List Decoding of Reed-Muller Codes

Grigory Kabatiansky and Cédric Tavernier

Abstract

We construct list decoding algorithms for first order Reed-Muller codes RM[1, m]of length $n = 2^m$ correcting up to $n(\frac{1}{2} - \epsilon)$ errors with complexity $\mathcal{O}(n\epsilon^{-3})$. Considering probabilistic approximation of these algorithms leads to randomized list decoding algorithms with characteristics similar to Goldreich-Levin algorithm, namely, of complexity $\mathcal{O}(m^2\epsilon^{-7}\log\frac{1}{\epsilon}(\log\frac{1}{\epsilon} + \log\frac{1}{P_{err}} + \log m))$, where P_{err} is the probability of wrong list decoding.

1 Introduction

Following P.Elias definition [1] list decoding algorithm of decoding radius T should produce for any received vector y the list $L_T(y) = \{c \in C : d(y,c) \leq T\}$ of all vectors cfrom a code C which are at distance at most T apart from y. Recently very efficient list decoding algorithms were proposed for Reed-Solomon codes and algebraic-geometry codes (see [2]). Until very recently (see[7]) efficient list decoding algorithms were not known for Reed-Muller codes, despite that these codes are generalization of Reed-Solomon codes (by considering multivariate polynomials instead of univariate). At the same time, very efficient but probabilistic algorithm of list decoding for Reed-Muller codes of order 1 was known from 1989 [3], i.e. much before deterministic ones for RS-codes. In this paper we propose two deterministic list decoding algorithms for first order Reed-Muller codes of decoding radius $T = n(\frac{1}{2} - \epsilon)$ with complexity $\mathcal{O}(n/\epsilon^3)$. We consider also their probabilistic approximation and evaluate the performance of these and related probabilistic algorithms [3],[4].

2 Deterministic list decoding algorithms for Reed-Muller codes of order 1

Binary Reed-Muller code RM(1,m) of order 1 and length $n = 2^m$ consists of vectors $\mathbf{f} = (..., f(x_1, ..., x_m), ...)$ where $f(x_1, ..., x_m) = f_0 + f_1 x_1 + ... + f_m x_m$ is a linear Boolean function and $(x_1, ..., x_m)$ runs over all 2^m points of the *m*-dimensional Boolean cube. It is

well-known that RM(1,m) is an optimal code consisting of 2n vectors with the minimal code distance d = n/2. For these codes there are well-known ML decoding algorithm (FFT) of complexity $\mathcal{O}(n \log n)$ as well as bounded distance decoding algorithm [5] of complexity $\mathcal{O}(n)$. The later algorithm can be considered as a list decoding algorithm of decoding radius $t = \frac{n}{4} - 1$. Our goal is to construct a list decoding algorithm of RM(1,m)with decoding radius $T = n(\frac{1}{2} - \epsilon)$ almost twice larger and with the same (asymptotically) complexity.

Let \mathbf{y} be a received vector and $L_{\epsilon}(\mathbf{y}) = {\mathbf{f} \in RM(1,m) : d(\mathbf{y},\mathbf{f}) \leq n(\frac{1}{2}-\epsilon)}$ be the desired list. The proposed algorithm works recursively by finding on the *i*-th step a list $L_{\epsilon}^{i}(\mathbf{y})$ of "candidates" which should (but may not) coincide with *i*-prefix of some $f(x_{1},...,x_{m}) = f_{0} + f_{1}x_{1} + \ldots + f_{m}x_{m} \in L_{\epsilon}(\mathbf{y})$. The main idea is to approximate the Hamming distance between the received vector \mathbf{y} and an arbitrary "propagation" of a candidate $c^{(i)}(x_{1},\ldots,x_{m}) = c_{1}x_{1} + \ldots + c_{i}x_{i}$ by the sum of Hamming distances over all *i*-dimensional "facets" of the *m*-dimensional Boolean cube.

