network realization is a Directed Acyclic Graph (DAG) at each time step. To calculate
the PageRank one needs to attribute some outgoing links to the initial node. There are two
natural options: either to make a self loop in the initial node or to connect the initial node to
all nodes in the network. Essentially, the difference between these two cases can be reduced to
the total number of in- and out-going degrees (for nodes v ≥ 1) [60]. Since it turns out that the
expression we obtain for the values of PageRank is much simpler in the case of the initial node
with self loop, we choose the first option in the present work.

We denote by πv(n) the PageRank of node v after the n-th step of the growing network
evolution. Of course, n ≥ v. We note that at time step n the PageRank value of a newly
created node n is minimal and is given by πn(n) = 1−c

n+1 .
Let us denote by Lv(n) the set of all paths from nodes v+ 1, ..., n to v and by |l| the length

of a path l. Then, the PageRank vector of a growing network realization can be calculated by
an explicit formula given in the next theorem.

Theorem 6.1. The PageRank of a growing network realization of node v, v > 0, at time step
n is given by equation

πv(n) =
1 − c

n+ 1


1 +

∑

l∈Lv(n)

( c
m

)|l|

 , (6.4)

and the PageRank of the initial node v = 0 is given by

π0(n) =
1

n+ 1


1 +

∑

l∈L0(n)

( c
m

)|l|

 . (6.5)

Proof. The PageRank vector of any network can be expressed by the formula [68, 18, 60]

π =
1 − c

n+ 1
1T [I − cP ]−1, (6.6)

where 1T is the row vector of ones and P is the hyperlink matrix as in (6.1). We can rewrite
the inverse matrix as a power series

[I − cP ]−1 = I + cP + c2P 2 + ... ,

Next we note that the (i, j) element of matrix [I − cP ]−1 corresponds to the sum of (c/m)|l|

over all possible paths from node i to node j. The premultiplication of [I − cP ]−1 by vector 1T
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gives the sum of all paths to node j. In the case v > 0, there are no loops and hence we obtain
formula (6.4). In the case v = 0, each path to the initial node ends with a self loop. Because of
this self loop each term (c/m)|l| is multiplied by the series 1 + c+ c2 + .... The sum of the later
series is equal to 1/(1 − c), which cancels the factor 1 − c in (6.6) and results in the particular
expression (6.5) for the PageRank of the initial node.

Next we note that if m = 1, every realization of the growing network becomes a tree. This
simplifies further the formulae (6.4) and (6.5). In the case m = 1, let us denote by Tv(n) the
subtree of the growing network with the root in node v at time step n, n > v. Also we denote
by Xn(v, w) the hop-distance between v and w at step n (of course, we should have w ∈ Tv(n)).
We shall also call Xn(v, w) height of w in Tv(n). Let us denote the number of nodes in Tv(n)
by Yv(n). Then, we have the following corollary from Theorem 6.1.

Corollary 6.1. If all the distances between the root node v and all nodes in Tv(n) are known,
then πv(n), the PageRank of node v, V > 0, can be expressed explicitly as follows:

πv(n) =
1 − c

n+ 1


1 +

∑

α∈Tv(n)

cXn(v,α)


 , (6.7)

or in its alternative local time form with respect to the subtree Tv(n),

πv(n) =
1 − c

n+ 1
(1 +

Yv(n)∑

k=1

cXn(v,k)), (6.8)

and the PageRank of the initial node 0 is given by

π0(n) =
1

n+ 1

(
1 +

n∑

k=1

cXn(0,k)

)
. (6.9)

6.5 The case m > 1 can be reduced to the case m = 1

It follows from Corollary 6.1 that the calculation of PageRank is much simpler in the case of
tree graphs than in the case of directed acyclic graphs. In particular, in the case of tree graphs
there is a one-to-one correspondence between the paths and the nodes. Fortunately, as the
following Theorem 6.2 demonstrates, the expected values of PageRank in the cases m > 1 and
m = 1 are equal for the corresponding nodes of the same age. Denote by IEπm

v (n) the expected
value of PageRank of node v at time step n for our growing network model Gm

n .

Theorem 6.2. In the present scale free growing network model Gm
n , the average PageRank of

node v does not depend on m. Namely, we have

IEπm
v (n) = IEπ1

v(n), v < n. (6.10)

Proof. The proof is done by induction on the node age. Thus, we fix v and consider time steps
n = v + 1, v + 2, ... .

As the induction base, consider node v at time step v+ 1. There is a new node v+ 1 that is
being added to the network and this new node has m links with j links to node v, 0 ≤ j ≤ m,
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and m− j links to the rest of the nodes. Let us find the expected value of PageRank for node
v:

IEπm
v (v + 1) =

m∑

j=0

jc

m

1 − c

v + 2
IP [v + 1 has j links to v] +

1 − c

v + 2
, (6.11)

it is equal to

IEπm
v (v + 1) =

c

m

1 − c

v + 2

m∑

j=0

jIP [v + 1 has j links to v] +
1 − c

v + 2
. (6.12)

The probability that a link will be created from v+1 to v is equal to m
2mv+m = 1

2v+1 . Therefore,
the sum in (6.12) is the average number of the links from v + 1 to v or, in other words, the
average number of the successes in m Bernoulli trials with the probability of the success equal
to 1

2v+1 . Therefore, we can write

IEπm
v (v + 1) =

c

m

1 − c

v + 2

m

2v + 1
+

1 − c

v + 2
=

c(1 − c)

(v + 2)(2v + 1)
+

1 − c

v + 2
. (6.13)

Thus, IEπm
v (v + 1) does not depend on m and the induction base is proved.

