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Abstract. Various algorithms connected with the computation
of the minimal polynomial of a square n×n matrix over a field k are
presented here. The complexity of the first algorithm, where the
complete factorization of the characteristic polynomial is needed,
is O(

√
nn3). It produces the minimal polynomial and all charac-

teristic subspaces of a matrix of size n. Furthermore an iterative
algorithm for the minimal polynomial is presented with complexity
O(n3+n2m2), where m is a parameter of the used Shift-Hessenberg
matrix. It does not require knowledge of the characteristic poly-
nomial. Important here is the fact that the average value of m or
mA is ≈ log n.

Next we are concerned with the topic of finding a cyclic vector
first for a matrix whose characteristic polynomial is square-free.
Using the Shift-Hessenberg form leads to an algorithm at cost
O(n3 + m2n2). A more sophisticated recurrent procedure gives
the result in O(n3) steps. In particular, a normal basis for an
extended finite field will be obtained complexity O(n3 + n2 log q).

Finally the Frobenius form is obtained with asymptotic average
complexity O(n3 log n). All algorithms are deterministic. In all
four cases, the complexity obtained is better than for the heretofore
best known deterministic algorithm. The results are summarized
in Tables 1, 2, 3 and 4.

1. Introduction

We present various low complexity algorithms for computing the
objects in the title.

Section 2 is concerned with the problem of obtaining the minimal
polynomial of a square matrix A. The algorithm introduced recquires
the factorization of the characteristic polynomial of A for its input,
and produces the minimal polynomial and all characteristic subspaces

Key words and phrases. characteristic polynomial, Hessenberg form, character-
istic subspace, minimal polynomial, cyclic vector, normal basis, Frobenius form,
centralizer of a matrix.
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Problem Complexity Average complexity Section

Minimal polynomial O(n3.5) O(n3.5) 2
Minimal polynomial O(n3 + n2m2

A) O(n3) 4
Cyclic vector O(n3 + n2m2

A) O(n3) 5
Cyclic vector O(n3) O(n3) 6
Normal basis O(n3 + n2 log q) O(n3 + n2 log q) 6
Frobenius form O(n3mA) O(n3 log n) 7

Table 1. Summary of complexities

at cost O(
√

nn3). It appeals to a recurrent “divide-and-conquer” pro-
cedure.

The Section 3 is of theoretical nature, we introduce the Shift-Hessenberg
form of a matrix, whose algebraic properties are studied. Asymptotic
are also derived, from the results of R. Stong [8]. Basic algorithmic
with that form is detailed.

In Section 4, using this form, we obtain an iterative algorithm end-
ing in the minimal polynomial in O(n3 + n2m2) elementary operations
over Fq. It does not need any knowledge of the characteristic poly-
nomial. The number m is a parameter of the Shift-Hessenberg form,
and we have that m ≤ mA, where mA is the number of factors of the
characteristic polynomial of A, counted with multiplicities.

We next are concerned with the topic of finding a cyclic vector. We
will construct an algorithm for matrices whose characteristic polyno-
mial is square-free. Under that assumption, the Shift-Hessenberg form
leads to an algorithm of complexity O(n3 + m2n2) presented in Sec-
tion 5, and to a more sophisticated recurrent procedure with complex-
ity O(n3) presented in Section 6. Special attention is given to cyclic
vectors for the Frobenius automorphism of a finite field. This ends
in a deterministic algorithm for computing a normal basis for Fnq in
O(n3 + n2 log q) elementary operations. This algorithm is better than
previously known deterministic algorithms [2], and is comparable to
the probabilistic algorithms presented in [9, 5].

In Section 7, the Frobenius form is obtained with asymptotic average
complexity O(n3 log n).

The results are summarized in Table 1. We shall compare the com-
plexities of our algorithms to the algorithms described in P. Ozello’s
work [6]. Ozello’s methods have been chosen for implementation by
the authors of the Maple system.

Note 1. Our complexity measures are given in terms of elementary
operations over k. All algorithms presented here may be applied to
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matrices over any field k and in particular over Q, but we don’t give
any measure of the bit-complexity.

2. Characteristic subspaces and minimal polynomial in
O(n3.5)

In this section, an algorithm with complexity O(n3
√

n) is presented
for computing the minimal polynomial of a matrix A, and a block-
diagonal matrix D similar to A and exhibiting its characteristic sub-
spaces. The inputs are A and the factorization of its characteristic
polynomial. The output are the minimal polynomial, a block-diagonal
matrix D exhibiting the restriction of A at its characteristic subspaces,
and an invertible matrix P such that D = P−1AP .

Note that the characteristic polynomial of a matrix A can be com-
puted in O(n3) elementary operations, as described in [11, 3], by com-
puting a Hessenberg form of A. The characteristic polynomial can be
factored at low cost, for instance O(n3 + n3 log q) [10], although it is
not a deterministic algorithm.

2.1. Characteristic subspaces. We recall known facts about char-
acteristic subspaces of a matrix A. The reader may refer to [4]. Let k
be a field, we denote Mn(k) the algebra of n×n matrices, and GLn(K)
the group of invertible n× n matrices.

Theorem 1. Let C(X) be the characteristic polynomial of matrix A ∈
Mn(k), and assume C(X) = P (X)Q(X) where P (X) and Q(X) are
relatively prime. Let VP = ker P (A) and VQ = ker Q(A), then

kn = VP ⊕ VQ, and VP = Im Q(A) and VQ = Im P (A).

Definition 1. Let C(X) be the characteristic polynomial of matrix A,
and let C(X) factors into f1(X)r1 · · · fk(X)rk , where the polynomials
fi are irreducible. The characteristic subspaces of A are the invariant
subspaces Vi = ker fi(A)ri, i = 1, . . . , k.

2.2. The algorithm. The strategy of the algorithm is as follows. If
the characteristic polynomial of A is C(X) = p(X)r where p(X) is irre-
ducible, then kn is a characteristic subspace, and finding the minimal
polynomial of A reduces to finding the minimal exponent s such that
p(A)s = 0.

If the characteristic polynomial is not a power of an irreducible poly-
nomial, we are able to split C(X) into C(X) = P (X)Q(X) with P (X)
and Q(X) relatively prime and either P (X) or Q(X) is of degree greater
than 2

3
n and is a power of an irreducible polynomial, or we have that

deg P (X), deg Q(X) ≤ 2
3
n. We recursively apply the procedure on both
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VP and VQ, given by Theorem 1. The new matrices are split in their
turn, until all characteristic subspaces of A are obtained. Finally the
minimal polynomial of the restriction of A to each of those subspaces
is computed. The product of those polynomials gives the final result.
Inputs: matrix A and the factorization of its characteristic polyno-
mial, C(X) = f1(X)r1 . . . fk(X)rk , where f1(X), . . . , fk(X) are the ir-
reducible factors of C(X).
Outputs: the minimal polynomial of A, the splitting of kn into all
characteristic subspaces of A, and the matrix of the restriction A to
the characteristic subspaces.
Step 1: Find a splitting of C(X) = P (X)Q(X) where P (X) and Q(X)
are coprime. Three cases are considered.

• C(X) = p(X)r, p(X) irreducible. Compute the minimal poly-
nomial p(X)s of A in dlog2 re steps by trial and error on s. This
is done with complexity O(n3

√
n), using Theorem 2, which fol-

lows.
• One factor, pi(X)ri , has degree larger than 2

3
n. Then P (X) =

pi(X)ri , i.e. C(X) = pi(X)riQ(X), and Q(A) gives a basis for
a characteristic subspace.

• All factors pi(X)ri have degree ≤ 2
3
n. Find a splitting C(X) =

P (X)Q(X) where P (X) and Q(X) are relatively prime and
where deg P (X) ≤ 2

3
n and deg Q(X) ≤ 2

3
n. This is described

in Lemma 1, which follows.

Step 2: Compute Q(A), P (A). This gives generating vectors for sub-
spaces for VP and VQ respectively. This is done at cost O(n3

√
n), using

Theorem 2.
Step 3: Compute bases for VP and VQ respectively. This is done with
Gauss elimination, at cost O(n3).
Step 4: Change basis, taking for the new basis the union of the bases
just computed, compute the matrices AP and AQ of the restriction of
A to VP and VQ respectively. The cost is again O(n3).
Recursive Step Recursively apply the procedure to AP and AQ, ter-
minal steps end in basis for all characteristic subspaces by giving the
diagonal blocks of D.