Let $S_j = \{(x_1, \ldots, x_i, s_1, \ldots, s_{m-i})\}$ be one of *i*-dimensional facets, where (x_1, \ldots, x_i) runs over all 2^i binary *i*-dimensional vectors, s_1, \ldots, s_{m-i} are fixed and $j = s_1 + \ldots + s_{m-i}2^{m-i-1}$ is the number of this facet. Consider restrictions of the received vector \mathbf{y} and the candidate $c^{(i)}(x_1, \ldots, x_m) = c_1x_1 + \ldots + c_ix_i$ on facet S_j and denote $d_{S_j}(\mathbf{y}, \mathbf{c}^{(i)})$ the Hamming distance between these two vectors (of length 2^i). Clearly that for any linear function $c(x_1, \ldots, x_m)$ such that $c^{(i)}(x_1, \ldots, x_m) = c_1x_1 + \ldots + c_ix_i$ is its prefix, i.e., $c(x_1, \ldots, x_m) = c_0 + c^{(i)}(x_1, \ldots, x_m) + c_{i+1}x_{i+1} + \ldots + c_mx_m$, we have that $d_{S_j}(\mathbf{y}, \mathbf{c})$ equals either $d_{S_j}(\mathbf{y}, \mathbf{c}^{(i)})$ or $d_{S_j}(\mathbf{y}, \mathbf{c}^{(i)} \oplus \mathbf{1})$. Define "i"-th distance $\Delta^{(i)}(\mathbf{y}, \mathbf{c}^{(i)})$ between \mathbf{y} and $\mathbf{c}^{(i)}$ by

$$\Delta^{(i)}(\mathbf{y}, \mathbf{c}^{(i)}) = \sum_{j=0}^{2^{m-i}-1} \Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}), \qquad (1)$$

where $\Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}) = \min\{d_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}), d_{S_j}(\mathbf{y} \oplus \mathbf{1}, \mathbf{c}^{(i)})\}$. Then the following result is obvious.

Lemma 1 For any linear function $\mathbf{c} = c(x_1, \dots, x_m)$ and any its prefix $\mathbf{c}^{(\mathbf{i})} = c^{(i)}(x_1, \dots, x_m)$

$$d(\mathbf{y}, \mathbf{c}) \ge \Delta^{(i)}(\mathbf{y}, \mathbf{c}^{(i)}).$$

This Lemma leads us to the following natural criteria of acceptance a candidate. Namely, a candidate $\mathbf{c}^{(i)} = c_1 x_1 + \ldots + c_i x_i$ is accepted iff $\Delta^{(i)}(\mathbf{y}, \mathbf{c}^{(i)}) \leq n(\frac{1}{2} - \epsilon)$. Saying without words : $L^i_{\epsilon}(\mathbf{y}) = {\mathbf{c}^{(i)} : \Delta^{(i)}(\mathbf{y}, \mathbf{c}^{(i)}) \leq n(\frac{1}{2} - \epsilon)}$. We call the corresponding algorithm as *Sums-Algorithm*.

To work effectively any list decoding algorithm should generate rather small list(s). To prove it for Sums-Algorithm we need the following simple

Lemma 2 . Let $\mathbf{c} = c_0 + c_1 x_1 + \ldots + c_m x_m$ be an affine function such that $d(\mathbf{y}, \mathbf{c}) \leq n(\frac{1}{2} - \epsilon)$ and let $\mathbf{c}^{(i)} = c_1 x_1 + \ldots + c_i x_i$ its *i*-th prefix. Then for every $i \in [1, \ldots, m]$ there is a fraction of at least $2(\epsilon - \epsilon')$ facets S_j which satisfy $2^{-i} \Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}) \leq \frac{1}{2} - \epsilon'$. **Proof.** Denote $p_z = 2^{i-m} |\{j : 2^{-i} \Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}) = \frac{1}{2} - z\}|$. We shall prove that $P = P_{\epsilon'}(\mathbf{c}^{(i)}) = \sum_{z \ge \epsilon'} p_z$ is greater or equal to $2(\epsilon - \epsilon')$. On the one hand,

