
Proof Theory and Logic
Programming:

Computation as Proof Search

Dale Miller

ii

Proof Theory and Logic

Programming:

Computation as Proof Search

Draft: 17-03-2025

© Dale Miller, 2025

Inria Saclay & Laboratoire d’Informatique (LIX)

1 rue Honoré d’Estienne d’Orves

Campus de l’École Polytechnique

91120 Palaiseau France

dale.miller at inria.fr

This material will be published by Cambridge University Press as Proof Theory and Logic

Programming: Computation as Proof Search. This online version is free to view and download

for personal use only. Not for re-distribution, re-sale, or use in derivative works.

© Dale Miller 2025

iii

To the memory of my mother

iv

Contents

Preface 1

1 Introduction 3

1.1 A spectrum of logics . 3

1.2 Logic and the specification of computations 5

1.3 Proof search and logic programming 6

1.4 Designing logic programming languages 6

1.5 Why use logic to write programs? 8

1.6 The structure of this book . 8

1.7 Bibliographic notes . 9

2 Terms, formulas, and sequents 11

2.1 Untyped λ-terms . 11

2.2 Types . 14

2.3 Signatures and typed terms . 15

2.4 Formulas . 16

2.5 Sequents . 18

2.6 Bibliographic notes . 20

3 Sequent calculus proof rules 23

3.1 Sequent calculus and proof search 23

3.2 Inference rules . 26

3.2.1 Structural rules . 26

3.2.2 Identity rules . 27

3.2.3 Introduction rules . 28

3.3 Additive and multiplicative inference rules 29

3.4 Sequent calculus proofs . 31

3.5 Permutations of inference rules 32

3.6 Focused and unfocused proof systems 34

vi Contents

3.7 Cut-elimination and its consequences 35

3.8 Bibliographic notes . 38

4 Classical and intuitionistic logics 39

4.1 Classical and intuitionistic inference rules 40

4.2 The identity rules and their elimination 46

4.3 Cut elimination and its consequences 50

4.3.1 The duality of cut and initial 50

4.3.2 Eliminating cuts can cause a size explosion 50

4.3.3 Logical equivalence . 51

4.3.4 Invertible introduction rules 53

4.4 Derivable and admissible rules 54

4.5 Negation, false, and minimal logic 55

4.6 Choices to consider during the search for proofs 58

4.7 Bibliographic notes . 59

5 Two abstract logic programming languages 61

5.1 Goal-directed proof search . 61

5.2 Horn clauses . 63

5.3 Hereditary Harrop formulas . 67

5.4 Backchaining as focused rule application 71

5.5 Completeness of focused proofs 74

5.6 A canonical Kripke model . 85

5.7 Synthetic inference rules . 88

5.8 Disjunctive and existential goals 91

5.9 Examples of fohc logic programs 92

5.10 Dynamics of proof search for fohc 94

5.11 Examples of fohh logic programs 96

5.12 Dynamics of proof search for fohh 99

5.13 Limitations to fohc and fohh logic programs 99

5.14 Bibliographic notes . 102

6 Linear logic 105

6.1 Reflections on the structural inference rules 106

6.2 LK vs LJ: An origin story for linear logic 108

6.3 Sequent calculus proof systems for linear logic 110

6.3.1 An informal semantics for some of linear logic 110

6.3.2 Multiplicative additive linear logic 112

6.3.3 Linear logic as MALL plus exponentials 113

6.3.4 Duality and polarity . 114

6.3.5 Introducing implications 117

6.4 Introducing zones into sequents 119

Contents vii

6.5 Embedding fohh into linear logic 123

6.6 A model of resource consumption 125

6.7 Multiple-conclusion uniform proofs 129

6.8 Conservativity results . 133

6.9 Generalizing synthetic inference rules 134

6.10 Bibliographic notes . 136

7 Formal properties of linear logic focused proofs 139

7.1 Generalized paths and introduction phases 139

7.2 Admissibility of the general initial rule 144

7.3 Cut rules and cut elimination 145

7.4 The focused proof system is sound and complete 155

7.5 Bibliographic notes . 163

8 Linear logic programming 167

8.1 Encoding multisets as formulas 167

8.2 A syntax for Lolli programs . 168

8.3 Permuting a list . 168

8.4 Multiset rewriting on the left 170

8.5 Context management in a theorem prover 172

8.6 Multiset rewriting on the right 176

8.7 Specification of sequent calculus proof systems 177

8.8 Bibliographic notes . 180

9 Higher-order quantification 181

9.1 Introduction . 181

9.2 Higher-order quantification . 183

9.3 Near-focused proofs . 184

9.4 The proof theory of higher-order quantification 192

9.5 Examples using quantification of type o 194

9.6 Higher-order programming . 195

9.7 Proving that reverse is symmetric 198

9.8 Exploiting the hiding of specification details 201

9.9 Synthetic rules and higher-order logic 204

9.10 Bibliographic notes . 206

10 Specifying computations using multisets 209

10.1 Numerals as multisets . 209

10.2 Letters and words . 211

10.3 Encoding finite automata . 212

10.4 Properties about finite automata 215

10.5 Encoding pushdown automata 218

10.6 Bibliographic notes . 219

viii Contents

11 Collection analysis for Horn clauses 221

11.1 Introduction . 221

11.2 The undercurrents . 222

11.3 Abstraction and substitution in proof theory 223

11.4 Multiset approximations . 225

11.5 Formalizing the method . 228

11.6 Set approximations . 229

11.7 Automation of analysis . 231

11.8 List approximations . 234

11.9 Bibliographic notes . 235

12 Encoding security protocols 237

12.1 Communicating processes . 237

12.2 Specifying communication protocols 241

12.2.1 Communicating on a public network 242

12.2.2 Static distribution of keys 242

12.2.3 Dynamic creation of new symbols 243

12.2.4 Mapping the new notation into linear logic 243

12.2.5 Encrypted data as an abstract data type 244

12.3 Protocols as theories in linear logic 245

12.4 Abstracting internal states . 247

12.5 Agents as nested implications 248

12.6 Bibliographic notes . 251

13 Formalizing operational semantics 253

13.1 Three frameworks for operational semantics 253

13.2 The abstract syntax of programs-as-terms 255

13.3 Big-step semantics: call-by-value evaluation 256

13.4 Small-step semantics: π-calculus transitions 257

13.5 Binary clauses . 259

13.5.1 Continuation passing in logic programming 259

13.5.2 Abstract machines . 262

13.6 Linear logic . 265

13.6.1 Adding a counter to evaluation 265

13.6.2 Specifying concurrency primitives 268

13.7 Bibliographic notes . 270

Solutions to Selected Exercises 273

Bibliography 288

Index 311

Preface

This book develops the proof theory of classical, intuitionistic, and linear log-

ics, and demonstrates its application to the design and usage of logic program-

ming languages. We establish a proof-theoretic foundation using Gentzen’s

sequent calculus for logic programming languages based on first-order and

higher-order classical, intuitionistic, and linear logics. This approach provides

the basis for the well-known languages Prolog (employing first-order Horn

clauses in classical logic) and λProlog (utilizing higher-order hereditary Har-

rop formulas in intuitionistic logic), as well as the linear logic programming

languages Lolli and Forum. As we will illustrate, these increasingly expressive

logic programming languages enable the logic programming paradigm to cap-

ture essential aspects of modular programming, higher-order programming,

abstract data-types, state encapsulation, and concurrency.

The book develops three primary themes.

1. Proof search: The sequent calculus offers a natural framework for

formalizing logic programming and elucidating the operational interpre-

tation of logic formulas as programs through their impact on the con-

struction of proofs. A two-stage proof construction method, based on

goal-reduction and backchaining, will be formalized using the concepts

of uniform proofs and focused proofs.

2. Proof theory: We present sequent calculus proof systems for classical,

intuitionistic, and linear logics, which include first-order and higher-

order quantification. The completeness of focused proofs is established

by providing a direct proof of a cut-elimination theorem for these proofs.

3. Logic programming: The book offers numerous examples of logic pro-

grams that leverage higher-order quantification and linear logic. We will

demonstrate how the theory of focused proofs can be employed to di-

rectly reason about such programs.

This book assumes a basic understanding of the syntactic properties of

first-order logic and the (simply typed) λ-calculus as a prerequisite. While

2 Preface

prior experience with formal proof representations (such as natural deduc-

tion and sequent calculus) is not required, it would be beneficial. We will

occasionally include examples of logic programs, presented using the syntac-

tic conventions of λProlog, to illustrate proof-theoretic concepts. Although

familiarity with Prolog or λProlog may aid in understanding these examples,

readers without such prior knowledge should still be able to follow them, as

λProlog program elements correspond directly to formulas within the logics

being discussed.

The first part of this book, concluding with Chapter 9, details how the

sequent calculus can both design and analyze logic programming languages

based on classical, intuitionistic, and linear logics. Readers primarily inter-

ested in the design and application aspects of logic programming can safely

bypass Section 5.5 and Chapter 7, which present the formal proofs of the

key properties of focused proofs. The second part of the book, starting with

Chapter 10, explores various applications of logic programming. The chapters

within this second part are independent of each other, allowing readers un-

familiar with the application area covered in one chapter to skip it without

affecting their comprehension of the other chapters.

Many chapters include exercises designed to clarify and expand upon the

ideas presented in the main text. Exercises marked with (‡) have partial or

complete solutions provided at the end of this book.

Given the expansive nature of computational logic and logic programming,

it is important to highlight certain topics that are not covered in this book.

One such topic is the Curry-Howard correspondence (the “proofs-as-programs”

paradigm). Relating computation to proof search offers an entirely different

dimension to the role of logic and proof in computation offered by the Curry-

Howard correspondence. Readers interested in this correspondence and its

role as a foundation for functional programming may still find much of the

underlying proof theory presented here relevant, especially in its extensions

to linear logic. Furthermore, the logic programming paradigm discussed here

can specify type checking, type inference, and the operational semantics of

functional programs. Other currently popular themes in the logic program-

ming community, such as negation-as-failure, answer-set programming, stable

models, and constraint programming, are also not explored in this text.

This book is a synthesis of decades of research conducted by the author, his

collaborators, and many others. Earlier versions of parts of this book have been

used in graduate-level (M2) courses in Paris, Copenhagen, Venice, Bertinoro,

and Pisa. I extend my gratitude to the many students who engaged with this

material, as well as to Arunava Gantait, Gopalan Nadathur, and Aarrya Saraf

for their valuable feedback on earlier drafts. I also thank my daughter, Nadia

Miller, for her cover artwork.

Chapter1
Introduction

There are many ways to define computation and to reason about it. Pioneering

work by Church, Turing, Gödel, Curry, and others demonstrated that several

formal specifications, such as the λ-calculus, Turing machines, and recursive

equations, all describe the same set of computable functions. Similarly, nu-

merous programming languages (e.g., LISP, C, Pascal, and Ada) have been

invented, all theoretically capable of implementing this set of functions.

Given logic’s foundational role in mathematics and philosophy, it is intrigu-

ing to consider adding a computing framework that uses logical expressions as

programs to this rich landscape. The logic programming paradigm emerges

from directly addressing questions like: How can logic be used directly as

a programming language? What level of expressiveness can such languages

achieve? What advantages arise from basing program syntax and semantics

on established logical techniques and concepts?

We will delve deeper into these questions in the next chapter. Before ex-

ploring how various logics can serve as a foundation for logic-based program-

ming, the remainder of this introduction will organize some of these logics and

their associated proof concepts into the framework used throughout this book.

1.1 A spectrum of logics

The syntax for terms and formulas will be given in Chapter 2 using the frame-

work provided by Church [1940] in his Simple Theory of Types: in particular,

both terms and formulas are simply typed λ-terms, and the equality of terms

and formulas is identified with the equality of such λ-terms (i.e., by the equa-

tions of α, β, and η conversion). Terms that have a particular primitive

type—the Greek letter omicron o (following Church [1940])—are classified as

formulas. The symbols ∧, ∨, and ⊃ are written in infix to denote conjunction,

disjunction, and implication. Negation is written as the prefix operator ¬.

4 Chapter 1. Introduction

In this book, logics are classified along two principal axes. The first axis

involves the universal ∀ and existential ∃ quantifiers. A logic without quan-

tifiers is a propositional logic. A logic with quantifiers is a quantificational

logic. Quantifiers in this book will bind typed variables (again following Church

[1940]). A logic in which the type of a quantified variable is limited to prim-

itive and non-propositional types is first-order. A higher-order logic allows

quantification at all types, including propositional and functional types.

The second axis consists of the following three logics.

1. Classical logic is a logic of truth values. For example, propositional

formulas are either true or false depending on the truth value of the

propositional variables it contains. Such a truth value can be computed

using truth tables. For example, the formulas p ∨ ¬p and ((p ⊃ q) ⊃
p) ⊃ p are true no matter what truth value is given to p and q.

2. Intuitionistic logic can be seen as a logic based on a constructive ap-

proach to proof. For example, a proof that the formula ∃x.B(x) is a

theorem must contain a specific term, say t, and a proof that B(t) is a

theorem. Similarly, a proof that B1 ∨ B2 is a theorem contains a spe-

cific value of i ∈ {1, 2} and a proof of Bi. For this reason, the formula

p ∨ ¬p may not be a theorem since, without more information about p,

we might not be able to provide a proof of either p or ¬p. If p is a state-

ment such as 3 = 4, then we can prove p ∨ ¬p since we can presumably

prove ¬(3 = 4). However, if we know nothing about p, we cannot prove

either of these disjuncts.

3. Linear logic, introduced by Girard [1987], can be seen as a logic of re-

sources. For example, having one occurrence of p can be different from

having two occurrences, as in p ∧ p. As such, it is possible to model

vending machines (e.g., two 50-cent coins yield one coffee), Petri nets,

and process calculi.

Gentzen [1935] introduced the sequent calculus as a technical device to

represent proofs in both classical and intuitionistic logics. The sequent calculus

also provides an ideal setting for describing proofs for linear logic. As a result,

we adopt the sequent calculus here and stress the modular and straightforward

way it can be used to describe provability in these three logics. Our approach

here does not attempt to merge classical, intuitionistic, and linear logics into

one logic: instead, we view these logics as having different but closely related

proof systems. In fact, the proof systems will be so closely related that results

in one of these logics can often be lifted with slight modifications to provide

results in another logic.

1.2 Logic and the specification of computations 5

1.2 Logic and the specification of computations

Logic can be applied to the specification of computation in a few ways. We

give an overview of these roles for logic to identify the particular niche that is

our focus in this book.

In the specification of computation, logic is generally used in one of two

approaches. In the computation-as-model approach, computations are en-

coded as mathematical structures containing such items as nodes, transitions,

and states. Logic is used externally to make statements about those struc-

tures. That is, computations are used as models for logical formulas. Inten-

sional operators, such as the triples of Hoare logic or the modals of temporal

and dynamic logics, are often employed to express propositions about state

changes. This use of logic to represent and reason about computation is the

most broadly successful use of logic specifications with computation.

The computation-as-deduction approach uses pieces of logic’s syntax (such

as formulas, terms, types, and proofs) as elements of the specified computa-

tion. In this more rarefied setting, there are two different approaches to how

computation is modeled.

The proof-normalization approach views the state of a computation as a

proof term and the process of computing as normalization (known variously

as β-reduction or cut-elimination). Functional programming can be explained

using proof-normalization as its theoretical basis (following Martin-Löf [1982],

for example). Proof normalization has been used to justify the design of new

functional programming languages: see, for example, Abramsky [1993].

The proof-search approach views the state of a computation as a sequent (a

structured collection of formulas) and the process of computing as the process

of searching for a proof of a sequent: the changes that take place in sequents

capture the dynamics of computation. This perspective on computation is the

subject of this book.

Both of these programming paradigms based on deduction must accommo-

date nondeterminism in their computational mechanisms. When functional

programming languages are designed based on proof normalization, explicit

control of the order in which redexes are rewritten is usually described us-

ing either the call-by-value or call-by-name evaluation order. When logic pro-

gramming languages, such as Prolog and λProlog, are designed based on proof

search, elements of nondeterminism are often removed by imposing depth-first

search and backtracking.

The separation of proof normalization from proof search given above is in-

formal and suggestive. Such a division helps point out different sets of concerns

represented by these two broad approaches. For example, proof normalization

focuses on describing rewritings and their confluence, while proof search fo-

cuses on the nondeterminism and the reverse reading of inference rules. New

6 Chapter 1. Introduction

advances in computational logic and proof theory might allow us to merge or

reorganize this classification.

1.3 Proof search and logic programming

The earliest theoretical framework for logic programming was not an anal-

ysis of proof but rather of resolution refutation (see, for example, Robinson

[1965]) and, in particular, SLD resolution. This choice of foundations for logic

programming was unfortunate for at least the following reasons.

1. Resolution is used to refute: that is, it attempts to derive a contradic-

tion. This choice is counterintuitive since logic programming seems to

be about proving a goal formula from a collection of other formulas (the

logic program).

2. Most refutation systems work with formulas that are in conjunctive nor-

mal form and Skolem normal form. Unfortunately, classical logic is the

only logic we wish to study for which restricting to such normal forms

is possible. Furthermore, these normal forms are not preserved when

higher-order predicate variables are substituted with expressions con-

taining quantifiers and connectives.

3. A key inference step in resolution is the computation of most general

unifiers. In many ways, unification is really an implementation of the

interplay between quantification and equality. It seems more natural to

understand that interplay before attempting to implement it. In this

book, the implementation technique of unification plays no central role.

It is thus appealing to find a different approach to describing logic pro-

gramming that is cast in terms of proving and in which normal forms and

unification are not required. The sequent calculus provides just such a set-

ting. Furthermore, removing unification from the abstract notion of proof

search has a couple of benefits. First, it allows interplay between universal

and existential quantifiers to be explored without forcing the use of Skolem

functions. Second, using most general unifiers within resolution means that it

cannot handle those situations where most general unifiers do not exist (which

can happen when attempting to unify simply typed λ-terms).

1.4 Designing logic programming languages

A early concern in the development of Prolog focused on how best to control

search within a Prolog interpreter. For example, Kowalski [1979] proposed the

equation

Algorithm = Logic + Control,

1.4 Designing logic programming languages 7

which makes the important point that there is a gap between logic (here,

first-order Horn clause specifications) and algorithms. For example, the naive

Horn clause specification of the Fibonacci series can yield both an exponential-

time algorithm and a linear time algorithm depending on whether a top-down

(goal-directed) or a bottom-up (program-directed) proof search is employed.

Clearly, the programmer must be able to have some control over which of

these algorithms ultimately arises from this single logic specification. Various

non-logical features have also been added to Prolog—such as the cut ! and

negation-as-failure—to allow for some explicit control of search.1

Given that the logical foundation of Prolog is rather weak (see the dis-

cussion in Section 5.12), the design of new logic programming languages has

made several additional extensions to logic, yielding an equation more like the

following.

Programming = Logic + Control + Input/Output

+ Higher-order programming

+ Data abstractions

+ Modules

+ Concurrency +

Such extensions are generally made in an ad hoc fashion, and logic, which was

the motivation and the intriguing starting point for a language like Prolog,

was moved from center stage. With such an approach to designing a program-

ming language, the features added to address, say, higher-order programming

can interact in complex ways with features added to address, say, modules.

Describing such interaction of features can greatly complicate a programming

language’s design, implementation, and semantic specification.

An interesting project to pursue is to see how one might satisfy the equation

Programming = Logic.

If this equation is at all possible, then one will probably need to rethink what is

meant by “Programming” and by “Logic.” In this book, “Programming” will

generally be understood as high-level specifications of computations: build-

ing efficient and low-level programs will not be addressed. This book also

explores reinterpreting “Logic” by moving from first-order classical logic and

Horn clauses to intuitionistic and linear logics, possibly employing higher-order

quantification. Goal-directed control will be built into the proof systems we

ultimately employ. Chapters 10 through 13 provide several extended examples

in which specifying computation exploits these richer logics.

1We shall make no further mention of Prolog’s cut (!) operator in this book: in fact, both

the name “cut” and the “!” symbol will have entirely different meanings here.

8 Chapter 1. Introduction

1.5 Why use logic to write programs?

Several benefits arise from writing programs as logic formulas and viewing

computation as the construction of proofs. We list several here.

1. Logical formulas have various operations that generally satisfy valuable

properties. For example, applying substitutions to formulas or replacing

a subformula with an equivalence subformula is logically meaningful; we

can also expect such operations to yield meaning-preserving transforma-

tions on programs.

2. There are generally multiple ways to describe central concepts in logic.

For example, the set of theorems can usually be described as both the set

of all provable formulas and all true formulas (based on some suitable

model theory). Also, provability might be characterized in strikingly

different ways: via, for example, sequent calculus proofs, natural de-

duction, resolution refutations, and tableaux. Thus, different execution

models for logic programs might be deployed while preserving the origi-

nal meaning of programs.

3. Proof theory generally comes with various kinds of abstractions, and

a suitably designed logic programming language can harness these. For

example, higher-order intuitionistic logic can provide logic programs with

abstract data types, as well as modular and higher-order programming.

Furthermore, one such abstraction will not have undefined interactions

with other abstractions.

4. The logics we consider here have universally accepted descriptions. Thus,

logic programs can be meaningful many years in the future even if no

particular compiler or interpreter used to execute them today is available

in that future time.

Such benefits from using logic as a programming language are striking and

worthy of additional exploration.

1.6 The structure of this book

This book is divided into two parts.

The first part, comprising Chapters 1-9, presents the proof-theoretic foun-

dations and designs of various logic programming languages based on classical,

intuitionistic, and linear logics over first-order and higher-order quantification.

Ultimately, all our logic programming languages (including first-order Horn

clauses and higher-order hereditary Harrop formulas) will be seen as sitting

inside higher-order linear logic. The chapters in this part build on previous

1.7 Bibliographic notes 9

chapters. These chapters should be read in the order presented. On first read-

ing, one might skip the proofs of various metatheory results (such as are found

in Section 5.5 and Chapter 7).

The second part, Chapters 10-13, offers applications of the logic program-

ming languages described in the first part. These chapters can be read in any

order since they do not significantly build on each other.

1.7 Bibliographic notes

The Stanford Encyclopedia of Philosophy has good overview articles on proof

theory by Rathjen and Sieg [2020], the development of proof theory by von

Plato [2018], intuitionistic logic by Moschovakis [2024], linear logic by Di

Cosmo and Miller [2019], and Church’s Simple Theory of Types by Benzmüller

and Andrews [2019].

For more about the use of resolution and SLD resolution to describe logic

programming based on Horn clauses in first-order classical logic, see the early

papers by Apt and Emden [1982] and Emden and Kowalski [1976], as well

as textbooks by Gallier [1986] and Lloyd [1987]. The author has written

about the influences that logic programming and proof theory have had on

each other in Miller [2021] as well as a survey in Miller [2022b] of some of the

uses of proof theory as a foundation for logic programming.

10 Chapter 1. Introduction

Chapter2
Terms, formulas, and sequents

This book covers topics in both first-order and higher-order logic. Only first-

order quantification is used in Chapters 3 through 8, although higher-order

quantification will be used in most of the remaining chapters. This chap-

ter provides the basic syntactic definitions and operations for higher-order

quantification and higher-order substitutions: the first-order variants of quan-

tification and substitution can be seen as a natural restriction on the general

setting.

In his seminal paper, Church [1940] introduced the Simple Theory of Types.

This higher-order version of classical logic relies on the simply typed λ-calculus

for its syntactic structure. Since Church’s goal was to establish a logical

foundation for mathematics, he incorporated the mathematically motivated

axioms of choice, extensionality, and infinity into his system. Removing these

axioms yields the Elementary Theory of Types, a term introduced in Andrews

[1974]. We will use this latter system as the template to formulate first- and

higher-order quantification within classical, intuitionistic, and linear logics.

2.1 Untyped λ-terms

Throughout this book, we will primarily use simply typed λ-terms. However,

we will briefly consider the untyped λ-calculus first, as it shares the same

equality theory with simply typed terms.

We begin by assuming that there is a fixed and denumerably infinite set

of tokens (or identifiers). This section will use “token” and “variable” in-

terchangeably. Later, when we discuss different ways to declare types and

binding scopes for tokens, we will distinguish between tokens used as variables

and those used as constants.

There are three ways to build λ-terms:

1. As mentioned above, tokens, acting as variables, are λ-terms.

12 Chapter 2. Terms, formulas, and sequents

2. Given two terms, say M and N , their application is (MN). Application

is the infix juxtaposition operation and it associates to the left.

3. Given a term M and a token x, the abstraction of x over M is (λx.M).

Here, the token x is a bound variable with scope M . We often drop the

outermost parentheses to improve readability.

We assume familiarity with the concepts of free and bound occurrences of

variables in λ-terms. Two terms are considered α-convertible if they differ

only in the names of their bound variables. We identify two terms when they

are α-convertible. A subexpression of the form (λx.M)N is a β-redex and

a subexpression of the form (λx.(Mx)), where x has no free occurrence in

M , is an η-redex. Replacing an occurrence of the β-redex ((λx.M)N) with

the capture-avoiding substitution of N for x in M , also written as M [N/x], is

called β-reduction. The converse relation is called β-expansion. A term M is β-

convertible to a term N if there is a sequence (including the empty sequence)

of β-reductions and β-expansions steps that rewrites M to N . Replacing

an occurrence of an η-redex (λx.(Mx)) with M is called η-reduction. The

converse relation is called η-expansion. A term M is η-convertible to a term

N if there is a sequence (including the empty sequence) of η-reductions and

η-expansions steps that rewrites M to N . A term M is βη-convertible to N

if there is a sequence of β-conversion and η-conversion steps that carries M

to N . When we use the terms β-conversion and βη-conversion, we always

assume the availability of α-conversion as well.

A term is β-normal if it does not contain a β-redex. Stated in a positive

way, a term is β-normal if it has the form λx1. · · ·λxn.(ht1 · · · tm) where n,m ≥
0 and where h, x1, . . . , xn are tokens, and the terms t1, . . . , tm are all in β-

normal form. In this case, we call the list x1, . . . , xn the binder, the token h

the head, and the list t1, . . . , tm the arguments of the term.

Let θ be the list of pairs ⟨x1, t1⟩, . . . , ⟨xn, tn⟩, where, for all i = 1, . . . , n,

xi is a variable and ti is a λ-term. Occasionally, we will treat such a θ as a

substitution: in particular, if s is a term (or formula), then the application of

the substitution θ to the term s, written using the postfix notation sθ, denotes

the β-normal form of [λx1. · · ·λxn.s]t1 · · · tn.

Exercise 2.1. (‡) Not all λ-terms are β-convertible to a β-normal term.

Of the following terms, determine which is not β-convertible to a β-normal

term and which are. In the latter case, compute that normal form.

1. ((λx.y)(λx.x))

2. ((λx.x)(λx.x))

3. ((λx.(xx))(λx.x))

4. ((λx.(xx))(λx.(xx)))

5. ((λx.((xx)x))(λx.((xx)x)))

6. ((λx.y)((λx.(xx))(λx.(xx))))

2.1 Untyped λ-terms 13

Exercise 2.2. Church numerals are the following sequence of closed λ-

terms:

(λf.λx.x) (λf.λx.(fx)) (λf.λx.(f(fx))) (λf.λx.(f(f(fx)))) . . .

These terms can encode the natural numbers 0, 1, 2, 3, The two λ-terms

S = λN.λM.λf.λx.((Nf)(Mf x)) and P = λN.λM.λf.λx.((N(Mf))x)

can compute the sum (using S) and product (using P) of two Church nu-

merals. Check this claim by computing the β-normal forms of the following

two λ-terms, which encode 2 + 3 and 2 × 3.

((S (λf.λx.(f(fx)))) (λf.λx.(f(f(fx)))))

((P (λf.λx.(f(fx)))) (λf.λx.(f(f(fx)))))

Exercise 2.3.(‡) Computing β-normal forms can cause the size of terms

to grow quickly. For example, consider the following sequence of λ-terms.

E0 =
((

(λg.λe.e) (λe.λf.(e(ef)))
)

(λf.λx.(f(fx)))
)

E1 =
((

(λg.λe.(ge)) (λe.λf.(e(ef)))
)

(λf.λx.(f(fx)))
)

E2 =
((

(λg.λe.(g(ge))) (λe.λf.(e(ef)))
)

(λf.λx.(f(fx)))
)

E3 =
((

(λg.λe.(g(g(ge)))) (λe.λf.(e(ef)))
)

(λf.λx.(f(fx)))
)

In general, the term En is the Church numeral encoding n applied twice to

the encoding of 2. The β-normal form of E0 encodes 2 while E1 reduces to

the encoding of 4. What number is encoded by the β-normal form of En?

The above two exercises demonstrate the computational capabilities of λ-

terms. This observation forms the basis for many functional programming

languages that rely on the λ-terms for computation. Although the dynamics

of β-reduction is important for us here, we will employ those dynamics in a

more straightforward fashion: in particular, β-reduction will usually be used

to instantiate quantified expressions.

Exercise 2.4.(‡) Is there an expression N such that (λx.w)[N/w] is equal

to λy.y (modulo α-conversion, of course)? Phrased slightly differently, is

there an expression N such that ((λw.λx.w)N) has (λy.y) as a β-normal

form? The expression N may or may not have free occurrences of variables.

Curry [1942] showed that mixing untyped λ-terms with logical connectives

14 Chapter 2. Terms, formulas, and sequents

can lead to an inconsistent logic. One way to avoid such an inconsistency is to

apply a typing discipline to the λ-terms. We next introduce the types used in

the Simple Theory of Types, the logic introduced in Church [1940] and which

underlies much of what follows in this book.

Exercise 2.5. (‡) To illustrate the paradox in Curry [1942], we first set

Y to λf.(λx.f(x x)) (λx.f(x x)). Show that if g is any untyped λ-term,

then (Y g) β-converts to (g (Y g)). Thus, any expression g will have

a fixed point (Y g). Let B be the term λx.x ⊃ f, which is one way to

write negation (“implies false”). Clearly, negation should not have a fixed

point! By considering the expression Y (λx.x ⊃ f), show how to derive an

inconsistency.

2.2 Types

Let S be a fixed, nonempty set of tokens. The tokens in S will be used as

primitive types (also called sorts). The set of types is the smallest set of expres-

sions that contains the primitive types and is closed under the construction of

arrow types, denoted by the binary, infix symbol →. The Greek letters τ and

σ are used as syntactic variables ranging over types. The type constructor →
associates to the right: read τ1 → τ2 → τ3 as τ1 → (τ2 → τ3).