Next we consider node v at its age of t, or equivalently, at time step n = v + t, and we
suppose, that all the average PageRanks IEπm

k (v + t) of the nodes k, v < k ≤ v + t do not
depend on m. The nodes k, v < k ≤ v + t, are the nodes that are “younger” than node v. We
shall prove that IEπm

v (v + t) the expected value of PageRank of node v at time step v + t also
does not depend on m.

Let us denote a realization of the network Gm
n at time step v + t − 1 as λ. At time step

v + t a new node v + t is born which connects itself with m links to the older nodes according
to the preferential attachment rule. The PageRank of node v at time step v + t, knowing that
the configuration at time step v + t− 1 was λ, is given by

λπm
v (v + t) =

v+t∑

k=v+1

c

m
λπm

k (v + t)M{k → v, λ} +
1 − c

v + t+ 1
, (6.14)

where M{k → v, λ} is the number of edges from node k to node v. In particular, we note that
the PageRank of an arbitrary node depends only on those nodes that appear later in time. Now
we consider the expectation of (6.14) over all possible realizations λ:

IEπm
v (v + t) =

v+t∑

k=v+1

c

m
IE
(

λπm
k (v + t)M{k → v, λ}

)
+

1 − c

v + t+ 1
. (6.15)

We claim that λπm
k and M{k → v, λ} are independent.

In fact, as mentioned above, the PageRank λπm
k of node k depends on the nodes that appear

in time later than node k, whereas the number of the links between k and v depends only on
the nodes that appeared before node k due to the preferential attachment rule.

Therefore, IE
(
λπm

k (v + t)M{k → v, λ}
)

= IE
(
λπm

k (v + t)
)

IE (M{k → v, λ}) , and hence,
we can write

IEπm
v (v + t) =

v+t∑

k=v+1

c

m
IEπm

k IEM{k → v} +
1 − c

v + t+ 1
(6.16)

=

v+t−1∑

k=v+1

c

m
IEπm

k IEM{k → v} +
c

m
IEM{v + t→ v} 1 − c

v + t+ 1
+

1 − c

v + t+ 1
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Since each outgoing link from node k is created independently, we have

IEM{k → v} = mIP[one link from k to v].

Due to the preferential attachment rule (see (6.3)), the probability IP[one link from k to v] does
not depend on m, if the expected weight of node v is proportional to m. Let us show this:

IE(dk(n) +m|dk(n− 1)) = dk(n− 1) +m+m
m+ dk(n− 1)

2m(n− 1) +m
, (6.17)

taking the average over all possible network realizations, we get

IE(dk(n) +m) = IE(dk(n− 1) +m) +
IE(dk(n− 1) +m)

2n− 1
. (6.18)

Knowing that IE(dk(k) +m) = m we conclude, even without calculating the final expression for
IEdk(n), that it is proportional to m.

Since IP[one link from k to v] does not depend on m and IEπm
k (v+t) for k = v+1, ..., v+t−1

also does not depend on m by the induction hypothesis, the induction step is proved. This marks
the end of the proof.

The theorem allows us to concentrate the study of PageRank of the growing network model
Gm

n on the case m = 1, when each realization of the growing network is a tree.
Let us provide clarifications to the claim that the case m = 1 is much simpler than the case

m > 1, thus outlining the steps of the ensuing analysis presented in the next sections. It follows
from Corollary 6.1 that the PageRank of a given node v depends on the number of nodes in
the subtree Tv(n) and on the distances from these nodes to node v. Both these values can be
described using the Markov type random processes:

• The size of the tree Tv(n) is a random variable and it is easy to see that in a growing
network model with preferential attachment mechanism the evolution of the size of Tv(n)
is a Markov chain: at every step n the size |Tv(n)| of the tree Tv(n) depends only on the
size of the tree at the previous step n−1. Inside the tree Tv(n) all nodes are connected to
each other, therefore, the probability of a new node to link itself to the tree Tv(n) can be
calculated directly and it is equal to 2|Tv(n)|−1 divided by the corresponding normalising
factor. The term −1 is explained by the fact, that we consider the node v to be inside the
tree Tv(n), but it participates only with its out degree 1. Further details on the evolution
of the tree Tv(n) are given in Section 6.6.