$$\Delta^{(i)}(\mathbf{y}, \mathbf{c}^{(i)}) = \sum_{j=0}^{2^{m-i}-1} \Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}) = 2^m \sum p_z \left(\frac{1}{2} - z\right) = n \left(\frac{1}{2} - \sum p_z z\right)$$

since $\sum p_z = 1$. Then by Lemma 1 we have that $\Delta^{(i)}(\mathbf{y}, \mathbf{c}^{(i)}) \leq d(\mathbf{y}, \mathbf{c}) \leq n(\frac{1}{2} - \epsilon)$ and hence $\sum p_z z \geq \epsilon$. On the other hand,

$$\sum p_z z \le \sum_{z < \epsilon'} p_z \epsilon' + \sum_{z \ge \epsilon'} p_z z \le \epsilon' + \frac{P}{2}$$

because max z = 1/2. We conclude that $P \ge 2(\epsilon - \epsilon')$.

This Lemma applying for $\epsilon' = \epsilon/2$ motivates introducing another list(s) $R_{\epsilon}^{i}(\mathbf{y}) = {\mathbf{c}^{(i)} : P_{\epsilon/2}(\mathbf{c}^{(i)}) \ge \epsilon}$, i.e., consisting of all prefixes $\mathbf{c}^{(i)}$ such that for at least ϵ fraction of all facets S_{j} we have

$$2^{-i}\Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}) \le \frac{1}{2} - \frac{\epsilon}{2}$$

The corresponding list decoding algorithm which we call *Ratio-Algorithm* works in a way similar to *Sums-Algorithm* but with another criteria of acceptance. Namely, a candidate $\mathbf{c}^{(i)} = c_1 x_1 + \ldots + c_i x_i$ is accepted iff $\mathbf{c}^{(i)} \in R^i_{\epsilon}(\mathbf{y})$. Note that after performing all m steps *Ratio-Algorithm* should do an extra step by checking and then outputting only such vectors \mathbf{c} from the last list for which $d(\mathbf{y}, \mathbf{c}) \leq n(\frac{1}{2} - \epsilon)$.

Lemma 2 means that $L^i_{\epsilon}(\mathbf{y}) \subseteq R^i_{\epsilon}(\mathbf{y})$. Now we can estimate the size of any intermediate list for both algorithms.

Lemma 3 For any received vector \mathbf{y} and for every $i \in [1, ..., m]$

$$|L^{i}_{\epsilon}(\mathbf{y})| \le |R^{i}_{\epsilon}(\mathbf{y})| \le 2\epsilon^{-3}$$
⁽²⁾

Proof. Denote $A(\mathbf{c}^{(i)}) = |\{j : 2^{-i}\Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}) \leq \frac{1}{2} - \hat{\epsilon}\}| = 2^{m-i}P_{\hat{\epsilon}}(\mathbf{c}^{(i)})$. If $\mathbf{c}^{(i)} \neq \hat{\mathbf{c}}^{(i)}$ then their restrictions on any *i*-dimensional facet S_j are distinct codevectors of RM(1, i) and therefore $|\{\mathbf{c}^{(i)} : 2^{-i}\Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}) \leq \frac{1}{2} - \hat{\epsilon}\}| = |\{\mathbf{c}^{(i)} : 2^{-i}d_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}) \leq \frac{1}{2} - \hat{\epsilon}\}| + |\{\mathbf{c}^{(i)} : 2^{-i}d_{S_j}(\mathbf{y} \oplus \mathbf{1}, \mathbf{c}^{(i)}) \leq \frac{1}{2} - \hat{\epsilon}\}| \leq \frac{1}{2\hat{\epsilon}^2}$ where the last inequality follows from Johnson bound (applied for d = n'/2 and $w \leq n'(\frac{1}{2} - \hat{\epsilon})$, where $n' = 2^i$ is the length of RM(1, i)). Then

$$\sum_{\text{all}\mathbf{c}^{(i)}} A(\mathbf{c}^{(i)}) = \sum_{j=0}^{2^{m-i}-1} |\{\mathbf{c}^{(i)} : 2^{-i} \Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}) \le \frac{1}{2} - \hat{\epsilon}\}| \le 2^{m-i} \frac{1}{2\hat{\epsilon}^2}$$

Hence the number of $\mathbf{c}^{(i)}$ such that $A(\mathbf{c}^{(i)}) \geq \tilde{\epsilon} 2^{m-i}$ cannot exceed $\frac{1}{2\tilde{\epsilon}\tilde{\epsilon}^2}$. Since this number for $\tilde{\epsilon} = \epsilon$ and $\hat{\epsilon} = \frac{\epsilon}{2}$ equals to $|R^i_{\epsilon}(\mathbf{y})|$ it concludes the proof.

