
List Decoding of Reed-Muller Codes

Grigory Kabatiansky and Cédric Tavernier

Abstract

We construct list decoding algorithms for first order Reed-Muller codes RM [1,m]
of length n = 2m correcting up to n(1

2 − ε) errors with complexity O(nε−3). Consid-
ering probabilistic approximation of these algorithms leads to randomized list de-
coding algorithms with characteristics similar to Goldreich-Levin algorithm, namely,
of complexity O(m2ε−7 log 1

ε (log 1
ε +log 1

Perr
+log m)), where Perr is the probability

of wrong list decoding.

1 Introduction

Following P.Elias definition [1] list decoding algorithm of decoding radius T should pro-
duce for any received vector y the list LT (y) = {c ∈ C : d(y, c) ≤ T} of all vectors c
from a code C which are at distance at most T apart from y. Recently very efficient list
decoding algorithms were proposed for Reed-Solomon codes and algebraic-geometry codes
(see [2]). Until very recently (see[7]) efficient list decoding algorithms were not known
for Reed-Muller codes, despite that these codes are generalization of Reed-Solomon codes
(by considering multivariate polynomials instead of univariate). At the same time, very
efficient but probabilistic algorithm of list decoding for Reed-Muller codes of order 1 was
known from 1989 [3], i.e. much before deterministic ones for RS-codes. In this paper
we propose two deterministic list decoding algorithms for first order Reed-Muller codes
of decoding radius T = n(1

2
− ε) with complexity O(n/ε3). We consider also their prob-

abilistic approximation and evaluate the performance of these and related probabilistic
algorithms [3],[4].

2 Deterministic list decoding algorithms for

Reed-Muller codes of order 1

Binary Reed-Muller code RM(1,m) of order 1 and length n = 2m consists of vectors
f = (..., f(x1, ..., xm), ...) where f(x1, ..., xm) = f0 + f1x1 + . . . + fmxm is a linear Boolean
function and (x1, ..., xm) runs over all 2m points of the m-dimensional Boolean cube. It is

1

well-known that RM(1,m) is an optimal code consisting of 2n vectors with the minimal
code distance d = n/2. For these codes there are well-known ML decoding algorithm
(FFT) of complexity O(n log n) as well as bounded distance decoding algorithm [5] of
complexity O(n). The later algorithm can be considered as a list decoding algorithm of
decoding radius t = n

4
−1. Our goal is to construct a list decoding algorithm of RM(1,m)

with decoding radius T = n(1
2
−ε) almost twice larger and with the same (asymptotically)

complexity.
Let y be a received vector and Lε(y) = {f ∈ RM(1,m) : d(y, f) ≤ n(1

2
− ε)} be the

desired list. The proposed algorithm works recursively by finding on the i-th step a
list Li

ε(y) of “candidates” which should (but may not) coincide with i-prefix of some
f(x1, ..., xm) = f0 + f1x1 + . . . + fmxm ∈ Lε(y). The main idea is to approximate the
Hamming distance between the received vector y and an arbitrary “propagation” of a
candidate c(i)(x1, . . . , xm) = c1x1 + . . . + cixi by the sum of Hamming distances over all
i-dimensional “facets” of the m-dimensional Boolean cube.
Let Sj = {(x1, . . . , xi, s1, . . . , sm−i)} be one of i-dimensional facets, where
(x1, . . . , xi) runs over all 2i binary i-dimensional vectors, s1, . . . , sm−i are fixed and j =
s1 + . . . + sm−i2

m−i−1 is the number of this facet. Consider restrictions of the received
vector y and the candidate c(i)(x1, . . . , xm) = c1x1 + . . . + cixi on facet Sj and denote
dSj

(y, c(i)) the Hamming distance between these two vectors (of length 2i). Clearly that

for any linear function c(x1, . . . , xm) such that c(i)(x1, . . . , xm) = c1x1 + . . . + cixi is its
prefix, i.e., c(x1, . . . , xm) = c0 + c(i)(x1, . . . , xm) + ci+1xi+1 + . . . + cmxm, we have that
dSj

(y, c) equals either dSj
(y, c(i)) or dSj

(y, c(i) ⊕ 1). Define “i”-th distance ∆(i)(y, c(i))

between y and c(i) by

∆(i)(y, c(i)) =
2m−i−1∑

j=0

∆Sj
(y, c(i)), (1)

where ∆Sj
(y, c(i)) = min{dSj

(y, c(i)), dSj
(y⊕1, c(i))}. Then the following result is obvious.