These types are called simple types. Such type expressions do not contain

binders or variables; in particular, type polymorphism is not supported in the

underlying logic (although it appears in several examples we give in subsequent

chapters). These types are used as syntactic types to separate expressions of

different syntactic categories. For example, in Section 13.2, the syntax of

the π-calculus is encoded using two primitive types n (for names) and p (for

process). The type n → p is a syntactic type denoting an abstraction of a

name over a process. This type does not denote all functions from names to

processes. Of course, every abstraction of type n → p does indeed represent a

function from names to processes: for example, if M :n → p and N is a name,

then the β-normal form of (MN) is a process (the result of substituting N

for the abstracted variable of M). However, there are functions from names

to processes that do not correspond to an actual syntactic expression of type

n → p: for example, the function that maps a particular name, say a, to

the process expression P1 and all other names to a different process P2 is not

encoded in the syntax as an expression of type n → p.

Let τ be the type τ1 → · · · → τn → τ0 where τ0 ∈ S and n ≥ 0. The types

τ1, . . . , τn are the argument types of τ while the type τ0 is the target type of τ .

If n = 0, then τ is τ0, and the list of argument types is empty. The order of a

type τ is defined as follows: If τ is primitive, then τ has order 0; otherwise, the

2.3 Signatures and typed terms 15

order of τ is one greater than the maximum order of its argument types. As a

recursive definition, the order of a type, written ord(τ), is defined as follows.

ord(τ) = 0 provided τ ∈ S
ord(τ1 → τ2) = max(ord(τ1) + 1, ord(τ2))

Note that τ has order 0 or 1 if and only if all the argument types of τ are

primitive types.

2.3 Signatures and typed terms

Signatures are used to formally declare that specific tokens are assigned a

certain type. In particular, a signature (over S) is a set Σ (possibly empty) of

pairs, written as x :τ , where τ is a type and x is a token. We require signatures

to be determinate in the sense that for every token x, if x : τ and x : σ are

members of Σ then τ and σ are the same type expression.

A signature Σ is said to have order n if every type associated with a token

in Σ has an order less than or equal to n. Thus, Σ is a first-order signature if

whenever h : τ is a member of Σ, ord(τ) ≤ 1.

A typing judgment, Σ ⊩ t : τ , relates a signature Σ, a λ-term t, and a

type τ . We consider the variables in Σ as being bound over such a judgment.

Common inference rules for determining such typing rules are the following.

Σ, x : τ ⊩ x : τ
Σ ⊩ t : σ → τ Σ ⊩ s : σ

Σ ⊩ (t s) : τ

Σ, x : τ ⊩ M : σ

Σ ⊩ (λx..M) : τ → σ

The last inference rule assumes that the bound variable x does not occur in

Σ. These three typing rules can be used with terms not in β-normal form.

However, we restrict the typing judgment in this book so that only β-normal

formulas are given types. Thus, we adopt the inference rules in Figure 2.1 as

the official rules for this judgment.

When the judgment Σ ⊩ t : τ is provable, we say that t is a Σ-term of

type τ . Note that if a term is given a type, then that term is β-normal.

Furthermore, any term given a type is also said to be in βη-long normal form.

This normal form can be arrived at by first computing the β-normal form

and then applying some η-expansion steps. For example, if i ∈ S, then the

judgment Σ ⊩ λx.x : (i → i) → i → i is not provable, but the judgment

Σ ⊩ λx.λy.xy : (i → i) → i → i,

based on the η-expanded version of the term λx.x, is provable.

16 Chapter 2. Terms, formulas, and sequents

Σ, x1 : τ1, . . . , xn : τn ⊩ t : τ0
Σ ⊩ λx1. . . . λxn.t : τ1 → · · · → τn → τ0

Σ ⊩ t1 : σ1 · · · Σ ⊩ tn : σn h : σ1 → · · · → σn → τ0 ∈ Σ

Σ ⊩ (h t1 · · · tn) : τ0

Both rules are restricted so that τo ∈ S and n ≥ 0. Also, the variables

x1, . . . , xn are assumed to not occur in Σ.

Figure 2.1: Typing judgment for Σ-terms of type τ .

Exercise 2.6.(‡) Fix the set of sorts S and the signature Σ over S. Prove

that if there are primitive types τ and τ ′ such that Σ ⊩ t : τ and Σ ⊩ t : τ ′,

then τ = τ ′. Show that this statement is not true if we allow τ and τ ′ to be

non-primitive.

2.4 Formulas

Most descriptions of predicate logic first present terms and then present for-

mulas as a separate structure incorporating terms. Following Church [1940],

we instead define formulas as terms of the particular type o (the Greek letter

omicron).

When defining the formulas of a given logic (e.g., first-order classical logic),

we first fix the declaration of the logical constants. That signature, which we

denote as Σ−1 (the signature of the foundations), attributes to various tokens

types with target type o.

These logical constants are divided into two groups: propositional con-

stants and quantifiers. The propositional constants are given types that only

use the primitive type o and have order 0 or 1. For example, in Chapter 4,

when we introduce the formulas of classical and intuitionistic first-order logics,

the following signature is used to declare the propositional connectives used

in those formulas.

{t : o, f : o, ∧ : o → o → o, ∨ : o → o → o, ⊃ : o → o → o}

The binary symbols ∧, ∨, and ⊃ are written as infix operators. For example,

the λ-term ((∧ P) Q) is written in the more common form (P ∧ Q). Also,

∧ and ∨ associates to the left, ⊃ associating to the right, and ∧ has higher

priority than ∨, which has higher priority than ⊃.

There are two classes of quantifiers we consider in this book, namely, ∀τ ,

for universal quantification for type τ , and ∃τ , for existential quantification

2.4 Formulas 17

for type τ . Both ∀τ and ∃τ are assigned the type (τ → o) → o. In principle,

there are denumerably infinite many such quantifiers, one for each type τ .

The expressions ∀τ (λx.B) and ∃τ (λx.B) are abbreviated as ∀τx.B and ∃τx.B,

respectively, or as simply ∀x.B and ∃x.B if the value of the type subscript is

not important or can easily be inferred from context. Note that the binding

mechanism used in quantification is really the binding mechanism in the λ-

calculus.

After fixing the set of logical constants, we generally fix the non-logical

symbols by declaring another signature Σ0. Let c : τ1 → · · · → τn → τ0 ∈ Σ0,

where τ0 is a primitive type and n ≥ 0. If τ0 is o, then c is a predicate symbol

of arity n. If τ0 ∈ S\{o} (i.e., τ0 is not o), then c is a function symbol of

arity n. A Σ−1 ∪ Σ0-term of type o is also called a Σ−1 ∪ Σ0-formula, or more

usually either a Σ0-formula (since Σ−1 is usually fixed) or just a formula (if

Σ0 is understood).

A logic is propositional if its only logical connectives are propositional

connectives (i.e., it involves no quantifiers). A logic is first-order if the only

quantifiers allowed in its formulas are contained in the set

{∀τ : (τ → o) → o | τ ∈ S\{o}} ∪ {∃τ : (τ → o) → o | τ ∈ S\{o}}.

The types in this signature are of order 2. The restriction on the type of

quantifiers, namely τ ∈ S\{o}, implies that in a first-order formula, the only

quantification is over primitive (and non-formula) types. A logic that provides

no restriction on the types used in quantification is a higher-order logic: we

consider such a logic starting in Chapter 9.

Assume that Σ−1 declares logical connectives for a first-order logic and

that Σ0 is a first-order signature. Let τ be a primitive type different from o.

A first-order term t of type τ is either a token of type τ or it is of the form

(f t1 . . . tn) where f is a function symbol of type τ1 → · · · → τn → τ and,

for i = 1, . . . , n, ti is a term of type τi. In the latter case, f is the head, and

t1, . . . , tn are the arguments of this term. Similarly, a first-order formula has

either a logical symbol at its head, in which case it is said to be non-atomic,

or a non-logical symbol at its head, in which case it is atomic.

As mentioned above, formulas in both classical and intuitionistic first-order

logics make use of the same set of logical connectives, namely, ∧ (conjunction),

∨ (disjunction), ⊃ (implication), t (truth), f (false), ∀τ (universal quantifica-

tion over type τ), and ∃τ (existential quantification over type τ). The negation

of B, sometimes written as ¬B, is an abbreviation for the formula B ⊃ f.

Similarly to the way ord(τ) counts the nesting of → to the left of → in

type τ (see Section 2.2), the function order(B) counts the nestings of ⊃ to the

left of ⊃ in the formula B. This clausal order function is defined using the

18 Chapter 2. Terms, formulas, and sequents

following recursion for classical and intuitionistic logic formulas.

order(A) = 0 provided A is atomic, t, or f

order(B1 ∧B2) = max(order(B1), order(B2))

order(B1 ∨B2) = max(order(B1), order(B2))

order(B1 ⊃ B2) = max(order(B1) + 1, order(B2))

order(∀x.B) = order(B)

order(∃x.B) = order(B)

Note that order(¬B) = order(B) + 1. The clausal order of a finite set or

multiset of formulas is the maximum clausal order of any formula in that set

or multiset.

The polarity of a subformula occurrence within a formula is defined as

follows. If a subformula C of B occurs to the left of an even number of

occurrences of implications in B, then C is a positive subformula occurrence

of B. On the other hand, if a subformula C occurs to the left of an odd number

of occurrences of implication in a formula B, then C is a negative subformula

occurrence of B. More formally:

1. B is a positive subformula occurrence of B.

2. If C is a positive subformula occurrence of B then C is a positive sub-

formula occurrence in B ∧ B′, B′ ∧ B, B ∨ B′, B′ ∨ B, B′ ⊃ B, ∀τx.B,

and ∃τx.B; C is also a negative subformula occurrence in B ⊃ B′.

3. If C is a negative subformula occurrence of B then C is a negative

subformula occurrence in B∧B′, B′∧B, B∨B′, B′∨B, B′ ⊃ B, ∀τx.B,

and ∃τx.B; C is also a positive subformula occurrence in B ⊃ B′.

Of course, if B contains no occurrences of implications, then all subformulas

occurrences in B are positive occurrences.

2.5 Sequents

Proof and provability are generally described for a collection of formulas in-

stead of a single, isolated formula. For example, a typical way to describe the

provability of the implication B ⊃ C is to pose the hypothetical judgment

involving two formulas: if B then C. Gentzen [1935] introduced sequents as

one way to organize the multiple formulas involved in stating a provable state-

ment. In their simplest form, sequents are a pair written Γ ⊢ ∆, of the two

collections of formulas Γ and ∆. When sequents are used in classical and

intuitionistic logics, the claim that the sequent Γ ⊢ ∆ is provable amounts

to the claim that one of the formulas in ∆ is provable from the assumptions

2.5 Sequents 19

occurring in Γ. Section 3.1 will give more intuition about sequents and logical

reasoning.

Within this book, sequents will vary somewhat in structure: we outline

some of that variability here.

The collections of formulas within sequents will be either lists, multisets,

or sets (although almost always, they will be multisets). Sequents can also be

one-sided or two-sided. One-sided sequents are usually written as ⊢ ∆, and

two-sided sequents are usually written as Γ ⊢ ∆. Here, Γ and ∆ are one of

the three kinds of collections of formulas mentioned above. In the two-sided

sequent Γ ⊢ ∆, we say that Γ is this sequent’s left-hand side and that ∆ is its

right-hand side. Sometimes, we divide left-hand and right-hand contexts into

two zones separated by a semicolon; for example, Γ; Γ ⊢ ∆; ∆′ and ⊢ ∆; ∆′.

The formulas in a sequent are typed, and the signatures that declare the

types of the tokens in those formulas must be specified. As in the previous

section, we generally assume that once we pick a particular logic (classical,

intuitionistic, or linear), we have fixed the signature Σ−1. Furthermore, a set

of non-logical constants Σ0 will often be fixed. Finally, Gentzen’s rules for

the treatment of quantifiers involve the introduction of eigenvariables: these

variables may appear free in the formulas of some sequents. To properly

declare those variables and their types, we prefix a sequent with a signature:

for example, Σ:: ⊢ ∆ and Σ::Γ ⊢ ∆. In all these cases, a formula that appears

in ∆ or Γ must be given type o using the union of the three signatures Σ−1,

Σ0, and Σ.

We note some issues concerning matching expressions with schematic vari-

ables. For example, let B denote a formula and let Γ and Γ′ denote collections

of formulas. Consider what it means to match the expressions B,Γ′ and Γ′,Γ′′

to a given collection, which we assume contains n ≥ 0 occurrences of formulas.

1. If the given collection is a list, then B,Γ′ matches if the list is nonempty

and B is the first formula, and Γ′ is the remaining list. The expression

Γ′,Γ′′ matches if Γ′ is some prefix and Γ′′ is the remaining suffix of that

list: there are n + 1 possible matches.

2. If the given collection is a multiset, then B,Γ′ matches if the multiset

is nonempty and B is a formula in the multiset and Γ′ is the multi-

set resulting from deleting one occurrence of B. The expression Γ′,Γ′′

matches if the multiset union of Γ′ and Γ′′ is Γ: there can be as many

as 2n possible matches since each member of Γ can be placed in either

Γ′ or Γ′′.

3. If the given collection is a set, then B,Γ′ matches if the set is nonempty

and B is a formula in the set, and Γ′ is either the given set or the set

resulting from removing B from the set. The expression Γ′,Γ′′ matches

if the set union of Γ′ and Γ′′ is Γ: there can be as many as 3n possible

20 Chapter 2. Terms, formulas, and sequents

matches since each member of Γ can be placed in either Γ′ or Γ′′ or in

both.

2.6 Bibliographic notes

Church’s approach to specifying terms and formulas in the Simple Theory

of Types is a popular choice in the construction of modern theorem prover

systems: for example, it is used in the HOL family of provers (see Gordon

[2000]) as well as in Isabelle (see Paulson [1994]), Abella (see Baelde et al.

[2014]), and the logic programming language λProlog (see Miller and Nadathur

[2012]). The textbooks by Andrews [1986] and Farmer [2023] treat this logic

in detail.

For a comprehensive treatment of the untyped λ-calculus, see Barendregt

[1984], and of the typed λ-calculus, see Krivine [1990] and Barendregt et al.

[2013]. The use of untyped λ-terms here is similar to the so-called “Curry-

style” of typed λ-terms: bound variables are not assumed globally to have

types but are provided a type when they are initially bound. This approach

to typing contrasts with that used by Church, where variables have types

independent of whether or not they are bound. For more about these different

approaches to types in the λ-calculus, see Pfenning [2008].

Richer types than the simple types introduced in this chapter are useful

within logical formulas and logic programming. For example, the programming

language λProlog has a form of polymorphic typing (see Nadathur and Pfen-

ning [1992], Caires and Monteiro [1994], Appel and Felty [2004], and Miller

and Nadathur [2012]). The Elf logic programming language (based on the LF

logical framework of Harper et al. [1993]) uses dependently-typed λ-terms (see

Pfenning [1989] and Pfenning and Schürmann [1999]).

This book’s approach to the sequent calculus differs from Gentzen [1935]

in three ways.

1. In terms of notation, Gentzen used the symbol −→ to separate the left

side from the right side instead of the ⊢ symbol. We prefer to reserve −→
for specifications of computation where it is often used to denote rewrit-

ing or the evolution of computations (see, for example, Chapter 12).

2. Gentzen used lists to encode the left and right sides of sequents. We

will almost exclusively use multisets instead. Hence, no order between

formulas is maintained in the contexts in our sequents.

3. Gentzen introduced the important concept of eigenvariables into his

proof structures along with certain global conditions needed to keep their

use sound. Here, we view eigenvariables as locally bound over sequents

(see Section 3.2.3).

2.6 Bibliographic notes 21

The perspective that (natural deduction) proofs correspond to (depen-

dently) typed λ-terms and that β-reductions correspond to (functional) com-

putation is part of the well-known Curry-Howard correspondence approach to

modeling computation (see Sørensen and Urzyczyn [2006]). This approach to

computation is not used in this book: instead, we model computation as the

search for (cut-free) proofs.

22 Chapter 2. Terms, formulas, and sequents

Chapter3
Sequent calculus proof rules

A familiar form of formal proof, often attributed to Frege and Hilbert, accepts

specific formulas as axioms (e.g., (p ⊃ (q ⊃ p)) and (((p ⊃ q ⊃ r) ⊃ (p ⊃ q) ⊃
(p ⊃ r)))) and certain inference rules (e.g., from p and (p ⊃ q) conclude q).

A formal Frege proof is a list of formulas such that every formula occurrence

in that list is either an axiom or the result of applying an inference rule to

previous formulas in the list. Such proof structures are simple structures, and

axioms and inference rules can be picked in such a way as to provide a proof

system for classical logic or intuitionistic logic. While Frege proofs are easy

to check for correctness, they are challenging to use as the basis of automated

proof search algorithms. Figure 3.1 provides an example of a Frege proof. As

we shall see shortly, sequent calculus proofs provide a much more structured

approach to formal proofs. We will use sequent calculus proofs to provide

abstract execution models for the logic programming paradigm.

3.1 Sequent calculus and proof search

The sequent calculus makes at least two significant departures from Frege

proofs. First, while inference rules are applied to formulas in Frege proofs, they

are applied to sequents—a more complex structure—in the sequent calculus.

Second, no axioms are used within the sequent calculus proof systems we study

here: the burden of proof falls entirely on inference rules over sequents.

In Section 2.5, we presented sequents as formal, syntactic structures con-

taining one or more collections of formulas. Before formally presenting infer-

ence rules using sequents in Section 3.2, we provide an informal reading of

two-sided sequents in which the right-hand side is a collection containing ex-

actly one occurrence of a formula. Consider, for example, attempting to prove

that for every natural number n, the product n(n + 1) is even. An informal

proof of this fact can be organized as follows. To prove this is true for all

24 Chapter 3. Sequent calculus proof rules

Three axiom schemas for propositional classical logic.

(Ax1) X ⊃ Y ⊃ X

(Ax2) ((X ⊃ (Y ⊃ Z)) ⊃ ((X ⊃ Y) ⊃ (X ⊃ Z))))

(Ax3) (((X ⊃ f) ⊃ f) ⊃ X))

One inference rule: the rule of modus ponens which allows us to conclude

B if A ⊃ B and A have already been proved.

These axioms and inference rules ensure the principle of ex falso quodli-

bet : from false, any formula follows. The following list of formulas is

a Frege proof of the formula (f ⊃ w): here, w can be any formula of

propositional classical logic.

(1) ((w ⊃ f) ⊃ f) ⊃ w by (Ax3)

(2) (((w ⊃ f) ⊃ f) ⊃ w) ⊃ (f ⊃ (((w ⊃ f) ⊃ f) ⊃ w)) by (Ax1)

(3) f ⊃ (((w ⊃ f) ⊃ f) ⊃ w) by mp (1), (2)

(4) (f ⊃ (((w ⊃ f) ⊃ f) ⊃ w)) ⊃
((f ⊃ ((w ⊃ f) ⊃ f)) ⊃ (f ⊃ w)) by (Ax2)

(5) (f ⊃ ((w ⊃ f) ⊃ f)) ⊃ (f ⊃ w) by mp (3), (4)

(6) f ⊃ ((w ⊃ f) ⊃ f) by (Ax1)

(7) f ⊃ w by mp (6), (5)

Figure 3.1: An example of a Frege proof (taken from Hughes [2006]).

natural numbers, pick some arbitrary number, say, m. Now, m is either even

or odd. If m is even, then the product m(m + 1) is even. If m is odd, then

m+1 is even, and, again, the produce m(m+1) is even. Hence, in either case,

this product is even.

A first step in formalizing this proof is to identify (and name) three lemmas

about natural numbers that this argument accepts as previously proved.

L1 ∀n.(even n) ∨ (odd n)

L2 ∀n.(odd n) ⊃ (even (s n))

L3 ∀n.∀m.∀p.((even n) ∨ (even m)) ⊃ (times n m p) ⊃ (even p)

For these lemmas to be proper formulas as defined in the previous chapter,

we must assume that the set of sorts S contains a primitive type, say, nat

and that the signature of non-logical constants Σ0 must contain the following

declarations:

z : nat, s : nat → nat,

even : nat → o, odd : nat → o, times : nat → nat → nat → o

3.1 Sequent calculus and proof search 25

We assume that natural numbers are encoded as {z, (s z), (s (s z)), . . .}, and

that the predicate (times n m p) hold precisely when p is the product n×m.

Imagine that we now take a blank sheet of paper and write at the top the

three lemmas which we accept as assumptions and write at the bottom of that

sheet the formula ∀n.∀p.(times n (s n) p) ⊃ (even p). Our task is to fill in the

gap between the assumptions at the top and the conclusion at the bottom. A

sequent is essentially a representation of the status of that sheet of paper: in

this case, that sequent (named T1) is

T1 ·;L1, L2, L3 ⊢ ∀n.∀p.(times n (s n) p) ⊃ (even p).

The prefix, which is just the dot ·, is meant to show that there are no eigen-

variables bound over this particular sequent. One way to make progress on

finishing a proof of this sequent is to take a new sheet of paper on which we

write the assumptions L1, L2, L3 and (times n (s n) p) at the top and write

the conclusion (even p) at the bottom of that sheet. Thus, we now have an ad-

ditional assumption that p is the product n(n+1) and the different conclusion

(even p). This new state in the construction of a formal proof is represented

by the sequent

T2 n, p;L1, L2, L3, (times n (s n) p) ⊢ (even p).

Note that the variables n and p are bound over this sequent. The next step in

building our proof uses lemma L1 to add the assumption (even n) ∨ (odd n).

That is, our sheet of paper now has five formulas at the top, and it is encoded

as the sequent

T3 n, p;L1, L2, L3, (times n (s n) p), (even n) ∨ (odd n) ⊢ (even p).

The case analysis induced by the disjunctive assumption leads the proof to

have two subproofs. That is, the current sheet of paper can be replaced by

two sheets that are identical, except that one of those sheets replaces that

disjunction with (even n), and the other sheet replaces it with (odd n). These

two sheets are encoded as the following two sequents.

T4 n, p;L1, L2, L3, (times n (s n) p), (even n) ⊢ (even p)

T5 n, p;L1, L2, L3, (times n (s n) p), (odd n) ⊢ (even p)

One way to represent the status of the proof’s development is to organize these

sequents into the tree
T4 T5

T3

.

T2

T1

26 Chapter 3. Sequent calculus proof rules

To complete the formal description of this proof, we need to label each hor-

izontal line by the name of an inference rule. For example, the uppermost

horizontal line is justified by the “rule of cases” (also called the ∨L rule in

Chapter 4). As this tree shows, the process of proving sequent T1 has reduced

it to attempting to prove the two sequent T4 and T5.

This proof can be completed by appealing to lemma L3 to justify sequent

T4 and appealing to lemmas L2 and L3 to justify sequent T5.

Our subsequent study of sequent calculus proofs will not be limited to

capturing natural or human-readable proofs. Instead, we focus on low-level

aspects of proof that will ultimately make it possible to automate proof search

for some fragments of logic. The analysis of sequent calculus proofs by Gentzen

also allows for the more general (albeit less intuitive) multiple-conclusion se-

quent . Thus, while the comma on the left can be viewed as a conjunction, the

comma on the right can be viewed as a disjunction. For example, the sequent

x, y : B1, B2, B3 ⊢ C1, C2 can be viewed as semantically related to the formula

∀x.∀y.[(B1 ∧B2 ∧B3) ⊃ (C1 ∨ C2)].

3.2 Inference rules

An inference rule in a sequent calculus proof system has a single sequent as

its conclusion and zero or more sequents as its premises. There are three

main categories of inference rules used in sequent calculi we study here: the

structural rules, the identity rules, and the introduction rules. We examine

each class separately below.

3.2.1 Structural rules

There are three standard structural rules, called exchange, contraction, and

weakening, and they are presented in Figure 3.2 in both left and right side

versions. All these structural rules can be used with contexts that are list

structures. The exchange rules, xL and xR, allow exchanging two adjacent

elements. These structural rules are not used when contexts are multisets or

sets. The contraction rules, cL and cR, can be used on lists and multisets

to replace two occurrences of the same formula with one occurrence: these

structural rules are not used when contexts are sets. The weakening rules, wL

and wR, can insert a formula into a context. If used with a list, these rules

insert the new formula occurrence only at the end of the context. If contexts

are sets, the only structural rules that make sense to specify are the weakening

rules.

In this book, we shall never use the exchange rules, and contexts will almost

always be multisets. We shall only use the weakening and contraction rules

in our proof systems. If we have a set of formulas that we wish to place into

3.2 Inference rules 27

Σ :: Γ, B,C,Γ′ ⊢ ∆

Σ :: Γ, C,B,Γ′ ⊢ ∆
xL

Σ :: Γ ⊢ ∆, B, C,∆′

Σ :: Γ ⊢ ∆, C,B,∆′ xR

Σ :: Γ, B,B ⊢ ∆

Σ :: Γ, B ⊢ ∆
cL

Σ :: Γ ⊢ ∆, B,B

Σ :: Γ ⊢ ∆, B
cR

Σ :: Γ ⊢ ∆

Σ :: Γ, B ⊢ ∆
wL

Σ :: Γ ⊢ ∆

Σ :: Γ ⊢ ∆, B
wR

Figure 3.2: Structural rules.

Σ :: B ⊢ B
init

Σ :: Γ ⊢ ∆, B Σ :: B,Γ′ ⊢ ∆′

Σ :: Γ,Γ′ ⊢ ∆,∆′ cut

Figure 3.3: The two identity rules: initial and cut.

a sequent, we shall always coerce that set into the multiset where every set

element occurs exactly once.

Exercise 3.1. Let ∆′ be a permutation of the list ∆. Show that a sequence

of xR rules can derive the sequent Σ :: Γ ⊢ ∆ from the sequent Σ :: Γ ⊢ ∆′.

3.2.2 Identity rules

The identity rules consist of the initial and cut rules, examples of which are

displayed in Figure 3.3. Both rules contain repeated schema variable occur-

rences: in the initial rule, the variable B is repeated in the conclusion, and

in the cut rule, the variable B is repeated in the premises. Checking if an

application of one of these rules is correct requires comparing the identity of

two formula occurrences. Although the structural rules address the structure

of the contexts used in forming sequents, the identity rules address the mean-

ing of the sequent symbol ⊢. In particular, these two rules state that ⊢ is

reflexive and transitive. In Section 4.2, we illustrate that, in a certain sense,

these two rules describe dual aspects of ⊢.

In some textbooks, an inference rule with zero premises is called an axiom.

We shall reserve that term for a formula that is accepted as the starting point

of some forms of proofs (e.g., the Frege proofs described at the start of this

chapter). Since sequents are not formulas, we call the leaves of sequent calculus

proof trees initial sequents.

28 Chapter 3. Sequent calculus proof rules

3.2.3 Introduction rules

An inference rule in the final group of rules introduces one occurrence of a log-

ical connective into the conclusion of the inference rule. In two-sided sequent

systems, a logical connective is introduced on the left and right by different

and small collections of inference rules. Here, the term “a small collection”

means a collection of 0, 1, or 2 rules. (In the informal reading of sequents

provided in Section 3.1, a left-introduction rule describes how to reason from

a logical connective while the right-introduction rule describes how to reason

to a logical connective.) If sequents are one-sided, the left-introduction rules

for a connective are usually replaced by the right-introduction rules for that

connective’s De Morgan dual. Thus, one-sided systems are usually limited to

those logics where all connectives have De Morgan duals. The only one-sided

sequent calculus proof system in this book is a proof system for linear logic

that appears in Chapter 6.

Σ :: B,Γ ⊢ ∆

Σ :: B ∧ C,Γ ⊢ ∆
∧L

Σ :: C,Γ ⊢ ∆

Σ :: B ∧ C,Γ ⊢ ∆
∧L

Σ :: Γ ⊢ ∆, B Σ :: Γ ⊢ ∆, C

Σ :: Γ ⊢ ∆, B ∧ C
∧R

Σ :: Γ ⊢ ∆, t
tR

Σ :: Γ1 ⊢ ∆1, B Σ :: C,Γ2 ⊢ ∆2

Σ :: B ⊃ C,Γ1,Γ2 ⊢ ∆1,∆2

⊃L
Σ :: B,Γ ⊢ ∆, C

Σ :: Γ ⊢ ∆, B ⊃ C
⊃R

Σ ⊩ t : τ Σ :: Γ, B[t/x] ⊢ ∆

Σ :: Γ,∀τx.B ⊢ ∆
∀L

Σ, y : τ : Γ ⊢ ∆, B[y/x]

Σ :: Γ ⊢ ∆,∀τx.B
∀R

Figure 3.4: Examples of left and right-introduction rules.

Figure 3.4 presents a few examples of introduction rules for some logical

connectives. That figure provides two left-introduction rules and one right-

introduction rule for conjunction. In contrast, both implication and universal

quantification are given one left and one right-introduction rule. There is one

right-introduction rule and zero left-introduction rules for t.

The rules in Figure 3.4 also illustrate the role that the signature Σ plays

in specifying the quantifier introduction rules. In particular, introducing the

universal quantifier ∀ on the left uses the signature and the judgment Σ ⊩
t : τ to determine the range of suitable substitution terms t. On the other

hand, the right-introduction rule for ∀ changes the signature from Σ ∪ {y :

τ} above the line to Σ below the line. Note that if we think of signatures

3.3 Additive and multiplicative inference rules 29

as lists of distinct typed variables, we must maintain that the variable y is

not free in any formula in the rule’s conclusion. By viewing quantifiers as

bindings in formulas and signatures as binders for sequents, the inference rule

∀R essentially allows for the mobility of a binder: reading this inference rule

from premise to conclusion, the binder for y moves from a sequent-level binding

to the formula level binding for x. At no point is the binder replaced with

a free variable. Of course, this movement of the binder is only allowed if no

occurrences of the bound variable above the line are unbound below the line.

Thus, all occurrences of y in the upper sequent must appear in the displayed

occurrence of B[y/x]. Following Gentzen [1935], such sequent-level bound

variables are called eigenvariables. Note that since we identify all binding

structures that differ by only an alphabetic change of variables, the ∀R rule

could also be written as

Σ, x : τ :: Γ ⊢ ∆, B

Σ :: Γ ⊢ ∆, ∀τx.B
∀R.

In this form, the mobility of the binder for x is more apparent.

The premise Σ ⊩ t:τ for the ∀L rule should be written as Σ−1∪Σ0∪Σ ⊩ t:τ

where Σ−1 and Σ0 are the signatures for the logical and non-logical constants,

respectively. Since both these signatures are global for any particular proof,

we write this condition with only one signature for convenience. Also, one has

the choice to either include this typing judgment as a part of the proof (hence,

the proof of the typing judgment is a subproof of a proof of the conclusion to

this rule) or as a side condition, namely, the requirement that that premise is

provable (in this case, the proof of that side condition is not incorporated into

the sequent proof).