3 Complexity

Performing of the proposed algorithms demands the following elementary subroutines: summation of two *i*-bits integers, its complexity equals c_1i ;

taking minimum of two *i*-bits integers, its complexity equals $c_2 i$.

We need also to add 2^k *i*-bits integers. The complexity of this subroutine equals

 $\sum_{l=1}^{k} c_1(i+l-1)2^{k-l} = c_1 2^k (\sum_{l=1}^{k} (i-1)2^{-l} + \sum_{l=1}^{k} l2^{-l}) < c_1(i+1)2^k.$

Surely we shall use the recursive structure of both algorithms. The result of *i*-th step will be the lists $L^i_{\epsilon}(\mathbf{y})$ or $R^i_{\epsilon}(\mathbf{y})$ together with assigned to every "survived" $\mathbf{c}^{(i)}$ a collection (vector) of all values $\Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i)})$ and $C^i(j)$, where $C^i(j) = 0$ if $\Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}) =$ $\min\{d_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}), d_{S_j}(\mathbf{y} \oplus \mathbf{1}, \mathbf{c}^{(i)})\} = d_{S_j}(\mathbf{y}, \mathbf{c}^{(i)})$ and $C^i(j) = 1$ otherwise. We can consider $C^i(j)$ as our guess of c_0 based on the received vector \mathbf{y} restricted to S_j .

For performing i + 1-th step observe that any i + 1-dimensional facet $S_j = \{(x_1, \ldots, x_i, x_i, x_{i+1}, s_1, \ldots, s_{m-i-1})\}$ is the union of two *i*-dimensional facets $S_{j_0} = \{(x_1, \ldots, x_i, 0, s_1, \ldots, s_{m-i-1})\}$ and $S_{j_1} = \{(x_1, \ldots, x_i, 1, s_1, \ldots, s_{m-i-1})\}$. To calculate $\Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i+1)})$ consider at first the case $c_{i+1} = 0$ what means that the prefix c^i and its prolongation c^{i+1} coincide. If $C^i(j_0) = C^i(j_1)$ then $\Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i+1)}) := \Delta_{S_{j_0}}(\mathbf{y}, \mathbf{c}^{(i)}) + \Delta_{S_{j_1}}(\mathbf{y}, \mathbf{c}^{(i)})$ and $C^{i+1}(j) := C^i(j_0)$. Otherwise let $\Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i+1)}) := \Delta_{S_{j_0}}(\mathbf{y}, \mathbf{c}^{(i+1)}) := \Delta_{S_{j_1}}(\mathbf{y}, \mathbf{c}^{(i)})$ and $C^{i+1}(j) := C^i(j_0)$ if $\Delta_{S_{j_0}}(\mathbf{y}, \mathbf{c}^{(i)}) \leq \Delta_{S_{j_1}}(\mathbf{y}, \mathbf{c}^{(i)})$, or let $\Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i+1)}) := \Delta_{S_{j_1}}(\mathbf{y}, \mathbf{c}^{(i)}) + (2^i - \Delta_{S_{j_0}}(\mathbf{y}, \mathbf{c}^{(i)}))$ and $C^{i+1}(j) := C^i(j_0)$ if $C^{i+1}(j) := C^i(j_1)$ if $\Delta_{S_{j_1}}(\mathbf{y}, \mathbf{c}^{(i)}) \leq \Delta_{S_{j_1}}(\mathbf{y}, \mathbf{c}^{(i)})$.