Now two main operations are to be performed. The splitting and the
evaluation of the polynomials P (X) and Q(X) at A, with complexity
O(n3

√
n), are detailed in next section.

2.3. Splitting the factors, and evaluation. We state the following
useful lemma.
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Lemma 1. Let n and ni, i ∈ [1, k] be positive integers such that n1 +
· · ·+nk = n, and ni ≤ 2

3
n, for 1 ≤ i ≤ k. Then there exists a partition

[1, k] = I ∪ J such that:

nI ≤ 2
3
n, and nJ ≤ 2

3
n.

Proof. For every subset J ⊂ [1, k], denote SJ the sum
∑

i∈J nJ . If there
exists ni > 1

3
n, choose I = {i} and J = [1, k] \ I.

Otherwise, choose J as the subset of [1.k] of maximal size such that
Sj ≤ 2

3
n. Then I = [1, k] \ J necessary satisfies Si ≤ 2

3
n. Indeed, if

Si > 2
3
n, let I ′ be constructed from I by removing any of its element.

Then Si′ > 2
3
n− 1

3
n, since ni ≤ 1

3
n, i ∈ [1, k]. Then the complementary

J ′ of I ′ in [1, k] satisfies SJ ′ ≤ 2
3
n and contains J . This contradicts the

maximality of J . ¤

Thus, given k integers n1, . . . , nk summing up to n, we are able to find
a splitting [1, k] = I ∪ J such that either I = {i}, and i > 2

3
n, either

both sets I and J are such that nI ≤ 2
3
n and nJ ≤ 2

3
n.

We now recall how p(A) can be computed at cost
√

tn3, where t is
the degree of p(X). A näıve Horner algorithm would lead to O(tn3).
This result has been shown in [7], and we recall it for completeness.

Theorem 2. For all A in Mn(k), for all p(X) with deg p(X) at most
t, p(A) can be computed with complexity O(

√
tn3), and memory space

of O(
√

tn2).

2.4. The complexity.

Theorem 3. Given the factorization of its characteristic polynomial,
the minimal polynomial of any square matrix over a finite field k and
a block-diagonal matrix similar to A exhibiting its characteristic sub-
spaces, is computed with time complexity O(n3

√
n), and memory size

O(n2
√

n).

Proof. We can assume that all intermediate computations for splitting
the factors, re-evaluating matrices, and computing bases for sub-spaces
are all bounded by γn3.5. We have to show that the whole recursive
algorithm has complexity bounded by O(n3.5). We prove it by recur-
rence, assuming that the cost C(m) of the algorithm is bounded by
βm3.5, for m < n. Then:

C(n) ≤ γn3.5 + 2C(2
3
n) ≤ γn3.5 + 2β

(
2
3

)3.5
n3.5.

Thus C(n) ≤ βn3.5, with β = γ

1−2(
2
3
)3.5

. ¤
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3. The Shift-Hessenberg form and the centralizer of a
matrix

We now use the Shift-Hessenberg form of a matrix. The main point
is that evaluating a polynomial at a matrix is less expensive when that
matrix has the Shift-Hessenberg form. The average improvement is,
as will be seen, considerable. Before going to the use of the Shift-
Hessenberg form for our algorithmic purposes, we show how Shift-
Hessenberg forms shed light on the subgroup of GLn(k) commuting
with a given fixed linear operator on kn.

3.1. Shift-basis. Let A be a square matrix, we denote π(A) the min-
imal polynomial of A.

Definition 2. For A in Mn(k) and v in kn, the minimal polynomial of
A restricted to v is the lowest degree monic non-zero polynomial πv(X)
such that πv(A)v = 0.

Definition 3. Let A be an operator on kn. A shift-basis for A is a
basis which has the form:

[
v1, Av1, . . . , An1−1v1, v2, Av2, . . . , An2−1v2, . . . , vm, Avm, . . . , Anm−1vm

]
,

(1)

such that Ankvk is linearly dependent of the Aivj, j < k, and of the
Aivk, i < nk, and, for l < nk, Alvk is linearly independent of the Aivk,
i < l, and of the Aivj, j < k.

It is understood that a shift-basis is actually an ordered basis. Given
A, a shift-basis for A can be obtained as follows. First select any v1,
and introduce the linear independent vectors Aiv1, for i = 0, . . . , n1−1,
where n1 is the smallest value of i such that Aiv1 linearly depends on
all previous vectors. Then select v2 independent of all previous vectors,
and proceed with Aiv2, i = 0, . . . , n2 − 1 as for v1. The process ends
in a shift-basis with n1 + n2 + . . . + nm = n

Definition 4. We call a matrix which represents an operator A in a
shift-basis a Shift-Hessenberg matrix. A Shift-Hessenberg matrix has
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the following form:

H =




× × ×
1 × × ×

1 × × ×
0 × ×

1 × ×
. . . ×

1 × ×
0 ×

1 ×
. . .




.

The parameter m of a Shift-Hessenberg matrix is defined to be the
number of zeros on the first subdiagonal, plus one.

Note 2. The number m is the number of diagonal blocks, each block
being a companion matrix, i.e. a matrix of the form:




c0

1 c1

. . . ci

1 cn−1




.

The characteristic polynomial of such a matrix equals its minimal poly-
nomial and is equal to Xn−cn−1X

n−1−cn−2X
n−1 · · ·−c1X

1−c0. In the
case where the parameter m = 1, the Shift-Hessenberg matrix is itself
a companion matrix. We shall denote Cp the companion matrix asso-
ciated to the polynomial p. The other extreme situation is for m = n,
where we have an upper triangular matrix.

To every shift-basis corresponds an increasing sequence V1 ⊂ . . . ⊂
Vm of invariant subspaces of A, defined by V1 = Vect{Aiv1; i ≥ 0},
V2 = Vect{Aiv1, A

jv2; i, j ≥ 0}, . . . , Vm = kn.
We have that Vi is a k[A]-module, i = 1, . . . , m and consequently

Vi/Vi−1 is a module . Each of those quotient modules is generated by
a single element vi which is the class of vi in Vi/Vi−1. If the minimal
polynomial of vi is denoted by fi(X), the ith diagonal block in the
Shift-Hessenberg matrix is the companion matrix of fi(X). We also
note that fi(X) divides the minimal polynomial of vi.

3.2. The k[X]-module induced by a matrix.

Notation 1. Let p be a polynomial and v a vector, we use the module
notation pv for p(A)v. We use the same notation pv when p is a
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polynomial p(AV ) evaluated at the restriction AV of A an invariant
subspace V , and when v is a vector in V .

Definition 5. The Expanded-Frobenius form of A in Mn(k) is the
following matrix D similar to A:

D =




FB1,B1 0 · · · 0
0 FB2,B2 · · · 0
...

. . .
...

0 0 · · · FBd,Bd




;

where each matrix FBi,Bi
is a Frobenius matrix:




C
p

si,1
i

0 · · · 0

0 C
p

si,2
i

· · · 0
...

. . .
...

0 0 · · · C
p

si,mi
i




,

with si,1 ≤ si,2 ≤ . . . ≤ si,mi
, and with gcd(pi, pj) = 1 if i 6= j.

We thus have that p
si,mi
i is the minimal polynomial of FBi,Bi

. The
subspaces for which the matrix is a companion matrix are denoted by
V

p
si,1
i

, . . . V
p

si,mi
i

. The whole space kn can be viewed as the direct sum
⊕d

i=1

⊕mi
j=1 V

p
si,j
i

.

We consider kn equipped with the natural structure of k[X]-module
induced by A. Then the module kn can be represented as the product
of rings:

R1,1 × · · · × R1,m1 ×R2,1 × · · · ×R2,m2 × · · · ×Rd,1 × · · · ×Rd,md
,

considered as k[X]-modules where Ri,j = k[X]/p
si,j

i . For any vector u,
we denote by u|Ri,j

the component of u in the ring Ri,j. Thus u|Ri,j
may

be considered indiscriminately as a vector or a polynomial of degree less
than si,jdeg(pi).