3.3 Additive and multiplicative inference rules

When an inference rule has two premises, there are two natural ways to relate

the contexts in the two premises with the context in the conclusion. Such an

inference rule is multiplicative if contexts in the premises are merged to form

the context in the conclusion. The cut rule in Figure 3.3 and the ⊃L rule

in Figure 3.4 are examples of multiplicative rules. A rule is additive if the

contexts in the premises are the same as the context in the conclusion. The

∧R rule in Figure 3.4 is additive. An additive version of the cut inference rule

can be written as
Σ :: Γ ⊢ ∆, B Σ :: B,Γ ⊢ ∆

Σ :: Γ ⊢ ∆
.

The use of the terms multiplicative and additive will be addressed when the

exponentials of linear logic are presented in Section 6.3.3 (see Exercise 6.3).

30 Chapter 3. Sequent calculus proof rules

The following is a more general definition of these terms, which can be ap-

plied to all inference rules in this book. Given an inference rule, we classify an

occurrence of a formula in its concluding sequent as either a subject occurrence

or a context occurrence. In an introduction rule, the subject occurrence is the

single formula occurrence introduced by that rule. In the initial rule, both

the formula occurrences required by that rule are the subject occurrences. Fi-

nally, if the rule is a cut rule, then no formula occurrence in the conclusion is

a subject occurrence. A context occurrence is any occurrence of a formula in

the conclusion that is not a subject occurrence.

An inference rule is additive if every occurrence of a context formula in the

concluding sequent has an occurrence in every premise sequents. An inference

rule is multiplicative if every occurrence of a context formula in the concluding

sequent has an occurrence in exactly one premise sequent. In both cases, these

occurrences in the conclusion and the premises are always on the same side of

their respective sequents. This characterization of additive and multiplicative

rules can be applied to rules that do not have two premises. For example,

the tR rule in Figure 3.4 is additive and is not multiplicative. However, the

introduction rule

Σ :: · ⊢ t

is additive and multiplicative since the conditions on context formulas are

vacuously true. (We shall sometimes use · to mark an empty part of a sequent.)

The following two introduction rules for conjunction are multiplicative

rules.

Σ :: B,C,Γ ⊢ ∆

Σ :: B ∧ C,Γ ⊢ ∆
∧Lm

Σ :: Γ1 ⊢ ∆1, B Σ :: Γ2 ⊢ ∆2, C

Σ :: Γ1,Γ2 ⊢ ∆1,∆2, B ∧ C
∧Rm

Exercise 3.2.(‡) Show that if the structural rules of weakening and con-

traction are available, then the rules ∧R and ∧L (from Figure 3.4) can be

derived from ∧Rm and ∧Lm, and conversely.

This exercise illustrates that the structural rules allow an additive rule to

account for a multiplicative rule and vice versa. The following collection of

inference rules suggests another connection between these concepts.

Σ :: B ⊢ B
init

Σ :: B ⊢ B
init

Σ :: B ⊢ B ∧B
∧R

Σ :: Γ, B,B ⊢ ∆

Σ :: Γ, B ∧B ⊢ ∆
∧Lm

Σ :: Γ, B ⊢ ∆
cut

Thus, if we adopt ∧Lm and ∧R as the left and right-introduction rules for

conjunction, we can infer the cL rule. Similarly, if we adopt ∧L and ∧Rm as

3.4 Sequent calculus proofs 31

the left and right-introduction rules for conjunction, we can infer the following

instance of wL rule.

Σ :: B ⊢ B
init

Σ :: C ⊢ C
init

Σ :: B,C ⊢ B ∧ C
∧Rm

Σ :: Γ, B ⊢ ∆

Σ :: Γ, B ∧ C ⊢ ∆
∧L

Σ :: Γ, B,C ⊢ ∆
cut

Since we do not wish for the structural rules to enter our proof systems without

explicitly adding them, we must choose carefully how we pair left and right-

introduction rules. Gentzen’s original sequent calculus (and the ones we adopt

for classical and intuitionistic logics in Chapter 4) pairs ∧L with ∧R. When

we turn to linear logic in Chapter 6, we will allow for two conjunctions, written

as & and ⊗, where the right-introduction rule for & is additive and the right-

introduction rule for ⊗ is multiplicative. The left-introduction rule for & will

be similar to ∧L and for ⊗ will be similar to ∧Lm.

Naive implementations of additive and multiplicative inference rules have

contrasting costs depending on whether we are building proofs (starting with

premises) or searching for proofs (starting with the conclusion). Additive

rules are expensive to build since we must check the equality of contexts (and

contexts can be thousands of possibly large formulas), but cheap to search for

since the premises only require sharing pointers to the conclusion’s contexts.

Conversely, multiplicative rules are cheap to use in the proof building sense

since we only need to combine pointers to the context of the premises, but

expensive to do in the proof search setting since there can be an exponential

number of possible context splittings for generating the premises.

3.4 Sequent calculus proofs

Building on the definitions of formulas and sequents in Chapter 2 and the in-

troduction of inference rules in the previous section, we formally define sequent

calculus proofs.

Assume that we have picked a particular style of sequent (e.g., one-sided or

two-sided) and let S be a sequent. A derivation for S is a tree of inference rules

such that the root is labeled with S. We also assume that every occurrence of

an inference rule in a derivation is such that its conclusion is either the root

sequent (also called the endsequent) or is the premise of another occurrence of

an inference rule in that tree. This derivation is a proof of S if every sequent

labeling leaves of the derivation is the conclusion of an inference rule with

zero premises (rules such as init in Figure 3.3 or tR in Figure 3.4). Thus,

a derivation can denote a partial proof since it may have leaves not justified

by some inference rule. When we display derivation trees, leaves with no line

32 Chapter 3. Sequent calculus proof rules

drawn over them are considered open or incomplete. If a line is drawn over

them, then that sequent is justified by an inference rule with no premises.

By a proof system, we mean a collection of inference rules, such as those

described in Section 3.2. Let X be such a set of rules for two-sided sequents.

We write Σ :: Γ ⊢X ∆ to denote that the sequent Σ :: Γ ⊢ ∆ has a proof in

X . Shorthand notations are used: Γ ⊢X ∆ omits the empty Σ, and ⊢X ∆

also omits the empty Γ. The same conventions apply for proof systems using

one-sided sequent except that we do not write the left-hand context (keeping

just the signature). Although the ⊢ symbol (without a subscript) indicates a

sequent, it will occasionally be used as the proposition that the same sequent

is provable in a proof system that can be inferred from context. The reader

should always be able to disambiguate between these two senses of the ⊢
symbol.

Exercise 3.3. Consider a (trivial) sequent calculus proof system containing

just the cut and initial inference rules (see Figure 3.3). Describe what can

be proved using just those two rules. Show that every provable sequent can

be proved without the cut rule.

3.5 Permutations of inference rules

Sequent calculus inference rules can often be permuted over each other. For

example, consider the following three introduction rules.

Σ :: Γ1 ⊢ ∆1, B Σ :: C,Γ2 ⊢ ∆2

Σ :: B ⊃ C,Γ1,Γ2 ⊢ ∆1,∆2

⊃L
Σ :: B,Γ ⊢ ∆, C

Σ :: Γ ⊢ ∆, B ⊃ C
⊃R

Σ :: B,Γ ⊢ ∆ Σ :: C,Γ ⊢ ∆

Σ :: B ∨ C,Γ ⊢ ∆
∨L

Here, the left and right-hand contexts are assumed to be multisets. In the first

derivation in Figure 3.5, the right-introduction rule for implication is below

the left-introduction rule of a disjunction. The second derivation in that figure

has the same root and leaf sequents but the introduction rules are switched.

Note that the second derivation uses two occurrences of ⊃R while the first

proof uses only one occurrence of that rule.

Sometimes inference rules can be permuted if additional structural rules

are employed. For example, consider the first derivation in Figure 3.6. It is

possible to switch the order of the two introduction rules it contains, but this

requires introducing some weakenings and a contraction, as is witnessed by the

second derivation in that figure. If these additional structural rules are not

3.5 Permutations of inference rules 33

Σ :: Γ, p, r ⊢ s,∆ Σ :: Γ, q, r ⊢ s,∆

Σ :: Γ, p ∨ q, r ⊢ s,∆
∨L

Σ :: Γ, p ∨ q ⊢ r ⊃ s,∆
⊃R

Σ :: Γ, p, r ⊢ s,∆

Σ :: Γ, p ⊢ r ⊃ s,∆
⊃R

Σ :: Γ, q, r ⊢ s,∆

Σ :: Γ, q ⊢ r ⊃ s,∆
⊃R

Σ :: Γ, p ∨ q ⊢ r ⊃ s,∆
∨L

Figure 3.5: Two derivations that differ in the order of two inference

rules.

Σ :: Γ1, r ⊢ ∆1, p Σ :: Γ2, q ⊢ ∆2, s

Σ :: Γ1,Γ2, p ⊃ q, r ⊢ ∆1,∆2, s
⊃L

Σ :: Γ1,Γ2, p ⊃ q ⊢ ∆1,∆2, r ⊃ s
⊃R

Σ :: Γ1, r ⊢ ∆1, p

Σ :: Γ1, r ⊢ ∆1, p, s
wR

Σ :: Γ1 ⊢ ∆1, p, r ⊃ s
⊃R

Σ :: Γ2, q ⊢ ∆2, s

Σ :: Γ2, q, r ⊢ ∆2, s
wL

Σ :: Γ2, q ⊢ ∆2, r ⊃ s
⊃R

Σ :: Γ1,Γ2, p ⊃ q ⊢ ∆1,∆2, r ⊃ s, r ⊃ s
⊃L

Σ :: Γ1,Γ2, p ⊃ q ⊢ ∆1,∆2, r ⊃ s
cR

Figure 3.6: Two derivations that illustrate the permutation of inference

rules supported by structural rules.

permitted in a given proof system (as we shall see is the case in intuitionistic

logic), then the original two inference rules cannot be permuted.

Understanding when inference rules permute over each other makes it pos-

sible to improve the effectiveness of searching for proofs. Consider again the

derivations in Figure 3.5. Imagine attempting to find a proof of the sequent

Σ :: Γ, p∨ q ⊢ r ⊃ s,∆ following the development of the first derivation in that

figure: namely, we first do an ⊃R rule followed by the ∨L rule. Additionally,

assume that there is, in fact, no proof of the left premise Σ::Γ, p, r ⊢ s,∆ (e.g.,

an exhaustive search fails to find a proof of this sequent). If we employ a naive

proof search strategy, we might make another attempt to find a proof of the

endsequent by switching the application of the ∨L and the ⊃R rules. As it

is clear from the second derivation, this other order of rule applications leads

to an attempt to prove the same left premise for which we already know no

proof exists. This second attempt at proving this endsequent does not need

34 Chapter 3. Sequent calculus proof rules

to be made.

An inference rule asserts that whenever its premises are provable, its con-

clusion is provable. The converse—that is, if the conclusion is provable, then

all the premises are provable—does not always hold. If this converse does hold

for an inference rule, we say that that rule is invertible. From the point of view

of searching for a proof, whenever invertible introduction rules are available

to prove a given sequent, they can be applied in any order and without con-

sidering any other order of applying them. One way to show that an inference

rule is invertible is to show that for every pair of inference rules for which the

rule in question appears above another inference rule, the order of that pair

of rules can be switched.

3.6 Focused and unfocused proof systems

The sequent calculus proof systems described in this chapter and used in

the next chapter are not well suited to support the computation-as-proof-

search paradigm. Consider, for example, the following situation. Let Γ be a

multiset containing 1000 non-atomic formulas and let A be an atomic formula.

Attempting to find a proof of the sequent Γ, B1 ∨ B2, C1 ∧ C2 ⊢ A by using

an introduction rule requires selecting which of the 1002 occurrences of non-

atomic formulas will get its top-level connective introduced. Of course, the

premises that result from applying that rule will likely have about 1000 non-

atomic formulas on their left-hand side. For example,

Γ, B1, C1, C2 ⊢ A

Γ, B1, C1 ∧ C2 ⊢ A
∧Lm

Γ, B2, C1, C2 ⊢ A

Γ, B2, C1 ∧ C2 ⊢ A
∧Lm

Γ, B1 ∨B2, C1 ∧ C2 ⊢ A
∨L

is one of about a million choices. Also, the choice to do the ∨L below the ∧Lm

is a choice that is not important since permuting the ∧Lm below ∨L will yield

the same premises.

As we shall see in Chapter 5, there are occasions when it is possible to

organize sequent proofs into two alternating phases. One of these phases is the

goal-reduction phase in which only right-introduction rules are attempted when

trying to prove a sequent with a non-atomic right-hand side. The other phase is

the backchaining phase where a focused application of left-introduction rules

are attempted. This two-phased description of proof construction was first

formalized using the technical notion of uniform proofs described in Miller

et al. [1987, 1991]. Soon after Girard introduced linear logic in [1987], Andreoli

[1992] designed a similar, two-phase structure for proofs in linear logic. Since

his proof system was based on linear logic, Andreoli’s proof system was able

to move from using phases based on the left vs right distinction central to

3.7 Cut-elimination and its consequences 35

the notion of uniform proof to using phases based on the more foundational

invertible vs non-invertible distinction of inference rules (see Section 4.3.4).

We sometimes refer to Gentzen-style sequent calculus proof systems as

unfocused. We will eventually introduce explicitly focused proof systems in

Section 5.4: all such proof systems will employ the down-arrow symbol ⇓ to

designate the focus of a sequent. In particular, we use sequents of the form

Σ :: Γ ⇓ D ⊢ A in Section 5.4 and Σ :: Ψ; ∆ ⇓ D ⊢ Γ; Υ in Section 6.7. In both

of these sequents, the formula occurrence D is the focus of that sequent.

3.7 Cut-elimination and its consequences

In the construction of proofs in mathematics, discovering useful lemmas is a

key activity. Consider again the example from Section 3.1 where we considered

proving that the product n(n+ 1) is even for all natural numbers n. The part

of the proof of this theorem illustrated was straightforward since we employed

the three lemmas L1, L2, and L3. Of course, these three lemmas needed

to be discovered and proved. The cut inference rule in Figure 3.3 formally

allows lemmas to be proved and used in a proof. For example, assume that

L1, L2, and L3 have sequent calculus proofs Ξ1, Ξ2, and Ξ3, respectively.1

The following derivation injects those lemmas into the proof of our original

theorem, (∀n.∀p.(times n (s n) p) ⊃ (even p)), which we abbreviate as the

formula G.

Ξ1

· :: · ⊢ L1

Ξ2

· :: · ⊢ L2

Ξ3

· :: · ⊢ L3

...
· :: L1, L2, L3 ⊢ G

· :: L1, L2 ⊢ G
cut

· :: L1 ⊢ G
cut

· :: · ⊢ G
cut

Thus, these instances of the cut rule allow us to move from searching for a

proof of G to searching for a proof of G using L1, L2, and L3.

For all of the sequent calculus proof systems we consider in this book,

the cut-elimination theorem holds: that is, a sequent has a proof if and only

if it has a cut-free proof (a proof with no occurrences of the cut rule). In

subsequent chapters, we shall prove two cut-elimination theorems: Section 5.5

provides one for intuitionistic logic, and Chapter 7 presents one for linear logic.

This important theorem has several consequences, some of which we describe

below.

The consistency of a logic is usually a simple consequence of cut-elimina-

tion. For example, if a formula B and its negation B ⊃ f are provable, then

1These three lemmas can be proved in a proof system that formalizes the induction rule.

In this book, we shall not present such proof systems.

36 Chapter 3. Sequent calculus proof rules

the sequents · ⊢ B and · ⊢ B ⊃ f are provable. Since the rule for introducing

implication on the right is invertible (as we shall see in Section 4.3.4), it must

be the case that the sequent B ⊢ f is provable. Applying the cut inference rule

to proofs of the two sequents · ⊢ B and B ⊢ f yields a proof of · ⊢ f. By the

cut-elimination theorem, however, the sequent · ⊢ f has a proof without cuts.

Thus, the last inference rule of this proof must be either an introduction rule

or a structural rule. Generally, there is no introduction rule for f on the right.

Also, the structural rules will not yield a provable sequent either. Thus, there

can be no cut-free proof of · ⊢ f: hence, a formula and its negation cannot

both be provable.

The success of proving the cut-elimination theorem also signals that certain

aspects of the logic’s proof system were well designed. For example, logical

connectives generally have left and right-introduction rules when using two-

sided sequents. If we think of a sequent as describing a sheet of paper with the

assumptions listed at the top of the page and the conclusion at the bottom,

then the left and right-introduction rules yield two senses to how connectives

are used within a proof. In particular, the left-introduction rules describe how

we argue from formulas, while the right-introduction rules describe how we

argue to formulas. For example, the ⊃R rule in Figure 3.4 describes how one

uses hypothetical reasoning to prove the formula B ⊃ C while the ⊃L rule

shows that we use B ⊃ C as an assumption by attempting a proof of B and

by attempting the original sequent again, but this time with the additional

assumption C added to the set of hypotheses. Of course, if we consider the

model-theoretic semantics of the connectives, they usually have only one sense:

for example, B∧C is true if and only if B and C are true. The cut-elimination

theorem implies that the two senses attributed to a logical connective work

together to define one logical connective. We return to this aspect of cut

elimination in Sections 4.2 and 5.6.

When formulas do not involve higher-order quantification, a formula occur-

ring in a sequent in a cut-free proof is always a subformula of some formula of

the endsequent. This invariant is the so-called subformula property of cut-free

proofs. When searching for a proof, one needs only to choose how to rear-

range subformulas of the endsequent: of course, instantiations of a quantified

formula must also be considered to be subformulas of that quantified formula.

In the first-order setting, all proper subformulas of a given formula have fewer

occurrences of logical connectives. Thus, having proofs restricted to arrange-

ments of subformulas is an interesting and powerful restriction. In contrast,

cut elimination in the higher-order setting does not guarantee the subformula

property since instantiating a predicate variable can result in formulas with

more occurrences of logical connectives than the formula into which the predi-

cate variables were instantiated. This aspect of higher-order logic is illustrated

in Section 9.1.

3.7 Cut-elimination and its consequences 37

Note that the Frege proof of f ⊃ w in Figure 3.1 does not satisfy the

subformula property: in particular, none of the formulas appearing in that list

of formulas is a subformula of f ⊃ w except for the conclusion of that proof.

When one attempts to use the sequent calculus to formalize proofs of math-

ematically interesting theorems, one discovers that the cut rule is one of the

most frequently used inference rules. Eliminating cuts in such proofs would

yield huge, low-level proofs where all lemmas are “in-lined” and reproved at

every instance of their use. Cut-free proofs can thus be huge objects. For

example, suppose one uses the number of sequents in a proof to measure its

size. In some cases, cut-free proofs are hyperexponentially bigger than proofs

allowing cut (see Exercise 2.3 for a similarly explosive growth). Thus, sequents

with proofs of relatively small size can have cut-free proofs that require more

inference rules than the number of sub-atomic particles in the universe. If

a cut-free proof is actually computed and stored in some computer memory,

the theorem that that proof proves is likely to be mathematically uninter-

esting. This observation does not disturb us here since we are interested in

cut-free proofs as tools for describing computation. Cut-free proofs are nei-

ther illuminating nor readable; instead, they are structures more akin to the

classic notion of Turing machine configurations. They provide a low-level and

detailed computation trace.

Encoding a computation as a cut-free proof can be superior to encoding

it via Turing machine configurations since there are several profound ways to

reason with actual proof structures. For example, assume that we have a cut-

free proof of the two-sided sequent P ⊢ G for some logic, say, X . As we shall

see, in many approaches to proof search, it is natural to identify the left-hand

context P with a (logic) program and G as the goal or query to be established.

A cut-free proof of such a sequent is then a trace establishing this goal from

this program. Now assume that we can prove P ′ ⊢+ P where P ′ is some other

logic program and ⊢+ is provability in X+, which is some strengthening of X
in which, say, induction principles are added (as well as cut). If the stronger

logic satisfies cut elimination, P ′ ⊢ G has a cut-free proof in the stronger

logic X+. If things have been organized well, it can then become a simple

matter to see that cut-free proofs of such sequents do not make use of the

stronger proof principles and, hence, P ′ ⊢ G has a cut-free proof in X . Thus,

using cut-elimination, we have been able to move from a formal proof about

programs P and P ′ immediately to the conclusion that whatever goals can

be established for P can be established for P ′. The ability to do such direct,

logically principled reasoning about programs and computations is a valuable

feature of the proof search paradigm.

38 Chapter 3. Sequent calculus proof rules

3.8 Bibliographic notes

In this chapter, we have presented a broad overview of sequent calculus proof

systems. In subsequent chapters, we will present specific sequent calculus

proof systems for classical, intuitionistic, and linear logics.

Kleene [1952] presents a detailed analysis of the permutability of inference

rules for classical and intuitionistic sequent calculus proof systems.

Statman [1978] showed that there exists a sequence H0, H1, H2, . . . of

theorems of first-order classical logic such that the size of Hn and the size of

a sequent calculus proof (with cut) of Hn are linear in n, while the size of the

shortest cut-free proof of Hn is hyperexponential in n. Here, the hyperexpo-

nential function can be defined as h(0) = 1 and h(n + 1) = 2h(n).

The main proof systems presented in this book will have a cut-elimination

theorem. We shall prove the cut-elimination theorem for these proof systems

using the nonstandard technique of proving them for focused instead of un-

focused proof systems. Several good references exists for the more standard

approach of proving the cut-elimination theorem of unfocused proof systems.

The original proof in Gentzen [1935] is a good place to read about proving this

result for classical and intuitionistic logics. The textbooks by Gallier [1986],

Girard et al. [1989], Negri and von Plato [2001], and Bimbó [2015] provide

more modern presentations. Still more novel and metalevel approaches to

proving cut-elimination can be found in Pfenning [2000], Miller and Pimentel

[2004], and Miller and Pimentel [2013].

Chapter4
Classical and intuitionistic

logics

Classical and intuitionistic logics provide the foundation to many logic-based

computational tools, such as interactive and automatic theorem provers, logic

programs, model checkers, and programming language type systems. There

are several ways to describe the difference between these two logics, including

the following.

1. Intuitionistic logic results from admitting only those proofs that can

be seen as providing constructive evidence of what is proved. Classical

logic admits these proofs and others that need not be constructive. For

example, classical logic admits the axiom of the excluded middle as a

proof principle, even though there might not be a constructive way to

tell whether a formula or its negation holds.

2. The semantics of intuitionistic logic can be based on possible world se-

mantics or Kripke models (see Kripke [1965] and Troelstra and van Dalen

[1988]). In such models, standard classical models are called worlds.

These worlds are arranged in a tree structure. A path in such a tree

represents a possible evolution of truth in those worlds. In such models,

an implication is true in a given world if it is true in all worlds to which

it evolves.

Gentzen provided an entirely different characterization of the differences

between classical and intuitionistic logic that involved the role of structural

inference rules within the sequent calculus. This characterization plays an

essential role in this book. A careful reading of Gentzen’s characterization

will help us motivate the introduction of linear logic in Chapter 6.

This chapter presents sequent calculus proof systems for classical and in-

tuitionistic logics that are small variations of the LK and LJ proof systems in

40 Chapter 4. Classical and intuitionistic logics

Gentzen [1935]. After presenting some basic properties of those proof systems,

we highlight some issues that arise when systematically searching for proofs

in those proof systems.

Exercise 4.1. (‡) Prove that there are irrational numbers, a and b, such

that ab is rational. An easy, non-constructive proof starts with the observa-

tion that
√

2
√
2
is either rational or irrational (an instance of the excluded

middle). Complete that proof. Can you provide a constructive proof of this

statement?

4.1 Classical and intuitionistic inference rules

Both intuitionistic and classical logics will use the same connectives: in par-

ticular, the signature of logical connectives, Σ−1, for both of these logics is

{f : o, t : o,∧ : o → o → o,∨ : o → o → o,⊃ :o → o → o} ∪
{∀τ : (τ → o) → o,∃τ : (τ → o) → o | τ ∈ S\{o}}

Here, the set of primitive types S is assumed to be fixed and to contain the

type o. This signature is a first-order signature over the sorts S\{o} (see

Section 2.3). If we use {o} for S, then this signature does not contain any

quantifiers and is, therefore, the signature for a propositional logic.

Our proof systems for provability in classical and intuitionistic logics use

sequents of the form Σ::Γ ⊢ ∆, where both Γ and ∆ are multisets of Σ-formulas.

The introduction, identity, and structural rules for this proof system are given

in Figure 4.1, 4.2, and 4.3, respectively. Of the four inference rules with two

premises, ⊃L and cut are multiplicative, while ∧R and ∨L are additive.

The left and right-introduction rules for t and f can be derived from the

binary connective for which they are the unit. In particular, the ∧R has two

premises for the binary connective. The n-ary generalization of the ∧R will

have n premises. Since t is the unit for ∧, we can interpret it as the 0-ary

conjunction. Thus, the tR rule has zero premises. Furthermore, the n-ary

version of the ∧L rule has n instances, one for each of its n conjuncts. Thus,

there is no left-introduction rule for t since it is the 0-ary version of ∧. The

dual argument illustrates how to derive the introduction rules for f from the

rules for ∨.

Provability in classical logic is given using the notion of a C-proof, which

is any proof using inference rules in Figure 4.1, Figure 4.2, and Figure 4.3.

Provability in intuitionistic logic is given using I-proofs, which are C-proofs

in which the right-hand side of all sequents in a given proof contains exactly

one formula: i.e., they are single-conclusion sequents. A proof system that

can only use such restricted sequents is called a single-conclusion proof system.

4.1 Classical and intuitionistic inference rules 41

Σ :: B,Γ ⊢ ∆

Σ :: B ∧ C,Γ ⊢ ∆
∧L

Σ :: C,Γ ⊢ ∆

Σ :: B ∧ C,Γ ⊢ ∆
∧L

Σ :: Γ ⊢ ∆, t
tR

Σ :: B,Γ ⊢ ∆ Σ :: C,Γ ⊢ ∆

Σ :: B ∨ C,Γ ⊢ ∆
∨L

Σ :: Γ ⊢ ∆, B Σ :: Γ ⊢ ∆, C

Σ :: Γ ⊢ ∆, B ∧ C
∧R

Σ :: Γ, f ⊢ ∆
fL

Σ :: Γ ⊢ ∆, B

Σ :: Γ ⊢ ∆, B ∨ C
∨R

Σ :: Γ ⊢ ∆, C

Σ :: Γ ⊢ ∆, B ∨ C
∨R

Σ ⊩ t : τ Σ :: Γ, B[t/x] ⊢ ∆

Σ :: Γ,∀τx.B ⊢ ∆
∀L

Σ, y : τ :: Γ ⊢ ∆, B[y/x]

Σ :: Γ ⊢ ∆,∀τx.B
∀R

Σ, y : τ :: Γ, B[y/x] ⊢ ∆

Σ :: Γ, ∃τx B ⊢ ∆
∃L

Σ ⊩ t : τ Σ :: Γ ⊢ ∆, B[t/x]

Σ :: Γ ⊢ ∆, ∃τx B
∃R

Σ :: Γ1 ⊢ ∆1, B Σ :: C,Γ2 ⊢ ∆2

Σ :: B ⊃ C,Γ1,Γ2 ⊢ ∆1,∆2

⊃L
Σ :: B,Γ ⊢ ∆, C

Σ :: Γ ⊢ ∆, B ⊃ C
⊃R

Figure 4.1: Introduction rules.

Σ :: B ⊢ B
init

Σ :: Γ1 ⊢ ∆1, B Σ :: B,Γ2 ⊢ ∆2

Σ :: Γ1,Γ2 ⊢ ∆1,∆2

cut

Figure 4.2: Identity rules.

Σ :: Γ ⊢ ∆

Σ :: Γ, B ⊢ ∆
wL

Σ :: Γ ⊢ ∆

Σ :: Γ ⊢ ∆, B
wR

Σ :: Γ, B,B ⊢ ∆

Σ :: Γ, B ⊢ ∆
cL

Σ :: Γ ⊢ ∆, B,B

Σ :: Γ ⊢ ∆, B
cR

Figure 4.3: Structural rules: contraction and weakening.

42 Chapter 4. Classical and intuitionistic logics

When no such restriction is imposed on sequents (as in C-proofs), such a proof

system is called a multiple-conclusion proof system.

Let Σ be a given first-order signature over the primitive types in S, let ∆

and Γ be finite multisets of Σ-formulas, and let B be a Σ-formula. We write

Σ :: ∆ ⊢C Γ if the sequent Σ :: ∆ ⊢ Γ has a C-proof. We write Σ :: ∆ ⊢I B if the

sequent Σ :: ∆ ⊢ B has an I-proof.

The restriction on I-proofs (that all sequents in the proof have singleton

right-hand sides) implies that I-proofs do not contain occurrences of structural

rules on the right (i.e., no occurrences of cR and wR) and that every occurrence

of the ⊃L rule and the cut rule are instances of the following two inference

rules.

Σ :: Γ1 ⊢ B Σ :: C,Γ2 ⊢ E

Σ :: B ⊃ C,Γ1,Γ2 ⊢ E
⊃L

Σ :: Γ1 ⊢ B Σ :: B,Γ2 ⊢ E

Σ :: Γ1,Γ2 ⊢ E
cut

That is, the formula on the right-hand side of the conclusion must move to

the right premise and not to the left premise. These observations can give an

alternative characterization of I-proofs.

Proposition 4.2. Let Ξ be a C-proof of Σ :: Γ ⊢ B. Then Ξ is an I-

proof if and only if Ξ contains no occurrences of either cR or wR and, in

every occurrence in Ξ of an ⊃L and a cut rule, the right-hand side of the

conclusion is the same as the right-hand side of the right premise.

Proof. The forward direction is immediate. Thus, assume that the C-proof

Ξ of Σ :: Γ ⊢ B satisfies the two conditions of the converse. We proceed by

induction on the structure of proofs. Consider the last inference rule of Ξ.

If that rule is an instance of the init, tR, or fL rules, the conclusion is im-

mediate. Otherwise, if that last inference rule is an instance of either ⊃L or

cut, then, given the inductive restrictions, the premises have proofs satisfying

the same restrictions, namely that the two premises are single-conclusion se-

quents. Thus, by the inductive assumption, the proofs of the premises must

be I-proofs. The inductive argument holds trivially if the last rule of Ξ is any

other inference rule (the wR and cR rules are not possible).