In the case $c_{i+1} = 1$ we have that the prefix $\mathbf{c}^{(i)}$ and its prolongation $\mathbf{c}^{(i+1)}$ coincide on S_{j_0} , and S_{j_1} , one of them is the inversion of another. This observation means that we can put $C^i(j_1) := C^i(j_1) \oplus 1$ and then apply the above described algorithm.

Hence for performing of i + 1-th step for any prefix $\mathbf{c}^{(i)}$ we need to add $2^{m-(i+1)}$ pairs of i-1-bits integers and take the same number of minimums to calculate every $\Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i+1)})$. Then we need to take sum $\sum_{j=0}^{2^{m-i-1}-1} \Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i+1)})$ for Sums-Algorithm or take sum of zeroes and ones for Ratio-Algorithm to accept or not the prolongation $\mathbf{c}^{(i+1)}$. By Lemma 3 the number of "survived" prefixes $\mathbf{c}^{(i)}$ does not exceed $2\epsilon^{-3}$, hence the total amount of calculations for performing i+1-th step is at most $2\epsilon^{-3}(2^{m-(i+1)}(c_1i+c_2i)+c_1(i+1)2^{m-(i+1)})$. Hence the total amount of calculation for the whole algorithm does not exceed

$$2\epsilon^{-3}\sum_{i=1}^{m} (2c_1 + c_2)i2^{m-i} < 4\epsilon^{-3}(2c_1 + c_2)2^m.$$

We prove

Theorem 1 For any received vector \mathbf{y} both Sums-Algorithm and Ratio-Algorithm evaluate with complexity $\mathcal{O}(n\epsilon^{-3})$ the list of all vectors $\mathbf{c} \in RM(1,m)$ such that $d(\mathbf{y},\mathbf{c}) \leq n(\frac{1}{2}-\epsilon)$.

Probabilistic approximation of 4 deterministic list decoding algorithms

Probabilistic list decoding algorithm for RM(1,m) was first suggested in [3] and later was reformalized in a larger context in [4]. This algorithm intends to produce a list $PrL_{\epsilon}(\mathbf{y})$ which contains:

1) all vectors $\mathbf{c} \in RM(1,m) : d(\mathbf{y},\mathbf{c}) \le n(\frac{1}{2}-\epsilon);$ 2) no vectors $\mathbf{c} \in RM(1,m) : d(\mathbf{y},\mathbf{c}) \ge n(\frac{1}{2}-\frac{\epsilon}{4}).$

This algorithm being probabilistic has as errors of the first and the second order, namely, with probability P_1 there is some "good" codevector \mathbf{c} (i.e. $d(\mathbf{y}, \mathbf{c}) \leq n(\frac{1}{2} - \epsilon)$) which does not belong to $PrL_{\epsilon}(\mathbf{y})$, and, on the other hand, with probability P_2 there is some "bad" codevector **c** (i.e., $d(\mathbf{y}, \mathbf{c}) \geq n(\frac{1}{2} - \frac{\epsilon}{4})$) which belongs to $PrL_{\epsilon}(\mathbf{y})$. Sum of these probabilities $P_{err} = P_1 + P_2$ is called "error probability". The designed in [3], [4] probabilistic list decoding algorithm has complexity $poly(1/\epsilon, m, 1/logP_{err})$. In this section we show that randomized version of Sums-Algorithm and Ratio-Algorithm do the same as the algorithm of [3], [4] with complexity

$$\mathcal{O}(m^2 \epsilon^{-7} \log \frac{1}{\epsilon} (\log m + \log \frac{1}{\epsilon} + \log \frac{1}{P_{err}})).$$
(3)