3.3. Shift-bases for the Expanded-Frobenius form. We study the
nature of shift-bases which yield the expanded Frobenius form of an
operator A.

Lemma 2. Let u be a vector in kn, such that p
si,j

i u = 0. Then the
components of u viewed in the k[X]-module decomposition of kn satisfy
u|Rk,l

= 0 if k 6= i.

Proof. Suppose there exists k, l, k 6= i such that u|Rk,l
6= 0. Then

p
si,j

i u|Rk,l
cannot be zero, since u|Rk,l

is not zero, and since p
si,j

i is a unit

of Rk,l = k[X]/p
sk,l

k . This contradicts the assumption on u. ¤
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Lemma 3. Let u be a vector in kn, whose minimal polynomial is p
si,j

i .
Then the components of u in Ri,l are described as follows:

(1) l < j; u|Ri,l
can be any element of Ri,l,

(2) l = j; u|Ri,l
, considered as a polynomial, is prime to pi,

(3) l > j; u|Ri,l
is a multiple of p

si,u−si,j

i .

Proof. Since the minimal polynomial of u is p
si,j

i , then we have that
p

si,j

i v = 0 for any vector v in Ri,l, whenever l < j, since p
si,l

i , which
divides p

si,j

i , is the minimal polynomial of A restricted to Ri,l. This
establishes the result for the case l < j.

In case l = j, a vector is cyclic for a companion matrix if, considered
as a polynomial, it is relatively prime to the minimal polynomial of
that matrix.

In case l > j we must have that p
si,j

i u = 0. This implies in Ri,j that

p
si,j

i u|Ri,l
= 0 mod p

si,l

i , and thus we must have that p
si,l−si,j

i divides
u|Ri,l

. ¤
Property 1. From the previous lemmas, all shift-bases yield the ex-
panded Frobenius matrix D as described in definition 5 have the form:

v1,1, Dv1,1, . . . , D
n1,1−1v1,1, . . . , vd,md

, Dvd,md
, . . . , Dnd,md

−1vd,md
,

where ni,j = si,j deg pi, and where each vi,j is such that p
si,j

i is its
minimal polynomial.

3.4. From shift-bases to the centralizer of a matrix. Let A ∈
Mn(k) be similar to the matrix S, with S = P−1AP . Suppose that P ′

is another basis yielding the same form S of A, that is, S = P
′−1AP ′.

From the equality P−1AP = P
′−1AP ′, we get (P ′P−1)A = A(P ′P−1).

Thus P ′P−1 belongs to the centralizer of A. Conversely, let C belongs
to the centralizer of A, and let S = P−1AP . Since AC = CA, we get
S = (CP )−1A(CP ), thus CP is another basis yielding the matrix S
for A.

In particular, if S is the expanded Frobenius form of A, then shift-
bases yielding S are in correspondence with the elements of the cen-
tralizer of A. Suppose S has the form:

[
s 0
0 t

]
,

where s is the restriction of A to Vs, t the restriction of A to Vt, with
Vs ⊕ Vt = kn. Suppose also that the minimal polynomials of s and t
are coprime.

Let v1,1 . . . vks,mks
be vectors producing a shift-basis for s, as in prop-

erty 1, and let p
si,j

i be the minimal polynomial of vi,j. Let v?
i,j denote the
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vector (vi,j, 0) ∈ kn, then the minimal polynomial of v?
i,j is p

si,j

i . Simi-
larly, let w1,1 . . . wkt,mkt

yield a shift-basis for t, with minimal polynomi-

als q
ri,j

i , and let w?
i,j be the vector (0, wi,j), whose minimal polynomial is

also q
ri,j

i . Then, by property 1, the family v1,1 . . . vks,mks
, w1,1 . . . wkt,mkt

yields a shift-basis for A. We have proved:

Corollary 1. The centralizer of the direct sum of two matrices s and
t whose minimal polynomials are relatively prime is the direct product
of the centralizers of s and t respectively.

In the case where k = Fq we can derive the enumeration of the
centralizer of any given matrix.

Theorem 4. Let A be an operator whose Expanded-Frobenius form is
as in definition 5. The number of shift-basis for A which yield the above
Frobenius form is

d∏

i=1

mi∏

j=1

qdeg(pi)(
∑j−1

w=1
si,w+(mi−j)si,j)φ(p

si,j

i ). (2)

where φ(p
si,j

i ) = qsi,j deg(pi)(1 − q− deg(pi)) is the number of polynomials
of degree less than deg(p

si,j

i ) prime to p
si,j

i .

Proof. Each such shift-basis is given by a sequence as:

v1,1, v1,2, . . . , v1,m1 , v2,1, . . . , v2,m2 , . . . , vd,1 . . . vd,md
,

in which the minimum degree polynomial canceling vi,j is p
si,j

i .
In formula (2), the outermost product is due to Lemma 2. The

innermost product enumerates for each p
si,j

i the number of vectors v
such that p

si,j

i v = 0. The sum
∑j−1

w=1 si,w stands for the rings Ri,l, l < j,
in which any vector v satisfies p

si,j

i v = 0. The term (mi − j)si,j is
a result of the fact that for every l > j the number of polynomials
multiple of p

si,l−si,j

i in k[X]/p
si,l

i is qdeg(pi)si,j .
Finally, φ(p

si,j

i ) is the number of polynomials prime to p
si,j

i , i.e. the
number of units in Ri,j. ¤

3.5. The average number of factors of a characteristic polyno-
mial. R. Stong gives in [8] the following result.

Theorem 5. Let Xn be the random variable assuming as values the
number of factors of the characteristic polynomials of matrices in GLn(Fq),
counted with multiplicities. Then the expectation EXn of Xn is asymp-
totically equivalent to log n.

We shall generalize the result to all matrices by proving the following:
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Theorem 6. Let Yn be the random variable assuming as values the
number of factors of characteristic polynomials of matrices in Mn(Fq),
counted with multiplicities, and let EYn be the expectation of Yn. Then,
for every ε > 0, there exits n0 such that EYn ≤ 2(1+ε) log n for n ≥ n0.

The proof of the Theorem needs two lemmas that will be first es-
tablished. For any matrix A ∈ Mn(Fq), we consider its Expanded-
Frobenius form as follows: [

s 0
0 t

]
, (3)

where s is a Frobenius form with characteristic polynomial Xn1 for
some n1, and t is an invertible matrix of size n2 = n− n1.

Lemma 4. The average number EZn of factors counted with multi-
plicities of the characteristic polynomial of t, as in (3) , for matrices
A in Mn(Fq), satisfies: ∀ε > 0,∃n0, n ≥ n0 ⇒ EZn ≤ (1 + ε) log n.

Proof. Let Sn1 be the set of Frobenius matrices with characteristic poly-
nomial Xn1 and let Sn2 be the set of invertible Frobenius matrices whose
characteristic polynomial has degree n2. We denote by zs,n1 the size
of the centralizer of s ∈ Sn1 and by zt,n2 the size of the centralizer of
t ∈ Sn2 . Given s in Sn1 and t in Sn2 , then by Corollary 1, the number
of matrices having Frobenius form as in equation (3) is:

|GLn(Fq)|
zs,n1zt,n2

.

The number of matrices having Xn1 in the decomposition of their char-
acteristic polynomial and a fixed matrix t in their second diagonal block
as in (3) is:

∑

s∈Sn1

|GLn(Fq)|
zs,n1zt,n2

=
|GLn(Fq)|

zt,n2

∑

s∈Sn1

1

zs,n1

=
1

zt,n2

χ(n1, n, q),

where χ(n1, n, q) = |GLn(Fq)|∑s∈Sn1

1
zsn1

.

Now let Cn2,k be the set of polynomials C(X), C(0) 6= 0, of degree n2

that split into k factors counted with multiplicities, and let Sn2,k be the
set Frobenius matrices of size n2 whose characteristic polynomial be-
longs to Cn2,k. The number of matrices in Mn(Fq) whose characteristic
polynomial is Xn1C(X), for C(X) in Cn2,k, is:

χ(n1, n, q)
∑

t∈Sn2,k

1

zt,n2

.