This alternative characterization of I-proofs as restricted C-proofs prefig-

ures two important features of linear logic (Chapter 6). The first condition

(on the absence of wR and cR) means that the contexts used to describe intu-

itionistic logic are hybrid : the left-hand-side of sequents allows structural rules

while the right-hand-side of sequents does not. This hybrid use of contexts

will be exploited in richer ways in linear logic. The second condition means

that something special is hidden in the intuitionistic implication and, as we

4.1 Classical and intuitionistic inference rules 43

B ⊢ B
init

B ⊢ B, f
wR

⊢ B,B ⊃ f
⊃R

⊢ B,B ∨ (B ⊃ f)
∨R

⊢ B ∨ (B ⊃ f), B ∨ (B ⊃ f)
∨R

⊢ B ∨ (B ⊃ f)
cR

Figure 4.4: A C-proof of the excluded middle.

shall see in Section 6.2, that special feature is captured by the ! exponential

of linear logic.

Gentzen’s formulation of sequent calculus treated negation as a logical

connective. However, when we write the negation of a formula, ¬B, we shall

mean B ⊃ f. We return to these two different treatments of negation in

Section 4.5.

A formula of the form B ∨ ¬B is an example of the excluded middle: in

terms of truth values, B is either true or false, and there is no third possibility.

Figure 4.4 contains a C-proof of this formula.

A slight variation of this proof yields a C-proof of B ∨ (B ⊃ C) for any

formulas B and C.

Exercise 4.3.(‡) Provide proofs for each of the following sequents. If an

I-proof exists, present that proof. Assume that the signature for non-logical

constants is Σ0 = {p : o, q : o, r : i → o, s : i → i → o, a : i, b : i}.

1. (p ∧ (p ⊃ q) ∧ (p ∧ q ⊃ r)) ⊃ r

2. (p ⊃ q) ⊃ (¬q ⊃ ¬p)

3. (¬q ⊃ ¬p) ⊃ (p ⊃ q)

4. p ∨ (p ⊃ q)

5. ((p ⊃ q) ⊃ p) ⊃ p

6. (r a∧ r b ⊃ q) ⊃ ∃x.(r x ⊃ q)

7. ∃y.∀x.(r x ⊃ r y)

8. ∀x.∀y.(s x y) ⊃ ∀z.(s z z)

Exercise 4.4.(‡) Take the formulas in Exercise 4.3 which have C-proofs but

no I-proofs and reorganize them into I-proofs in which appropriate instances

of the excluded middle are added to the left-hand context. For example, give

an I-proof of the sequent Σ :: r a ∨ ¬r a ⊢ (r a ∧ r b ⊃ q) ⊃ ∃x.(r x ⊃ q).

44 Chapter 4. Classical and intuitionistic logics

Exercise 4.5. (‡) Let A be an atomic formula. Describe all pairs of for-

mulas ⟨B,C⟩ where B and C are different members of the set

{A,¬A,¬¬A,¬¬¬A}

such that B ⊢ C has a C-proof. Make the same list such that B ⊢ C has

an I-proof.

Exercise 4.6. The multiplicative version of ∧R is the inference rule

Σ :: Γ1 ⊢ B,∆1 Σ :: Γ2 ⊢ C,∆2

Σ :: Γ1,Γ2 ⊢ B ∧ C,∆1,∆2

.

Show that a sequent has a C-proof (resp. I-proof) if and only if it has one in

the proof system that results from replacing ∧R with the multiplicative ver-

sion. Similarly, consider the multiplicative version of the ∨L rule, namely,

Σ :: B,Γ1 ⊢ ∆1 Σ :: C,Γ2 ⊢ ∆2

Σ :: B ∨ C,Γ1,Γ2 ⊢ ∆1,∆2

.

Show that a sequent has a C-proof if and only if it has a C-proof where the

additive ∨L is replaced with this multiplicative rule.

The notion of provability based on sequents given in this section differs

slightly from common presentations of classical and intuitionistic logic found

in, say, Gentzen [1935], Prawitz [1965], Fitting [1969], and Troelstra [1973].

Those presentations do not make the eigenvariable signatures explicit, and

substitution terms (the terms used in ∀L and ∃R) are not constrained to

be built from such signatures. The following example illustrates the main

difference. Let S be the set {i, o} of two sorts and let Σ0, the signature of

non-logical constants, be just {p : i → o}. Now consider the sequent

· :: ∀ix (p x) ⊢ ∃ix (p x).

This sequent has no proof even though ∃ix (p x) follows from ∀ix (p x) in the

traditional presentations of classical and intuitionistic logics. This difference

is because there are no {p : i → o}-terms of type i: that is, the type i is

empty in this signature. Thus, we need the following additional definition.

The signature Σ inhabits the set of primitive types S if, for every τ ∈ S
different than o, there is a Σ-term of type τ . When Σ inhabits S, the notion

of provability defined above coincides with the more traditional presentations.

4.1 Classical and intuitionistic inference rules 45

The sequent calculus proof systems for classical and intuitionistic logics

will be used as the standard by which we shall judge other proof systems.

This comparison is broken into two parts called soundness and completeness.

In particular, assume we have a sequent proof system called Y. We say that Y
is sound for classical logic if every sequent Γ ⊢ B provable in Y is also provable

in classical logic (i.e., Γ ⊢ B has a C-proof). Conversely, Y is complete for clas-

sical logic if every sequent Γ ⊢ B with a C-proof also has a Y proof. Soundness

and completeness for intuitionistic logic are stated similarly by using I-proofs

instead of C-proofs. For example, Gentzen’s theorem (Theorem 4.13) about

eliminating the cut rule can be seen as a completeness theorem for the proof

system that results from removing the cut rule from the rules for C-proofs. It

is worth noting that since p ∨ (p ⊃ q) has a C-proof but no I-proof, it is the

case that I-proofs are not complete for C-proofs and that C-proofs are not

sound for I-proofs.

Exercise 4.7.(‡) Assume that the set of sorts S contains the two tokens i

and j and that the only non-logical constant is f : i → j. In particular, as-

sume that no constants of type i are declared in the non-logical signature. Is

there an I-proof of (∃jx t)∨(∀iy∃jx t)? Under the same assumption, does the

formula (∃jx t)∨(∀ix f) have a C-proof? An I-proof? What comparison can

you draw between proving this formula and the formula in Exercise 4.3(4)?

As we noted at the beginning of this chapter, there are many ways to

describe the difference between classical and intuitionistic logics. The following

exercise contains yet another way to present this difference.

Exercise 4.8.(‡) Consider adding the rule (taken from Gabbay [1985])

Σ :: Γ ⊢ B

Σ :: Γ ⊢ C
restart

to I-proofs. This rule has the proviso that on the path from the occurrence

of this rule to the root of the proof, there is a sequent with B as its right-

hand side. The spirit of this rule is that during the search for a proof of

single-conclusion sequents, one can ignore the right-hand side of a sequent

(here, C) and restart an attempt to prove a previous right-hand side (here,

B). Prove that a formula has a C-proof if and only if it has an I-proof with

the restart rule added.

46 Chapter 4. Classical and intuitionistic logics

4.2 The identity rules and their elimination

As it turns out, almost all forms of the identity rules can be eliminated from

proofs without losing completeness in both classical and intuitionistic logics.

In particular, all initial rules involving non-atomic formulas and all cut rules

can be eliminated.

An occurrence of the initial rule of the form Σ ::B ⊢ B is an atomic initial

rule if B is an atomic formula. A proof is atomically closed if every occurrence

of the initial rule in it is an atomic initial rule. In classical and intuitionistic

logics, we can restrict the initial rule to be atomic initial rules.

Theorem 4.9. If a sequent has a C-proof (resp, an I-proof) then it has

a C-proof (resp, an I-proof) in which all occurrence of the init rule are

atomic initial rules.

Proof. We need to prove that every sequent of the form B ⊢ B has a proof

containing only atomic initial rules. We proceed by induction on the structure

of B. Consider the cases where B is of the form B1 ⊃ B2 and of the form

∀τx.Bx and consider the following two derivations.

B1 ⊢ B1 B2 ⊢ B2

B1, B1 ⊃ B2 ⊢ B2

⊃L

B1 ⊃ B2 ⊢ B1 ⊃ B2

⊃R

Σ, y : τ :: By ⊢ By

Σ, y : τ :: ∀τx.Bx ⊢ By
∀L

Σ :: ∀τx.Bx ⊢ ∀τx.Bx
∀R

Clearly, in these two cases, one instance of an initial rule can be replaced by

other instances of the initial rule involving smaller formulas. Applying the

inductive hypothesis on the premises of these derivations completes the proof

for these cases. We leave the remaining cases to the reader to complete.

The fact that the initial rules involving non-atomic formulas can be re-

placed by introduction rules and initial rules on subformulas is an important

and desirable property of a proof system. However, atomic initial rules cannot

be removed from proofs. Atoms are built from non-logical constants, such as

predicates and function systems, and their meaning comes from outside logic.

In particular, we shall eventually introduce logic programs to provide methods

for proving atomic formulas that specify how to sort lists and represent tran-

sition systems. Although the logical constants have a fixed meaning given by

proof systems, the non-logical constants that form atoms (predicate symbols)

are the plugs for programmers to impact the development of proofs (we turn

our attention to logic programs in the next chapter).

The cut rule can also be restricted to atomic formulas, although it is more

complex to prove that restriction. For example, consider the following occur-

4.2 The identity rules and their elimination 47

rence of the cut rule.

Ξ1

Σ :: Γ1 ⊢ B,∆1

Ξ2

Σ :: Γ2, B ⊢ ∆2

Σ :: Γ1,Γ2 ⊢ ∆1,∆2

cut

To argue that this cut can be eliminated, we need to consider the many cases

that might arise when examining the last inference rule in both the Ξ1 and

Ξ2 subproofs. Ultimately, we hope to rewrite the proof displayed above into

another proof of the same endsequent in which the last inference rule is no

longer the cut rule. We highlight only those cases where the last inference rule

in Ξ1 is the right-introduction rule for B and Ξ2 is the left-introduction rule

for B.

Consider a proof that contains the following cut with a conjunctive formula

in which the two occurrences of that conjunction are immediately introduced

in the two subproofs to cut.

Ξ1

Σ :: Γ1 ⊢ A1,∆1

Ξ2

Σ :: Γ1 ⊢ A2,∆1

Σ :: Γ1 ⊢ A1 ∧A2,∆1
∧R

Ξ3

Σ :: Γ2, Ai ⊢ ∆2

Σ :: Γ2, A1 ∧A2 ⊢ ∆2
∧L

Σ :: Γ1,Γ2 ⊢ ∆1,∆2

cut

Here, i is either 1 or 2. This derivation can be rewritten to

Ξi

Σ :: Γ1 ⊢ Ai,∆1

Ξ3

Σ :: Γ2, Ai ⊢ ∆2

Σ :: Γ1,Γ2 ⊢ ∆1,∆2

cut.

In the process of reorganizing the proof in this manner, either Ξ1 or Ξ2 is

discarded, and the new occurrence of cut is on a strict subformula of A1 ∧A2.

Consider a proof that contains the following cut on an implicational for-

mula and where the two occurrences of that implication are immediately in-

troduced in the two premises of the cut.

Ξ1

Σ :: Γ1, A1 ⊢ A2,∆1

Σ :: Γ1 ⊢ A1 ⊃ A2,∆1

⊃R

Ξ2

Σ :: Γ2 ⊢ A1,∆2

Ξ3

Σ :: Γ3, A2 ⊢ ∆3

Σ :: Γ2,Γ3, A1 ⊃ A2 ⊢ ∆2,∆3

⊃L

Σ :: Γ1,Γ2,Γ3 ⊢ ∆1,∆2,∆3

cut

This derivation can be rewritten to

Ξ2

Σ :: Γ2 ⊢ A1,∆2

Ξ1

Σ :: Γ1, A1 ⊢ A2,∆1

Σ :: Γ1,Γ2 ⊢ ∆1,∆2, A2

cut Ξ3

Σ :: Γ3, A2 ⊢ ∆3

Σ :: Γ1,Γ2,Γ3 ⊢ ∆1,∆2,∆3

cut

48 Chapter 4. Classical and intuitionistic logics

In the process of reorganizing the proof in this manner, the cut on A1 ⊃ A2 is

replaced by two instances of cut, one on A1 and the other one A2.

Consider a proof that contains the following cut with ∀ in which the two

occurrences of that quantifier are immediately introduced in the two subproofs

to cut. Recall that the formula ∀x.Bx is an abbreviation for (∀(λx.Bx)),

which, in turn, is η-convertible to just ∀B. Hence, an instance of this quantifier

can be written as (Bt).

Ξ1

Σ, x :: Γ1 ⊢ Bx,∆1

Σ :: Γ1 ⊢ ∀x.Bx,∆1
∀R

Ξ2

Σ :: Γ2, Bt ⊢ ∆2

Σ :: Γ2,∀x.Bx ⊢ ∆2
∀L

Σ :: Γ1,Γ2 ⊢ ∆1,∆2

cut

Here, t is a Σ-term. By Exercise 4.20, the proof Ξ1 of Σ, x :: Γ1 ⊢ Bx,∆1 can

be transformed into a proof Ξ′
1 of Σ :: Γ1 ⊢ Bt,∆1 (notice that x is not free in

any formula of Γ1 and ∆1 nor in the abstraction B). The above instance of

cut can now be rewritten as

Ξ′
1

Σ :: Γ1 ⊢ Bt,∆1

Ξ2

Σ :: Γ2, Bt ⊢ ∆2

Σ :: Γ1,Γ2 ⊢ ∆1,∆2

cut.

Exercise 4.10. Repeat the above rewriting of cut inference rules when the

cut formula is f, a disjunction, or an existential quantifier.

Consider a proof that contains the following cut with t in which the left

premise is proved with the tR.

Σ :: Γ1 ⊢ t,∆1
tR Ξ

Σ :: Γ2, t ⊢ ∆2

Σ :: Γ1,Γ2 ⊢ ∆1,∆2

cut

Since there is no matching left-introduction rule for t, the elimination of this

cut is different from those proceeding. This proof can be changed to remove

this cut occurrence entirely as follows. First, the proof Ξ of Σ :: Γ2, t ⊢ ∆2 can

be rewritten to the proof Ξ′ of Σ :: Γ2 ⊢ ∆2 by removing the occurrence of t in

the endsequent and, hence, all the other occurrences of t that can be traced

to that occurrence. (See Exercise 4.19.) Furthermore, Ξ′ can be transformed

to a proof Ξ′′ of Σ :: Γ1,Γ2 ⊢ ∆1,∆2 by simply adding weakening rules to it.

The proof Ξ′′ contains one fewer instances of the cut-rule than the original

displayed proof above.

The above rewriting of cut rules suggests that each of the logical connec-

tives, in isolation, has been given the appropriate left and right-introduction

4.2 The identity rules and their elimination 49

rules. As mentioned in Section 3.7, each logical connective is given two senses:

a small collection of right-introduction rules provides the means to prove a

logical connective and a small collection of left-introduction rules provides

the means to argue from a logical connective as an assumption. The cut-

elimination procedure (partially described above) and the non-atomic-initial-

sequent elimination procedure provide some justification that these two senses

belong to the same connective.

Exercise 4.11.(‡) Define a new binary logical connective, written ⋄, giving
it the left-introduction rules for ∧ but the right-introduction rules for ∨.
Can cut be eliminated from proofs involving ⋄? Can init be restricted to

only atomic formulas? Prior [1960] called this connective “tonk.”

Sometimes, cuts can be permuted locally, although they cannot be elimi-

nated globally. Consider adding to the C-proof system a definition mechanism

for propositional formulas (the restriction to propositional formulas is only to

simplify the presentation). Specifically, let D be a finite set of definitions which

are pairs A := B of a propositional symbol A and a propositional formula B.

Also, add to the proof system in Section 4.1 the following two introduction

rules for defined atoms (assuming the definition A := B is a member of D).

Γ, B ⊢ ∆

Γ, A ⊢ ∆
defL

Γ ⊢ ∆, B

Γ ⊢ ∆, A
defR

Note that locally, the cut rule interacts well with these two introduction rules.

For example, if the cut formulas in the premise of a cut rule are immediately

introduced by these definition rules, we can have the following derivation.

Γ1 ⊢ ∆1, B

Γ1 ⊢ ∆1, A
defR

Γ2, B ⊢ ∆2

Γ2, A ⊢ ∆2
defL

Γ1,Γ2 ⊢ ∆1,∆2

cut

The cut rule can be applied to the premises of defR and defL as follows.

Γ1 ⊢ ∆1, B Γ2, B ⊢ ∆2

Γ1,Γ2 ⊢ ∆1,∆2

cut

In this case, one instance of cut on the atomic formula A is replaced by another

instance of cut on the possibly larger formula B. Without further restrictions

on the class of formulas allowed in definitions, cuts cannot be eliminated.

The following exercise illustrates that a logic extended with definitions can be

inconsistent.

50 Chapter 4. Classical and intuitionistic logics

Exercise 4.12.(‡) Let p be a non-logical constant of type o. Let D contain

just the definition p := (p ⊃ f). Show how it is possible to write proofs

without the cut rule for both p ⊢ f and ⊢ p. [Hint: the cR rule is needed.]

As a consequence, there is a proof with a cut of ⊢ f. Describe what happens

when one attempts to eliminate the cut in this proof of f.

4.3 Cut elimination and its consequences

A proof is a cut-free proof if it contains no occurrences of the cut rule. The

main theorem in Gentzen [1935] is the following.

Theorem 4.13 (Cut-elimination). If a sequent has a C-proof (respectively,

I-proof) then it has a cut-free C-proof (respectively, I-proof).

We will eventually prove cut-elimination theorems for focused versions of

sequent calculi: Theorem 5.28 proves this result for a fragment of intuition-

istic logic, and Theorem 7.15 proves it for linear logic. A consequence of

those theorems is cut-elimination theorem for unfocused proof systems: see

Theorems 5.30 and 7.19.

4.3.1 The duality of cut and initial

We mentioned in Section 3.2.2 that the initial and cut rules express dual

aspects of ⊢. To illustrate that, let Σ be some signature and T be the set

of formulas B ⊃ B such that B is a Σ-formula. The init rule can prove all

members of T . On the other hand, the cut rule can be seen as using members

of this set as an assumption. In particular, a cut-inference rule can be replaced

with an ⊃L rule as follows.

Σ :: Γ ⊢ ∆, B Σ :: B,Γ′ ⊢ ∆′

Σ :: Γ,Γ′ ⊢ ∆,∆′ cut
Σ :: Γ ⊢ ∆, B Σ :: B,Γ′ ⊢ ∆′

Σ :: B ⊃ B,Γ,Γ′ ⊢ ∆,∆′ ⊃L

Thus a proof of Σ :: Γ ⊢ ∆ can be converted to a cut-free proof of Σ :: T ′,Γ ⊢
∆, where T ′ is a finite subset of T . Thus, init provides (cut-free) proofs

of members of T , and cut provides cut-free proofs using members of T as

assumptions.

4.3.2 Eliminating cuts can cause a size explosion

The following example illustrates that a proof without cuts can be much larger

than a proof with cuts of the same sequent. Fix the non-logical signature to be

{a :i, f :i → i, p :i → o}. The notation (fn t) denotes the term that result from

4.3 Cut elimination and its consequences 51

n applications of f to the term t: i.e., (f (f . . . (f t) . . .)), where there are n

occurrences of f applied to t. Let P be the multiset {p a,∀x.(p x ⊃ p (f x))}.

Clearly, the sequent P ⊢ p(fna) is provable for all n ≥ 0. For example, the

following cut-free proof proves that p(f(f(f a))) is a consequence of P.

P ⊢ pa P, p(fa) ⊢ p(fa)

P, pa ⊃ p(fa) ⊢ p(fa)

P ⊢ p(fa)
†

P, p(f2a) ⊢ p(f2a)

P, p(fa) ⊃ p(f2a) ⊢ p(f2a)

P ⊢ p(f2a)
†

P, p(f3a) ⊢ p(f3a)

P, p(f2a) ⊃ p(f3a) ⊢ p(f3a)

P ⊢ p(f3a)
†

The key inference steps in this proof, marked with † involve cL and ∀L. This

style of proof could be generalized so that proving p(fna) involves n instances

of this combination of rules.

Exercise 4.14. Show that the shortest cut-free I-proof of P ⊢ p(fna) has

height that is linear in n. Here, the height of a proof is the maximum

number of occurrences of inference rules on a path from an initial rule to

the endsequent.

Exercise 4.15.(‡) Show that it is possible to have proofs with cut of p(f2na)

from P whose height is linear in n instead of in 2n (as in the cut-free proofs

mentioned in Exercise 4.14). Do this by proving a series of lemmas when

constructing that proof.

A consequence of these two exercises is that moving from a proof with cuts

to a proof without cuts can make proofs grow (at least) exponentially bigger.

4.3.3 Logical equivalence

Another consequence of the cut-elimination theorem is that it justifies the com-

mon practice of manipulating formulas by replacing subformulas with equiva-

lent ones.

The expression B ≡ C is an abbreviation for (B ⊃ C) ∧ (C ⊃ B). Two

Σ-formulas B and C are equivalent in classical (resp., intuitionistic) logic if the

sequent Σ :: · ⊢ B ≡ C is provable in classical (resp., intuitionistic). Clearly,

if two formulas are equivalent in intuitionistic logic, they are equivalent in

classical logic. The converse is, however, not true. For example, p∨ (p ⊃ q) is

52 Chapter 4. Classical and intuitionistic logics

Σ :: C ▷◁ C

Σ :: C ▷◁ E Σ :: D ▷◁ F

Σ :: C ∧D ▷◁ E ∧ F

Σ :: C ▷◁ E Σ :: D ▷◁ F

Σ :: C ∨D ▷◁ E ∨ F

Σ :: C ▷◁ E Σ :: D ▷◁ F

Σ :: C ⊃ D ▷◁ E ⊃ F

x : τ,Σ :: C ▷◁ D

Σ :: ∀τx.C ▷◁ ∀τx.D
x : τ,Σ :: C ▷◁ D

Σ :: ∃τx.C ▷◁ ∃τx.D

Σ :: Aθ ▷◁ Bθ
†

The variables C, D, E, and F are quantified per inference rule. Also,

A and B are fixed Σ̂-formulas for which we have proved Σ̂ :: ⊢ A ≡ B.

The proviso † requires that θ is a substitution of the variables in Σ̂ with

Σ-terms.

Figure 4.5: The inductive definition for replacing some occurrences of

A with B within a formula.

classically equivalent to (p ⊃ p)∨q, but these are not equivalent in intuitionistic

logic.

Equivalences can rewrite one logical formula to another logical formula so

that equivalence is maintained. Thus, algebraic-style reasoning can be done on

formulas. Sequences of rewritings provide a flexible way to prove equivalences

without the explicit need to use the sequent calculus.

A common way to define the replacement of a subformula occurrence within

a formula is to introduce a syntax such as C[A] and to think of C[□] as a formula

with possibly several occurrences of the hole □. In that setting, if the formulas

C and D can be written as C[A] and C[B], respectively, then we say that D

results from replacing zero or more occurrences of the subformula A in C with

B in D. Another definition is available via the inductive definition given by

the proof system in Figure 4.5. Let C and D be Σ-formulas. We say that

D arises from replacing zero or more subformula occurrences of A in C with

the formula B if Σ :: C ▷◁ D is provable. Note that we use Σ as a binding

mechanism for variables in the same style as we used Σ to bind eigenvariables

in sequents.

Proposition 4.16. Let A and B be Σ̂-formulas such that Σ̂ :: · ⊢ A ≡ B is

provable in classical (resp., intuitionistic) logic. If Σ :: C ▷◁ D is provable

using the rules in Figure 4.5, then Σ :: · ⊢ C ≡ D is provable in classical

(resp., intuitionistic) logic.

4.3 Cut elimination and its consequences 53

Proof. Let A and B be Σ̂-formulas and assume that A ≡ B is provable in, say,

intuitionistic logic. Hence both Σ̂ ::A ⊢ B and Σ̂ ::B ⊢ A have I-proofs. Also,

assume that Σ :: C ▷◁ D is provable using the inference rules in Figure 4.5.

The proof of this proposition follows from a straightforward induction on the

structure of such proofs. We illustrate one case. Assume that the last rule

involved implications: thus, C is C ′ ⊃ C ′′ and D is D′ ⊃ D′′ and we know

that Σ ::C ′ ▷◁ D′ and Σ ::C ′′ ▷◁ D′′. The proof that Σ ::C ′ ⊃ C ′′ ⊢ D′ ⊃ D′′ is

built with the following derivation

Σ :: D′ ⊢ C ′ Σ :: C ′′ ⊢ D′′

Σ :: C ′ ⊃ C ′′, D′ ⊢ D′′ ⊃L

Σ :: C ′ ⊃ C ′′ ⊢ D′ ⊃ D′′ ⊃R

and with the proofs that are guaranteed by the inductive hypothesis applied

to the proofs of Σ::C ′ ▷◁ D′ and Σ::C ′′ ▷◁ D′′. This style argument also applies

to the other connectives. There are two base case, one of which is immediate

and the other is Σ ::Aθ ▷◁ Bθ. In that case, we use the result in Exercise 4.20

to transform I-proofs of Σ̂ ::A ⊢ B and Σ̂ ::B ⊢ A, into I-proofs of Σ ::Aθ ⊢ Bθ

and Σ :: Bθ ⊢ Aθ. If we substitute classical for intuitionistic provability, this

argument remains the same.

Although we occasionally use such reasoning by logical equivalence, we

shall not incorporate equivalences into any inference rules within sequent cal-

culus proof systems.

4.3.4 Invertible introduction rules

The cut-elimination theorem can prove that certain inference rules are invert-

ible. As defined in Section 3.5, an inference rule is invertible if, whenever its

conclusion is provable, all of its premises are provable.

Proposition 4.17. The inference rules tR, ∨L, ∧R, fL, ∀R, ∃L, and ⊃R

from Figure 4.1 are invertible.

Proof. The invertibility of tR and fL is immediate. To show that the ⊃R rule

is invertible, let Ξ be a C-proof of Γ ⊢ B ⊃ C,∆ and consider the following

proof involving Ξ.

Ξ
Γ ⊢ B ⊃ C,∆

B ⊢ B
init

C ⊢ C
init

B,B ⊃ C ⊢ C
⊃L

Γ, B ⊢ C,∆
cut

Γ ⊢ B ⊃ C,∆
⊃R.

54 Chapter 4. Classical and intuitionistic logics

If we apply the cut-elimination procedure to this proof, only inference rules

above the cut are affected: in particular, the result of eliminating the cut will

yield a proof that ends with the introduction of B ⊃ C. In this way, we have

used cut-elimination to transform Ξ into a proof that immediately introduces

an occurrence of ⊃, thereby proving the invertibility of ⊃R

Exercise 4.18.(‡) Repeat the argument above to prove the invertibility of

∨L, ∧R, ∀R, and ∃L.

4.4 Derivable and admissible rules

Let us call the inference rules used to present a proof system the primitive

rules of the system: for example, the primitive rules for C-proofs are given in

Figures 4.1, 4.2, and 4.3. A derivable rule is an inference rule that can be seen

as being built from possibly several primitive rules. For example, the inference

rule
Σ :: Γ, Bi ⊢ ∆

Σ :: Γ, B1 ∧B2 ∧ · · · ∧Bn ⊢ ∆

is derivable from C-proof primitive rules for any values of n ≥ 2 and 1 ≤
i ≤ n. (Recall from Section 2.4 that we assume that ∧ associates to the left.)

Eventually, in Section 5.7, we introduce the concept of synthetic inference

rules. These rules are derived from primitive rules by leveraging the structure

of focused proof systems.

An inference rule is admissible if adding it to the collection of primitive

inference rules does not change the collection of provable sequents. In all the

cases we encounter here, we prove that a given inference rule, say

S1 · · · Sn

S0

,

where n ≥ 0 and S0, . . . , Sn are sequents, is admissible by describing how to

take proofs of S1, . . . , Sn and produce a proof of S0. Clearly, a derivable infer-

ence rule is an admissible inference rule. However, showing the admissibility of

an inference rule is generally more involved than simply assembling primitive

inference rules.

Cut elimination can be rephrased using the notion of admissibility. In

particular, let C− be the same as the C proof system except that the cut rule

is dropped. Theorem 4.13 implies that the cut rule is admissible in the C−

proof system.

The following two exercises illustrate two additional examples of admis-

sible inference rules for C-proof and I-proof systems. The structural rule of

weakening allows for adding a formula into the left or right side of sequents

4.5 Negation, false, and minimal logic 55

(reading the inference rule from premise to conclusion). A strengthening rule

is an inference rule that allows for deleting a formula from either the left or

right side of a sequent. In general, strengthening is not an admissible rule. The

following exercise provides a trivial instance of when strengthening is possible.

Exercise 4.19. Show that if there is a C-proof (resp., an I-proof) of Σ ::

Γ, t ⊢ ∆ then there is a C-proof (an I-proof) of Σ :: Γ ⊢ ∆.

The following inference rule resembles the cut rule but at the level of terms.

Σ ⊩ t : τ Σ, x : τ :: ∆ ⊢ Γ

Σ :: ∆[t/x] ⊢ Γ[t/x]
instan

The following exercise states that this rule is admissible.

Exercise 4.20. Let Ξ be a C-proof (resp., I-proof) of Σ, x : τ :: Γ ⊢ ∆ and

let t be a Σ-term. The result of substituting t for the bound variable x in

this sequent and the bound variables corresponding to x in all other sequents

in Ξ yields a C-proof (resp., I-proof) Ξ′ of the sequent Σ :: Γ[t/x] ⊢ ∆[t/x].

The arrangement of inference rules in Ξ and in Ξ′ are the same.

4.5 Negation, false, and minimal logic

Our formalization of classical and intuitionistic provability using C-proofs and

I-proofs is essentially the same as Gentzen’s formulation of these logics using

the LK and LJ proof systems. One difference between these proof systems

is that Gentzen did not include the units t and f within his sequent calculi,

while he did include negation as a logical connective. Thus, his proof systems

included left and right-introduction rules for negation: in particular, both LK

and LJ contained the rules

Γ ⊢ B,∆

¬B,Γ ⊢ ∆
¬L and

Γ, B ⊢ ∆

Γ ⊢ ¬B,∆
¬R.