• Let us consider the tree Tv(·) at the moment, when it has n′ nodes. By the above arguments
about the tree formation, we can limit our consideration only to the nodes that belong
to the tree and ignore the rest of the network. In particular, node v becomes the initial
node and the moments of attachment of new nodes to the tree can be considered as the
local time of Tv(·). When a new node is connected to some already existing node in the
tree Tv(·), its distance to the root (or its height) depends only on the height of that node.
Therefore, in the model with the preferential attachment mechanism, the probability of
a new node to be at some height h depends on the number of the existing nodes with
height h− 1 and their “popularity” (the number of the nodes at height h). Actually, we
can express this probability as a number of the nodes with heights h − 1 and h divided
by the number of the nodes n′. It does not depend on other details, for example, how
the nodes are exactly connected inside the tree. Using this fact, we calculate the moment
generating function of the nodes’ heights in Section 6.7.
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In (6.8) we have a sum of a random number of random variables. To find the expectation
of this sum we need some generalization of the Wald’s equation. Such a generalization is
provided by Kolmogorov-Prokhorov equation (Appendix B), which allows to obtain the final
result in Section 6.8 by combining the expressions for the tree size distribution and the moment
generating function of the nodes’ heights.

6.6 Distribution of the subtree size Yv(n)

We start with the lemma that gives an explicit expression for the distribution of the subtree
size.

Lemma 6.1. The probability that at time step n the subtree rooted in node v has k nodes is
given by

IP[Yv(n) = k] =
Γ(n− v + 1)Γ(k + 1/2)Γ(n − i)Γ(v + 1/2)

Γ(n− v − k + 1)Γ(k + 1)Γ(1/2)Γ(v)Γ(n + 1/2)
(6.19)

Proof. We show that the evolution of the subtree size Yv(n) = |Tv(n)| can be described by the
Pólya-Eggenberger urn model (see Appendix C).

There are balls of two colors, black and white, in one urn. Initially the urn contains b = 1
black balls and w = 2v white ones. At every step one ball is drawn at random from the urn.
Then it is returned back together with s = 2 balls of the same color.

The balls correspond to the in and out degrees of the nodes. The number of the balls is
the sum of the degrees. The black balls correspond to the nodes from the subtree Tv(n). The
white balls, therefore, correspond to the nodes outside the subtree. Every existing edge (k, l) in
G1

n corresponds to two balls in the urn model. Namely, one ball corresponds to the out degree
of node k and the other ball corresponds to the in degree of node l. Therefore, the Pólya-
Eggenberger distribution can be used to estimate the number of the black (or white) balls in
the urn at time step n.

The choice of a black ball from the urn corresponds to the event, that a new (n+ 1)-th node
connects itself to the subtree of v. Otherwise, the new node connects itself to some node outside
of the subtree Tv(·), and, therefore, neither this node nor its subtree nodes will ever connect
themselves to v with a path lying in the subtree of v.

We specify the expression for the Pólya-Eggenberger distribution (see Appendix C) for our
problem

IP[Yv(n) = k] =

(
n− v

k

)
1(1 + 2) . . . (1 + 2n) ×

× 2v(2v + 2) . . . (2(n− k))

(1 + 2v)(1 + 2v + 2) . . . (1 + 2n)
, (6.20)

or, equivalently, in its Gamma function form it gives the expression (6.19).

Let us illustrate the application of the urn model to the growing network formation by a
simple example (see Figure 6.1). The upper row of the balls corresponds to the outgoing degree
of the nodes marked with their own numbers and the second row corresponds to the incoming
degrees of the nodes. At time step 3 we have an urn with 7 balls: 6 white and 1 black. Node
0 has the in degree d0 = 2, therefore, there are 3 balls bearing the mark 0. If we draw from
the urn a white ball, like on Fig. 6.1 (b), no matter which number it has (here it is 2) we fall
out of T3. Therefore, two white balls are added. On contrary, if we choose a black ball, then
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6.7. Moment Generating function of the nodes’ heights in subtrees of G1
n
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Figure 6.1: Illustration to the urn model: (a)Growing network after 3 steps. We choose to
follow the subtree T3. (b) Node 4 is not linked to T3. (c) Node 4 is linked to T3.

the new node falls inside the tree T3, and, therefore, we add two black balls. Now it is easy to
see that if we erase the number of marks from the balls but leave the ball colors, then we will
not change anything in the formation of the number of balls of each color. Thus, the evolution
of Y3(n) does not depend on the topology of T3, but it depends only on the number of nodes
inside and outside the subtree T3.

6.7 Moment Generating function of the nodes’ heights in sub-
trees of G1

n

In this section we obtain the moment generating function of the nodes’ heights inside the subtree
G1

n′ = Tv(n), where n′ = |Tv(n)|. As we already remarked in the previous section, n′ can be
seen as a local time inside Tv(n). Since G1

n′ and G1
n have the same distribution, we can consider

without loss of generality only the distribution theof the heights in G1
n. The later explains why

we have taken a particular care for the choice of the initial weight for the initial node.