Denote by θ the random variable assuming as value the size of the
non-singular part of a matrix, and denote by η the random variable
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assuming as value the number of factors of the characteristic polyno-
mial of the non-singular part. The conditional probability Pn{η = k |
θ = n2} that C(X) belongs to Cn2,k for a matrix in Mn(Fq) whose
characteristic polynomial is Xn1C(X), is thus:

χ(n1, n, q)
∑

t∈Sn2,k

1

zt,n2

χ(n1, n, q)
∑

t∈Sn2

1

zt,n2

=

∑

t∈Sn2,k

|GLn2(Fq)|
zt,n2

∑

t∈Sn2

|GLn2(Fq)|
zt,n2

= Pn2{η = k},

where Pn{η = k} denotes the probability that an invertible matrix in
GL(n,Fq) has a characteristic polynomial which splits into k factors.

Now we can conclude: the expected number of factors of the invert-
ible block of any matrix in Mn(Fq) is given by:

n∑

k=1

k
n∑

n2=1

P{θ = n2}Pn2{η = k} =
n∑

n2=1

P{θ = n2}
n∑

k=1

kPn2{η = k}

=
n∑

n2=1

P{θ = n2}EXn2 .

Let ε be given. Since EXn ∼ log n, there exists n1 such that for
n ≥ n1 then EXn/ log n ≤ 1 + ε/2. Thus:
∑n

n2=1 P{θ = n2}EXn2

log n
=

∑n1
n2=1 P{θ = n2}EXn2

log n
+

n∑

n2=n1+1

P{θ = n2}EXn2

log n

≤
∑n1

n2=1 EXn2

log n
+

n∑

n2=n1+1

P{θ = n2}(1 +
ε

2
)

≤
∑n1

n2=1 EXn2

log n
+ 1 +

ε

2
.

We can choose n0 such that, for all n ≥ n0,
EZn

log n
≤ 1 + ε

2
. ¤

The proof of Theorem 6 will be completed by the following Lemma.

Lemma 5. Let Zn be the random variable assuming as values the num-
ber of factors X of characteristic polynomials of matrices in Mn(Fq).
Then the expectation EZn is asymptotically bounded by log n.

Proof. Let us consider the translation M 7→ M +In. The factor Xn1 of
a matrix M becomes (X−1)n1 in the factorization of the characteristic
polynomial of M ′ = M + In. Consider the Frobenius form of M ′:

[
s 0
0 t

]
,
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with s nilpotent and t invertible, then (X − 1)n1 is the largest power
of X − 1 which is a factor of the characteristic polynomial C(X) of t.
By Lemma 4 the expected number of factors of C(X) is asymptotically
log n, thus n1 is asymptotically bounded by log n. ¤

Theorem 6 now follows from Lemma 4 and Lemma 5.

3.6. Computing with the Shift-Hessenberg form. We recall the
following theorem, whose proof and corresponding algorithm may be
found in Ozello’s thesis [6].

Theorem 7. For all A in Mn(k), there exists a Shift-Hessenberg matrix
H and an invertible matrix P such that H = PAP−1. The matrices H
and P can be obtained in O(n3) elementary operations.

We now investigate more precisely the number m of diagonal blocks
of the Shift-Hessenberg form for a matrix A.

Definition 6. Let A be a square matrix in Mn(k). We denote by
mA the maximum size of an increasing sequence V1 ⊂ . . . ⊂ VmA

of
invariant subspaces of kn under A.

Since any Shift-Hessenberg form of a matrix A yields m invariant
subspaces V1 ⊂ . . . ⊂ Vm, the parameter m is bounded from above by
mA. The number mA equals the number of irreducible factors of the
characteristic polynomial of A, counted with multiplicities. Thus

Corollary 2. The expected value of mA is O(log n).

For clarity, the complexity of some algorithms will be given in terms
of n and mA. This will lead to average case complexities in terms of n
and log n. Although the algorithms here presented all are deterministic,
the complexity is a random variable (for an average distribution of
matrices) whose expectation is bounded from above.

We show some results about the complexity of some computations
with a Shift-Hessenberg matrix. We also recall how some problems
concerning companion matrices can be fast solved.

First observe that a Shift-Hessenberg is a sparse matrix, with at most
m + 1 non-zero entries in each row. This leads to the following lemma.

Lemma 6. Let H be a Shift-Hessenberg matrix of size n, and let M be
any matrix of size n× n′. Then product HM can be computed at cost
O(mnn′).

Furthermore a Shift-Hessenberg matrix has some properties regard-
ing cyclicity, as already seen in definition 4, which can be exploited for
reducing costs.
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Definition 7. Let H in Mn(k) be a Shift-Hessenberg matrix. A matrix
A is polycyclic for H if its columns have the form:
[
v1, Hv1, . . . H

n1−1v1, v2, Hv2, . . . , Hn2−1v2, . . . , vm, Hvm, . . . , Hnm−1vm

]
,

where n1, n2, . . . nm are the sizes of the diagonal blocks of H, and v1, v2, . . . , vm

are vectors of kn.

Proposition 1. Let H be a Shift-Hessenberg matrix, let A,B be two
matrices which are polycyclic for H. Let α, β be any field elements,
then αA + βB, In, H, HA and HB all are polycyclic for H.

In other words, polycyclic matrices for H form k[H]-submodule of
Mn(k).

Proposition 2. Let H be a Shift-Hessenberg matrix of parameter m.
Then the product HA can be obtained with complexity O(mn2) for any
matrix A in Mn(k) and with complexity O(m2n) whenever A is poly-
cyclic for H. A polynomial p(X) of degree at most t can be evaluated
at H with complexity O(tm2n).

Proof. Let A be a polycyclic matrix for A. The product HA is per-
formed by modifying A as follows. Delete v1, shift all vectors to the
left. Then replace v2 by HHn1−1v1 . . . , vm by HHnm−1−1vm−1. Finally,
put HHnm−1vm as nth column. The whole cost is m(mn).

Let p be a polynomial of degree less or equal than t. We apply
Horner’s rule for evaluating a polynomial p(H) = ptH

t + pt−1H
t−1 +

· · ·+p1H+p0I. We compute h1 = ptH+pt−1I, h2 = Hh1+pt−2I, . . . , ht =
Hht−1 + t0I. Each matrix hi is computed from hi−1 at a cost O(m2n),
thus a total cost of O(tm2n) for p(H). ¤

We recall very simple and efficient procedures for solving relations
involving a companion matrix, which can be found in [5]. From now on,
given a companion matrix C with minimal polynomial π(X) of degree
n, the vector (v0, . . . vn−1) is identified with the polynomial v(X) =
v0 + v1X + v2X

2 + · · ·+ vn−1X
n−1.

Lemma 7. Let C be a companion matrix with minimal polynomial
π(X), let v in kn, let P (X) be a polynomial of degree at most n. Then:

(1) Cv is computed at cost 2n.
(2) P (C) is computed at cost O(n2).
(3) If P (X) is prime to π(X), the equation at u: P (C)u = v is

solved at cost O(n2).
(4) The minimal polynomial πv(X) of C relatively to v is computed

at cost O(n2).
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Using proposition 2, and computing a SHS form at each step of
recursion, the algorithm described in section 2 can be modified to get
the following result.

Theorem 8. Given the factorization of its characteristic polynomial,
the minimal polynomial of any matrix A and a block-diagonal matrix
similar to A exhibiting its characteristic subspaces, is computed with
time complexity O(n3 + m2

An2).

4. A direct algorithm for the minimal polynomial

We now give another algorithm for computing the minimal polyno-
mial of a matrix A, given a Shift-Hessenberg form for A. This algorithm
is a direct algorithm, and it does not require any previous knowledge
on the characteristic polynomial. The drawback is that is does not
produce a diagonal-block decomposition of kn into the characteristic
subspaces of A.

Assume that we are given a Shift-Hessenberg form H for matrix A.
Then H is described by blocks as follows:

H =




HB1,B1 HB1,B2 · · · HB1,Bm

0 HB2,B2 · · · HB2,Bm

...
. . .

...
0 · · · 0 HBm,Bm




.