Lemma 1 For any linear function c = c(x1, . . . , xm) and any its prefix c(i) = c(i)(x1, . . . , xm)

d(y, c) ≥ ∆(i)(y, c(i)).

This Lemma leads us to the following natural criteria of acceptance a candidate. Namely,
a candidate c(i) = c1x1 + . . . + cixi is accepted iff ∆(i)(y, c(i)) ≤ n(1

2
− ε). Saying without

words : Li
ε(y) = {c(i) : ∆(i)(y, c(i)) ≤ n(1

2
− ε)}. We call the corresponding algorithm as

Sums-Algorithm.
To work effectively any list decoding algorithm should generate rather small list(s).

To prove it for Sums-Algorithm we need the following simple

Lemma 2 . Let c = c0+c1x1+. . . +cmxm be an affine function such that d(y, c) ≤ n(1
2
−ε)

and let c(i) = c1x1 + . . . + cixi its i-th prefix. Then for every i ∈ [1, . . . ,m] there is a
fraction of at least 2(ε− ε′) facets Sj which satisfy 2−i∆Sj

(y, c(i)) ≤ 1
2
− ε′.

2

Proof. Denote pz = 2i−m|{j : 2−i∆Sj
(y, c(i)) = 1

2
− z}|. We shall prove that P =

Pε′(c
(i)) =

∑
z≥ε′ pz is greater or equal to 2(ε− ε′). On the one hand,

∆(i)(y, c(i)) =
2m−i−1∑

j=0

∆Sj
(y, c(i)) = 2m

∑
pz

(
1

2
− z

)
= n

(
1

2
−

∑
pzz

)

since
∑

pz = 1. Then by Lemma 1 we have that ∆(i)(y, c(i)) ≤ d(y, c) ≤ n
(

1
2
− ε

)
and

hence
∑

pzz ≥ ε. On the other hand,

∑
pzz ≤

∑

z<ε′
pzε

′ +
∑

z≥ε′
pzz ≤ ε′ +

P

2

because max z = 1/2. We conclude that P ≥ 2(ε− ε′). 2

This Lemma applying for ε′ = ε/2 motivates introducing another list(s) Ri
ε(y) = {c(i) :

Pε/2(c
(i)) ≥ ε}, i.e., consisting of all prefixes c(i) such that for at least ε fraction of all

facets Sj we have

2−i∆Sj
(y, c(i)) ≤ 1

2
− ε

2
.

The corresponding list decoding algorithm which we call Ratio-Algorithm works in a way
similar to Sums-Algorithm but with another criteria of acceptance. Namely, a candidate
c(i) = c1x1 + . . . + cixi is accepted iff c(i) ∈ Ri

ε(y). Note that after performing all m
steps Ratio-Algorithm should do an extra step by checking and then outputting only such
vectors c from the last list for which d(y, c) ≤ n(1

2
− ε).

Lemma 2 means that Li
ε(y) ⊆ Ri

ε(y). Now we can estimate the size of any intermediate
list for both algorithms.

Lemma 3 For any received vector y and for every i ∈ [1, . . . , m]

|Li
ε(y)| ≤ |Ri

ε(y)| ≤ 2ε−3 (2)

Proof. Denote A(c(i)) = |{j : 2−i∆Sj
(y, c(i)) ≤ 1

2
− ε̂}| = 2m−iPε̂(c

(i)). If c(i) 6= ĉ(i)

then their restrictions on any i-dimensional facet Sj are distinct codevectors of RM(1, i)
and therefore |{c(i) : 2−i∆Sj

(y, c(i)) ≤ 1
2
− ε̂}| = |{c(i) : 2−idSj

(y, c(i)) ≤ 1
2
− ε̂}|+

|{c(i) : 2−idSj
(y ⊕ 1, c(i)) ≤ 1

2
− ε̂}| ≤ 1

2ε̂2
where the last inequality follows from Johnson

bound (applied for d = n′/2 and w ≤ n′(1
2
− ε̂), where n′ = 2i is the length of RM(1, i)).

Then
∑

allc(i)

A(c(i)) =
2m−i−1∑

j=0

|{c(i) : 2−i∆Sj
(y, c(i)) ≤ 1

2
− ε̂}| ≤ 2m−i 1

2ε̂2

Hence the number of c(i) such that A(c(i)) ≥ ε̃2m−i cannot exceed 1
2ε̃ε̂2

. Since this
number for ε̃ = ε and ε̂ = ε

2
equals to |Ri

ε(y)| it concludes the proof. 2

3

3 Complexity

Performing of the proposed algorithms demands the following elementary subroutines:
summation of two i-bits integers, its complexity equals c1i;
taking minimum of two i-bits integers, its complexity equals c2i.
We need also to add 2k i-bits integers. The complexity of this subroutine equals∑k

l=1 c1(i + l − 1)2k−l = c12
k(

∑k
l=1(i− 1)2−l +

∑k
l=1 l2−l) < c1(i + 1)2k.