Lemma 6.2. If Xn is the distance between the initial node and node n, then

IEcXn =
Γ(n+ c

2)
√
π

Γ(n+ 1
2)Γ( c

2 )
. (6.21)

Proof. The evolution of Xn can be described without reference to any particular network real-
ization, sub-lying graph or tree structure. If node n has height k in G1

n, then it means that it
is connected to a node with the height k − 1. The conditional probability of such event is the
the number of nodes with height k − 1 plus the number of nodes with height k, normalised by
2n− 1, that is,

IP[Xn = k|Xn−1, . . . , X0] =
∑n−1

i=0 1I(Xi = k) +
∑n−1

i=0 1I(Xi = k − 1)

2n− 1
, (6.22)

where 1I(·) is an indicator function.

73



Chapter 6. PageRank of Scale Free Growing Networks

Using (6.22), we can calculate the conditional moment generating function of the nodes’
heights as follows:

IE(cXn |Xn−1, Xn−2 . . . , X0) =

n∑

k=0

ckIP[Xn = k|Xn−1, . . . , X0] (6.23)

=

∑n
k=0 c

k1I(Xn−1 = k) +
∑n

k=1 c
k1I(Xn−1 = k − 1)

2n− 1
+

+
2n− 3

2n− 1
IE(cXn−1 |Xn−2 . . . , X0) (6.24)

=

∑n
k=0 c

k1I(Xn−1 = k) + c
∑n−1

k=0 c
k1I(Xn−1 = k)

2n− 1
+

+
2n− 3

2n− 1
IE(cXn−1 |Xn−2 . . . , X0), (6.25)

where 1I(Xi = n) = 0 for all i < n. Next, applying the double expectation value rule, we obtain
the following recurrent equation

IEcXn = (1 − 1 − c

2n− 1
)IEcXn−1 . (6.26)

The above recurrent equation gives

IEcXn =

n∏

k=1

[
1 − 1 − c

2k − 1

]
=

Γ(n+ c
2)
√
π

Γ(n+ 1
2)Γ( c

2 )
, (6.27)

which completes the proof.

Using the derivations in the proof of Lemma 6.2, we can also estimate the average tree
height. Namely, we have

IEXn = IEXn−1 +
1

2n− 1

and, consequently,

IEXn =

n∑

k=1

1

2k − 1
. (6.28)

The equation (6.28) can be interpreted as follows:

Lemma 6.3. The average height of the scale free growing network model G1
n after n time steps

is of order log(n).

This result is in line with the results of [21].

Now we can already calculate the expected PageRank value of the initial node. After taking
the expectation in (6.9), we substitute in (6.9) the expression for IEcXn(0,k) given in (6.21).
Then, simplifying the sum, we obtain

IEπ0(n) =
1

1 + n

(
1

c+ 1
+

2
√
πΓ(n+ c

2 + 1)

(c + 1)Γ( c
2 )Γ(n+ 1/2)

)
. (6.29)
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6.8 Final Result Statement and Asymptotics

The expected value of PageRank is provided by the following theorem.

Theorem 6.3. The expected value of PageRank πv(n) of node v at time step n in the present
growing network model Gm

n is given by

IEπv(n) =
1 − c

1 + n

(
1

1 + c
+

cΓ(v + 1
2)Γ(n + c

2 + 1)

(1 + c)Γ(v + c
2 + 1)Γ(n + 1

2)

)
, (6.30)

for v > 0, and

IEπ0(n) =
1

1 + n

(
1

c+ 1
+

2
√
πΓ(n+ c

2 + 1)

(c + 1)Γ( c
2 )Γ(n+ 1/2)

)
, (6.31)

for the particular case of v = 0.

Proof. First, we reduce the case m > 1 to the case m = 1 by Theorem 6.2.
Then, we apply Kolmogorov-Prokhorov Theorem (see Appendix B) to equation (6.8). Namely,

we have

IEπv(n) =
1 − c

n+ 1

(
1 +

∞∑

i=1

IP[Yv(n) ≥ i]IEcXi

)
. (6.32)

Using the property that the height of a node will not be greater than the size of the tree, i.e.,
IP[Yv(n) > n− v] = 0, we transform equation (6.32) to

IEπv(n) =
1 − c

n+ 1

(
1 +

n−v∑

i=1

(
n−v∑

k=i

IP[Yv(n) = k]

)
IEcXi

)

=
1 − c

n+ 1

(
1 +

n−v∑

i=1

IP[Yv(n) = i]

(
i∑

k=1

IEcXk

))
.

(6.33)

Next, we substitute the expressions obtained for Xn and Yv(n), equations (6.21) and (6.19),
respectively, into (6.33) to obtain

IEπv(n) =
1 − c

n+ 1

(
1 +

n−v∑

i=1

Γ(n− v + 1)

Γ(n− v − i+ 1)Γ(i + 1)
×

× Γ(i + 1/2)Γ(n− i)Γ(v + 1/2)

Γ(v)Γ(n+ 1/2)

i∑

k=1

Γ(k + c/2)

Γ(k + 1/2)Γ(c/2)

)
. (6.34)

Simplifying the internal sum in the above equation, we obtain the following expression

IEπv(n) =
1 − c

n+ 1

(
1 +

Γ(n− v + 1)Γ(v + 1/2)