Notation 2. We denote by Bk the set of indices of block k, and kBk is
the corresponding vector space. We also denote by B≥k the set of indices
Bk ∪ Bk+1 . . . ∪ Bm. For any matrix A ∈ Mn(k) we denote by ABi,Bj

the matrix obtained from rows in Bi and columns in Bj. We denote
by AB≥k

the square matrix obtained from rows and columns from the

kth block up to the end. For a Shift-Hessenberg matrix, the minimal
polynomial of the companion matrix HBi,Bi

is denoted by fi(X), i =
1, . . . ,m.

4.1. Nested ideals related to H. Let Ik denote the set of polyno-
mials g(X) ∈ k[X] such that:

g(H)Bi,Bi
= 0, i = 1, . . . ,m, and g(H)Bi,Bj

= 0, k ≤ i < j ≤ m.

It is in fact an ideal and the inclusions I1 ⊆ I2 · · · ⊆ Im hold. Let pk(X)
be the monic generator of Ik, then pk | pk−1. We denote by φk(X) the
polynomial such that pk(X) = φk(X)pk+1(X). Consider the case where
k = 1. For g(X) ∈ I1, we have that g(H)Bi,Bj

= 0, 1 ≤ i ≤ j ≤ m and
thus g(H) = 0. The ideal I1 = (p1(X)) is the ideal annihilating the
matrix H, and p1 is the minimal polynomial of H.
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Now let g(X) ∈ Ik+1, then, focusing on blocks with row index set
Bk and column index set Bj, k ≤ j ≤ m, we consider the result of
computations with H and we obtain the relation:

(Hg(H))Bk,Bj
= HBk,Bk

(g(H))Bk,Bj
.

Let p(X) be a polynomial of the form q(X)pk+1(X), which is the
general form for polynomials in Ik+1. We have that:

p(H)Bk,Bj
= q(H)Bk,Bk

(pk+1(H))Bk,Bj
= q(HBk,Bk

)(pk+1(H))Bk,Bj
, k ≤ j ≤ n.

Then p(H)Bk,Bj
= 0, k ≤ j ≤ n if and only if q(HBk,Bk

)(pk+1(H))Bk,Bj
=

0, k ≤ j ≤ n, i.e. if and only if q(HBk,Bk
) annihilates the space gen-

erated by columns of all matrices (pk+1(H))Bk,Bj
, j = k, . . . ,m. Thus

we have:

Lemma 8. The polynomial φk(X) is the minimal polynomial of the
restriction of HBk,Bk

to the subspace generated by the columns of the
matrices pk+1(H)Bk,Bj

, j = k . . . m.

Notice that, since fk(X) is the minimal polynomial of HBk,Bk
, φk(X)

divides fk(X).

4.2. The algorithm for the minimal polynomial of H. The algo-
rithm consists in constructing pm(X), pm−1(X) . . . p1(X), step by step,
by actually computing the polynomials φk(X), using Lemma 8.
First step: polynomial pm(X) is to be computed. Since all diagonal
blocks of pm(H) vanish, then pm(X) is the least common multiple of
the fi(X), i = 1, . . . , m.
Iterative step: computing φk(X) from the data of pk+1(X). We have:

pk+1(H) =




0 pk+1(H)B1,B2 · · · · · · pk+1(H)B1,Bm

. . .
0 pk+1(H)Bk,Bk+1

pk+1(H)Bk,Bm

0 0 0
0 0 0




.

From Lemma 8, φk(X) is the minimal polynomial of HBk,Bk
restricted

to the subspace generated by the columns of matrices pk+1(H)Bk,Bj
,

k ≤ j ≤ m.
Let ta1 = (a1

1, a
1
2, . . . , a

1
mk

) be the first non zero-column of the ar-
ray formed by all matrices pk+1(H)Bk,Bj

, j ≥ k. Using Lemma 7,
we compute the minimal polynomial φk,a1(X) of HBk,Bk

restricted to
a1. Thus φk,a1(X) is a factor of φk(X) and we then compute Hk,a1 =
φk,a1(H)pk+1(H). The process is repeated on the first non-zero col-
umn a2 of column of Hk,a1 , to get a new factor φk,a2(X) of φk(X).
We compute again Hk,a2 = φk,a2(H)Hk,a1 , and proceed with the first
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non-zero column of the array {(Hk,a2)Bk,Bj
}, j ≥ k. The process is

stopped when all columns are canceled. We then have that φk(X) =
φk,a1(X)φk,a2(X) · · ·φk,al(X), where al is the last non-zero column which
was met.

4.3. Complexity bounds. The most expensive computations lie in
the computation of matrices pm(H), pm−1pm(H), pm−2pm−1pm(H) . . .
The total cost is thus bounded by the cost of evaluating polynomials
of degree less than n at a Shift-Hessenberg matrix, which is, by propo-
sition 2, O(m2n2) a number of times which is bounded by mA, the
number of factors of the characteristic polynomials.

Each computation of a minimal polynomial φk,ai is done at cost
O(n2

k). The number of such computations is also bounded by mA.
This results in O(mAn2) elementary operations for all those gcd com-
putations.

Theorem 9. The minimal polynomial of a Shift-Hessenberg matrix
can be obtained in O(mAm2n2) elementary operations. The minimal
polynomial of any matrix A can be obtained in O(n3 + m3

An2) elemen-
tary operations without any previous knowledge on the characteristic
polynomial.

The term in n3 is only due to computing a Shift-Hessenberg form of
matrix A.

Remark 1. Note that the worst case complexity, when m is n, is O(n5),
which is bad. An alternative technique can be used for computing the
matrices pm(H), pm−1pm(H) . . .

Let d1, . . . , dm be the degrees of the polynomials p1, p2, . . . , pm. First
pm(H) is computed at cost dmm2n by proposition 2. Let Ck+1 =
pk+1pk · · · pm(H), which is a polycyclic matrix for H, and let pk(X) =
Xdk + adk−1X

dk−1 + · · ·+ a1X + a0. Compute pk(H)Ck+1 as follows:

pk(H)Ck+1 = (Hdk + adk−1H
dk−1 + · · ·+ a1H + a0)Ck+1

= (Hdk−1 + adk−1H
dk−2 + · · ·+ a1)HCk+1 + a0Ck+1.

Now the product HCk+1 is computed at cost O(m2n) by Lemma 2, and
the product a0Ck+1 at cost O(n2), and the sum of these two matrices is
computed at cost O(n2). Thus computing pk(H)Ck+1 is performed at
cost O(dk(m

2n+n2)), and the final cost is O((d1+· · ·+dm)(m2n+n2)) =
O(m2n2 + n3).

Using previous remark, we thus have:
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Corollary 3. The minimal polynomial of any matrix A can be obtained
in O(n3+m2

An2) elementary operations without any previous knowledge
on the characteristic polynomial.

5. Searching for a cyclic vector

Let us recall some definitions.

Theorem 10. [4, Ch. VII §3 th. 2] For all A in Mn(k), there exists
a vector v in kn such that πv(X) = π(X) where π(X) is the minimal
polynomial of A.

Definition 8. Let A be a matrix in Mn(k). A vector v in kn such that
πv(X) = π(X), where π(X) is the minimal polynomial of A, is called
a cyclic vector for A.

First we here show how to compute a cyclic vector at cost O(m3 +
m2n2) for a square matrix A whose characteristic polynomial is square-
free. This implies that the minimal polynomial of A equals its charac-
teristic polynomial. Also the minimal polynomials fk(X) of the diago-
nal companion matrices of a Shift-Hessenberg form for A are pairwise
relatively prime.

5.1. Technical lemmas. The following lemma sets up the recurrence
which ends in the sought for cyclic vector.

Notation 3. Given a vector v in kn, the vector of size nI , which is
the projection of v into kBI , is denoted by vBI

. We denote by v?
BI

the

unique vector of kn such that its projection into kBI equals vBI
and

such that its projection into kBJ is 0, where J is the complementary
set of I in [1, n]: (v?

BI
)BJ

= 0.