To get randomized version of *Ratio-Algorithm* and *Sums-Algorithm* we estimate ratio $P_{\epsilon}(\mathbf{c}^{(i)})$ (or $\Delta^{(i)}(\mathbf{y}, \mathbf{c}^{(i)})$, correspondingly) by choosing randomly N facets. Then to estimate $\Delta_{S_i}(\mathbf{y}, \mathbf{c}^{(i)}) = \min\{d_{S_i}(\mathbf{y}, \mathbf{c}^{(i)}), d_{S_i}(\mathbf{y} \oplus \mathbf{1}, \mathbf{c}^{(i)})\}$ for every of N chosen facets we take randomly M points from S_j . We choose M sufficiently large to distinguish between "good" facets S_j , where $\Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}) \leq 2^i (\frac{1}{2} - \epsilon)$, and "bad" facets S_j , where $\Delta_{S_j}(\mathbf{y}, \mathbf{c}^{(i)}) \geq 2^i (\frac{1}{2} - \frac{\epsilon}{4})$. Chernoff inequality guarantees that the probability of incorrect distinguishing between good and bad facets is less than $e^{-\mathcal{O}(\epsilon^2 M)}$. The corresponding analysis for facets and the size of the lists leads to (4). Note that the complexity of these randomised algorithms evaluated in number of *bit* operations and for the *worst* case (not "in average").

5 Conclusion

The proposed list decoding algorithm of linear complexity for RM(1, m) can be generalized for decoding of biorthogonal code in Euclidian space and for q-ary RM codes with the corresponding decoding radius $T_q = n(1-q^{-1}-\epsilon)$. The very recent paper [7] provides list decoding algorithm for q-ary RM codes of arbitrary order s. That algorithm is in fact GSdecoding [2] of the corresponding BCH-code containing a given RM-code and therefore its decoding radius $T' = n(1 - \sqrt{d/n})$. For $d/n \ll 1$, i.e for the case of growing (with m) order s, $T' \approx d/2$, and there is known algorithm of complexity $n \cdot \min(s, m-s)$ (hense at most $n \log n$ correcting d/2 errors [6]. For RM-codes of fixed order algorithm [7] is better than bounded distance decoding, but for RM(1,m)-codes is much weaker both in

decoding radius $(1 - \frac{1}{\sqrt{q}} \text{ instead of } 1 - \frac{1}{q} - \epsilon)$ and in complexity $(\mathcal{O}(n^3) \text{ instead of } \mathcal{O}(n/\epsilon^3))$ comparing with the proposed algorithm. Note that Dumer's algorithms for RM-codes of any fixed order correct with linear complexity *almost* all errors within decoding radius $T = n(\frac{1}{2} - \epsilon)$, see [8],[9]. Currently we do not know if there exist similar list decoding algorithm.

6 Aknowledgement

The authors are grateful to Ilya Dumer for helpful discussions.

References

- P. Elias, "List decoding for noisy channels" 1957-IRE WESCON Convention Record, Pt. 2, pp. 94–104, 1957.
- [2] V.Guruswami and M.Sudan, "Improved decoding of Reed-Solomon and algebraicgeometry codes," *IEEE Trans. on Information Theory*, vol. 45, pp. 1757–1767, 1999.
- [3] O.Goldreich and L.A.Levin, "A hard-core predicate for all one-way functions", Proceedings of 21-st ACM Symp. on Theory of Computing, pp. 25–32, 1989.
- [4] O. Goldreich, R. Rubinfeld and M. Sudan, "Learning polynomials with queries: the highly noisy case", SIAM J. on Discrete Math., pp. 535–570, 2000.
- [5] S. Litsyn and O.Shekhovtsov, "Fast decoding algorithm for first order Reed-Muller codes", Problems of Information Transmission, vol. 19, pp. 87–91, 1983.
- [6] G. A. Kabatianskii, "On decoding of Reed-Muller codes in semi continuous channels," Proc. 2nd Int. Workshop "Algebr. and Comb. Coding theory", Leningrad, USSR, pp. 87-91, 1990.
- [7] Ruud Pellikaan and Xin-Wen Wu, "List decoding of q-ary Reed-Muller Codes", IEEE Trans. on Information Theory, vol. 50, pp. 679-682, 2004.
- [8] I.Dumer, "Recursive decoding of Reed-Muller codes", Proceedings of 37th Allerton Conf. on Commun., Contr. and Comp., pp. 61–69, 1999.
- [9] I.Dumer, "Recursive decoding and its performance for low-rate Reed-Muller codes", *IEEE Trans. on Information Theory*, vol. 50, pp. 811-823, 2004.