These inference rules cannot be added directly to I-proofs since the ¬L rule

cannot work with the requirement that exactly one formula is on the right-

hand side. Gentzen’s intuitionistic proof system LJ is defined as a restriction

on LK in which all sequents have at most one formula on the right. With that

restriction, an occurrence of the ¬L rule is restricted, so its conclusion has an

empty right-hand side. Instances of wR can also appear in Gentzen’s version

of LJ proofs.

56 Chapter 4. Classical and intuitionistic logics

Exercise 4.21. Minimal logic is sometimes defined as intuitionistic logic

without the ex falso quodlibet rule: from false, anything follows. Formally,

we define an M-proof as an I-proof in which the fL rule does not appear.

Since fL is the only inference rule for f in Figure 4.1, f is not treated as a

logical connective within M-proofs. In particular, let B be a formula and

let q be a non-logical symbol of type o that does not occur in B. Let B′ be

the result of replacing all occurrences of f in B with q. Show that B has an

M-proof if and only if B′ has an I-proof.

The following lemma shows that the ex falso quodlibet inference rule is

admissible in I-proofs.

Lemma 4.22. If Ξ is an I-proof of Σ :: Γ ⊢ f then for any Σ-formula B,

there is an I-proof Ξ′ that has the same structure as Ξ but which proves

Σ :: Γ ⊢ B.

Proof. The proof is by induction on the structure of Ξ. Essentially, some

occurrences of f on the right of sequents are changed to B. Ultimately, an

occurrence of a leaf sequent of the form Γ′, f ⊢ f is converted to Γ′, f ⊢ B.

Another way to view this transformation of Ξ to Ξ′ is to consider permuting

the following cut up into the left premise.

Ξ

Γ ⊢ f f ⊢ B
fL

Γ ⊢ B
cut

We can now show that Gentzen’s original LJ proof system, in which nega-

tion is a logical connective and where wR can appear, can be emulated directly

by I-proofs. Formally, define a G-proof to be a C-proof in which the rules

for negation above are allowed and where the right-hand side of sequents are

restricted to have at most one formula. We now show that every G-proof can

be directly translated to an I-proof in which negation is replaced by “implies

false.” To this end, define the mapping (B)◦ that replaces every occurrence

of ¬C in B with C ⊃ f. Similarly, we extend this function to multisets of

formulas: (Γ)◦ = {(B)◦ | B ∈ Γ}. Finally, we further extend this mapping to

work on sequents, as follows:

(Γ ⊢ ∆)◦ =

{
(Γ)◦ ⊢ (∆)◦ if ∆ is not empty

(Γ)◦ ⊢ f if ∆ is empty

Clearly, the image of a sequent in a G-proof is a sequent with exactly one

formula on the right-hand side.

4.5 Negation, false, and minimal logic 57

Proposition 4.23. Every G-proof of the sequent Σ::Γ ⊢ ∆ can be converted

to an I-proof of the sequent Σ :: (Γ)◦ ⊢ (∆)◦.

Proof. All identity and introduction rules other than those for negation trans-

late immediately from G-proofs to I-proofs. The case for negation rules is

simple as well:

Γ ⊢ B

¬B,Γ ⊢ ·
¬L −→ (Γ)◦ ⊢ (B)◦ f ⊢ f

fL

(B)◦ ⊃ f, (Γ)◦ ⊢ f
⊃L

Γ, B ⊢ ·
Γ ⊢ ¬B

¬R −→
(Γ)◦, (B)◦ ⊢ f

(Γ)◦ ⊢ (B)◦ ⊃ f
¬R

The only non-trivial change in proofs results when the G-proof ends with wR.

In that case, the G-proof inference rule

Γ ⊢ ·
Γ ⊢ B

wR

would allow us to conclude that the translation of the upper sequent, i.e.,

(Γ)◦ ⊢ f has an I-proof. By Lemma 4.22, we can conclude that (Γ)◦ ⊢ (B)◦

has an I-proof.

Thus, we can translate away Gentzen’s use of negation in such a way that

the role of wR in his LJ system can be absorbed into the fL rule. As a

result, we have a proof system—namely, I-proofs—for intuitionistic logic that

has neither weakening nor contraction on the right. Thus, I-proofs will have

the ex falso quodlibet rule while not having wR: the G-proof system, on the

contrary, has both the ex falso quodlibet rule and the wR rule.

Exercise 4.24.(‡) Consider the following two inference rules.

Γ ⊢ B Γ ⊢ ¬B
Γ ⊢ C

explode
Γ, B ⊢ C Γ,¬B ⊢ C

Γ ⊢ C
excluded middle

(The names of these inference rules can be found in Kamide [2024].) Show

that the first of these rules is derivable using I-proofs (meaning that if

its two premises have I-proofs then its conclusion must have an I-proof).

Similarly, show that the second inference rule is derivable using C-proofs.

Of course, the negation ¬B is translated as B ⊃ f.

58 Chapter 4. Classical and intuitionistic logics

4.6 Choices to consider during the search for proofs

Although Gentzen’s original calculus provides an excellent framework for prov-

ing that the cut rule can be eliminated, its direct application to computational

tasks presents several challenges. A primary hurdle is that when we consider

proof search as a computational model, Gentzen’s sequent calculus requires us

to explore numerous options at each step of proof construction. These multiple

choices arise in proof search in the following ways.

1. It is possible to use the cut rule to attempt a proof of any sequent.

2. The structural rules of contractions and weakening can always be applied

to make additional copies of a formula or to remove formulas.

3. A sequent may contain many non-atomic formulas, and we can generally

apply an introduction rule to each one.

4. One can also check if a given sequent is initial.

Some of these choices produce sub-choices. For example, choosing the cut rule

requires inventing a cut formula; choosing ∨R requires selecting a disjunct;

choosing ∧L requires selecting a conjunct; choosing ∀L or ∃R requires choosing

a term t to instantiate a quantifier, and using the ⊃L or cut rules require

splitting the surrounding multiset contexts into pairs (for which there can be

exponentially many splits).

However, all this freedom in searching for proofs is not needed, and greatly

reducing the sets of choices can still result in complete proof procedures. Most

of the choices above can be addressed as follows.

1. Given the cut-elimination theorem, we do not need to consider the cut

rule and the sub-problem of selecting a cut formula. Such a choice forces

us to move into a domain where proofs are more like computation traces

than witnesses of mathematical arguments (see the discussion in Sec-

tion 3.7). However, since our goal here is the specification of computa-

tion, we shall generally live with this choice.

2. Structural rules can often be built into inference rules. For example,

weakening can be delayed until the leaves of a proof, and it can be built

into the init rule. Also, instead of attempting to split the contexts when

applying the ⊃L rule, we can use the contraction rule to duplicate all

the formulas and then place one copy on the left branch and one on the

right branch.

3. The problem of determining appropriate substitution terms in the ∀L

and ∃R rules is a serious problem whose solution falls outside our inves-

tigations here. When systems based on proof search are implemented,

they generally use techniques such as employing logic variables and unifi-

cation to determine instantiation terms lazily. Although such techniques

are entirely standard, we shall not discuss them here.

4.7 Bibliographic notes 59

4. Although there is significant nondeterminism involved in choosing among

many possible introduction rules, that nondeterminism can be classified

as either don’t-know nondeterminism, where choices might need to be

undone in order to find a proof, and don’t-care nondeterminism, where

choices do not need to be undone.

An example of don’t-care nondeterminism is the choice of what order to

use invertible rules (as defined in Section 3.5): these rules can be used in any

order without losing completeness. Although non-invertible introduction rules

represent genuine choices (i.e., don’t-know nondeterminism) in the search for

proofs, we will also provide some structure to those choices in the next chapter.

4.7 Bibliographic notes

Natural deduction was introduced in Gentzen [1935]. Gentzen’s plan in that

paper was to use natural deduction to show that proofs in intuitionistic and

classical logics can be analytic, i.e., that they can be free of lemmas. Although

it seems clear that Gentzen knew how to use natural deduction to prove this

result for intuitionistic logic (see von Plato and Gentzen [2008]), he did not

see how to use natural deduction to prove this same result for classical logic.

Gentzen then invented the sequent calculus, and, in that setting, he provided

a single procedure that transforms any proof to a proof without lemmas, and

this procedure (called cut elimination) worked for both logics. From what we

have illustrated in this chapter, it is not surprising that natural deduction has

not served as a unifying framework for these two logics since (1) an essential

difference between sequent calculus proofs for classical and intuitionistic logics

is the presence or absence of contraction and weakening on the right, and (2)

natural deduction does not support those structural rules since the conclusion

of a natural deduction proof is always a single formula (even when applied to

classical logic).

There are many well-known proofs for cut-elimination for proof systems re-

sembling C-proofs and I-proofs. For the detailed proofs of such cut-elimination

theorems, see Gentzen [1935] as well as more modern treatments available in

Gallier [1986], Girard et al. [1989], Negri and von Plato [2001], and Bimbó

[2015].

Girard et al. [1989] points out that the initial rule (recall Figure 4.2) implies

that the left occurrence of B is stronger than the right occurrence of B. In

contrast, the meaning of the cut rule is the opposite: a right occurrence of B is

stronger than the left occurrence of B. This duality is also apparent in other

presentations of these inference rules, such as in the Calculus of Structures

(see Guglielmi [2007]) and uses of linear logic as a metalogic for the sequent

60 Chapter 4. Classical and intuitionistic logics

calculus (see Section 8.7 and Miller and Pimentel [2004, 2013]).

As was mentioned in Section 4.2, logic programs will be viewed in this

book as theories that attribute meaning to programmer-supplied non-logical

symbols. For example, we may want to specify how to sort a list of numbers. In

that case, we introduce a binary predicate, say, sort, to denote the relationship

between lists of numbers and sorted lists of numbers. The logic program

that describes how to compute this sort predicate is, in fact, a theory (a

collection of assumptions). (See Figure 5.6 for an explicit presentation of

a logic program for specifying sorting.) Different proof-theoretic approaches

to logic programming are available that do not use non-logical symbols in

this way. For example, Hallnäs and Schroeder-Heister [1991] encodes logic

programs as definitions (which are given left and right-introduction rules, as

in Section 4.2). The proof theory of Horn clause logic programs has a rather

direct and elegant encoding in proof-theoretic approaches to fixed points, as

shown in Baelde et al. [2010].

Although Gentzen did not classify inference rules as invertible or not, Ke-

tonen [1944] (translated in Ketonen [2022]) explicitly identified some rules as

being invertible. He also exploited invertibility to design decision algorithms

for classical propositional logic. The proof in Section 4.3.4 that certain infer-

ence rules are invertible follows the style of proof used by Ketonen.

Church [1936] proved that first-order classical logic is undecidable. Since

provability of first-order intuitionistic logic can be encoded into first-order

classical logic (using techniques such as negative translations [Gödel, 1932]),

provability for first-order intuitionistic logic is also undecidable. If we restrict

to only the propositional fragment, then provability of classical proposition

logic is co-NP complete [Cook and Reckhow, 1979], while for intuitionistic

propositional logic it is PSPACE complete [Statman, 1979].

Chapter5
Two abstract logic

programming languages

We now apply the C and I proof systems to describe logic programming in a

high-level and implementation-independent fashion.

5.1 Goal-directed proof search

One approach to modeling logic programming is to view logic programs as as-

sumptions, goals as queries to make against a logic program, and computation

as the process of attempting to prove a goal from a program. The state of an

idealized interpreter can be represented as the two-sided sequent Σ :: P ⊢ G,

where Σ is the signature that declares a set of eigenvariables, P is a collection

of Σ-formulas denoting a program, and G is a Σ-formula denoting the goal we

wish to prove from P.

It is compelling to view computation in logic programming as being based

on the following restricted form of proof search. If G is not atomic, then its

top-level logical connective should determine which inference rules should be

used to prove Σ :: P ⊢ G. In particular, a right-introduction rule must be

attempted. Thus, the search semantics for a logical connective at the head of

a goal is fixed by the proof system and is independent of the program. Only

when the goal is atomic (i.e., when its top-level symbol is non-logical) is the

program P consulted: the program is available to provide meaning for the

non-logical predicate constants at the head of atomic formulas.

If we instantiate the above view of computation using the introduction

rules given in Figure 4.1, we derive the following set of proof search strategies.

1. Reduce an attempt to prove Σ :: P ⊢ B1 ∧ B2 to the attempts to prove

the two sequents Σ :: P ⊢ B1 and Σ :: P ⊢ B2.

62 Chapter 5. Two abstract logic programming languages

2. Reduce an attempt to prove Σ :: P ⊢ B1 ∨ B2 to an attempt to prove

either Σ :: P ⊢ B1 or Σ :: P ⊢ B2.

3. Reduce an attempt to prove Σ :: P ⊢ ∃τx.B to an attempt to prove

Σ :: P ⊢ B[t/x], for some Σ-term t of type τ .

4. Reduce an attempt to prove Σ :: P ⊢ B1 ⊃ B2 to an attempt to prove

Σ :: P, B1 ⊢ B2.

5. Reduce an attempt to prove Σ :: P ⊢ ∀τx.B to an attempt to prove

Σ, y : τ :: P ⊢ B[y/x], where c is a token not in Σ.

6. Attempting to prove Σ :: P ⊢ t yields an immediate success.

These strategies suggest the following technical definition to formalize the

notion of goal-directed proof search: a cut-free I-proof Ξ is a uniform proof

if every occurrence of a sequent in Ξ that has a non-atomic right-hand side

is the conclusion of a right-introduction rule. Searching for uniform proofs

means applying right-introduction rules when the right-hand side has a logical

connective. No left-introduction, identity, or structural rules can be considered

when the right-hand side is a non-atomic formula. The definition of uniform

proofs provides no guidance for proof search when the right-hand side of a

sequent is atomic. Such guidance will, however, soon appear.

Exercise 5.1. Show that uniform proofs are always atomically closed.

There are provable sequents for which no uniform proof exists. For exam-

ple, let the non-logical constants be Σ0 = {p : o, q : o, r : i → o, a : i, b : i} and

let Σ be a signature. The sequents

Σ :: (r a ∧ r b) ⊃ q ⊢ ∃ix(r x ⊃ q) and Σ :: · ⊢ p ∨ (p ⊃ q)

have C-proofs but no I-proofs (see Exercise 4.3), so clearly, they have no

uniform proofs. The two sequents

Σ :: p ∨ q ⊢ q ∨ p and Σ :: ∃ix. r x ⊢ ∃ix. r x

have I-proofs but no uniform proofs.

One high-level way to define logic programming is to consider those col-

lections of programs and goals for which uniform proofs are, in fact, complete

(in the sense described in Section 4.1). An abstract logic programming lan-

guage is a triple ⟨D,G,⊢X ⟩ such that for all signatures Σ, for all finite sets P
of Σ-formulas from D, and all Σ-formulas G from G, we have Σ : P ⊢X G if

and only if Σ ::P ⊢ G has a uniform proof. Here, ⊢X is the provability relation

associated with some particular logic, say, first-order classical or intuitionistic

logic.

5.2 Horn clauses 63

Both the definitions of uniform proof and abstract logic programming lan-

guage are restricted to I-proofs. We shall refer to this as the single-conclusion

version of these notions. After introducing linear logic, we will present, in

Section 6.7, a generalization of uniform proofs to multiple-conclusion proof

systems.

Let ∆ be a finite multiset of formulas. This multiset satisfies the disjunc-

tion property if the provability of Σ :: ∆ ⊢ B ∨ C implies the provability of

either Σ :: ∆ ⊢ B or Σ :: ∆ ⊢ C. Similarly, this multiset satisfies the existence

property if the provability of Σ :: ∆ ⊢ ∃τx. B implies the existence of a Σ-term

t of type τ such that Σ :: ∆ ⊢ B[t/x] is provable. Whenever uniform proofs are

complete, both the disjunction and existence properties hold.

5.2 Horn clauses

Early characterizations of the computational nature of logic programs did not

employ a proof procedure. Instead, they employed a refutation procedure,

specifically the resolution refutation framework pioneered by Robinson [1965].

The decision to focus on refutation rather than proving led to defining first-

order Horn clauses as the universal closure of disjunctions of literals (atomic

formulas or their negation) that contain at most one positive literal (an atomic

formula). That is, a Horn clause is a closed formula of the form

∀x1. . . .∀xn [.¬A1 ∨ · · · ∨ ¬Am ∨B1 ∨ · · · ∨Bp],

where A1, . . . , Am, B1, . . . , Bp are atomic formulas, n,m, p ≥ 0, and p ≤ 1. If

n = 0, then the quantifier prefix is not written, and if m = p = 0, then the

body of the clause is considered to be f. If the clause contains exactly one

positive literal (p = 1), it is a positive Horn clause. It is a negative Horn clause

if it contains no positive literal (p = 0),

When we shift from the search for refutations to the search for sequent

calculus proofs, it is natural to change the presentation of Horn clauses to one

of the following. Let τ be a syntactic variable that ranges over S\{o} (i.e.,

primitive types other than the type of formulas), and let A be a syntactic

variable over atomic formulas. Consider the following recursive definitions of

the two syntactic categories of program clauses (definite clauses), given by the

syntactic variable D, and goals, given by the syntactic variable G.

G ::= A | G ∧G

D ::= A | G ⊃ A | ∀τx D. (5.1)

Program clauses using this presentation are of the form

∀x1. · · · ∀xn.(A1 ∧ · · · ∧Am ⊃ A0),

64 Chapter 5. Two abstract logic programming languages

where we adopt the convention that if m = 0 then the implication is not

written. A second, richer definition of these syntactic classes is the following.

G ::= t | A | G ∧G | G ∨G | ∃τx.G
D ::= t | A | G ⊃ D | D ∧D | ∀τx.D. (5.2)

Finally, a compact presentation of program clauses and goals is possible using

only implication and universal quantification.

G ::= A

D ::= A | A ⊃ D | ∀τx. D. (5.3)

This last definition describes a program clause as a formula built from impli-

cations and universals such that there are no occurrences of logical connectives

to the left of an implication. Program clauses using this presentation are of

the form

∀x̄1(A1 ⊃ ∀x̄2(A2 ⊃ · · · ⊃ ∀x̄m(Am ⊃ ∀x̄0A0) . . .)),

where x̄0, . . . , x̄m are (possibly empty) lists of variables.

We use the symbol fohc to refer informally to the logic programming lan-

guages based on one of these three descriptions of first-order Horn clauses.

Definition (5.1) above corresponds closely to the definition of Horn clauses

given using disjunction of literals. In this case, positive clauses correspond to

the D-formulas, and the negation of G-formulas would all be negative clauses.

Let D1 be the set of D-formulas and G1 be the set of G-formulas satisfying the

recursion (5.2).

Exercise 5.2. Show that the clausal order (see Section 2.4) of a formula

in G1 is 0 and of a formula in D1 is 0 or 1.

The following formulas, sometimes called the curry/uncurry equivalences,

are provable in intuitionistic logic.

1. t ⊃ E ≡ E

2. (B ∧ C) ⊃ E ≡ (B ⊃ C ⊃ E)

3. (B ∨ C) ⊃ E ≡ (B ⊃ E) ∧ (C ⊃ E)

4. (∃x.B) ⊃ E ≡ ∀x.(B ⊃ E)

They can be used (in part) to prove the following exercise.

5.2 Horn clauses 65

Exercise 5.3. Let D be a Horn clause using (5.2). Show that there is a set

P of Horn clauses using description (5.1) or (5.3) (your pick) such that D

is equivalent to the conjunction of formulas in P. Show that this rewriting

might make the resulting conjunction exponentially larger than the original

clause. (Take as the measure of a formula the number of occurrences of

logical connectives it contains.)

Exercise 5.4. Let Σ be a signature, let P be a multiset of Σ-formulas

in D1, and let G be a Σ-formula in G1. Let Ξ be a cut-free C-proof of

Σ :: P ⊢ G. Show that every sequent in Ξ is of the form Σ :: P ′ ⊢ ∆ such

that P ′ is a multiset of formulas in D1 and ∆ is a multiset of formulas in

G1. Show also that the only introduction rules that can appear in Ξ are ∀L,
∧L, ⊃L, ∧R, ∨R, ∃R, and tR.

The following proposition demonstrates that although classical logic can

prove more sequents than intuitionistic logic, if we limit our attention to the

Horn clause setting, both logics prove precisely the same (restricted) sequents.

Proposition 5.5. Let Σ be a signature, let P be a multiset of Σ-formulas

in D1, and let G be a Σ-formula in G1. If Σ :: P ⊢ G has a C-proof then it

has an I-proof.

Proof. We show the following stronger result: if ∆ is a multiset of G-formulas

and Σ :: P ⊢ ∆ has a cut-free C-proof then there is a G ∈ ∆ such that

Σ :: P ⊢ G has an I-proof. We prove this by induction on the structure of a

cut-free C-proof Ξ for Σ :: P ⊢ ∆.

There are three base cases for Ξ: fL is not possible since f is not a member

of P, and the two other cases of tR and init are immediate.

If the last inference rule in Ξ is a structural rule, the proof is straightfor-

ward again. For example, suppose the last inference rule in Ξ is a cR. In that

case, this proof is of the form

Σ :: P ⊢ G,G,∆

Σ :: P ⊢ G,∆
cR .

By the inductive hypothesis, there is an H in the multiset G,G,∆ such that

Σ :: P ⊢ H has an I-proof: clearly, H is also a member of the multiset G,∆.

The case when the last inference rule in Ξ is wR is treated similarly. The cases

for wL and cL are similarly straightforward.

Now consider all possible introduction rules that might be the last inference

rule of Ξ (see Exercise 5.4). If that last rule is ⊃L, then the proof has the

66 Chapter 5. Two abstract logic programming languages

form
Σ :: P1 ⊢ ∆1, G Σ :: D,P2 ⊢ ∆2

Σ :: G ⊃ D,P1,P2 ⊢ ∆1,∆2

⊃L .

By the inductive assumption, there is a formula H1 ∈ ∆1 ∪ {G} for which

Σ::P1 ⊢ H1 has an I-proof and a formula H2 ∈ ∆2 for which Σ::D,P2 ⊢ H2 has

an I-proof. In the case that H1 ∈ ∆1, the I-proof of the sequent Σ::P1 ⊢ H1 can

be extended with a series of wL rules to yield a proof of Σ::G ⊃ D,P1,P2 ⊢ H1.

On the other hand, if H1 = G, we build an I-proof using the following instance

of an inference rule

Σ :: P1 ⊢ G Σ :: D,P2 ⊢ H2

Σ :: G ⊃ D,P1,P2 ⊢ H2

⊃L ,

and the two promised I-proofs of the premises.

If that last rule is ∧R, then the proof has the form

Σ :: P ⊢ G1,∆ Σ :: P ⊢ G2,∆

Σ :: P ⊢ G1 ∧G2,∆
∧R.

By the inductive assumption, there is a formula H1 ∈ ∆ ∪ {G1} for which

Σ ::P ⊢ H1 has an I-proof and a formula H2 ∈ ∆∪{G2} for which Σ ::P ⊢ H2

has an I-proof. In the case that H1 ∈ ∆, the I-proof of the sequent Σ::P ⊢ H1

is the required proof. In the case that H2 ∈ ∆, the I-proof of the sequent

Σ :: P ⊢ H2 is the required proof. The only remaining case occurs when H1 is

G1 and H2 is G2. In that case, the required I-proof results from applying the

inference rule ∧L to the two subproofs provided by the inductive assumptions.

All the remaining cases of introduction rules can be treated similarly.

Exercise 5.6. (‡) Prove that Horn clause programs are always consistent

by proving that for any signature Σ and any finite multiset of Horn clauses

P, the sequent Σ :: P ⊢ f is not provable.

Exercise 5.7. Show that a cut-free I-proof of Σ :: P ⊢ G, where P is a

finite multiset of formulas in D1 and G ∈ G1, is also an M-proof.

Exercise 5.8.(‡) Assume that the Σ-formulas D0, . . . , Dn (n ≥ 0) are Horn

clauses using description (5.3). Prove that if the sequent Σ :: D1, . . . , Dn ⊢
D0 has a C-proof then it has an I-proof.

We can now conclude that ⟨D1,G1,⊢X ⟩ is an abstract logic programming

language if ⊢X is taken to be ⊢C , ⊢I , or ⊢M .

5.3 Hereditary Harrop formulas 67

If we use the (5.2) presentation of Horn clauses, then it is only atoms or

conjunctions of atoms (including the empty conjunction t) that are both goals

and program clauses. All the other connectives are either dismissed (such as f)

or are restricted to just half their “meaning:” when a disjunction and existen-

tial quantifier is encountered in proof search, only its right-introduction rule is

needed, and when an implication and a universal quantification is encountered,

only its left-introduction rule is needed.

Exercise 5.9.(‡) Let I be the set of formulas using only implications and

atomic formulas that are provable classically but have no uniform proofs.

Peirce’s formula ((p ⊃ q) ⊃ p) ⊃ p is a member of I. Prove that the fewest

number of occurrences of implications in a formula in I is 3.

Readers unfamiliar with specifying computations using Horn clauses might

want to read Section 5.9 now to see examples of such specifications.

5.3 Hereditary Harrop formulas

A natural extension to Horn clauses called the first-order hereditary Harrop

formulas allows implications and universal quantifiers in goals (and, thus, in

the body of program clauses). Whereas cut-free proofs involving Horn clauses

contain left-introduction rules for implications and universal quantifiers, proofs

involving this extended set of formulas can also contain right-introduction rules

for implications and universal quantifiers. Parallel to the three presentations

of fohc in Section 5.2, the following three presentations of goals and program

clauses describe first-order hereditary Harrop formulas.

G ::= A | G ∧G | D ⊃ G | ∀x.G
D ::= A | G ⊃ A | ∀x.D (5.4)

The definitions of G- and D-formulas are mutually recursive. Note that a neg-

ative (resp, positive) subformula of a G-formula is a D-formula (G-formula),

and that a negative (positive) subformula of a D-formula is a G-formula (D-

formula). A richer formulation is given by

G ::= t | A | G ∧G | G ∨G | ∃x.G | D ⊃ G | ∀x.G
D ::= A | G ⊃ D | D ∧D | ∀x.D (5.5)

When referring to first-order hereditary Harrop formulas and goals, we assume

this formula definition. We use D2 to denote the set of all such D-formulas

and G2 for the set of all G-formulas.

68 Chapter 5. Two abstract logic programming languages

A completely symmetric presentation can be given as

G ::= t | A | D ⊃ G | G ∧G | ∀x.G
D ::= t | A | G ⊃ D | D ∧D | ∀x.D (5.6)

In this presentation, D and G formulas range over the same set of formu-

las. There is no need for a definition that allows for mutual recursion. In

Section 5.5, these formulas—which are generated from the set of connectives

{t,∧,⊃, ∀}— will be called L0-formulas.

We use the name fohh to denote first-order hereditary Harrop formulas.

This name will refer to one of the presentations above. If the text does not

explicitly state the presentation used, we will assume the second one. We shall

also use fohh to denote, in particular, the corresponding D-formulas since

the associated G-formulas are uniquely determined by being the negatively

occurring subformulas of D-formulas. The same comment also applies to our

use of the term fohc.

Exercise 5.10. Let D ∈ D2. Show that D is a Horn clause (using defini-

tion (5.2)) if and only if order(D) < 2.

We shall use the term clause not just for Horn clauses but for any formula,

especially any formula that can be used as part of a logic program. Thus, for

example, we often refer to hereditary Harrop formulas as clauses.

The following proposition shows that identifying the right-hand side of

sequents with goals and the left-hand side with logic programs is maintained

within cut-free I-proofs.

Proposition 5.11. Let Σ be signature of first-order variables, P be a finite

multiset of Σ-formulas in D2, G be a Σ-formula in G2, and Ξ be a cut-free

I-proof of Σ ::P ⊢ G. If Σ′ ::P ′ ⊢ B is a sequent in Ξ, then P ′ is a multiset

of Σ′-formulas in D2, and B is a Σ′-formula in G2.

This proposition is proved by a simple induction of the structure of cut-free

I-proofs.

The triple ⟨D2,G2,⊢C⟩ is not an abstract logic programming language. For

example, the formulas numbered 4, 5, 6, and 7 in Exercise 4.3 are members

of G2 that have classical proofs but no uniform proof. We shall use the name

fohh to also refer to the triple ⟨D2,G2,⊢I⟩. Before we prove that fohh is an

abstract logic programming language, we prove the following lemma.

5.3 Hereditary Harrop formulas 69

Lemma 5.12. Let G ∈ G2 be a non-atomic Σ-formula, and let P be a finite

multiset whose members are Σ-formulas in D2. Assume that Σ ::P ⊢ G has

an I-proof in which the last inference rule is not a right-introduction rule,

and all premise sequents are proved by uniform proofs. There is a uniform

proof of Σ :: P ⊢ G.

Proof. Let Ξ be a proof of P ⊢ G satisfying the assumptions of this lemma.

(For readability, we suppress explicitly writing the signature of a sequent.)

The last inference rule of this proof is either one of two structural rules (cL or

wL) or one of three left-introduction rules (∧L, ∀L, ⊃L). In every case, the

proof of the premises must be uniform proofs, and, as a result, at least one

premise must be proved by one of five right-introduction rules (∧R, ∨R, ∀R,

∃R, ⊃R). We proceed by induction on the structure of the uniform proof of

the right-most premise of this inference rule. All possible left rules occurring

below a right-introduction rule must be considered.

Consider when an implication-left rule is applied and the right-hand side

is a conjunction.

Ξ0

P1 ⊢ G

Ξ1

D,P2 ⊢ G1

Ξ2

D,P2 ⊢ G2

D,P2 ⊢ G1 ∧G2
∧R

G ⊃ D,P1,P2 ⊢ G1 ∧G2

⊃L

These rules can be permuted to form the following proof.

Ξ0

P1 ⊢ G
Ξ1

D,P2 ⊢ G1

G ⊃ D,P1,P2 ⊢ G1

⊃L

Ξ0

P1 ⊢ G
Ξ2

D,P2 ⊢ G2

G ⊃ D,P1,P2 ⊢ G2

⊃L

G ⊃ D,P1,P2 ⊢ G1 ∧G2
∧R

If this proof is not uniform, apply the inductive assumption to the two sub-

proofs with ⊃L as their last rule. That induction returns a uniform proof for

both G ⊃ D,P1,P2 ⊢ G1 and G ⊃ D,P1,P2 ⊢ G2, and a uniform proof for

the end-sequent comes from applying ∧R to those uniform proofs.

For another case, assume that ⊃L is applied to a sequent with an implica-

tion on the right-hand side.