Lemma 9. Let A be a block matrix with the form:
[

AB1,B1 AB1,B2

0 AB2,B2

]
,

and let vB1, vB2 be cyclic vectors for AB1,B1 and AB2,B2 respectively,
matrices with respective minimal polynomials f1(X) and f2(X). If
f1(X) and f2(X) are relatively prime, then the relations:

vB2 = uB2 , (4)

vB1 = f2(AB1,B1)uB1 + (f2(A)u?
B2

)B1 , (5)

can be solved at u = (uB1 , uB2), and the unique solution u is a cyclic
vector for A.
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Proof. The solution u is obtained by finding uB1 . Since f1(X) and
f2(X) are coprime, there exists h2(X) such that f2(X)h2(X) = 1 mod
f1(X). Thus the matrix h2(AB1,B1) is the inverse of f2(AB1,B1), and
the existence and unicity of uB1 is guaranteed. Now we have to prove
that f1(X)f2(X) is the minimal polynomial of u = (uB1 , uB2). Assume
that p(A)u = 0 for a non-zero polynomial p(X) with minimal degree.
Then p(X) is a divisor of f1(X)f2(X) and we must have that p(X) =
p1(X)p2(X) with the condition that p1(X) | f1(X), p2(X) | f2(X) and
gcd(p1(X), p2(X)) = 1. The relation p(A)u = 0 gives:

p1(AB2,B2)p2(AB2,B2)uB2 = 0. (6)

Since gcd(p1(X), f2(X)) = 1, there exists h1(X) such that p1(X)h1(X) =
1 mod f2(X). Applying h1(AB2,B2) on both sides of (6) we get p2(AB2,B2)uB2 =
0. Since uB2 is a cyclic vector for AB2,B2 , f2(X) divides p2(X) and
p2(X) = f2(X).

On the first block of coordinates, the equation p(A)u = 0 writes:

p1(AB1,B1)
(
f2(AB1,B1)uB1 + (f2(A)u?

B2
)B1

)
= 0. (7)

By hypothesis, f2(AB1,B1)uB1 + (f2(A)u?
B2

)B1 = vB1 is cyclic for
AB1,B1 . Then by (7), f1(X) | p1(X) and p1(X) = f1(X). ¤

We observe the striking fact that those computations can be performed
at low cost.

Lemma 10. A solution u to equations (4) and (5) may be computed
in O(n3) elementary operations.

Proof. First compute wB1 = (f2(A)u?
B2

)B1 , at cost O(n3). Then solve
equation (5) by finding an inverse h2(X) of f2(X) mod f1(X). Then
the solution uB1 is given by uB1 = h2(AB1,B1)(vB1 − wB1), calculated
with complexity O(n3). ¤

5.2. The näıve recurrence. We denote by uB≥k
a cyclic vector for

HB≥k
. The aim is to find uB≥1

.
First step: The last block HBm,Bm is a companion matrix, the vector
t(1, 0, . . . , 0) is a cyclic vector for HBm,Bm and is choosed for uBm .
Iterative step: Suppose that the problem has been solved for HB≥k+1

,
i.e. we have a vector uB≥k+1

which is cyclic for HB≥k+1
. The minimal

polynomial of HB≥k+1
is fk+1fk+2 · · · fm, and the minimal polynomial

of HBk,Bk
is fk(X). These polynomials are coprime, and the Lemma 9

can be used to construct uB≥k
= (uBk

, uB≥k+1
) which is cyclic for HB≥k

.
End The result is wB≥1

.
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We now evaluate the number of operations to be performed to achieve
the recurrence. The most expensive calculations lie in computing the
vectors:

wBm−1 = (fm(H)u?
Bm

)Bm−1 ,
wBm−2 = ((fm−1fm)(H)u?

B≥m−1)Bm−2 ,
...

wBk
= ((fk+1fk+2 · · · fm)(H)u?

B≥k+1)Bk
.

Computing each vector wBk
consists mainly in applying at most n

times matrix H at vectors with n components. The cost is n ·mn for
each of the m values of k. Moreover each uBk

needs O(n2m) steps
and a separate cost of O(n2

k) is required for computing each of m
gcd’s. Taking into account the computation of H itself, this amounts
to O(m2n2 + n3) elementary operations.

Theorem 11. If the characteristic polynomial of the matrix A is square-
free, a cyclic vector for A can be obtained in O(n3 + m2

An2) steps.

6. Obtaining a cyclic vector in O(n3) elementary
operations

The previous procedure is not efficient for large m. We thus develop
a more sophisticated procedure, whose complexity is O(n3), for any
value of m.

The present algorithm computes a cyclic vector for a matrix whose
minimal polynomial is square-free. The algorithm uses a “divide-and-
conquer” approach as in Section 2. We first present its global structure,
before going into details. We also set out separately a technique of
splitting, and finally give the complete description.

6.1. Overall strategy. First a Shift-Hessenberg form for the given
matrix is to be computed. Then our strategy is to split it into two parts,
whose sizes remain under control. The matrix H has the following form:

H =




HB1,B1 HB1,B2 · · · HB1,Bm

0 HB2,B2 · · · HB2,Bm

...
. . .

...
0 · · · 0 HBm,Bm




,

Notation 4. For every I ⊂ [1, n], J ⊂ [1, n], we denote by HI,J the
sub-matrix formed with the rows of H in I and the columns of H in J .
The size of I is denoted by nI . Whenever I is reduced to a block Bk

then the size of I is denoted by nk.
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The splitting consists in finding a matrix Hsplit similar to H with
the form:

Hsplit =

[
H′

BI ,BI
H′

BI ,BJ

0 H′
BJ ,BJ

]
, (8)

which moreover is a Shift-Hessenberg matrix, such that nI ≤ 2
3
n, nJ ≤

2
3
n. We recursively apply the algorithm on both matrices H′

BI ,BI
and

H′
BJ ,BJ

, in order to find vBI
, vBJ

which are cyclic vectors of H′
BI ,BI

and
H′

BJ ,BJ
respectively.

It remains to compute a vector u′ cyclic for Hsplit, vBI
and vBJ

being
known. Changing the current basis for the original one , we finally
transform u′ into a cyclic vector u for H.

6.2. The splitting. We give a lemma for splitting the matrix into two
submatrices. Before stating this lemma, we explain a technical but im-
portant phenomenom that appears when permuting rows and columns
of Shift-Hessenberg matrices in order to move the blocks. Consider the
following Shift-Hessenberg matrix:

H =




HB1,B1 HB1,B2 · · · HB1,Bk
· · · HB1,Bm

0 HB2,B2 · · · HB2,Bk
· · · HB2,Bm

...
. . .

... · · · ...
... HBk,Bk

· · · ...
0 0 · · · 0 · · · HBm,Bm




.

Let us perform the permutation of rows and columns which ex-
changes HB1,B1 HBk,Bk

. This leads to the matrix Hswap:

Hswap =




HBk,Bk
0 · · · 0 0 HBk,B>k

HB[2,k−1],Bk
HB[2,k−1],B[2,k−1]

HB[2,k−1],B1 HB[2,k−1],B>k

...
...

...
...

...
HB1,Bk

HB1,B[2,k−1]
HB1,B1 HB1,B>k

HB>k,Bk
HB>k,B[2,k−1]

HB>k,B1 HB>k,B>k




.

We now use the algorithm for computing a Shift-Hessenberg form of
Hswap. This leads to the matrix:

H′ =




H′
B1,B1

H′
B1,B2

· · · H′
B1,Bk

· · · H′
B1,Bm

0 H′
B2,B2

· · · H′
B2,Bk

· · · H′
B2,Bm

...
. . .

... · · · ...
... H′

Bk,Bk
· · · ...

0 0 · · · 0 · · · H′
Bm,Bm




.
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The next lemma establishes a relation between the companion poly-
nomial of block H′

B1,B1
and the companion polynomial of block HBk,Bk

.

Notation 5. We denote by εk the vector from the basis of kn such that
(εk)Bk

= (1, 0, . . . , 0).

Lemma 11. Let fk be the companion polynomial of block HBk,Bk
of

the matrix H, and let f ′1 be the companion polynomial block H′
B1,B1

of
the matrix H′ obtained in the previous transformations. We have that
fk divides f ′1.

Proof: We have that fk divides the minimal polynomial of H relatively
to εk. Swapping from H to Hswap is placing vector εk as the first vector
of the new basis.