Γ(v)Γ(n + 1/2)
×

n−v∑

i=1

Γ(n− i)Γ(i + 1/2)

Γ(n− v − i+ 1)Γ(i + 1)

(
2
√
πΓ(i+ 1 + c/2)

(1 + c)Γ(i + 1/2)Γ(c/2)
− c

c + 1

))
=

=
1 − c

n+ 1

(
1 +

2
√
πΓ(n− v + 1)Γ(v + 1/2)

(1 + c)Γ(c/2)Γ(v)Γ(n + 1/2)

n−v∑

i=1

Γ(n− i)Γ(i + 1 + c/2)

Γ(n− v − i+ 1)Γ(i + 1)

−cΓ(n− v + 1)Γ(v + 1/2)

(1 + c)Γ(v)Γ(n + 1/2)

n−v∑

i=1

Γ(n− i)Γ(i + 1/2)

Γ(n− v − i+ 1)Γ(i + 1)

)
. (6.35)
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By using the Zeilberger’s algorithm and his package EKHAD for Maple, we prove (see Lemma D.1
in Appendix D) the following hypergeometric identity

n−v∑

i=1

Γ(n− i)Γ(i + 1 + c/2)

Γ(n− v − i + 1)Γ(i + 1)
=

Γ(v)Γ(n + c/2 + 1)Γ(1 + c/2)

Γ(v + c/2 + 1)Γ(n− v + 1)
− Γ(n)Γ(1 + c/2)

Γ(n− v + 1)
.

(6.36)

We can apply this identity to the both sums in (6.35), since we can think of the second sum
as a particular case of the first one with c = −1/2. After some simplifications we obtain the
final result (6.30).

The expression (6.30) is already simple enough. However, it can be made even more trans-
parent by using the following asymptotics:

Γ(x + a)/Γ(x) ≈ xa,

when 0 < a < 1 and x→ +∞. Thus, we have

IEπv(n) ≈ 1 − c

1 + n

(
1

1 + c
+

c

1 + c
(v +

1

2
)−

1+c
2 (n+

1

2
)

1+c
2

)
. (6.37)

or, neglecting the first term,

IEπv(n) ≈ 1 − c

1 + c
cv−

1+c
2 n−

1−c
2 . (6.38)

In particular, for the zero node, we have

IEπ0(n) ≈ 2
√
π

(1 + c)Γ( c
2 )
n−

1−c
2 . (6.39)

As one can see from Figure 6.2, the asymptotics (6.37) indeed closely follows the exact
expression (6.30).

6.9 Discussion and comparison with related work

First, let us compare our results with the results of Pandurangan et al. [77]. In the present
work we have obtained exact analytical expression and asymptotics for the expected value of
the PageRank as a function of the age of the growing network and the age of a particular node.
In Pandurangan et al. [77] the authors have used “mean-field” approach [13, 14, 15] to obtain
an approximation for the PageRank distribution. Let us use our results on the expected value
of PageRank for the “mean-field” calculations of [77]. Specifically, suppose that n is fixed,
PageRank depends continuously on v and the node age is uniformly distributed. Then, using
our asymptotic expression (6.37), we obtain
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Figure 6.2: Comparison between the asymptotics (6.37) and the exact expression (6.30).

P (x) = IP[πv < x]

≈ IP

[
v >

((
1 + n

1 − c
x− 1

1 + c

)
1 + c

c
(n +

1

2
)−

1+c
2

)− 2

1+c

− 1/2

]

= 1 −
(((

1 + n

1 − c
x− 1

1 + c

)
1 + c

c
(n+

1

2
)−

1+c
2

)− 2

1+c

− 1/2

)
/n

= 1 +
1

2n
−
(

1 +
1

2n

)
c

2

1+c

(
1 + c

1 − c
(n+ 1)x− 1

)− 2

1+c

. (6.40)

In particular, we note that P ( 1−c
n+1) = 0, as x = 1−c

n+1 is the minimal value of PageRank.
Taking the derivative of (6.40), we obtain the density distribution function of the PageRank
value

p(x) =
2

1 − c
(n+ 1)

(
1 +

1

2n

)
c

2

1+c

(
1 + c

1 − c
(n+ 1)x− 1

)− 3+c
1+c

. (6.41)

For large values of n and for values of x, which are not too small and not too close to one,
the expression (6.41) is close to the power law

p(x) � 1

x
3+c
1+c

.