Ξ1

P1 ⊢ G

Ξ2

D′, D,P2 ⊢ G′

D,P2 ⊢ D′ ⊃ G′ ⊃R

G ⊃ D,P1,P2 ⊢ D′ ⊃ G′ ⊃L

70 Chapter 5. Two abstract logic programming languages

These rules can be permuted to form the following proof.

Ξ1

P1 ⊢ G
Ξ2

D,D′,P2 ⊢ G′

G ⊃ D,D′,P1,P2 ⊢ G′ ⊃L

G ⊃ D,P1,P2 ⊢ D′ ⊃ G′ ⊃R

If this proof is not uniform, then apply the inductive hypothesis to the right

premise of the ⊃R rule.

All other cases can be proved similarly: permute a left rule up over a

right-introduction rule and invoke the inductive hypothesis.

Proposition 5.13. Let Σ be a signature, let P be a finite multiset of Σ-

formulas in D2, and let G be a Σ-formula in G2. If Σ::P ⊢ G has a cut-free

I-proof then Σ :: P ⊢ G has a uniform proof.

Proof. Assume that Σ :: P ⊢ G has a cut-free I-proof Ξ. By Theorem 4.9, we

can also assume that Ξ is an atomically closed I-proof. If Ξ is not uniform, then

there must be occurrences of left rules (either left-introduction rules or left-

structural rules) in Ξ whose conclusion is a sequent with a non-atomic right-

hand side. Pick one of these occurrences so that the subproofs of its premises

do not have other such occurrences. Thus, the premises of this inference

rule occurrence are uniform. By Lemma 5.12, we can replace the subproof

determined by this left rule with a uniform proof. In this way, we can continue

to replace non-uniform subproofs with uniform proofs until such rewriting

yields a uniform proof.

This proposition formally establishes fohh as an abstract logic program-

ming language.

Consider the following class of first-order formulas given by

H := A | B ⊃ H | ∀x.H | H1 ∧H2.

Here, A ranges over atomic formulas and B over arbitrary first-order formulas.

These H-formulas are known as Harrop formulas. Clearly, hereditary Harrop

formulas are Harrop formulas.

Exercise 5.14.(‡) Consider the sequent Σ :: Γ ⊢ B where Γ is a multiset

of Harrop formulas, and B is an arbitrary formula. Show that Harrop

formulas are “uniform at the root;” that is, if B is non-atomic and this

sequent is intuitionistically provable, then it has an I-proof that ends in a

right-introduction rule. Are uniform proofs complete for such sequents?

5.4 Backchaining as focused rule application 71

Finally, note that since hereditary Harrop formulas do not have occurrences

of f in them, the triple ⟨D2,G2,⊢M⟩ describes essentially the same abstract logic

programming language as fohh.

Readers wishing to see examples of logic programs in fohh before reading

more about their proof theory can find some examples in Section 5.11.

5.4 Backchaining as focused rule application

The restriction to uniform proofs provides some information on how to struc-

ture proofs: in the bottom-up search for proofs, right-introduction rules are

attempted whenever the right-hand side is non-atomic, and left rules are at-

tempted when the right-hand side is atomic. We now present a restriction on

the application of left rules, and we will eventually show that that restriction

on proofs does not result in the loss of completeness.

To better structure the rules on the left, we first make two simple changes

to the proof system for I-proofs. Although wL can be applied at any point in

the search for a uniform proof, it is also possible to delay applications of that

rule until just before applying the init rule. This delay suggests that we can

fold weakening into the init rule, yielding the derived inference rule

Σ :: Γ, B ⊢ B
.

Adding another restriction on the use of a structural rule on the left can

improve the complexity of the ⊃L rule when searching for a proof. As we

mentioned in Section 3.3, performing proof search with a multiplicative in-

ference rule can be expensive since there can be an exponential number of

ways to split the contexts of the conclusion for use among the premises. The

only multiplicative left-introduction rule is ⊃L. Since contraction and weak-

ening are available on the left (but not the right), the following variant of that

inference rule is easily proved to be admissible (see Section 3.3).

Σ :: Γ ⊢ ∆1, B Σ :: C,Γ ⊢ ∆2

Σ :: B ⊃ C,Γ ⊢ ∆1,∆2

Here, the cL rule can double the Γ context before splitting the left context. In

this rule, the left context is treated additively, and the right context is treated

multiplicatively. Given that we are speaking of I-proofs here, this rule can be

simplified even further since the single formula on the right of the concluding

sequent must move to the right of the right premise. Thus, we can rewrite

this rule as
Σ :: Γ ⊢ B Σ :: C,Γ ⊢ E

Σ :: B ⊃ C,Γ ⊢ E
.

72 Chapter 5. Two abstract logic programming languages

Now consider refining this last version of the left introduction of implication

in the setting of uniform proofs. That is, consider the derivation

Σ :: P ⊢ G Σ :: D,P ⊢ A

Σ :: G ⊃ D,P ⊢ A
⊃L,

Σ :: P ⊢ A
cL

where A is atomic and where G ⊃ D is a member of the multiset P. Thus,

to employ G ⊃ D in building a proof, we first use cL to make a copy of it

and then apply ⊃L. Thus, we have reduced an attempt to prove the atomic

formula A from program P to an attempt to prove two things, one of which

is still an attempt to prove A but this time from the larger multiset P ∪ {D}.

It would seem natural to expect these inference rules to be used because this

new instance of D is directly helpful in proving A. For example, D could itself

be A, or some sequence of additional left rules applied to D might reduce it

to an occurrence of A.

We can formalize a proof system where left-introduction rules are used in

such a direct or focused fashion by introducing a new style of sequent, namely,

Σ :: P ⇓ D ⊢ A. Although provability of this sequent will imply provability of

the sequent Σ :: P, D ⊢ A, the formula between the ⇓ and the ⊢, called the

focus of this sequent, is the only formula on which left-introduction rules can

be applied. The sequents Σ :: P ⊢ G and Σ :: P ⇓ D ⊢ A have ⇓ fohh-proofs if

they have proofs using the ⇓ fohh-proof system in Figure 5.1. This new proof

system is an example of a focused proof system: we shall see two more such

focused proof systems when we introduce linear logic in Chapter 6.

All ⇓ fohh-proofs are composed of two phases. A right-introduction phase

is a derivation composed of only right-introduction rules, and where all open

premises are sequents with atomic formulas on their right-hand sides. Such

a phase captures the notion of goal reduction. The right-introduction phase

for Σ :: P ⊢ G is empty (i.e., contains no inference rules) if and only if G

is an atomic formula. A left-introduction phase is a derivation composed of

left-introduction rules as well as the init and decide rules (see Figure 5.1) and

where all open premises are sequents without the ⇓. A left-introduction phase

for Σ :: Γ ⇓ B ⊢ A can never be empty since it always contains an instance of

the decide rule). This phase captures the notion of backchaining .

The proof system in Figure 5.1 is different from the original proof systems

of Gentzen in that there is control over the application of introduction rules.

In particular, the only way to prove a sequent that does not contain ⇓ is to

perform a right-introduction rule or the decide rule. If a sequent contains the

⇓, then that sequent must be the conclusion of a left-introduction rule or the

init rule. Furthermore, contraction and weakening are not separate rules but

are built into other rules.

5.4 Backchaining as focused rule application 73

Σ :: P ⊢ t
tR

Σ :: P ⊢ G1 Σ :: P ⊢ G2

Σ :: P ⊢ G1 ∧G2
∧R

y : τ,Σ :: P ⊢ G[y/x]

Σ :: P ⊢ ∀τx.G
∀R

Σ :: D,P ⊢ G

Σ :: P ⊢ D ⊃ G
⊃R

Σ :: P ⊢ G1

Σ :: P ⊢ G1 ∨G2
∨R

Σ :: P ⊢ G2

Σ :: P ⊢ G1 ∨G2
∨R

Σ ⊩ t : τ Σ :: P ⊢ G[t/x]

Σ :: P ⊢ ∃τx G
∃R

Σ :: P ⇓ D ⊢ A

Σ :: P ⊢ A
decide

Σ :: P ⇓ A ⊢ A
init

Σ :: P ⇓ D1 ⊢ A

Σ :: P ⇓ D1 ∧D2 ⊢ A
∧L

Σ :: P ⇓ D2 ⊢ A

Σ :: P ⇓ D1 ∧D2 ⊢ A
∧L

Σ :: P ⊢ G Σ :: P ⇓ D ⊢ A

Σ :: P ⇓ G ⊃ D ⊢ A
⊃L

Σ ⊩ t : τ Σ :: P ⇓ D[t/x] ⊢ A

Σ :: P ⇓ ∀τx.D ⊢ A
∀L

In the decide rule, D is a member of P. In all these rules, A is atomic.

Figure 5.1: The ⇓ fohh proof system.

The preceding sections in this chapter present various theorems about the

unfocused proof systems I and C and their relationship with Horn clauses and

hereditary Harrop formulas. The focused proof system is much more useful

than those unfocused proof systems for our purposes here. Once we have

proved the soundness and completeness of the focused proof system ⇓ fohh,

most of the results in the previous sections can be reproved immediately using

those theorems.

The following proposition states that whatever is provable using ⇓ fohh-

proofs is also provable in intuitionistic proofs.

Proposition 5.15 (Soundness of ⇓ fohh-proofs). Let Σ be a signature, P
be a multiset of Σ-formulas in D2, and G be a Σ-formula in G2. If the

sequent Σ :: P ⊢ G has a ⇓ fohh-proof then it has an I-proof.

Proof. This is proved by a simple induction on the structure of ⇓ fohh-proofs.

In that induction, the sequents Σ ::P ⊢ G and Σ ::P ⇓ D ⊢ A in ⇓ fohh-proofs

74 Chapter 5. Two abstract logic programming languages

are mapped to the sequents Σ :: P ⊢ G and Σ :: P, D ⊢ A, respectively, in the

I-proof system.

It is important to point out that the search for focused proofs is not justi-

fied as being the most efficient strategy or yielding the smallest proofs. The

following exercise reveals that sometimes focused proofs can be much larger

than other proofs.

Exercise 5.16. (‡) Let a0, a1, . . . , an be atomic (propositional) formulas

(n ≥ 0). Define the sequence of propositional Horn clauses

Dn = a0 ⊃ · · · ⊃ an−1 ⊃ an (n ≥ 0).

For example, D0 is a0, D1 is a0 ⊃ a1, and D2 is a0 ⊃ a1 ⊃ a2. For a given

n ≥ 0, there are many uniform proofs of the sequent D0, . . . , Dn ⊢ an.

Among these, consider those in which the left premise of the ⊃L rule is

trivial (proved by the initial rule). Those proofs use the formulas Di in a

forward-chaining manner. How do such proofs differ in size from proofs

based only on backchaining, i.e., ⇓ fohh-proofs?

5.5 Completeness of focused proofs

In order to prove the completeness of the ⇓ fohh proof system for hereditary

Harrop formulas in intuitionistic logic (see Proposition 5.38), we shall first

develop some key proof-theoretic insights into focused proofs. In particular,

it is interesting to ask whether or not the rules

Σ :: B ⊢ B and

Σ :: Γ ⊢ B Σ :: B,Γ′ ⊢ E

Σ :: Γ,Γ′ ⊢ E

are admissible in ⇓ fohh. However, just stating the unrestricted forms of the

initial and cut rules for ⇓ fohh-proofs requires us to limit our attention to

those formulas B that are both goal formulas and definite clauses since these

are the only formulas that can appear on the left and the right of the sequent

turnstile.

To address this issue, let L0 be the set of connectives {t,∧,⊃,∀} and

let an L0-formula be any first-order formula, all of whose logical connectives

come from L0.
1 In particular, such formulas do not contain occurrences of

disjunctions and existential quantifiers. Note that the connectives in L0 have

invertible right-introduction rules, while their left-introduction rules are not

1In the next chapter, we introduce two additional sets of connectives L1 and L2.

5.5 Completeness of focused proofs 75

invertible. Until we return to the issue of dealing with disjunctions and ex-

istential quantifiers in Section 5.8, we restrict our attention to L0-formulas,

which are also the same as fohh using definition (5.6).

Since L0-formulas have no occurrences of f, provability in intuitionistic

and minimal logics coincide (see Section 4.5). Thus, for most of this chapter,

we could replace references to intuitionistic logic with minimal logic when

discussing the properties of ⇓ fohh-proofs. In addition, we emphasize the role

of L0-formulas in this section by using the name ⇓L0-proof system for the

proof system that results from removing the right-introduction rules for ∃ and

∨ from the ⇓ fohh-proof system.

In the ⇓L0 proof system, we have the following relationship between the

two phases and nondeterminism. Let Σ be a signature and P ∪ {G} be L0-

formulas over Σ. There always exists a right-introduction phase that ends

in Σ :: P ⊢ G, and that phase is unique up to the change of names of the

eigenvariables. Thus, a right-introduction phase can be seen as a function

that takes the endsequent Σ ::P ⊢ G as input and returns the unique multiset

of sequents of the form Σ′ :: P ′ ⊢ A (where A is an atomic formula) that are

the premises of that right-introduction phase. On the other hand, the left-

introduction phase yields a nondeterministic relation between its endsequent,

say, Σ :: P ⇓ D ⊢ A, and the multiset of sequents of the form Σ :: P ⊢ G that

are the premises of a left-introduction phase.

Let B be an L0-formula. The paths in B are those formulas P for which

the following two-place relation B ↑ P is provable (here, A denotes an atomic

formula).

A ↑ A

B ↑ P

B ∧ C ↑ P

C ↑ P

B ∧ C ↑ P

C ↑ P

B ⊃ C ↑ B ⊃ P

B ↑ P

∀τx.B ↑ ∀τx.P

A formula that is a path has the form

∀x̄1.(G1 ⊃ ∀x̄2.(G2 ⊃ . . . ⊃ ∀x̄n.(Gn ⊃ ∀x̄0.A) . . .)),

where n ≥ 0, A is an atomic formula, G1, . . . , Gn is a list of L0-formulas,

and where for each i such that 0 ≤ i ≤ n, x̄i is a list of variables. The

formula A is the target of this path, the formulas G1, . . . , Gn are the arguments

of this path, and the result of concatenating the lists x̄0, . . . , x̄n is the list

of bound variables of this path. (We assume that all these bound variables

are distinct.) We shall also present such a path using an associated sequent ,

namely, x̄0, . . . , x̄n :: G1, . . . , Gn ⊢ A. Note that the formula t has no paths.

For example, the paths in (a ∧ b) ⊃ (c ∧ d) are (a ∧ b) ⊃ c and (a ∧ b) ⊃ d.

Similarly, the formula

∀x.p(x) ⊃ ((∀y.q(x, y) ⊃ (r(x, y) ∧ r(y, x))) ∧ p(x))

76 Chapter 5. Two abstract logic programming languages

(where p, q, and r are predicates) has the following three paths (displayed

with their associated sequents):

∀x.p(x) ⊃ ∀y.q(x, y) ⊃ r(x, y) x, y :: p(x), q(x, y) ⊢ r(x, y)

∀x.p(x) ⊃ ∀y.q(x, y) ⊃ r(y, x) x, y :: p(x), q(x, y) ⊢ r(y, x)

∀x.p(x) ⊃ p(x) x : p(x) ⊢ p(x).

Exercise 5.17. Show that if the formula B contains no occurrences of t

and ∧ then B has exactly one path which is B itself.

Exercise 5.18. Let D be a hereditary Harrop formula defined using (5.4).

Prove that D has exactly one path, which is D.

Given that the following equivalences are provable in intuitionistic logic

B1 ⊃ (B2 ∧B3) ≡ (B1 ⊃ B2) ∧ (B1 ⊃ B3)

∀x. (B1 ∧B2) ≡ (∀x. B1) ∧ (∀x. B2),

it is easy to prove the intuitionistic equivalence

B ≡
∧
B↑P

P.

We can state the following two much stronger relationships between B and

the conjunction of all paths in B.

1. The right-introduction phase that has endsequent Σ :: Γ ⊢ B and the

right-introduction phase that has endsequent Σ :: Γ ⊢
∧

B↑P
P have ex-

actly the same premises (modulo the order in which the premises are

listed and modulo alphabetic changes in the names of eigenvariables).

2. The multiset of left-introduction phases with endsequent Σ :: Γ ⇓ B ⊢ A

can be put in one-to-one correspondence with left-introduction phases

with endsequent Σ :: Γ ⇓
∧

B↑P
P ⊢ A in such a way that corresponding

premises are equal (modulo the order in which the premises are listed

and modulo alphabetic changes in the names of eigenvariables).

These observations are stated more formally in the following two propositions.

5.5 Completeness of focused proofs 77

Proposition 5.19. Let Ξ be a ⇓L0-proof of the sequent Σ :: Γ ⊢ B. The

right-introduction phase at the bottom of Ξ has a set of premises that are in

one-to-one correspondence with paths in B such that the path P corresponds

to the premise Σ,Σ′ ::Γ,B ⊢ A, where the sequent associated to P is Σ′ ::B ⊢
A. (The variables in Σ′ are chosen to be disjoint from Σ.)

Proof. We prove this proposition by induction on the structure of the L0

formula B. In the case that B is t, the set of paths in B is empty, and the set

of premises of the right-introduction phase is also empty. If B is atomic, the

end-sequent of the right-introduction phase is the same as its unique premise,

corresponding to adding no bound variables and no argument formulas (this

phase is empty). If B is B1 ∧B2, then the right-introduction phase ends with

Σ :: Γ ⊢ B1 Σ :: Γ ⊢ B2

Σ :: Γ ⊢ B1 ∧B2

.

The premises of this phase are divided into those which are premises of the

right-introduction phase with endsequent Σ :: Γ ⊢ B1 and the premises of the

right-introduction phase with endsequent Σ::Γ ⊢ B2. Since the paths in P are

either paths in B1 or in B2, the inductive hypothesis immediately yields the

required correspondence. If B is B1 ⊃ B2 then the right-introduction phase

ends with

Σ :: Γ, B1 ⊢ B2

Σ :: Γ ⊢ B1 ⊃ B2

.

The premises of this phase are also premises of the right-introduction phase

with endsequent Σ :: Γ, B1 ⊢ B2. By the inductive hypothesis, a path P ′ in B2

correspond to the premise Σ,Σ′ :: Γ, B1,B ⊢ A, where Σ′ ::B ⊢ A is the sequent

associated to P ′. By the definition of paths, the only difference between the

path P and P ′ is that the former has B1 as an additional argument. Thus,

the correspondence is satisfied. The case where B is ∀x.B′ is similar to the

previous case.

The proposition above states that an attempt to prove Σ :: Γ ⊢ B in ⇓L0

leads to an attempt to prove a series of sequents, one for each path in B.

Thus, paths can describe the right-introduction phase. The structure of the

left-introduction phases can also be described using paths in a dual sense, as

described in the following proposition.

78 Chapter 5. Two abstract logic programming languages

Proposition 5.20. Let Ξ be a ⇓L0-proof of the sequent Σ :: Γ ⇓ B ⊢ A.

The left-introduction phase at the bottom of Ξ has premises

Σ :: Γ ⊢ G1 , . . . , Σ :: Γ ⊢ Gn (n ≥ 0)

if and only if there is a path P in B with target A′, arguments B1, . . . , Bn,

and bound variables Σ′, and a substitution θ that maps the variables in Σ′

to Σ-terms such that A′θ = A and such that G1 = B1θ, . . . , Gn = Bnθ.

Proof. We prove this proposition by induction on the structure of the L0

formula B. The case that B is t is impossible since there is no left-introduction

rule for t. If B is atomic, then B and A are equal since we assume that

Σ :: Γ ⇓ B ⊢ A is the endsequent of a left-introduction phase (and the set of

arguments of B is the empty set).

If B is B1 ∧ B2, we first assume that there is a left-introduction phase

ending in Σ :: Γ ⇓ B1∧B2 ⊢ A. Thus, there is a left-introduction phase ending

in Σ :: Γ ⇓ Bi ⊢ A, where i = 1 or i = 2. By the inductive assumption, there

is a path in Bi with target A′, arguments B, and bound variables Σ′, and

a substitution θ that maps the variables in Σ′ to Σ-terms such that A′θ is

equal to A and such that every premise of that left-introduction phase can be

written as Σ :: Γ ⊢ Gθ for each G ∈ B. That same path is also a path in B,

which completes this case. The converse is proved similarly.

If B is B1 ⊃ B2, we first assume that there is a left-introduction phase

that ends with Σ :: Γ ⇓ B1 ⊃ B2 ⊢ A and the inference rule

Σ :: Γ ⊢ B1 Σ :: Γ ⇓ B2 ⊢ A

Σ :: Γ ⇓ B1 ⊃ B2 ⊢ A
.

By the inductive hypothesis, there is a path in B2 with target A′, arguments

B, bound variables Σ′, and a substitution θ that maps the variables in Σ′ to

Σ-terms such that A′θ is equal to A and such that every premise of that left-

introduction phase can be written as Σ :: Γ ⊢ Gθ for each G ∈ B. If we add

to that path the argument B1, then that path satisfies the required condition

for a path in B. The converse is proved similarly.

Finally, assume that B is ∀τx.B′. First, assume that there is a left-

introduction phase ending in ∀τx.B′. Thus, there is a left-introduction phase

ending in Σ :: Γ ⇓ B′[t/x] ⊢ A and inference rule

Σ :: Γ ⇓ B′[t/x] ⊢ A

Σ :: Γ ⇓ ∀x.B′ ⊢ A
.

for some Σ-term t. By the inductive assumption, there is a path in B′[t/x]

with target A′, arguments B, and bound variables Σ′, and a substitution θ

5.5 Completeness of focused proofs 79

that maps the variables in Σ′ to Σ-terms such that A′θ is equal to A and such

that every premise of that left-introduction phase can be written as Σ::Γ ⊢ Gθ

for each G ∈ B. The required path through ∀x.B′ is the same as for B′[t/x]

except that the required substitution is θ extended with the mapping of x to

t. The converse can be proved similarly.

Note the dual use of paths: all paths of B are used to describe the right-

introduction phase with endsequent Σ :: Γ ⊢ B, while some path of B is used

to describe the left-introduction phase with endsequent Σ :: Γ ⇓ B ⊢ A.

Exercise 5.21. Prove that if the sequent Σ :: Γ, B ⊢ G has a ⇓L0-proof

Ξ in which no occurrence of decide picks the formula B as its focus, then

there is a ⇓L0-proof Ξ′ of Σ :: Γ ⊢ G that has the same inference rules as

Ξ: the only difference is the sequents labeling those inference rules do not

contain B. This operation of removing an assumption in a sequent is called

strengthening.

We are now able to prove the three main theorems related to ⇓L0-proofs:

the admissibility of the (non-atomic) init rule, the admissibility of cut, and

the completeness of ⇓L0-proofs with respect to intuitionistic provability.

Theorem 5.22 (Admissibility of initial). Let Γ be a multiset of L0 Σ-

formulas. If B ∈ Γ then Σ :: Γ ⊢ B has a ⇓L0-proof.

Proof. We describe how to build a ⇓L0-proof of Σ :: Γ ⊢ B by induction on

the structure of the L0-formula B. We first consider the right-introduction

phase with the endsequent Σ :: Γ ⊢ B. By Proposition 5.19, for every path P

in B, there is a premise sequent of that right-introduction phase of the form

Σ,Σ′ :: Γ,B ⊢ A, where A, B, and Σ′ are, respectively, the target, arguments,

and bound variables of P . Now consider the premise corresponding to P

and use the decide rule to select B ∈ Γ to initiate a left-introduction phase.

By Proposition 5.20, there is a left-introduction phase that corresponds to

P . By setting θ to the identity substitution on the variables in Σ′, we have

A = Aθ and where the left-introduction phase has the premises (where, B =

{B1, . . . , Bn})

Σ,Σ′ :: Γ,B ⊢ B1 , . . . , Σ,Σ′ :: Γ,B ⊢ Bn (n ≥ 0).

We can conclude now by using the inductive hypotheses on each of these

premises.

In order to prove the cut-elimination theorem for ⇓L0-proofs, we introduce

the two additional inference rules in Figure 5.2. The cut rule involves three

80 Chapter 5. Two abstract logic programming languages

Σ :: Γ ⊢ B Σ :: Γ, B ⊢ C

Σ :: Γ ⊢ C
cut

Σ :: Γ ⊢ B Σ :: Γ ⇓ B ⊢ A

Σ :: Γ ⊢ A
cutk

The cut-formula B in these rules is restricted to be an L0-formula.

Figure 5.2: The cut inference rules used in ⇓+L0-proofs.

sequents, none containing the ⇓. In order to describe the elimination of cut

from proofs, we use a second inference rule called the key cut, which contains

one premise with a ⇓. The formula B in both rules is the cut formula for that

rule. The proof system that combines these two inference rules with the rules

for the ⇓L0-proof system is called the ⇓+L0 proof system, and proofs in that

system are called ⇓+L0-proofs. A ⇓+L0-proof is said to be cut-free if it contains

no occurrences of these new rules; hence, a cut-free proof is a ⇓L0-proof.

The following proposition can be proved by induction on the structure of

⇓+L0-proofs.

Proposition 5.23 (Weakening ⇓+L0-proofs). Let Σ and Σ′ be signatures

such that Σ ⊆ Σ′ and let Γ and Γ′ be two multisets of L0-formulas such that

Γ ⊆ Γ′. If Σ :: Γ ⊢ B has a ⇓+L0-proof then Σ′ :: Γ′ ⊢ B has a ⇓+L0-proof.

An occurrence of either cut or cutk is said to be topmost if the subproofs

of both of its premises are cut-free.

Lemma 5.24 (Replace cut with cutk). Consider the following topmost

occurrence of the cut rule (i.e., Ξl and Ξr are (cut-free) ⇓L0-proofs).

Ξl

Σ :: Γ ⊢ B
Ξr

Σ :: Γ, B ⊢ C

Σ :: Γ ⊢ C
cut.

This proof can be transformed into a proof of the same sequent with no

occurrences of the cut rule, but there may be several occurrences of the cutk
rule, all of which have cut-formula B.

Proof. We first convert Ξr to a new proof Ξ′
r also of Σ :: Γ, B ⊢ C by replacing

every occurrence of the decide rule applied to the cut formula B within Ξr,

5.5 Completeness of focused proofs 81

such as
Ξ0

Σ′ :: Γ′, B ⇓ B ⊢ A

Σ′ :: Γ′, B ⊢ A
decide

(where Σ ⊆ Σ′ and Γ ⊆ Γ′), with the following occurrence of the cutk rule

Ξ̂l

Σ′ :: Γ′ ⊢ B
Ξ0

Σ′ :: Γ′, B ⇓ B ⊢ A

Σ′ :: Γ′, B ⊢ A
cutk.

Here, Ξ̂l results from weakening Ξl (Proposition 5.23). The resulting proof Ξ′
r

has no occurrences of decide on B but may have several occurrences of cutk
with the cut formula B. Although Ξ′

r is a proof of Σ :: Γ, B ⊢ C, since there

are no occurrences of decide on B in Ξ′
r, we can strengthen Ξ′

r to get a proof

Ξs of Σ :: Γ ⊢ C (see Exercise 5.21). As a result, we can replace the original

proof of Σ :: Γ ⊢ C with the proof Ξs.

The following proposition can be proved by induction on the structure of

⇓+L0-proofs.

Proposition 5.25 (Substitution into ⇓+L0-proofs). Let Σ be a signature,

x a variable not declared in Σ, and τ a primitive type. If Σ, x : τ : Γ ⊢ B

has a ⇓+L0-proof and t is a Σ-term of type τ then Σ :: Γ[t/x] ⊢ B[t/x] has

a ⇓+L0-proof.

The size of a formula B, written as |B|, is the number of occurrences of

logical connectives in B. The size of a formula is zero if and only if that

formula is atomic.

Lemma 5.26 (Replace cutk with cut). Consider the following topmost

occurrence of the cutk rule, where Ξl and Ξr are (cut-free) ⇓L0-proofs.

Ξl

Σ :: Γ ⊢ B

Ξr

Σ :: Γ ⇓ B ⊢ C

Σ :: Γ ⊢ C
cutk.

We can transform this proof into a proof of Σ :: Γ ⊢ C with no occurrences

of cutk but with possibly several instances of the cut rule, all of which have

cut-formulas with measure strictly smaller than |B|.

Proof. Consider a topmost occurrence of the cutk rule as displayed above. If

B is atomic, then B and C are equal, and the result of eliminating this cutk is

82 Chapter 5. Two abstract logic programming languages

Ξl. In the case that B is not atomic, Ξl ends in a nonempty, right-introduction

phase, and Ξr ends in a left-introduction phase. By Proposition 5.20, there

is a path P in B with associated sequent Σ′ :: B1, . . . , Bn ⊢ A′ such that the

premises and subproofs of that left-introduction phase are

Ξ1

Σ :: Γ ⊢ B1θ, . . . ,
Ξn

Σ :: Γ ⊢ Bnθ (n ≥ 0)

and where A′θ is A, for some substitution θ. By Proposition 5.19, there is a

premise in the right-introduction phase that corresponds to path P and is the

sequent Σ,Σ′ :: Γ, B1, . . . , Bn ⊢ A′ with subproof Ξ0. By repeated application

of Proposition 5.25, we know that the sequent Σ :: Γ, B1θ, . . . , Bnθ ⊢ A′θ has a

⇓L0-proof, say, Ξ0θ. We can arrange these various ⇓L0-proofs as the following

n occurrences of the cut rule (remembering that A equals A′θ).

Ξn

Σ :: Γ ⊢ Bnθ

Ξ1

Σ :: Γ ⊢ B1θ
Ξ0θ

Σ :: Γ, B1θ, . . . , Bnθ ⊢ A

Σ :: Γ, B2θ, . . . , Bnθ ⊢ A
cut

...

Σ :: Γ, Bnθ ⊢ A

Σ :: Γ ⊢ A
cut

Note that the size of each of the cut formulas B1θ, . . . , Bnθ is strictly less than

the size of the original cut formula B.

Thus, Lemma 5.24 describes how one occurrence of cut on B can be re-

placed with several occurrences of cutk on B, and Lemma 5.26 describes how

an occurrence of cutk on B can be replaced by several occurrences of cut on

strictly smaller formulas than B.

Lemma 5.27. A ⇓+L0 proof that ends with a cut rule in which both

premises have a cut-free proof can be replaced with a cut-free proof of the

same endsequent.