The Shift-Hessenberg reduction algorithm computes a matrix whose
first block is a companion matrix whose companion polynomial is the
minimal polynomial of the first vector. Thus f ′1 is the minimal poly-
nomial of εk, which is a multiple of fk. 2

Now we can state our important lemma for splitting Shift-Hessenberg
matrices:

Lemma 12 (Splitting the matrix). Let H be a Shift-Hessenberg matrix.
It is always possible to find a Shift-Hessenberg matrix Hsplit and an
invertible matrix P such that H = PHsplitP

−1 with Hsplit of the form:

Hsplit =

[
H′

BI ,BI
H′

BI ,BJ

0 H′
BJ ,BJ

]
, (9)

and such that one of those three possibilities occurs:

(1) either H′
BI ,BI

is a companion block with size ≥ 2
3
n, and H′

BJ ,BJ

has size ≤ 1
3
n.

(2) or H′
BI ,BI

is a companion block with size ≤ 2
3
n, and H′

BJ ,BJ
has

size ≤ 2
3
n.

(3) or both blocks H′
BI ,BI

and H′
BJ ,BJ

are nothing else that Shift-

Hessenberg matrices with size smaller than 2
3
n.

The computation of Hsplit and P can be performed in O(n3) operations.

Proof: Two main distinct cases are first considered.
First case: there exists k ∈ [1,m] such that nk ≥ 2

3
n. Choose I = Bk,

J = [1,m] \ I. We have that nJ ≤ 1
3
n but the block Bk may not be the

first block. By permutations of rows and colums, block Bk is put in the
first place. This gives a matrix Hswap which is not Shift-Hessenberg.
We now can clean up matrix Hswap by applying the reduction algorithm
producing a Shift-Hessenberg matrix. The size of the first block can
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only grow, by Lemma 11, and then remains larger than 2
3
n. This gives

matrix Hsplit shaped as in Case 1 at cost O(n3).
Second case: for each j ∈ [1, m], nj < 2

3
n. Suppose first that all

ni are smaller than 1
3
n. In the sequence of sets Ii = {1, 2, . . . i}, we

choose the largest, Ii0 with the condition that
∑

j∈Ii
nj < 2

3
n. Then

I = B1∪B2 · · ·Bi0 and J = Bi0+1∪Bi0+2 · · ·∪Bm both satisfy nI ≤ 2
3
n

and nJ ≤ 2
3
n. Indeed, since nJ\Bi0+1

< 1
3
n, we have that nJ < 1

3
n +

ni0+1 ≤ 2
3
n. Then the matrix Hsplit is the unchanged matrix H. This

is case 3.
If there exists nk ≥ 1

3
n, we choose I = Bk, J = [1,m] \ I. We have

nI ≤ 2
3
n, nJ ≤ 2

3
n. By swapping rows and colummns, we put the

block HI,I in the first place, then clean up the resulting matrix by the
Shift-Hessenberg reduction algorithm in O(n3) steps. The first block
can only grow. As a result the size of the remaining block remains
lower than 2

3
n; if the size of the first block is larger than 2

3
n, then we

are in Case 1, else we are in Case 2. 2

6.3. The algorithm itself. We now present the complete algorithm
for computing a cyclic vector for a matrix A such that its minimal
polynomial is square-free.

Step 1∗: computation of a Shift-Hessenberg form of A. As stated
in Theorem 7, this is done in O(n3) operations. This step needs only
to be performed once, and is not needed in the recursive steps.

Step 2 : splitting the matrix. We perform the splitting indicated
by Lemma 12, and obtain two submatrices H′

BI ,BI
and H′

BJ ,BJ
.

We recursively apply the algorithm on all submatrices which occur
with size ≤ 2

3
n.

Step 3: reconstruction of a cyclic element in a new basis. We get
the two vectors uB1 and uB2 for the equations (4) and (5) from the
results of the algorithm applied at H′

BI ,BI
and H′

BJ ,BJ
. By Lemma 10

we can construct a cyclic element for Hsplit, at cost O(n3).
Step 4: reconstruction of the cyclic element in the original basis.

From a cyclic vector of Hsplit, changing basis gives a cyclic vector for
H at cost O(n3).

Step 5∗: reverting to the original basis. From a cyclic vector for H,
we compute a cyclic vector for A by changing basis. This costs O(n3),
and is performed only once, at the end of the algorithm.

Theorem 12. Given a matrix A ∈ Mn(k) whose minimal polynomial
is square-free, a cyclic vector for A can be computed in O(n3) elemen-
tary operations.
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Proof. The proof is easily done by recurrence, as in 3, by observing
that the cost of all intermediae steps before recursion are bound by
O(n3). ¤
6.4. Applications to normal bases. Before stating our result, we
recall that the best known complexity for deterministic algorithms for
finding a normal basis is O((n2 + log q)n2) [2]. Considering proba-
bilistic algorithms, J. Von zur Gathen [9] presents an algorithm with
expected time O∼(n2 log q), where g = O∼(h) means that there exists
k such that g = O(h log(h)k) (“soft-O” notation). Fast algorithm for
polynomial multiplication and for gcd’s are used. When using classical
arithmetic, the complexity of this algorithm turns to O(n3 + n2 log q)
or O(n3 log(n)) depending on the relative size of q and n [5].

Corollary 4. When n is prime to p, it is possible to compute a normal
basis of Fqn in O(n3) elementary operations on the data of a matrix
representing the Frobenius map, that matrix being computed at cost
O(n3 + n2 log q).

Proof: The minimal polynomial of the Frobenius map is Xn−1, which
is square-free when gcd(n, q) = 1. Given the matrix Fn of the Frobenius
map (computed in O(n3 + n2 log q)), we are able to compute a cyclic
vector for the Frobenius map in O(n3). This vector is a normal element.

2

We now consider the case where n = pt, where p is the characteristic
of the field. In that case, Xn − 1 = (X − 1)n. Let H be a Shift-
Hessenberg matrix for the Frobenius automorphism, and let ε1, . . . , εm

be basis vector as in notation 5. Since the minimal polynomial of
H is Xn − 1, and is also the least common multiple of the minimum
polynomial of the εi’s, then Xn − 1 is the minimal polynomial of one
of the εi. Now if εl were cyclic with l < m, we would permute the
basis vectors in order to have εl in the first position. After reduction to
Shift-Hessenberg form, it is seen that the last rows and columns would
remain unchanged and in particular the zero in the subdiagonal located
in the column preceding εm would remain unchanged. This contradicts
the fact that εl is cyclic, since putting it in the first position would lead
to a companion matrix.

To sum up, a reduction of any representation of the Frobenius map
into a Shift-Hessenberg form exhibits εm which necessarily is cyclic.
Knowing normal bases for Fqn1 and Fqn2 , one can construct a normal
element for Fqn1n2 , when gcd(n1, n2) = 1 [1, 2].

Corollary 5. For all n, a normal basis of Fqn can be computed deter-
ministically in O(n3 + n2 log q) elementary operations.
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7. Computation of the Frobenius Form

7.1. Definitions and Notations. Furthermore we need a specific no-
tation for the columns of a Shift-Hessenberg matrix.

Notation 6. Let H be a Shift-Hessenberg matrix:

H =




HB1,B1 HB1,B2 · · · HB1,Bm

0 HB2,B2 · · · HB2,Bm

...
. . .

...
0 · · · 0 HBm,Bm




. (10)

We recall that εi the unit vector from kn such that (εi)Bi
= t(1, . . . , 0)

(Notation 5). We set ei = fiεi. Informally, ei is seen to be the vector
“above” block i in H.

We here shall describe how to compute the Expanded-Frobenius form
of a matrix. A preliminary computation is done, to compute a basis for
the characteristic subspaces of A, using the algorithm presented in sec-
tion 2 (and thus the factorization of the characteristic polynomial of A
is required). Then the expanded frobenius form for each characteristic
subspace is computed, with the following method.

7.2. Computing the Frobenius form for characteristic subspaces.
We considerthe case where the characteristic polynomial of the consid-
ered matrix is C(X) = p(X)r , with r ≥ 1, and p(X) irreducible.