For instance, for the dumping factor c = 0.85, we can conclude that the density distribution
of PageRank for nodes, whose numbers are not too small and not too close to n, can be
approximated by a Power law with the exponent 2.08. Note that the “mean-field” approximation
of Pandurangan et al. [77] gives the exponent 2 and the experiments with the real Web data in
Pandurangan et al. [77] give the exponent 2.1.
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Figure 6.3: Cumulative complimentary distribution function: Simulation results compared to
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To test the mean-field estimation (6.40), we have run simulations of our growing network
model. The network was grown up to n = 1000 for 100000 simulation runs with m = 10. In
Figure 6.3 the mean-field estimation (6.40) is compared with the cumulative complimentary
distribution function IP[πv > x] = 1− IP[πv < x] obtained from the simulations. As pointed out
in [70], when dealing with power laws, it is preferable to work with the cumulative complimentary
distribution function rather then with the density distribution function or the histogram. The
cumulative distribution function of a power law x−α also follows the power law, but with the
exponent x−α+1. When calculating the PageRank, we have used c = 0.85. We note that plot is
indeed close to a straight line for the middle segment of the PageRank range. In [77] the authors
also noticed that PageRank follows a power law except those pages with very small PageRank.
This phenomenon can easily be explained with the help of (6.41). The term 1+c

1−c(n+1)x becomes

comparable with 1 in (6.41) for values of x too close to the minimal PageRank 1−c
n+1 and the

distribution density function can not be, in this case, approximated by O(x−α) . The mismatch
for large values of PageRank can be explained as follows: the “mean-field” approach cannot be
applied to the nodes with large PageRank because there are simply not enough such nodes to
use the “averaging” argument.

As it can be observed from (6.31) and (6.30), the zero node is special. As n grows, its
PageRank converges to 0, but, nevertheless, its value is bigger than the PageRank of other
nodes. We can normalize the expected value of PageRank of all nodes by IEπ0. In fact, we have

π̃v = lim
n→∞

IEπv(n)

IEπ0(n)
=

(1 − c)cΓ( c
2 )

2
√
π

Γ(v + 1
2)

Γ(v + c
2 + 1)

. (6.42)

Let us call π̃ the relative PageRank. We would like to emphasize that the relative PageRank
does not depend on time. The relative PageRank closely follows a power law except some initial
nodes.

Recall that Google divides the whole range of PageRank in 10 intervals using logarithmic
scale. Curiously enough, if PageRank exactly followed a power law, then this division would be
independent of c and the exponent of the power law, but would depend only on n, the age of
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Figure 6.4: The optimal value of c as a function of v/n.

the network. Specifically, in such a case, the following formula holds for the boundaries of the
ranking intervals:

v∗k = (n)
k
10 , k = 1, ..., 10.

The above observation justifies further the scale free term for the growing network model.
The authors of [19] investigated the effect of damping factor c on PageRank. In their

numerical example they have noticed that PageRank for some nodes attains a maximal value
for some value of c. Let us investigate the dependence of PageRank on c in our growing network
model. In our case the value of c which maximizes the PageRank expression (6.37) depends on
the ratio v/n. In Figure 6.4 we plot the optimal value of c as a function of the ratio v/n. As
an example, in Figure 6.5 we plot the expected value of PageRank for node 1 and node 2 when
n = 10000. If the World Wide Web has 8 billion pages, then the present model suggests that
the pages that mostly benefit from the value of c = 0.85 are around the node v = 46212. Thus,
it looks like the damping factor c = 0.85 benefits only a small fraction of old pages. Thus, to
give a better ranking to less established Web pages and to distribute PageRank more fairly, it
is necessary to decrease the value of c. Of course, this will also have a positive effect on the
convergence of the numerical methods for PageRank computation. The question by how much
the damping factor can be reduced merits a careful special investigation.

Finally, we would like to note that the choice of the initial weight for the zero node was
a crucial factor for the derivation of simple explicit expressions. This choice affects only the
preferential attachment process. In fact, all the methods in the present work can be applied
to the growing network models with different preferential attachment process. The expression
(6.19) would change slightly, but there is no guarantee that one could find a simple closed form
of the final expression (6.30).

Curiously enough, we have tested several scale free growing network models and in all our
experiments the results were very close. Thus, the analysis of PageRank for different growing
network models and further generalization of the results is an interesting perspective research
direction.
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Chapter 7

Conclusions

With this thesis we aimed to present the subject of analytical modeling of ad hoc networks. It
contains three main topics: general analytical models for multihop networks, flooding impact
on these networks and PageRank modeling.

We first reviewed some fundamental results on capacity and connectivity of wireless multi-
hop networks. We started with the structured review of link availability models, which were
presented in Chapter 2. Then, we considered MAC protocols and the performance characteris-
tics of some of them in Chapter 3. In Chapter 5 using the SIR based link availability model and
some of the results of studies of MAC protocols, we compared two ad hoc network protocols,
AODV and OLSR. The equations, which we obtained, estimate the traffic level generated by
these protocols. The method can be seen, as an illustration to building from blocks a complex
model of an ad hoc network, based on link availability and MAC layers. This approach demon-
strates, that SIR based random geometric graph model is a good tool for studying network layer
protocols, as it combines the relative simplicity of the unit disk model with the responsive to
traffic changes nature of the SIR based models. The additive property of traffic density plays
an important role in modeling different types of protocol messages. An interesting continuation
of the method seems to be a further investigation of the SIR based random graph model. A
combination of these two models, corresponding to outdoor and indoor networks, would also be
of extreme interest, as real life wireless networks exhibit properties of both.