Proof. Consider the following topmost occurrence of the cut inference rule

Ξl

Σ :: Γ ⊢ B

Ξr

Σ :: Γ, B ⊢ C

Σ :: Γ ⊢ C
cut,

in which Ξl and Ξr are (cut-free) ⇓L0-proofs. We will show that the sequent

Σ :: Γ ⊢ C has a cut-free ⇓L0-proof by induction on the size of the cut formula

B. First, apply Lemma 5.24 to conclude that there is a proof Ξ′ of Σ :: Γ ⊢ C

5.5 Completeness of focused proofs 83

that contains no occurrences of cut but which might have several instances

of the cutk rule with cut formula B. We can now do a second induction

on the number of occurrences of cutk in Ξ′. If that number is 0, then Ξ′

is the desired cut-free proof. Otherwise, assume that there is at least one

occurrence of cutk on B in Ξ′. Now, we pick a topmost occurrence of cutk and

apply Lemma 5.26. In that case, we can convert that occurrence of cutk to

several occurrences of cut on strictly smaller formulas than B. Applying the

inductive assumption can eliminate all of these occurrences of cut. We have

now replaced one occurrence of the cutk rule with a cut-free proof, and hence,

we have completed our proof.

We can combine these lemmas to prove the main cut-elimination theorem

for ⇓+L0 proofs.

Theorem 5.28 (Elimination of cuts). If the sequent Σ :: Γ ⊢ G has a

⇓+L0-proof then it has a ⇓L0-proof.

Proof. We proceed using induction on the number of occurrences of the cut

inference rules in a proof. In particular, pick an occurrence of the cut rule,

which is the endsequent of a subproof in which both premises have cut-free

proofs. By applying Lemma 5.27 to that occurrence of cut, we can replace

it with a cut-free proof of the same sequent. The proof now follows from the

inductive assumption.

A consequence of the cut-elimination theorem for ⇓+L0 proofs is the com-

pleteness of ⇓L0-proofs with respect of I-proofs (when all formulas are re-

stricted to L0).

Theorem 5.29 (Completeness of ⇓L0-proofs for L0-formulas). If the se-

quent Σ :: Γ ⊢ G has a cut-free I-proof then it has a ⇓L0-proof.

For convenience, we use the notation Σ ::P ⊢⇓ G to denote the proposition

that the sequent Σ :: P ⊢ G has a ⇓L0-proof.

Proof. We prove this by showing that the inference rules of the intuitionis-

tic proof system I are admissible in the ⇓L0-proof system. Since the right-

introduction rules of I are the same as those in ⇓L0, these rules are triv-

ially admissible. The admissibility of the init rule for I follows immediately

from Proposition 5.22. The admissibility of the wL rule follows from Propo-

sition 5.23. The admissibility of the cL rule is easily argued as follows. In

a ⇓L0-proof of Σ :: Γ, B,B ⊢ ∆, the decide rule may have been used on the

two different occurrences of B. By changing all those decide rules to use the

84 Chapter 5. Two abstract logic programming languages

same occurrence of B and then deleting the other occurrence of B, we obtain

a ⇓L0-proof of Σ :: Γ, B ⊢ ∆.

All that remains to show is that the left-introduction rules for the L0

connectives ∧, ⊃, and ∀ are admissible.

Admissibility of ∧L. Assume that B1 ∧ B2 is an L0 Σ-formula. By

Proposition 5.22, we have Σ :: B1 ∧ B2 ⊢⇓ B1 ∧ B2. An ⇓L0-proof of that

sequent has immediate subproofs that yield both Σ :: B1 ∧ B2 ⊢⇓ B1 and

Σ :: B1 ∧ B2 ⊢⇓ B2. In order to prove that ∧L is admissible, assume that

Σ :: B1,Γ ⊢⇓ E. Using cut-admissibility (Theorem 5.28) with this sequent and

the sequent Σ ::B1∧B2 ⊢⇓ B1, we conclude that Σ ::B1∧B2,Γ ⊢⇓ E. A similar

argument also concludes that if Σ :: B2,Γ ⊢⇓ E, then Σ :: B1 ∧ B2,Γ ⊢⇓ E.

Hence, both ∧L rules in I are admissible.

Admissibility of ⊃L. Assume that B1 ⊃ B2 is an L0 Σ-formula. By

Proposition 5.22, we have Σ :: B1 ⊃ B2 ⊢⇓ B1 ⊃ B2. A ⇓L0-proof of that

sequent has an immediate subproof that proves Σ :: B1, B1 ⊃ B2 ⊢⇓ B2. In

order to prove that ⊃L is admissible, assume that both Σ :: Γ1 ⊢⇓ B1 and

Σ :: B2,Γ2 ⊢⇓ E. Using the Proposition 5.23, we have Σ :: Γ1,Γ2 ⊢⇓ B1 and

Σ ::B2,Γ1,Γ2 ⊢⇓ E. Using cut-admissibility (Theorem 5.28), we conclude that

Σ :: Γ1,Γ2, B1 ⊃ B2 ⊢⇓ B2 and Σ :: B1 ⊃ B2,Γ1,Γ2 ⊢⇓ E. Hence, the ⊃L rule

in I is admissible.

Admissibility of ∀L. Assume that ∀τx.B is an L0 Σ-formula and that

τ is a primitive type. By Proposition 5.22, we have Σ :: ∀τx.B ⊢⇓ ∀τx.B.

A ⇓L0-proof of that sequent has an immediate subproof that proves Σ, y :

τ : ∀x.B ⊢⇓ B[y/x], for a variable y not present in Σ. By Proposition 5.25,

we have Σ :: ∀x.B ⊢⇓ B[t/x], for any Σ-term t. In order to prove that ∀L

is admissible, assume that Σ :: B[t/x],Γ ⊢ E has a ⇓L0-proof. Then using

cut elimination (Theorem 5.28), we can conclude that Σ :: ∀x.B,Γ ⊢ E has a

⇓L0-proof. Hence, the ∀L rule in I is admissible.

Another simple consequence of proving cut elimination for ⇓+L0-proofs is

the admissibility of cut for I-proofs when restricted to L0-formulas.

Theorem 5.30 (Admissibility of cut for I-proofs restricted to L0 formulas).

The cut rule for I-proofs (Figure 4.2) is admissible for cut-free I-proofs

when restricted to L0-formulas.

Proof. We wish to prove that the single-conclusion version of the cut rule from

Figure 4.2, namely,

Σ :: Γ1 ⊢ B Σ :: B,Γ2 ⊢ E

Σ :: Γ1,Γ2 ⊢ E
cut

is admissible in the cut-free I-proof system. Thus, assume that Σ :: Γ1 ⊢ B

5.6 A canonical Kripke model 85

and Σ :: B,Γ2 ⊢ E have (cut-free) I-proofs. By Theorem 5.29, Σ :: Γ1 ⊢ B and

Σ :: B,Γ2 ⊢ E have ⇓L0-proofs. Using Proposition 5.23, both Σ :: Γ1,Γ2 ⊢ B

and Σ :: B,Γ1,Γ2 ⊢ E have ⇓L0-proofs. Given the cut-elimination result

(Theorem 5.28), we know that Σ :: Γ1,Γ2 ⊢ E has a ⇓L0-proof. Using the

soundness of ⇓L0-proofs (Proposition 5.15), we conclude that Σ :: Γ1,Γ2 ⊢ E

has an I-proof.

The inference rule (where all formulas are L0-formulas)

Σ ⊩ t : τ Σ, x : τ :: Γ ⊢ B

Σ :: Γ[t/x] ⊢ B[t/x]
instan

is similar to the cut rule: the instan rule instantiates an eigenvariable while

the cut rule instantiates a hypothesis. The following theorem shows that the

instan rule is admissible for I-proofs. The proof of this theorem follows directly

from Proposition 5.25.

Theorem 5.31 (Admissibility of instan for I-proofs restricted to L0 for-

mulas). The instan rule for I-proofs (Figure 4.2) is admissible for cut-free

I-proofs when restricted to L0-formulas.

5.6 A canonical Kripke model

Most textbooks on symbolic logic introduce, alongside of proofs, a notion

of truth formalized using models. Models are mathematical structures con-

structed using various sets and functions: we give an example of such a struc-

ture below. Generally, models are infinite objects (especially models for quan-

tificational logics), and there are usually an infinite number of such models. In

those settings where models and proofs are both present, the terms soundness

and completeness are usually used as follows (in contrast to the way these

terms are used in Section 4.1).

Soundness: If a formula is provable, it is true in every model.

Completeness: If a formula is true in every model, it is provable.

In this section, we briefly consider a particular kind of model that is known

as a Kripke model. Presentations of such models are known to be sound and

complete for intuitionistic logic. We show here, however, that in the setting of

I-proofs involving only L0 formulas, it is possible to build one such model, a

canonical Kripke model, so that the completeness theorem can be strengthened

to be: if a formula is true in this one canonical Kripke model, then it has an

I-proof.

86 Chapter 5. Two abstract logic programming languages

A world is a pair ⟨Σ,P⟩ where Σ is a (finite) signature and P is a (finite)

set of L0 Σ-formulas. The order relation on worlds ⟨Σ,P⟩ ⪯ ⟨Σ′,P ′⟩ is defined

to hold whenever Σ ⊆ Σ′ and P ⊆ P ′. A Kripke model is a pair, ⟨W, I⟩,
where W is a (possibly infinite) set of worlds and I is a function, called an

interpretation, that maps the worlds in W to sets of atomic formulas in such

a way that I(⟨Σ,P⟩) is a set of atomic Σ-formulas. The mapping I must also

be order-preserving: that is, for all w,w′ ∈ W, if w ⪯ w′ then I(w) ⊆ I(w′).

Let the pair ⟨W, I⟩ be a Kripke model, let ⟨Σ,P⟩ ∈ W, and let B be an

L0 Σ-formula. The three-place satisfaction relation I, ⟨Σ,P⟩ ⊢ B is defined

by induction on the structure of B as follows.

1. I, ⟨Σ,P⟩ ⊢ B if B is atomic and B ∈ I(⟨Σ,P⟩).

2. I, w ⊢ B ∧B′ if I, w ⊢ B and I, w ⊢ B′.

3. I, w ⊢ B ⊃ B′ if for every w′ ∈ W such that w ⪯ w′ and I, w′ ⊢ B then

I, w′ ⊢ B′.

4. I, ⟨Σ,P⟩ ⊢ ∀τx.B if for every ⟨Σ′,P ′⟩ ∈ W such that ⟨Σ,P⟩ ⪯ ⟨Σ′,P ′⟩
and for every Σ′-term t of type τ , the relation I, ⟨Σ′,P ′⟩ ⊢ B[t/x] holds.

Let ⟨Σ,P⟩ be a world. The canonical model for ⟨Σ,P⟩ is defined as the

Kripke model with the set of worlds {⟨Σ′,P ′⟩ | ⟨Σ,P⟩ ⪯ ⟨Σ′,P ′⟩} and the

interpretation I defined so that I(⟨Σ′,P ′⟩) is the set of all atomic Σ′-formulas

A such that Σ′ ::P ′ ⊢ A has a cut-free I-proof. Note that the canonical Kripke

model is an infinite structure in the sense that it contains countably many

worlds.

Note the difference in the treatment of provability and satisfaction for an

implicational formula. In order to prove the formula B1 ⊃ B2 in the world

⟨Σ,P⟩ (i.e., that the sequent Σ :: P ⊢ B1 ⊃ B2 is provable), we need to move

to a single new world ⟨Σ,P ∪{B1}⟩ and try to prove B2. In contrast, to show

that B1 ⊃ B2 is true in the world ⟨Σ,P⟩, we need to examine all extensions to

that world and check that B2 is true in that world if B1 is true in that world.

As we mentioned in Section 3.7, sequent calculus inference rules provide

logical connectives with two senses within a proof: there are different infer-

ence rules for introducing a given logical connective on the left and right of

a sequent. On the other hand, in the model-theoretic setting, logical connec-

tives are given meaning in only one sense: there is only one clause defining the

satisfiability of a given logical connective. The following lemma shows how

the cut-admissibility result allows us to relate these approaches to providing

meaning to logical connectives.

5.6 A canonical Kripke model 87

Lemma 5.32. The cut rule (Figure 5.2) and the instan rule (defined at

the end of Section 5.5) are admissible for cut-free I-proofs if and only if

the following holds: For every world ⟨Σ,P⟩ and every Σ-formula B, it is

the case that Σ :: P ⊢ B has a cut-free I-proof if and only if I, ⟨Σ,P⟩ ⊢ B,

where I is the canonical model for ⟨Σ,P⟩.

In other words, the admissibility of cut and instan is equivalent to the

coincidence of truth in the canonical model with provability.

Proof. To prove the forward direction, assume that both the cut and instan

rules are admissible for I-proofs. We now prove by induction on the structure

of B that Σ :: P ⊢I B if and only if I, ⟨Σ,P⟩ ⊢ B.

Case: B is atomic. The equivalence is immediate.

Case: B is B1 ∧B2. This case is simple and immediate.

Case: B is B1 ⊃ B2. Assume first that Σ ::P ⊢I B1 ⊃ B2. Hence, Σ ::P, B1 ⊢I
B2 (using the invertibility of ⊃R.). To show I, ⟨Σ,P⟩ ⊢ B1 ⊃ B2, assume

that ⟨Σ′,P ′⟩ ∈ W is such that ⟨Σ,P⟩ ⪯ ⟨Σ′,P ′⟩ and I, ⟨Σ′,P ′⟩ ⊢ B1. By the

inductive hypothesis, Σ′ :: P ′ ⊢I B1 and by cut admissibility, Σ′ :: P ′ ⊢I B2. By

induction again, we have I, ⟨Σ′,P ′⟩ ⊢ B2. Thus, I, ⟨Σ,P⟩ ⊢ B1 ⊃ B2. For the

converse, assume I, ⟨Σ,P⟩ ⊢ B1 ⊃ B2. Since Σ :: P, B1 ⊢I B1, the inductive

hypothesis yields I, ⟨Σ,P ∪ {B1}⟩ ⊢ B1. By the definition of satisfaction

of implication, we must have I, ⟨Σ,P ∪ {B1}⟩ ⊢ B2. Using the inductive

hypothesis again, Σ :: P, B1 ⊢I B2, and Σ :: P ⊢I B1 ⊃ B2.

Case: B is ∀τx.B1. Assume first that Σ :: P ⊢I ∀τx.B1 and, hence, Σ, d :

τ ::P ⊢I B1[d/x] for any variable d not in Σ. To show that I, ⟨Σ,P⟩ ⊢ ∀τx.B1,

let ⟨Σ′,P ′⟩ ∈ W be such that ⟨Σ,P⟩ ⪯ ⟨Σ′,P ′⟩ and t be a Σ′-term of type

τ . By the admissibility of the instan rule, we have Σ′ :: P ′ ⊢I B1[t/x]. By

induction we have I, ⟨Σ′,P ′⟩ ⊢ B1[t/x]. Thus, I, ⟨Σ,P⟩ ⊢ ∀τxB1. For the

converse, assume I, ⟨Σ,P⟩ ⊢ ∀τxB1. Let d be a variable not a member of

Σ. Since d is a Σ ∪ {d}-term, I, ⟨Σ ∪ {d},P⟩ ⊢ B1[d/x] by the definition of

satisfaction of universal quantification. But by the inductive hypothesis again,

Σ, d : τ :: P ⊢I B1[d/x] and Σ :: P ⊢I ∀τxB1.

We now show the converse by assuming the equivalence: for every world

⟨Σ,P⟩ and every Σ-formula B,

Σ :: P ⊢I B if and only if I, ⟨Σ,P⟩ ⊢ B,

where I is the canonical model for ⟨Σ,P⟩. We now show that any sequent

that can be proved using occurrences of the cut and instan rules can be proved

without such rules. In particular, we claim that if ⟨Σ,P⟩ ⪯ ⟨Σ′,P ′⟩ then each

of the following holds.

88 Chapter 5. Two abstract logic programming languages

1. If Σ′ :: P ′ ⊢I B and Σ :: P, B ⊢I C then Σ′ :: P ′ ⊢I C.

2. If t is a Σ′-term of type τ and Σ, x : τ ::P ⊢I B then Σ′ ::P ′ ⊢I B[t/x] (of

course, x does not occur in Σ).

To prove the first claim, assume that Σ′ ::P ′ ⊢I B and Σ::P, B ⊢I C. Thus,

Σ :: P ⊢I B ⊃ C. By the assumed equivalence, I, ⟨Σ′,P ′⟩ ⊢ B and I, ⟨Σ,P⟩ ⊢
B ⊃ C. By the definition of satisfaction for implication, I, ⟨Σ′,P ′⟩ ⊢ C. By

the assumed equivalence again, this yields Σ′ :: P ′ ⊢I C.

To prove the second claim above, assume that t is a Σ′-term of type τ and

that Σ, x : τ :: P ⊢I C. Thus, Σ :: P ⊢I ∀τx.B. By the assumed equivalence,

I, ⟨Σ,P⟩ ⊢ ∀τx.B. By the definition of satisfaction for universal quantification,

we have I, ⟨Σ′,P ′⟩ ⊢ B[t/x]. By the assumed equivalence again, this yields

Σ′ :: P ′ ⊢I B[t/x].

Given Theorems 5.28 and 5.31, this lemma provides an immediate proof

of the following theorem.

Theorem 5.33. Let ⟨Σ,P⟩ be a world and let I be the canonical model

for ⟨Σ,P⟩. For all Σ-formulas B, Σ :: P ⊢I B if and only if I ⊢ B. In

particular, for every B ∈ P, I ⊢ B.

The following simple argument supports our use of the term canonical

model. Although we have not given a general definition of Kripke models (i.e., a

notion of model that is not built from formulas and terms), whatever definition

is used, it needs to be sound: if ⊢I B, then B is true in every generalized Kripke

model. Thus, if the L0 Σ-formula B is true in the canonical model for ⟨Σ, ∅⟩
then Σ :: · ⊢I B and, hence, B is true in every generalized Kripke model.

5.7 Synthetic inference rules

The left-introduction phase in ⇓L0 can be described as a single inference rule

via the following generalized notion of backchaining . Let Σ be a signature and

let Γ be a finite set of Σ-formulas. Define |Γ|Σ to be the smallest set of pairs

⟨∆, D⟩, where ∆ is a multiset of formulas and D is a formula, such that

1. if D ∈ Γ then ⟨∅, D⟩ ∈ |Γ|Σ,

2. if ⟨∆, D1 ∧D2⟩ ∈ |Γ|Σ then ⟨∆, D1⟩ ∈ |Γ|Σ and ⟨∆, D2⟩ ∈ |Γ|Σ,

3. if ⟨∆, G ⊃ D⟩ ∈ |Γ|Σ then ⟨∆ ∪ {G}, D⟩ ∈ |Γ|Σ, and

4. if ⟨∆, ∀τxD⟩ ∈ |Γ|Σ and t is a Σ-term of type τ then ⟨∆, D[t/x]⟩ ∈ |Γ|Σ.

5.7 Synthetic inference rules 89

The backchaining inference rule is now defined as

{Σ :: Γ ⊢ G | G ∈ ∆}
Σ :: Γ ⊢ A

BC, provided A is atomic and ⟨∆, A⟩ ∈ |Γ|Σ.

If ∆ is empty, then this rule has no premises. Let the ⇓L′
0-proof system contain

the right-introduction rules in Figure 4.1 and the BC rule. Straightforward

inductive arguments prove the following two lemmas and proposition.

Lemma 5.34. If P is a path in D (i.e., D ↑ P holds), and θ is a substi-

tution, then Pθ is a path in Dθ.

Lemma 5.35. Let Σ be an eigenvariable signature, let ∆ be a multiset of

Σ-formulas, and let A and D be a Σ-formulas, where A is atomic. Then

⟨∆, A⟩ ∈ |{D}|Σ if and only if there is a path in D with bound variables x̄,

arguments G1, . . . , Gn (n ≥ 0), and target A′ and there is a substitution θ

mapping the variables x̄ to Σ-terms such that ∆ and {G1θ, . . . , Gnθ} are

equal and A and A′θ are equal.

Proposition 5.36. Let Σ be a signature, let P be a multiset of L0 Σ-

formulas and G be a Σ-formula. The sequent Σ :: P ⊢ G has a ⇓L′
0-proof

if and only if it has an I-proof.

The two-phase ⇓L0-proof system can justify replacing program clauses

with inference rules. For example, let P be the multiset containing the clauses

∀x.∀y. [adj x y ⊃ path x y] and ∀x.∀y.∀z.[adj x y ∧ path y z ⊃ path x z].

Here, we assume the two predicates adj and path have type i → i → o. Using

the decide rule on the second of these formulas leads to an attempt to prove

the sequent Σ :: Γ,P ⊢ path s t with the following derivation.

Γ,P ⊢ adj s u Γ,P ⊢ path u t

Γ,P ⊢ adj s u ∧ path u t
∧L

Γ,P ⇓ path s t ⊢ path s t
init

Γ,P ⇓ (adj s u ∧ path u t ⊃ path s t) ⊢ path s t
⊃ L

Γ,P ⇓ ∀x.∀y.∀z.(adj x y ∧ path y z ⊃ path x z) ⊢ path s t
∀L× 3

Γ,P ⊢ path s t
decide

(We suppressed the signatures associated with sequents for readability). If we

ignore the seven inference rules within this derivation, we have the inference

rule
Σ :: Γ,P ⊢ adj s u Σ :: Γ,P ⊢ path u t

Σ :: Γ,P ⊢ path s t
.

90 Chapter 5. Two abstract logic programming languages

Similarly, deciding to use the first of these two formulas results in the inference

rule

Σ :: Γ,P ⊢ adj s t

Σ :: Γ,P ⊢ path s t
.

These two derived inference rules are rather appealing since they do not men-

tion any logical constants. Instead, they describe how an attempt to prove one

atomic formula can lead to an attempt to prove one or two additional atomic

formulas. Given this observation, we can remove these two Horn clauses from

the logic program (assumptions on the left-hand side) and insert in the I-proof

system the synthetic inference rules

Σ :: Γ ⊢ adj s t

Σ :: Γ ⊢ path s t
and

Σ :: Γ ⊢ adj s u Σ :: Γ ⊢ path u t

Σ :: Γ ⊢ path s t
.

If we are using only Horn clauses, then it is possible to replace all program

clauses in the left-hand context with synthetic inference rules that mention

only atomic formulas.

More formally, we say that a sequent of the form Σ :: Γ ⊢ A, where A is an

atomic formula, is a border sequent since such sequents appear at the border

between a right-introduction phase (on the bottom) and a left-introduction

phase (on the top). A synthetic inference rule is the inference rule that re-

sults from moving from a border sequent upwards through a decide rule and

then through the resulting left-introduction phase, and then, if any sequents

remain, through the right-introduction phases. Any open sequents remaining

after both phases are complete will be border sequents, and these will be the

premises of the associate synthetic inference rule. In other words, a synthetic

inference rule combines backchaining and goal reduction into one rule.

Although focusing on Horn clauses yields synthetic inference rules that

only mention atoms, focusing on formulas of higher clause order leads to syn-

thetic rules that contain logical connectives. For example, focusing on the

propositional formula ((p ⊃ q) ⊃ r) ⊃ s would justify the synthetic inference

rule

Γ, p ⊃ q ⊢ r

Γ ⊢ s
.

Exercise 5.37. Show that the synthetic inference rules that result from

deciding on an L0-formula of clausal order at most 2 involve only atomic

formulas in its conclusion and premises.

5.8 Disjunctive and existential goals 91

5.8 Disjunctive and existential goals

Now that we have addressed the soundness and completeness of ⇓L0-proofs

for L0-formulas, we return to considering allowing disjunctions and existential

quantifiers into formulas in the restricted setting of definition (5.5) of fohh.

With this definition, I-proofs can have disjunctions and existential introduc-

tion rules on the right but not the left of its sequents. It turns out that we can

capture the right-hand side proof-search behavior of these logical constants

using non-logical constants as follows. Let ∨̂ be a non-logical constant of type

o → o → o and ∃̂τ be a non-logical constant of type (τ → o) → o for every

type τ . Consider the (infinite) set C of formulas that contains the two clauses

∀oP ∀oQ [P ⊃ (P ∨̂Q)] ∀oP ∀oQ [Q ⊃ (P ∨̂Q)]

and, for every type τ , the clause

∀τ→oB ∀τ t [(B t) ⊃ (∃̂τ B)].

The members of C are Horn clauses, but they are not first-order Horn clauses

since they contain quantifiers that are not of first-order type (since that type

contains the type o). Such clauses are studied in more detail in Chapter 9

where we present higher-order Horn clauses. The clauses above correspond to

the following synthetic inference rules.

Σ :: P, C ⊢ P

Σ :: P, C ⊢ P ∨̂Q

Σ :: P, C ⊢ Q

Σ :: P, C ⊢ P ∨̂Q

Σ :: P, C ⊢ B t

Σ :: P, C ⊢ ∃̂τB

Note that these rules exactly correspond to the ∨R and ∃R rules. Given this

observation, we can now prove the following completeness theorem.

Proposition 5.38 (Completeness of ⇓ fohh-proofs for fohh). Let Γ be a

fohh logic program and G a fohh goal. If the sequent Σ :: Γ ⊢ G has an

I-proof then it has a ⇓ fohh-proof.

Proof. Assume that Σ :: Γ ⊢ G has an I-proof Ξ. Let C(Ξ) be the smallest

set of clauses such that the following holds. (When we write ∀Σ′, we mean a

string of universal quantifiers, one for each variable in Σ′.)

1. If Ξ contains the inference rule

Σ,Σ′ :: Γ′ ⊢ Bi

Σ,Σ′ :: Γ′ ⊢ B1 ∨B2
∨R

then C(Ξ) contains the clause ∀Σ′[Bi ⊃ (B1 ∨̂B2)].

92 Chapter 5. Two abstract logic programming languages

2. If Ξ contains the inference rule

Σ,Σ′ ⊩ t : τ Σ,Σ′ :: Γ′ ⊢ B[t/x]

Σ,Σ′ :: Γ′ ⊢ ∃τx.B
∃R

then C(Ξ) contains the clause ∀Σ′[B[t/x] ⊃ (∃̂τx.B)].

The set C(Ξ) is a set of essentially first-order Horn clauses: the only reason

that they are not exactly members of fohc is that they can contain atomic

formulas that might contain logical connectives (such atomic formulas have

top-level symbols ∨̂ and ∃̂). Otherwise, only first-order quantification is used

within these clauses. We shall assume here that this mild extension to fohc

does not affect the proof theory results that we have already established for

them. Chapter 9 will formally justify this assumption.

Let Γ̂ and Ĝ be the result of replacing all occurrences of ∨ with ∨̂ and of

∃τ with ∃̂τ . It is now straightforward to convert the I-proof Ξ of Σ :: Γ ⊢ G

into an I-proof of Σ :: C(Ξ), Γ̂ ⊢ Ĝ. This conversion takes the rule

Σ,Σ′ :: Γ′ ⊢ Bi

Σ,Σ′ :: Γ′ ⊢ B1 ∨B2
∨R

and rewrites it into

Σ,Σ′ :: C(Ξ), Γ̂ ⊢ B̂i Σ,Σ′ :: B̂1 ∨̂ B̂2 ⊢ B̂1 ∨̂ B̂2

init

Σ,Σ′ :: C(Ξ), Γ̂, B̂i ⊃ B̂1 ∨̂ B̂2 ⊢ B̂1 ∨̂ B̂2

⊃L

Σ,Σ′ :: C(Ξ),∀Σ′[Bi ⊃ (B1 ∨̂B2)], Γ̂
′ ⊢ B̂1 ∨̂ B̂2

∀L

Σ,Σ′ :: C(Ξ), Γ̂′ ⊢ B̂1 ∨̂ B̂2

cL

A similar conversion must also be done with the ∃R inference rule. Thus, the

original proof can be converted into an I-proof involving only L0-formulas.

By Theorem 5.29, we know that the sequent Σ :: C(Ξ), Γ̂ ⊢ Ĝ also has a ⇓L0-

proof. Given that ∨ and ∃ cannot be top-level connectives of fohh program

clauses, the left-hand context Γ̂ will never get additional assumptions with

target atoms containing ∨̂ or ∃̂ as their predicate symbol. This ⇓L0-proof

can then be converted directly into a ⇓L0-proof of Σ :: Γ ⊢ B1 ∨B2 by noting

that the only times a decide rule is used with a formula from C(Ξ) occurs

when we emulate either an ∨R or ∃R rule. The conversion of the proof is

completed by replacing such decide rules and the phase above them with the

right-introduction rule they are emulating.

5.9 Examples of fohc logic programs

5.9 Examples of fohc logic programs 93

kind nat type.

type z nat.

type s nat -> nat.

type sum nat -> nat -> nat -> o.

type leq , greater nat -> nat -> o.

sum z N N.

sum (s N) M (s P) :- sum N M P.

leq z N.

leq (s N) (s M) :- leq N M.

greater N M :- leq (s M) N.

The type o denotes o, the type of formulas (see Section 2.4).

Figure 5.3: The fohc specification of three relations on natural numbers.

Figure 5.3 presents some examples of Horn clauses and two kinds of dec-

larations. The syntax there follows the λProlog conventions. The kind dec-

laration is used to declare members of the set of sorts S. In particular, the

kind declaration in Figure 5.3 declares that the token nat is to be used as a

primitive type. The expressions

type tok <type expression >.

declares that the non-logical signature should contain the declaration of tok

at the associated type expression. Logic program clauses are the remaining

entries. In those entries, the infix symbol :- denotes the converse of ⊃, a

semicolon denotes a disjunction, a comma (which binds tighter than :- and the

semicolon) denotes a conjunction of G-formulas, and & denotes a conjunction

of D-formulas. (In our current setting, both the comma and & denote the

same logical connective ∧. When we move to linear logic, these tokens will be

mapped to different linear logic conjunctions: see Section 6.5.) Tokens with

initial capital letters are universally quantified with scope around individual

clauses (which are terminated by a period).

In Figure 5.3, after the symbol nat is declared a primitive type, both z and

s are declared as constructors for natural numbers denoting zero and successor.

The symbol sum is declared to be a relation of three natural numbers, while the

two symbols leq and greater are declared to be binary relations on natural

numbers. The remaining lines in that figure provide the logic programming

specification of these three predicates. For example, if the sum predicate holds

for the triple M , N , and P then N + M = P : this relation is described

recursively using the fact that 0+N = N and if N+M = P then (N+1)+M =

(P + 1). Similarly, relations describing N ≤ M and N > M are also specified.

94 Chapter 5. Two abstract logic programming languages

Figure 5.4 introduces the type for lists and two constructors for lists: the empty

list constructor nil and the nonempty list constructor, the infix symbol ::.

Here we are using the λProlog notation for polymorphic typing of lists, even

though the formal theory of terms and types used in this book are simple types

without type variables. The keyword infixr is used to declare that a given

token should be used as an infix operator that associates to the right (with a

certain priority).