We apply the reduction process to get a Shift-Hessenberg form H
for the matrix, as in equation (10). The minimal polynomial of block
HBi,Bi

is thus psi for some si.
The vector (ei)B1 seen as a polynomial, powers of p can be extracted

out of ei, using gcd computations. We thus have (ei)B1 = e†ip
ri , with e†i

prime to p. A favorable case occurs when each ei is such that ri ≥ si.
In that case, we introduce the vectors:

ε′2 = ε2 − e†2p
r2−s2ε1, . . . , ε

′
m = εm − e†mprm−smε1.

For those vectors we have that (psiε′i)B1 = 0 since psiεi = ei. The
first vector ε1 remains unchanged. The vectors ε1, ε

′
2 . . . ε′m yield a basis

in which the matrix has the following form:
[

Cps1 0
0 H′

]
.

The process is next applied to H′.
Otherwise, there exists εj such that rj < sj. We observe the following

property:
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Lemma 13. Let εj be a vector such that rj < sj in the above situation.
Then the minimal polynomial of εj is pt with t > s1.

Proof. To find the minimal polynomial of εj we have to find the low-
est t such that ptεj = 0. We first have to compute psjεj in order to
have that (psjεj)Bj

vanishes. This leads to psjεj = ej. The coordinates
of ej on block Bj−1 must vanish in their turn, so we apply the min-
imal polynomial of (ej−1)Bj−1

, which is pλj−1 for some λj−1. We get

pλj−1psjεj = pλj−1(ej)
?
B1

+ v(j− 2), where v(j− 2) is a vector with sup-
port in blocks B1∪· · ·∪Bj−2. We proceed in this way and at each step
we get a new relation pλk+···+λj−1+sjεj = pλk+···+λj−1(ej)B1 + v(k − 1),
where v(k − 1) lies in B1 ∪ · · · ∪ Bk−1.

This ends after all other coordinates vanished except those in the
first block. We then have that:

pλ2+···+λj−1+sjεj = pλ2+···+λj−1(ej)B1 + v(1) = pλ2+···+λj−1e†jp
rj + v(1).

We thus are left with determining the minimum exponent l such that:

pl
(
pλ2 · · · pλj−1e†jp

rj + v(1)
)

= 0 mod ps1 ,

and we write v(1) = pr0v(1)† where gcd(p, v(1)†) = 1. Two cases are
to be considered.

If r0 ≥ λ2 + · · ·+ λj−1 + rj, then l = s1 − (λ2 + · · ·+ λj−1 + rj) and
the exponent of the minimal polynomial of εj is:

t = l + λ2 + · · ·+ λj−1 + sj = s1 − rj + sj > s1.

In the other case, r0 < λ2 + · · ·+ λj−1 + rj. Then l = s1 − r0, and the
exponent of the minimal polynomial of εj is:

t = s1 − r0 + λ2 + · · ·+ λj−1 + sj > s1 − rj + sj > s1.

¤

For completing the algorithm in that case, we permute the basis
vectors in order to have εj in the first position. By applying the reduc-
tion algorithm, we compute a new Shift-Hessenberg form, whose first
block is a companion matrix, with companion polynomial the minimal
polynomial of εj. By previous lemma, the size of the first block has
grown and as a result the sizes of the other blocks had to decrease. The
process stops when we have si ≤ ri for all i, and we apply the above
method for the favourable case, or when we get a companion matrix.
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7.3. Complexity. Either cleaning up the matrix when it is possible, or
augmenting the size of the first block is done at cost O(n3). The number
of times those processes are performed is bounded by r. Notice that
matrices for changing bases are also obtained. Thus the complexity
in the case of a characteristic subspace is bounded by O(n3r). The
complexity for all characteristic subspaces is bounded by:

O(n3
1r1) + O(n3

2r2) + · · ·+ O(n3
drd) ≤ O(n3(r1 + r2 + · · ·+ rd)).

The number r1 + r2 + · · ·+ rd is the number of factors of the charac-
teristic polynomial counted with multiplicities. This number is log n
on the average.

Theorem 13. Knowing the factorization of its characteristic polyno-
mial, the Frobenius form of a matrix A and the matrix for changing
basis can be computed in O(n3mA), where mA is the number of factors
of the characteristic polynomial of A, counted with multiplicities. The
asymptotic average complexity over a finite field is O(n3 log n).

7.4. Without the factorization of the characteristic polyno-
mial. We show how to perform the computation of the Frobenius
form without the knowledge of the factorization of the characteristic
polynomial. The idea is the following: the computation of the Shift-
Hessenberg form of the matrix A yields a partial factorization of the
characteristic polynomialC of A. Using a “factor refinement” process,
the characteristic polynomial C can be factorized into C = P r1

1 . . . P rk
k ,

with gcd(Pi, Pj) = 1, when i 6= j. The algorithm for theorem 8 can
be applied to compute the restriction of the matrix to the subspaces
ker Pi(A)ri , i = 1 . . . k. Then the previous algorithm can be applied,
making the (eventually false) assumption that the Pi’s are irreducible.
If some problem is encountered, then a newer factorization is obtained,
and new subspaces are computed.

Here are the details of the algorithm:
Input Matrix A, (whose characteristic polynomial is denoted C).
Step 1 Computation of a Shift-Hessenbergform H for A. If a compan-
ion matrix is obtained, then the algorithm stops returning H.
Step 2 “Factor Refinement”. The diagonal companion blocks of ma-
trix H yield factors f1, . . . , fm, such that f1 . . . fm = C. The factor
refinement is to extract pairwise gcd’s from that list recursively, until
we get a list P r1

1 . . . P rk
k = C, with gcd(Pi, Pj) = 1, for i 6= j. The

subspaces Vi = ker Pi(A)ri are called pseudo-characteristic subpaces.
Step 3 Computing the restriction of H the pseudo-characteristic sub-
paces. This is done using the algorithm from theorem 8. This algorithm
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is recursive, and at each step a Shift-Hessenberg form for each Vi is com-
puted. Diagonal blocks appearing in Shift-Hessenberg forms along this
process may show new factors P ′

i , in which case the refinement process
is applied, and new pseudo-characteristic subpaces are computed. This
ends in the knowledge of the Shift-Hessenberg form of the restriction
of H to new pseudo-characteristic subpaces V ′

i = ker P ′
i(A)r′i , with

C = P ′r′1
1 . . . P ′r′k′

k′ .
Step 4 Computing the Frobenius form for each pseudo-characteristic
subspace. We apply the algorithm described in previous section, mak-
ing the (possibly wrong) hypothesis that we are faced with a matrix H
whose characteristic polynomial is pr with p irreducible.

As previously, the vectors (ei)B1 seen as polynomials, powers of p
are extracted out of ei, using repeated gcd computations. If all gcd’s
are powers of p, then we end with (ei)B1 = e†ip

ri , with e†i prime to p.
If some gcd is not a power of p, then a factor of p has been found,
and refinement for new subspaces is done, goto to Step 3. If it is not
the case, then the same favorable case may appears as previously, and
the process goes on (cleaning the first block). If the unfavorable case
happens, then we put in first position a vector εi such that ri > si, and
apply the Shift-Hessenberg reduction. Then the minimal polynomial
of εi appears on the first block: if it a power of p, then the size of the
first block has grown (same argument as lemma 13, if not, a new factor
of p appears, and refinement is done, goto to Step 3.

8. Conclusion

The efficiency of the presented algorithms is due to two major pro-
cedures here introduced.

The first one is the use of a divide-and-conquer algorithm which splits
matrices of size n into sub-matrices of size ≤ 2

3
n. Therefore we make

the following remark: the cost of such an algorithm is the same as the
cost for “dividing” and for “recombining” only once. The second is the
use of the Shift-Hessenberg form, which is very sparse on the average,
and which reflects some algebraic properties of the matrix. It can be
computed at low cost and above all it allows one to make the most of
the isomorphism from the algebra generated by the given matrix onto
an algebra of polynomials by converting operations on matrices into
operations on polynomials.

Considering the results of this paper, a natural question raises. Does
there exist a deterministic algorithm for obtaining the Frobenius form
of any matrix in O(n3) elementary operations on the average?
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