Surely we shall use the recursive structure of both algorithms. The result of i-th step
will be the lists Li

ε(y) or Ri
ε(y) together with assigned to every “survived” c(i) a col-

lection (vector) of all values ∆Sj
(y, c(i)) and Ci(j), where Ci(j) = 0 if ∆Sj

(y, c(i)) =

min{dSj
(y, c(i)), dSj

(y ⊕ 1, c(i))} = dSj
(y, c(i)) and C i(j) = 1 otherwise. We can consider

Ci(j) as our guess of c0 based on the received vector y restricted to Sj.
For performing i + 1-th step observe that any i + 1-dimensional facet Sj = {(x1, . . . , xi,
xi+1, s1, . . . , sm−i−1)} is the union of two i-dimensional facets Sj0 = {(x1, . . . , xi, 0, s1, . . . ,
sm−i−1)} and Sj1 = {(x1, . . . , xi, 1, s1, . . . , sm−i−1)}. To calculate ∆Sj

(y, c(i+1)) consider
at first the case ci+1 = 0 what means that the prefix ci and its prolongation ci+1 coincide.
If Ci(j0) = Ci(j1) then ∆Sj

(y, c(i+1)) := ∆Sj0
(y, c(i))+∆Sj1

(y, c(i)) and C i+1(j) := Ci(j0).

Otherwise let ∆Sj
(y, c(i+1)) := ∆Sj0

(y, c(i)) + (2i −∆Sj1
(y, c(i))) and Ci+1(j) := Ci(j0) if

∆Sj0
(y, c(i)) ≤ ∆Sj1

(y, c(i)), or let ∆Sj
(y, c(i+1)) := ∆Sj1

(y, c(i)) + (2i −∆Sj0
(y, c(i))) and

Ci+1(j) := Ci(j1) if ∆Sj1
(y, c(i)) ≤ ∆Sj0

(y, c(i)).

In the case ci+1 = 1 we have that the prefix c(i) and its prolongation c(i+1) coincide on
Sj0 , and Sj1 , one of them is the inversion of another. This observation means that we can
put Ci(j1) := Ci(j1)⊕ 1 and then apply the above described algorithm.
Hence for performing of i + 1-th step for any prefix c(i) we need to add 2m−(i+1) pairs of
i−1-bits integers and take the same number of minimums to calculate every ∆Sj

(y, c(i+1)).

Then we need to take sum
∑2m−i−1−1

j=0 ∆Sj
(y, c(i+1)) for Sums-Algorithm or take sum of

zeroes and ones for Ratio-Algorithm to accept or not the prolongation c(i+1). By Lemma 3
the number of “survived” prefixes c(i) does not exceed 2ε−3, hence the total amount of cal-
culations for performing i+1-th step is at most 2ε−3(2m−(i+1)(c1i+c2i)+c1(i+1)2m−(i+1)).
Hence the total amount of calculation for the whole algorithm does not exceed

2ε−3

m∑
i=1

(2c1 + c2)i2
m−i < 4ε−3(2c1 + c2)2

m.

We prove

Theorem 1 For any received vector y both Sums-Algorithm and Ratio-Algorithm eval-
uate with complexity O(nε−3) the list of all vectors c ∈ RM(1,m) such that d(y, c) ≤
n(1

2
− ε).

4

4 Probabilistic approximation of

deterministic list decoding algorithms

Probabilistic list decoding algorithm for RM(1,m) was first suggested in [3] and later was
reformalized in a larger context in [4]. This algorithm intends to produce a list PrLε(y)
which contains:
1) all vectors c ∈ RM(1,m) : d(y, c) ≤ n(1

2
− ε);

2) no vectors c ∈ RM(1,m) : d(y, c) ≥ n(1
2
− ε

4
).