Flooding is a mechanism included in many ad hoc network protocols and is responsible for
diffusing routing information across networks. Possible synchronisation between the transmis-
sions of the flooding message can cause a heavy load on the network resources. It was a subject
of the examination in Chapters 3 and 4. We considered the load of flooding on the network
using simulation data. Then we studied the length of paths discovered using this approach.
Although the exact solution to this problem is still difficult to obtain, our analysis provides a
deeper insight on the flooding process and its influence on the network performance. These
results are also used to support the modeling of AODV protocol for its comparison with OLSR
in Chapter 5.

In Chapter 6 we take a step into an adjacent domain and we analyse PageRank of scale free
growing network model, which is a simplified model of Web graph. The calculation of average
PageRank was an interesting problem, as we could represent the evolution of the growing
network model with preferential attachments in terms of urn probabilities and we were able
to obtain the resulting expression in a closed form. The latter relied on the technique of
hypergeometric summation and Zeilberger’s algorithm. The analysis of the final expression
showed how average PageRank depends on the choice of the damping factor parameter. It
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also allows a good estimation of PageRank distribution using a mean field method and, hence,
making possible the comparison of the resulting distribution with the power law.

PageRank, apart of its utility for the search engines, is also a reputation system: the pages
linked to the nodes with high PageRank also have a high PageRank. In other words, the links
from well respected nodes assure a good reputation for their destination node. Reputation
systems are likely to play an important role in the world of cooperative and social networks,
which includes ad hoc networks. In fact, the ad hoc networks distribute the routing charge
among many participating nodes. As we saw earlier, such cooperative behaviour can bring a
gain in terms of network performance. But the nodes should have some incentives for providing
their services to others and they should be trusted to relay messages. The reputation systems
may help in both problems, by attributing a higher reputation to the nodes relaying the messages
often and correctly. The reputation systems are intensively studied at the present moment and
it is an interesting direction for future works.
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Appendix A

Existence of stationary distribution

Before we prove that the chain converges to a stationary distribution we introduce some defi-
nitions necessary to work with Markov chains on general spaces [23]. We denote by τV (x) the
hitting time of V by the Markov chain {Xi} started at x:

τV (x) = min{k ≥ 1 : Xk(x) ∈ V }

Also we denote by P the probability function : P (x, n, V ) = IP[Xn ∈ V ]

Definition A.1. Markov chain {Xn} defined on (X ,B) is Harris chain, if there is a set V ∈ B,
probability measure µ on (X ,B) and numbers n0 ≥ 1, 0 < p < 1 such that
(I0) IP(τV (x) <∞) = 1 for all x ∈ X
(II) P (x, n0, B) ≥ pµ(B) for all x ∈ V and B ∈ B

There are also two more conditions we will need: the condition of positivity
(I) supx∈V IEτV (x) <∞
and the condition of aperiodicity: let Xk(µ) be our Markov chain with the initial state X0 drawn
according to µ distribution.

τV (µ) = min{k ≥ 0 : Xk(µ) ∈ V }

We denote by n1, n2, . . . possible values of τV (µ),i.e. such values that IP(τV (µ) = nk) > 0,
k = 1, 2, . . .. Then the last condition is
(III) ∃k: G.C.D.(n0 + n1, n0 + n2, . . . , n0 + nk) = 1

Definition A.2. A sequence of distributions {Pn} on (X ,B) converges in variation to P , if

sup
B∈B

|Pn(B) − P (B)| → 0, n→ ∞ (A.1)

Proposition A.1. The chain {Yn} is aperiodic positive Harris chain and it converges (in
variation) to a stationary distribution F ∗.

Proof. We need to prove 4 conditions listed above. It is sufficient to present the set V and the
numbers n0 and p such that this conditions will hold:

1. We take for V the whole space [0, 1] × [0, 1]. Therefore the conditions (I0) and (I) hold.
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2. µ is defined the following way: µ(A) = 4|A ∩ [0, 1/2] × [0, 1/2]|. It is the probability
measure with its support on the square of area 1/4. We set n0 = 1 and p = 1.

Take any set A ∈ B(C). The probability P (x, 1, A) = |A ∩ F̂ (x)| + |A ∩ Ĝ(x)|, where | · |
is Lebesgue measure and F̂ = [0, x(x)] × [0, y(x)],Ĝ = C \ [1 − x(x), 1] × [1 − y(x), 1] by
the definition of the Markov chain {Yk}.

Therefore for all x we have [0, 1/2] × [0, 1/2] ⊂ F̂ (x) ∪ Ĝ(x) (see Fig. to draw). We can
conclude that

P (x, 1, A) ≥ µ(A)

3. As µ(V ) = 1 > 0 and the condition (II) holds with n0 = 1 the condition (III) also holds.
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Appendix B

Kolmogorov-Prokhorov equation

We present the Kolmogorov-Prokhorov equation following the book of A. Borovkov ([24], chapter
4.4). The Kolmogorov-Prokhorov equation can be seen as a generalization of Wald’s equation.

