
ISIT 2002, Lausanne, Switzerland, June 30 – July 5, 2002

A parallel version of a special case of the Sudan decoding algorithm

Daniel Augot
INRIA, Domaine de Voluceau
F78153 Le Chesnay CEDEX

e-mail: Daniel.Augot@inria.fr

Abstract — We consider the Sudan decoding algo-
rithm of Reed-Solomon codes, in the particular case
when the Y -degree of the bivariate Q(X, Y ) is equal
to one. It is very similar to the Welch Berlekamp
algorithm. The equation for finding Q(X, Y ) can be
solved using an algorithm from R.R. Nielsen. Then
we remark that all the univariate polynomials in these
computations are of degree less than n, the length of
the code, and that they can be represented by their
evaluation on the support of the code. This leads to
a simpler arithmetic on polynomials, which can also
be parallelized. But, by the end of the process, there
are unkown values at the positions of the errors, and
they can be reconstructed using linear algebra.

I. Introduction

Let x1, . . . , xn be n distinct elements of Fq, where q is the
finite field with q elements. We denote by ev the evaluation
map:

ev :
Fq[X] → Fn

q

f(X) 7→ ev(f(X)) = (f(x1), . . . , f(xn))

Let C be the Reed-Solomon code of dimension k with support
x1, . . . , xn, it is equal to

C = {ev(f(X)); f(X) ∈ Fq[X]; deg f(X) < k} ,

and the minimum distance of C is n = k+1. The Sudan [3] list
decoding algorithm can correct up to τ = n−

√
2kn errrors.

Let y = (y1, . . . , yn) be the received word to be decoded.
The Sudan algorithm proceeds in two steps

1. find a polynomial Q(X, Y ) with wdeg Q(X, Y ) < τ , and
Q(xi, yi) = 0, i = 1 . . . , n.

2. find the roots f(X) of Q(X, f(X)) = 0.

Now we consider the particular case where degY Q(X, Y ) = 1.
We have to find Q(X, Y ) = f(X) + Y g(X), with deg f(X) <
n−τ and deg g(X) < n−τ−(k−1). Finding the root is easy:
the solution is f(X)/g(X). This case is very similar to the
Welch-Berlekamp decoding algorithm [1, 2] and the algorithm
can correct up to t = (n− k + 1)/2 errrors.

II. R.R.N. algorithm

R.R. Nielsen has devised an algorithm for finding the poly-
nomial Q(X, Y ) [4, 5]. In the case where degY Q(X, Y ) = 1,
it is very similar to algorithm described by Berlekamp in [1].
Let us describe the algorithm as follows. It can be seen that
the complexity is O(n2).

for i = 0 to 1 do gi(X, Y ) = Y i.
for i = 1 to n do

f(X, Y )← gj0(X, Y ), where gj0(X, Y ) is minimal
and gj0(xi, yi) 6= 0.

for j = 0 to 1 do
if j = j0 then gj0(X, Y )← (x− xj)f(X, Y ).
else

gj(X, Y )← gj0(xi, yi)gj(X, Y )− gj(xi, yi)gj0(X, Y ).
return gj(X, Y ) minimal.

III. Adaptation in the transform domain
Observing that the polynomials f(X) and g(X) in

Q(X, Y ) = f(X)+Y g(X) are of degree less than n, the above
algorithm can be translated in the transform domain, using
arrays of n values instead of polynomials. Multiplication of
a polynomial by a constant is just scalar multipliaction of an
array by a constant etc. The bivariate polynomials are repre-
sented by a polynomial in Y with coefficients polynomials in
X, represented in the transform domain. From the point of
view of implementation, the operations on the corresponding
arrays are performed componentwise independantly, that is,
in parallel. Thus, if n circuits for finite fields arithmetic are
used, each one dedicated to one of the xi’s, the running time
of this algorithm in the transform domain is O(n).

IV. Missing values
The last step of the decoding procedure is to perform the

division f(X)/g(X), where Q(X, Y ) = f(X)+Y g(X). In the
transform domain, this means to set the codeword equal to
f(xi)/g(xi), i = 1 . . . n. This step can not be performed for
the xi such that g(xi) = 0. The polynomial g(X) is known
to be the locator polynomial of the errors of y. Thus when
Q(X, Y ) is computed using arrays for f(X) and g(X), the
positions where g(xi) = 0 are read on the array. The direct
output of the algorithm is then the value of the codeword at
correct position, and undefined at positions where errors have
occured. However, since at least k positions will be correct,
the unknown value can computed form the known values, by
a sort of interpolation mecanism.

References
[1] Elwyn R. Berlekamp. “Bounded Distance +1 Soft-Decision

Reed-Solomon Decoding”, IEEE Transactions on Information
Theory, vol 42, n. 3, 1996.

[2] Elwyn R. Berlekamp and Loyd R. Welch, “Error correction of
algebraic block codes” US Patent Number 6,633,470, 1986.

[3] Madhu Sudan “Decoding of Reed-Solomon codes beyond the
error-correction bound”, Journal of Complexity, vol. 13, 1997.

[4] Rasmus R. Nielsen “Decoding AG codes beyond half the min-
imum distance” Technical University of Denmark, available at
http://www.student.dtu.dk/˜p938546/public.html

[5] Tom Hoeholdt and Rasmus R. Nielsen, “Decoding Reed-
Solomon codes beyond half the minimum distance” Interna-
tional Conference on Coding Theory, Cryptography and Related
Areas, 1998.