This algorithm being probabilistic has as errors of the first and the second order, namely,
with probability P1 there is some “good” codevector c (i.e. d(y, c) ≤ n(1

2
−ε)) which does

not belong to PrLε(y), and, on the other hand, with probability P2 there is some “bad”
codevector c (i.e., d(y, c) ≥ n(1

2
− ε

4
)) which belongs to PrLε(y). Sum of these probabilities

Perr = P1 + P2 is called “error probability”. The designed in [3], [4] probabilistic list
decoding algorithm has complexity poly(1/ε,m, 1/logPerr). In this section we show that
randomized version of Sums-Algorithm and Ratio-Algorithm do the same as the algorithm
of [3], [4] with complexity

O(m2ε−7 log
1

ε
(log m + log

1

ε
+ log

1

Perr

)). (3)

To get randomized version of Ratio-Algorithm and Sums-Algorithm we estimate ratio
Pε(c

(i)) (or ∆(i)(y, c(i)), correspondingly) by choosing randomly N facets. Then to esti-
mate ∆Sj

(y, c(i)) = min{dSj
(y, c(i)), dSj

(y⊕ 1, c(i))} for every of N chosen facets we take
randomly M points from Sj. We choose M sufficiently large to distinguish between “good”
facets Sj, where ∆Sj

(y, c(i)) ≤ 2i(1
2
−ε), and “bad” facets Sj, where ∆Sj

(y, c(i)) ≥ 2i(1
2
− ε

4
).

Chernoff inequality guarantees that the probability of incorrect distinguishing between
good and bad facets is less than e−O(ε2M). The corresponding analysis for facets and the
size of the lists leads to (4). Note that the complexity of these randomised algorithms
evaluated in number of bit operations and for the worst case (not “in average”).

5 Conclusion

The proposed list decoding algorithm of linear complexity for RM(1,m) can be generalized
for decoding of biorthogonal code in Euclidian space and for q-ary RM codes with the
corresponding decoding radius Tq = n(1−q−1− ε). The very recent paper [7] provides list
decoding algorithm for q-ary RM codes of arbitrary order s. That algorithm is in fact GS-
decoding [2] of the corresponding BCH-code containing a given RM-code and therefore
its decoding radius T ′ = n(1−

√
d/n). For d/n ¿ 1, i.e for the case of growing (with m)

order s, T ′ ≈ d/2, and there is known algorithm of complexity n · min(s,m − s) (hense
at most n log n) correcting d/2 errors [6]. For RM-codes of fixed order algorithm [7] is
better than bounded distance decoding, but for RM(1,m)-codes is much weaker both in

5

decoding radius (1− 1√
q

instead of 1− 1
q
−ε) and in complexity (O(n3) instead of O(n/ε3))

comparing with the proposed algorithm. Note that Dumer’s algorithms for RM-codes of
any fixed order correct with linear complexity almost all errors within decoding radius
T = n(1

2
− ε), see [8],[9]. Currently we do not know if there exist similar list decoding

algorithm.

6 Aknowledgement

The authors are grateful to Ilya Dumer for helpful discussions.

References

[1] P. Elias, “List decoding for noisy channels” 1957-IRE WESCON Convention Record,
Pt. 2, pp. 94–104, 1957.

[2] V.Guruswami and M.Sudan, “Improved decoding of Reed-Solomon and algebraic-
geometry codes ,” IEEE Trans. on Information Theory, vol. 45, pp. 1757–1767, 1999.

[3] O.Goldreich and L.A.Levin, “A hard-core predicate for all one-way functions”, Pro-
ceedings of 21-st ACM Symp. on Theory of Computing, pp. 25–32, 1989.

[4] O. Goldreich, R. Rubinfeld and M. Sudan, “Learning polynomials with queries: the
highly noisy case”, SIAM J. on Discrete Math., pp. 535–570, 2000.

[5] S. Litsyn and O.Shekhovtsov, “Fast decoding algorithm for first order Reed-Muller
codes ”, Problems of Information Transmission,vol. 19, pp. 87–91, 1983.

[6] G. A. Kabatianskii, “On decoding of Reed-Muller codes in semi continuous channels,”
Proc. 2nd Int. Workshop “Algebr. and Comb. Coding theory” , Leningrad, USSR,pp.
87-91, 1990.

[7] Ruud Pellikaan and Xin-Wen Wu, “List decoding of q-ary Reed-Muller Codes”, IEEE
Trans. on Information Theory, vol. 50, pp. 679-682, 2004.

[8] I.Dumer, “Recursive decoding of Reed-Muller codes”,Proceedings of 37th Allerton
Conf. on Commun.,Contr. and Comp. , pp. 61–69, 1999.

[9] I.Dumer, “Recursive decoding and its performance for low-rate Reed-Muller
codes”,IEEE Trans. on Information Theory, vol. 50, pp. 811-823, 2004.

6