Theorem B.1. If an integer non-negative random variable ν does not depend on the future
with the respect to the sequence of random variables {ξn} and

∞∑

k=1

IP(ν ≥ k)IE|ξk| <∞,

then

IE

ν∑

k=1

ξk =

∞∑

k=1

IP(ν ≥ k)IEξk.

In our case ν = Yv(n) and ξk = cXk . The random variable Yv(n) is independent of {Xk},
and cXk are positive, therefore, IE|cXk | = IEcXk and the Kolmogorov-Prokhorov equation can
be applied to the problem we consider in Chapter 6.
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Appendix C

Pólya-Eggenberger urn model

We follow the book [57] in our description of the urn models. The Pólya-Eggenberger urn model
starts with one urn where one can find b + w balls of two colors: black and white. Let b be
the number of black balls and let w be the number of white balls. At every time step one ball
is drawn at random from the urn, then it is returned back together with s balls of the same
color. The Pólya-Eggenberger distribution is used to estimate the number of black (or white)
balls at time step n. The probability to have k black balls in the urn at time step n can then
be expressed as

Pn,k(w, b, s) =

(
n

k

)
b(b+ s) . . . (b+ (k − 1)s) ×

× w(w + s) . . . (w + (n− k − 1)s)

(b +w)(b + w + s) . . . (b+ w + (n− 1)s)
,

(C.1)

for k = 0, 1, . . . , n. Using the gamma function, the above formula can be rewritten as follows:

Pn,k(w, b, s) =

(
n

k

)
Γ( b+w

s )Γ( b
s + k)Γ(w

s + n− k)

Γ(b/s)Γ(w/s)Γ( b+w
s + n)

=

(
n

k

)
B( b

s + k, w
s + n− k)

B( b
s ,

w
s )

(C.2)

It is worthy to note here that the problem of the tree height, which we study in the section
6.7, can also be described in terms of the urn model with a node height value as a mark (or
color).
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Appendix D

Zeilberger’s Algorithm

We follow the book [81] in our description of the Zeilberger’s algorithm. Let us consider a sum

f(n) =
∑

k

F (n, k) (D.1)

The goal of the Zeilberger’s Algorithm is to find function G(·, ·) and coefficients aj(n) such that

J∑

j=0

aj(n)F (n+ j, k) = G(n, k + 1) −G(n, k) (D.2)

This method is also called the method of creative telescoping. When such representation is
obtained, we can sum the equation (D.2) by k and, if we are lucky with the values F and G,
the right part of the sum might collapse to 0 leaving us with an equation of the type:

J∑

j=0

aj(n)f(n+ j) = 0 (D.3)

For example, if J = 1, we find the recurrence a0(n)f(n) + a1(n)f(n+ 1) = 0 and then f(n) is
easy to find.

D. Zeilberger has written the package EKHAD [38] for Maple [65], which implements his
algorithm and finds a0, . . . , aJ and R(·, ·) such that

G(n, k) = R(n, k)F (n, k) (D.4)

Fortunately, the Zeilberger’s Algorithm gives a satisfying result for the sum in (6.34). Let
us prove the following lemma.

Lemma D.1.

n−v∑

i=1

Γ(n− i)Γ(i + 1 + c/2)

Γ(n− v − i+ 1)Γ(i + 1)
=

Γ(v)Γ(n + c/2 + 1)Γ(1 + c/2)

Γ(v + c/2 + 1)Γ(n− v + 1)
− Γ(n)Γ(1 + c/2)

Γ(n− v + 1)

(D.5)
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Proof. Consider the internal sum (6.34). We introduce the following notation:

F (n, i) =

Γ(n+ v − i)Γ(i + 1 + c/2)Γ(v + c/2 + 1)Γ(n + v + 1)

Γ(n− i + 1)Γ(i + 1)Γ(v)Γ(n + v + c/2 + 1)Γ(1 + c/2)

(D.6)

It is the summand from (D.5) divided by the result we want to prove (it was guessed from the
values of IEπv for v = 1, 2, 3), plus we change the variable from n→ n− v and we add the 0th
summand. Now, we want to prove that

f(n) =

n∑

i=0

F (n, i) ≡ 1 (D.7)

The function zeil from EKHAD [38] package in Maple [65] finds the following identities: a0 = −1,
a1 = 1 and

R(n, i) = − (n+ v − i)i

(n+ v + c
2 + 1)(n− i+ 1)

(D.8)

Therefore, in our case (D.2) takes the following form

F (n, i) − F (n+ 1, i) = R(n, i+ 1)F (n, i + 1) −R(n, i)F (n, i) (D.9)

Then we sum the equation (D.9) for the values i = 0, . . . , n−1 and we find that R(n, n)F (n, n)−
R(n, 0)F (n, 0) − F (n, n) + F (n + 1, n) + F (n + 1, n + 1) = 0 for the values F and R in (D.6)
and (D.8). Therefore, f(n) = f(n+ 1). As f(0) = 1, it completes the prove.

Note, that it is indeed a proof, because Maple [65] and EKHAD [38] provide the identities
(i.e. the values of ai, i = 0, 1 and (D.8)) that can be easily checked.
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