Also, in Figure 5.4, the binary predicate sumup relates a list of natural

numbers with the sum of those numbers. The binary predicate max relates a

non-empty list of numbers with the largest number in that list and the empty

list with the number 0. The predicate maxx is an auxiliary predicate used to

help compute the max relation.

Exercise 5.39. Informally describe the predicates specified by the clauses

in Figures 5.5 and 5.6.

Exercise 5.40. Take a standard definition of a Turing machine and show

how to define an interpreter for a Turing machine in fohc. The specification

should encode the fact that a given machine accepts a given word if and only

if some atomic formula is provable.

5.10 Dynamics of proof search for fohc

Let P be a fohc program and G a fohc goal such that Σ :: P ⊢ G has an

I-proof. By the completeness of ⇓ fohh-proofs (Theorem 5.38), this sequent

must have a ⇓ fohh-proof, say, Ξ. Since there are no occurrences of ⊃R or ∀R

in Ξ, every sequent occurring in Ξ has Σ as its signature and P as its left-hand

side. Thus, if a program clause is ever needed (via the decide rule) during the

search for a proof, it must be present at the beginning of that computation,

along with all other clauses that might be needed during the computation.

Thus, the logic of fohc does not directly support hierarchical programming

in which certain program clauses are meant to be local within a particular

scope. Similarly, data structures are first-order terms built from a non-logical

signature. Since signatures do not change during the search for proofs using

first-order Horn clauses, all the constructors for data structures that need to

be built during proof search must be available globally. In other words, fohc

does not directly support hiding the internal details of data structures, an

abstraction mechanism available in many programming languages via abstract

data types.

If we only look at border sequents in ⇓L0-proofs in fohc, the only parts of

sequents that change when moving from border to border are the atomic right-

5.10 Dynamics of proof search for fohc 95

kind list type -> type.

type nil list A.

type :: A -> list A -> list A.

infixr :: 5.

type sumup , max list nat -> nat -> o.

type maxx list nat -> nat -> nat -> o.

sumup nil z.

sumup (N::L) S :- sumup L T, sum N T S.

max L M :- maxx L z M.

maxx nil A A.

maxx (X::L) A M :- leq X A, maxx L A M.

maxx (X::L) A M :- greater X A, maxx L X M.

Figure 5.4: Some relations between natural numbers and lists.

kind node type.

type a, b, c, d, e, f node.

type adj , path node -> node -> o.

adj a b & adj b c & adj c d & adj a c & adj e f.

path X X.

path X Z :- adj X Y, path Y Z.

Figure 5.5: Encoding a directed graph.

type memb A -> list A -> o.

type append list A -> list A -> list nat -> o.

type sort list nat -> list nat -> o.

type split nat -> list nat ->

list nat -> list nat -> o.

memb X (X::L).

memb X (Y::L) :- memb X L.

append nil L L.

append (X::L) K (X::M) :- append L K M.

split X nil nil nil.

split X (A::L) (A::S) B :- leq A X, split X L S B.

split X (A::L) S (A::B) :- greater A X, split X L S B.

sort nil nil.

sort (X::L) S :- split X L Sm Bg , sort Sm SmS ,

sort Bg BgS , append SmS (X::BgS) S.

Figure 5.6: More examples of Horn clause programs.

96 Chapter 5. Two abstract logic programming languages

kind jar , bacterium type.

type j jar.

type sterile , heated jar -> o.

type dead bacterium -> o.

type in bacterium -> jar -> o.

sterile X :- pi y\ in y X => dead y.

dead X :- heated Y, in X Y.

heated j.

Figure 5.7: Heating a jar makes it sterile.

hand sides. Given that we allow first-order terms (which can encode structures

such as natural numbers, lists, trees, and Turing machine tapes), it is easy to

see that proof search in fohc has sufficient dynamics to encode general compu-

tation. Unfortunately, all of that dynamics occurs within non-logical contexts,

namely, within atomic formulas. As a result, logical techniques for analyzing

computation via proof theory have limited impact on what can be said directly

about non-logical contexts. Thus, reasoning about specific Horn clause pro-

grams will benefit little from proof-theoretic analysis; most reasoning about

Horn clause programs will be based on induction. Chapter 11 provides an

exception in which a static analysis of Horn clauses relies entirely on struc-

tural proof theory instead of reducing Horn clause provability to inductive

reasoning.

5.11 Examples of fohh logic programs

McCarthy [1989] presented the challenge of formally defining a sterile jar as

one containing only dead bacteria. Consider proving that if a jar j is heated,

then that jar is sterile (given that heating a jar kills all bacteria in that jar).

The fohh specification of this problem is given in Figure 5.7. The expression

pi x\ denotes the universal quantification of the variable x with a scope that

extends as far to the right as consistent with parentheses or the end of the

expression. The first of the clauses above can be written as

∀x.(∀y.(in y x ⊃ dead y) ⊃ sterile x).

The synthetic inference rule associated with this clause is

y : bacterium,Σ :: P, in y x ⊢ dead y

Σ :: P ⊢ sterile x
.

5.11 Examples of fohh logic programs 97

Note that no constructors for type bacterium are provided in Figure 5.7, and

no explicit assumptions about the binary predicate in are given.

Exercise 5.41. Construct the ⇓L0-proof of the goal formula sterile j

from the logic program in Figure 5.7.

Another way to prove that a jar is sterile would be to use a microscope

and search out every bacterium in the jar and confirm that they are dead.

Unfortunately, this style of proof is not available in fohh (see Exercise 5.45),

although such proof strategies are possible in the stronger setting of model

checking: see Heath and Miller [2019] for a proof-theoretic treatment of some

aspects of model checking.

A specification for the binary predicate that relates a list with the reverse

of that list can be given in fohc using the following program clauses.

reverse L K :- rev L nil K.

rev nil L L.

rev (X::M) N L :- rev M (X::N) L.

Here, reverse is a binary relation on lists, and the auxiliary predicate rev

is a ternary relation on lists. By moving to fohh, it is possible to write the

following specification instead.

reverse L K :- rv nil K => rv L nil.

rv (X::M) N :- rv M (X::N).

Here, the auxiliary predicate rv is also a binary predicate on lists. With this

second specification, the use of non-logical contexts is slightly reduced in the

sense that the atomic formula (rev M K L) in the first specification is encoded

using the logical formula (rv nil L => rv M K) in the second specification.

Note that the definition of reverse above has clausal order 2. It is possible to

specify reverse with a single clause of order 3 as follows.

reverse L K :-

(pi X\ pi M\ pi N\ rv (X::M) N :- rv M (X::N)) =>

rv nil K => rv L nil.

Here, both the base case for rv and the recursive case are assumed in the

body of reverse. Given this encoding of reverse, no other program clauses

can access either of these two clauses for rv: they are only available during a

proof of reverse.

98 Chapter 5. Two abstract logic programming languages

Exercise 5.42. Reversing a pile of papers can informally be described as:

start by allocating an additional empty pile and then systematically moving

the original pile’s top member to the top of the newly allocated pile. When

the original pile is empty, the other pile contains the reverse. Using the

last specification of reverse above, show where this informal computation

takes place in the construction of a proof of the reverse relation.

Note that fohh allows for a simple notion of modular logic programming.

For example, let classify, scanner, and misc name (possibly large) con-

junctions of program clauses that have some specific role within a larger pro-

gramming task: for example, scanner might contain code to convert a list

of characters into a list of tokens before parsing. Consider the following goal

formula.

misc ⊃ ((classify ⊃ G1) ∧ (scanner ⊃ G2) ∧G3)

Attempting a proof of this goal will cause attempts of the three goals G1,

G2, and G3 with respect to different programs: misc and classify are used

to prove G1; misc and scanner are used to prove G2; and misc is used to

prove G3. Thus, implicational goals can be used to structure the runtime

environment of a program. For example, the code in classify is unavailable

during the proof attempt of G2.

What it means to accumulate clauses from two different sources is worth

noting. For example, assume that the predicate aux is described by two sets

of clauses in misc and scanner, respectively. The description of aux in the

accumulation of misc and scanner is given by mixing the clauses in these two

separate sources. The resulting description of aux might not have a simple

relationship to its descriptions in misc and scanner separately.

Classical logic does not support this discipline for the scoping of clauses.

For example, the three-goal formulas

D ⊃ (G1 ∨G2), (D ⊃ G1) ∨G2, and G1 ∨ (D ⊃ G2)

all provide different scopes for the clause D. However, in classical logic, the

scoping of D is the same for all of these goals: given that B ⊃ C ≡ ¬B ∨ C

is classically provable, all three of these formulas are classically equivalent to

¬D ∨G1 ∨G2. In other words, classical logic allows for scope extrusion: that

is, while the scope of D in (D ⊃ G1) ∨ G2 appears to be limited to G1, that

scope actually extrudes over the disjunction G1 ∨ G2. Thus, classical logic

does not support the notion of scope that one usually wants from a module

system.

5.12 Dynamics of proof search for fohh 99

5.12 Dynamics of proof search for fohh

Proof search using fohh programs and goals is a bit more dynamic than for

fohc. In particular, both logic programs and signatures can grow. In this

setting, every sequent in a ⇓L0-proof of the sequent Σ ::P ⊢ G is either of the

form

Σ,Σ′ :: P,P ′ ⊢ G′ or Σ,Σ′ :: P,P ′ ⇓ D ⊢ A.

Thus, the signature can grow by the addition of Σ′ and the logic program can

grown by the addition of P ′ (a fohh program over Σ ∪ Σ′). More generally, it

is the case that if the clausal order of P is n ≥ 1 and the clausal order of G is

at most n− 1, then the clausal order of P ′ is at most n− 2.

Since the terms used to instantiate quantifiers in the concluding sequent

of the ∃R and ∀L inference rules range over the signature of that sequent,

more terms are available for instantiation as proof search progresses. These

additional terms include the eigenvariables of the proof that are introduced

by ∀R inference rules. Note that once an eigenvariable is introduced, it is not

instantiated by the proof search process. As a result, eigenvariables do not

actually vary and, hence, act as locally scoped constants.

5.13 Limitations to fohc and fohh logic programs

Both fohc and fohh have certain limitations in how they can be used to rep-

resent computations. In the analysis of finite state machines and regular lan-

guages, the pumping lemmas help to circumscribe their expressive power. This

section contains several exercises that similarly illustrate limits to the expres-

sive power of fohc and fohh logic programs.

An immediate consequence of Proposition 5.23 is the following monotonic-

ity property of intuitionistic provability: if Σ :: Γ ⊢I G and if Γ′ is a set of

Σ-formulas containing Γ, then Σ :: Γ′ ⊢I G. This proposition can be applied to

solve the following two exercises.

Exercise 5.43. (‡) Consider the collection of declarations that accumu-

lates the primitive types and non-logical constants in Figure 5.3 along

with declarations for a and maxa, which make them into predicates of

one argument with sort nat. Assume that a nonempty set of natural

numbers N = {n1, . . . , nk} is encoded by the multiset of atomic formu-

las A(N) = {a n1, . . . , a nk}. Show that there is no fohh logic program

P such that A(N),P ⊢ maxa m has an I-proof if and only if m is the

maximum of the set N .

As was illustrated in Figure 5.4, the maximum of a set of numbers can

100 Chapter 5. Two abstract logic programming languages

be computed in fohc if that set of numbers is stored as a list within the non-

logical context of an atomic formula and not in the logical context as required

by the exercise above.

Exercise 5.44. (‡) Given the encoding of directed graphs as is illustrated

in Figure 5.5, show that it is not possible to specify in fohh a predicate that

is true of two nodes if and only if there is no path between them. Similarly,

show that there is no specification in fohh of a predicate that holds of a node

if and only if that node is not adjacent to another node.

As this exercise illustrates, while it is possible to capture reachability within

a graph, it is not, in general, possible to capture non-reachability, at least when

the adjacency graph is encoded as a set of atomic formulas as is the case in

Figure 5.5.

Exercise 5.45. Consider extending the typing information in Figure 5.7

with a finite set of tokens B that denote bacteria (i.e., they are given type

bacterium), and let C be a subset of B denoting the set of dead bacteria.

Let H be the set of atomic formulas that contains (in b j) for every b ∈ B
and (dead b) for every b ∈ C. Show that there is no specification, say, P
in fohh of a predicate, say, p of type jar -> o such that H ⊢ (p j) hold

exactly when B and C are equal sets (i.e., when the jar j is sterile). Of

course, the specification P should be general in the sense that it does not

contain tokens for any of the specific bacteria mentioned in B.

The following example illustrates a second class of weaknesses of fohh spec-

ifications. Consider the problem of specifying the removal of an element from

a list. In particular, assume that we have the following signature Σ, written

concretely as follows.

kind i type.

type a, b, c i.

type remove i -> list i -> list i -> o.

Here, the type i contains three elements. It is easy to show that it is impossible

to find a specification, say P, in fohh for the predicate remove such that

1. (remove x l k) is provable from Σ and P if and only if the list k is the

result of removing all occurrences of x from l, and

2. the specification P does not contain occurrences of a, b, or c.

The last of these restrictions essentially says that remove should work no

matter what terms of the type i exist. The proof of impossibility is im-

mediate. If such a specification P existed, then P must necessarily prove

5.13 Limitations to fohc and fohh logic programs 101

(remove a [a,b,a] [b]). Since a and b are not free in P, then the universal

quantification of such a goal is also provable: that is, P must also prove

pi a\ pi b\ remove a (a::b::a::nil) (b::nil)).

But since that goal is provable, any instance of these quantifiers is also prov-

able. Thus, (remove a [a,a,a] [a]) is provable, which should not be the

case.

This weakness results from the inability to specify the inequality of terms

within the logic without explicitly referring to the constructor of terms. Sup-

pose we allow the specification of remove to use the specific information about

the structure of type i. In that case, it is possible to write the following spec-

ification of remove, which first specifies inequality on the type i.

type notequal i -> i -> o.

notequal a b & notequal b a.

notequal a c & notequal a c.

notequal b c & notequal c b.

remove X nil nil.

remove X (X::L) K :- remove X L K.

remove X (Y::L) (Y::K) :- notequal X Y, remove L K.

Consider the type declarations in Figure 5.8: here i and j are primitive

types. Note that terms of type i exist in contexts where constants or variables

of type j are declared. Figure 5.8 contains a specification of predicate subSome

such that the goal (subSome x s t r) is provable if and only if r is the result

of substituting some occurrences of x (actually, of (c x)) in t with s. The

following exercises are concerned with the specification of predicates related

to subSome.

Exercise 5.46.(‡) Prove that it is not possible in fohh to write a specifica-

tion of subAll such that (subAll x s t r) is provable if and only if r is the

result of substituting all occurrences of x in t with s. Note that this specifi-

cation would need to work in any extension of the non-logical signature (in

particular, for extensions that contain constants of type j that do not occur

in the specification of subAll).

Exercise 5.47. Write a fohh specification of subOne such that the goal

(subOne x s t r) is provable if and only if r is the result of substituting

exactly one occurrence of x in t with s. One might think that subAll can

be specified using repeated calls to subOne. Given the previous exercise, this

is not possible. Explain why.

102 Chapter 5. Two abstract logic programming languages

type c j -> i.

type f i -> i.

type g i -> i -> i.

type subSome j -> i -> i -> i -> o.

subSome X T (c X) T.

subSome X T (c Y) (c Y).

subSome X T (f U) (f W) :- subSome X T U W.

subSome X T (g U V) (g W Y) :- subSome X T U W,

subSome X T V Y.

Figure 5.8: Substitution of some occurrences.

5.14 Bibliographic notes

The early literature on logic programming did not use sequent calculus to

encode proofs using Horn clauses: in fact, that literature used refutations

instead of proof. For example, the papers by Emden and Kowalski [1976]

and by Apt and Emden [1982] described logic programming using a restricted

form of resolution refutation called SLD resolution. The textbooks by Gallier

[1986] and Lloyd [1987] provide more details about this approach to logic

programming in classical logic.

A central design choice in our description of logic programming is the use

of goal-directed proof search and the identification of the right-hand side of se-

quents with the goal and the left-hand side of sequents with the logic program.

This design choice dates back to Miller and Nadathur [1986] and Miller [1986].

A more general treatment of goal-directed proof search is given in the book by

Gabbay and Olivetti [2000]. The book by Miller and Nadathur [2012] focuses

on λProlog and presents several examples of logic programs using first-order

(and higher-order) hereditary Harrop formulas. The λProlog programming

language has had a number of implementation. The two most recent im-

plementations that allow directly executing the examples in this chapter are

Teyjus [Nadathur and Mitchell, 1999] and Elpi [Dunchev et al., 2015; Tassi,

2025].

The focused proof system ⇓L0 takes the symbol ⇓ and the term “focus”

from Andreoli [1992]. The first proofs of cut elimination for a focused proof

system were done within linear logic: see Section 6.10 for some references.

The focused proof system LJF of Liang and Miller [2009] extends the ⇓L0

proof system by directly treating disjunctions and existential quantifiers and

allowing atomic formulas to be polarized. In particular, if atomic formulas

have negative polarity, then the backchaining-style proofs presented in Sec-

5.14 Bibliographic notes 103

tion 5.4 appear. On the other hand, if atomic formulas have positive polarity,

then the forward-chaining-style proofs mentioned in Exercise 5.16 appear.

Harrop formulas were defined and shown to have the disjunction and ex-

istence properties in Harrop [1960].

Kripke first introduced his eponymous models for intuitionistic logic in

Kripke [1965], some years after he proposed such models for various modal

logics in Kripke [1959]. The canonical Kripke model described in Section 5.6

is a simplified version of a model construction given in Miller [1992]. The

Kripke lambda models built by Mitchell and Moggi [1991] are similar but

more abstract and general than the model presented here.

The notion that synthetic inference rules (Section 5.7) can systematically

be derived from formulas was an early project of Negri and von Plato [2001].

A more general form of that early work is given in Marin et al. [2022], where

focused proof systems for intuitionistic and classical logics are used to build

synthetic inference rules for those two logics.

One of the applications of hereditary Harrop formulas for logic program-

ming is to help design modular programming abstractions for logic program-

ming. Miller [1989b] proposed an early approach to modular programming in

logic programming, which later developed into the module system for λProlog

in Kwon et al. [1993] and Miller [1994]. Numerous logic-based module designs

for logic programming are surveyed in Bugliesi et al. [1994].

The emulation of Turing machines by first-order Horn clauses (see Ex-

ercise 5.40) shows that proving goals from a Horn clause logic program is

undecidable. An early encoding of Turing machines as fohc clauses can be

found in Tärnlund [1977].

As a result of Exercise 5.46, the implementation of substitution, typically

needed when specifying theorem provers or operations that transform pro-

grams, must be signature dependent. That is, the constructors of certain types

must be explicit in the specification. The use of copy-clauses as a flexible and

general avenue for making items in a signature available to a logic specification

is explored more in Miller [1991a] and Miller and Nadathur [2012].

As pointed out in Section 5.13, many important queries about graphs can-

not be encoded using adjacency information stored as atomic facts. More

generally, queries that involve discovering that some information is missing

(e.g., there are no paths from, say, c to a) cannot be captured in fohh since

we view logic programs as theories (sets of formulas) and since logical conclu-

sions remain after additional formulas are added to a theory. A different way

to view logic programs is as inductive definitions or explicit least fixed points

instead of a set of implications. Such an approach has been proposed by, for

example, Clark [1978], Girard [1992], Schroeder-Heister [1993], and Denecker

et al. [2001]. In that setting, logic programs are closed by their definitions and

cannot be extended. This change in perspective makes it possible to capture

104 Chapter 5. Two abstract logic programming languages

aspects of negation-as-failure as well as properties such as non-reachability

and simulation (see McDowell et al. [2003]; Tiu et al. [2005]) as well as vari-

ous other model-checking problems (see Heath and Miller [2019]). Although

this approach to logic programs can greatly enrich the expressiveness of this

topic, we shall maintain our treatment of logic programs as extensible theo-

ries, pushing this perspective into the areas of linear logic and higher-order

quantification.

Chapter6
Linear logic

From the proof-theoretic perspective, the analysis of goal-directed proof search

for classical and intuitionistic logics given in Chapter 5 has at least the follow-

ing three problems.

First, that analysis holds only for subsets of classical and intuitionistic

logics. As we have seen, uniform provability, along with backchaining, provides

an analysis of proof search for the L0 = {t,∧,⊃, ∀} fragment of intuitionistic

logic, which is not a complete set of connectives for intuitionistic logic (when

quantification is restricted to be first-order).

Second, that analysis did not extend to multiple-conclusion sequents, which

is unfortunate since that setting allowed for a unified view of classical and

intuitionistic proofs. Limiting proof search to single-conclusion sequents will

restrict our ability to use negation and De Morgan dualities to reason about

logic programs.

Third, the proof search dynamics for our richest logic programming lan-

guage so far, fohh, is relatively weak. As we pointed out in Section 5.12, the

left-hand side of border sequents within ⇓ fohh proofs can only increase during

proof search, and while the right-hand side can change richly, those changes

occur within atomic formulas (i.e., non-logical contexts). If sequents could

change in more complex ways during proof search, logic programming could

be more expressive and allow more direct uses of logic to reason about the

computations specified.

As we shall see in this chapter, linear logic allows us to expand our analysis

of proof search to address all three of these limitations. In particular, we will

eventually analyze a multiple conclusion proof system for a set of connectives

that captures all of linear logic.

106 Chapter 6. Linear logic

6.1 Reflections on the structural inference rules

Before we present linear logic, we discuss several issues related to the role of

contraction and weakening in C-proofs and I-proofs.

Controlling contractions improves proof search If the contraction rules

are deleted from the classical and intuitionistic (unfocused) proof systems in

Section 4.1, then the height of a cut-free proof can be bounded by the number

of occurrences of logical connectives in the endsequent. It would then follow

that it is decidable whether or not a sequent has a cut-free proof in such

a modified proof system. Using a more clever set of observations, Gentzen

[1935] derived a decision procedure for propositional intuitionistic logic by

seeing a way to limit the applications of contraction in that setting. The fo-

cused proof system ⇓L0 is a significant improvement over unfocused I-proofs

in part because the structural rules are tightly regulated within ⇓L0-proofs:

in particular, wL is built into the init rule, and cL is built into the decide rule

as well as the ⊃L rule (to turn the usual multiplicative treatment of the left

context into an additive treatment).

Invertible rules and contraction There is an interplay between structural

rules and invertible introduction rules. Consider, for example, the following

two introduction rules taken from the C-proof system (Section 4.1).

Σ :: B,Γ ⊢ ∆ Σ :: C,Γ ⊢ ∆

Σ :: B ∨ C,Γ ⊢ ∆
∨L

Σ :: Bi,Γ ⊢ ∆

Σ :: B1 ∧B2,Γ ⊢ ∆
∧L

The ∨L rule is invertible, meaning that if the conclusion is provable its two

premises are provable. In this case, cL never needs to be applied to the formula

B ∨ C. On the other hand, the ∧L rule is not invertible, and one might need

to apply cL to this conjunction to access both conjunctions. For example, a

cut-free I-proof of the formula (p∧q) ⊃ (p ⊃ q ⊃ r) ⊃ r requires an application

of cL to p ∧ q. Since controlling contraction can help one design proof-search

procedures, it is valuable to know that the applicability of contraction can be

limited to those formula occurrences with non-invertible introduction rules.

Selecting between multiplicative and additive connectives If one of

the introduction rules for a connective is multiplicative, we say that that con-

nective is multiplicative. If one of the introduction rules for a connective is

additive, we say that that connective is additive. In typical proof systems,

such as our I and C proof systems (as well as Gentzen’s LJ and LK), one

must select an additive or a multiplicative version of each connective: in the

case of our proof system here, ∧ and ∨ are additive while ⊃ is multiplicative.

6.1 Reflections on the structural inference rules 107

In a fuller picture of proof theory, it seems unfortunate that we must pick just

one of these variants. Although it is the case that the presence of weakening

and contraction allows one to interchange the additive and multiplicative ver-

sions, we are considering proof systems where there are various restrictions on

weakening and contraction. Thus, these different variants might be expected

to behave differently within such proofs.

The collision of cut and the structural rules The interaction between

the cut and the structural rules can lead to undesirable dynamics in the usual

way to perform cut elimination. For example, consider the following instance

of the cut rule.

Γ ⊢ C Γ′, C ⊢ B

Γ,Γ′ ⊢ B
cut (∗)

If the right premise is proved by a left-contraction rule from the sequent

Γ′, C, C ⊢ B, then cut-elimination proceeds by permuting the cut rule to

the right premises, yielding the derivation

Γ ⊢ C

Γ ⊢ C Γ′, C, C ⊢ B

Γ,Γ′, C ⊢ B
cut

Γ,Γ,Γ′ ⊢ B
cut

Γ,Γ′ ⊢ B
cL.

In the single-conclusion variant of the sequent calculus, it is impossible for the

occurrence of C in the left premise of (∗) to be contracted. If the cut rule

in (∗) takes place in a classical proof system, the left premise might be the

conclusion of a contraction applied to Γ ⊢ C,C. In that case, cut elimination

can also proceed by permuting the cut rule to the left premise.

Γ ⊢ C,C Γ′, C ⊢ B

Γ,Γ′ ⊢ C,B
cut

Γ′, C ⊢ B

Γ,Γ′,Γ′ ⊢ B,B
cut

Γ,Γ′ ⊢ B
cL, cR

Thus, in C-proofs, it is possible for both occurrences of C in (∗) to be con-

tracted and, hence, the elimination of this cut rule is nondeterministic since

the cut rule can move to both the left and right premises. Such nondetermin-

ism in cut elimination is even more pronounced when we consider the collision

108 Chapter 6. Linear logic

of the cut rule with weakening in the following derivation.

Ξ1

⊢ B

⊢ C,B
wR

Ξ2

⊢ B

C ⊢ B
wL

⊢ B,B
cut

⊢ B
cR

Cut-elimination here can yield either Ξ1 or Ξ2: thus, nondeterminism arising

from weakening can lead to entirely different proofs of B. This kind of ex-

ample does not occur in the intuitionistic (single-sided) version of the sequent

calculus.

As we mentioned in Section 1.2, the functional programming paradigm can

be built on top of a deterministic cut-elimination process. As a result, proof

systems that allow this collision between cut and the structural rules are not

natural foundations for functional programming.

Linear logic will address these various issues, especially once we present

focused proof systems for all of linear logic in Sections 6.7.

6.2 LK vs LJ: An origin story for linear logic

Gentzen restricted his LJ proof system for intuitionistic logic to be LK proofs

in which there is at most one formula on the right. As we argued in Section 4.5,

this restriction translates to the restriction that I-proofs are C-proofs in which

the right-hand sides of all sequents have exactly one formula. As we proved in

Proposition 4.2, the following two restrictions guarantee that all sequents in

a C-proof of the endsequent ⊢ B have exactly one formula in the right-hand

context.

1. No structural rules are permitted on the right: i.e., proofs do not contain

occurrences of wR and cR.

2. The two multiplicative rules, ⊃L and cut, are restricted so that the

formula on the right-hand side of the conclusion must also be the formula

on the right-hand side of the right premise.

To illustrate again this second restriction, recall the form of the ⊃L rule.

Σ :: Γ1 ⊢ ∆1, B Σ :: C,Γ2 ⊢ ∆2

Σ :: B ⊃ C,Γ1,Γ2 ⊢ ∆1,∆2

⊃L

If the right-hand side of the conclusion contains one formula, that formula

can move to the right-hand side of either the left or right premise. This extra

restriction, however, forces that formula to move only to the right premise and

6.2 LK vs LJ: An origin story for linear logic 109

not to the left. Thus, the ⊃L rule does two things: it introduces a connective

and moves a side formula to a particular place. In this sense, implication

within intuitionistic logic is different from all other logic connectives: the

introduction rules of these other connectives are only involved in introducing

a connective (in an additive or multiplicative fashion). In Section 4.2, we

noted that the cut rule could be emulated using the ⊃L rule and a trivial

implication. Using this observation, the restriction on ⊃L can explain the

similar restriction on cut. In summary, the restriction on I-proofs can be used

to say that (1) structural rules are only allowed on the left of the sequent,

and (2) implication seems to have more internal structure than is immediately

apparent.

These two restrictions can motivate a central and novel feature of linear

logic. In particular, the fact that in intuitionistic proofs, some occurrences of

formulas in a proof can be contracted while some cannot will be captured in

linear logic using the two operators ! and ? (pronounced “bang” and “question

mark”, respectively). In particular, a formula of the form !B on the left-hand

side and a formula of the form ?B on the right-hand side can be weakened and

contracted. In linear logic, these structural rules will not apply to any other

occurrences of formulas. Thus, sequents in C-proofs can be encoded in linear

logic using sequents of the form !B1, . . . , !Bn ⊢ ?C1, . . . , ?Cm (n,m ≥ 0) and

sequents in I-proofs can be encoded in linear logic using sequents of the form

!B1, . . . , !Bn ⊢ B0, where B0 does not have ? as its top-level connective.

The ! operator can also be used to explain the behavior of the intuitionistic

implication. Since the ⊃R rule applied to the formula B ⊃ C moves B to

the left-hand side, it seems necessary to encode such an implication as, say,

(!B) ⊸ C, where ⊸ is the linear implication. Such an encoding ensures that

! is affixed to B as a new member of the left-hand side. This decomposition of

the intuitionistic implication also explains the second restriction listed above.

In particular, consider the following inference rule in which the conclusion is

a single-conclusion sequent encoded as described above.

Σ :: Γ1 ⊢ ∆1, !B Σ :: C,Γ2 ⊢ ∆2

Σ :: (!B) ⊸ C,Γ1,Γ2 ⊢ ∆1,∆2
⊸L

As is described in more detail in Section 6.3.3, the right-introduction rule for

! with a conclusion of the form Γ1 ⊢ ∆1, !B is only permitted if Γ1 contains

only !’ed formulas and ∆1 contains only ?’ed formulas. Given our encoding,

the right-hand side will have one formula that is not a top-level ?: thus, ∆1

must be empty, and ∆2 must be that single formula. In this way, the second

restriction on the structure of ⊃L in I-proofs can be explained.

110 Chapter 6. Linear logic

6.3 Sequent calculus proof systems for linear logic

The two-sided proof system for linear logic, called L, is formed by putting

together all of the inference rules in Figures 6.1, 6.2, 6.3, and 6.4. Keeping

with the conventions described in Section 2.4, all binary logical connectives of

linear logic have the type o → o → o, the units have the type o, negation and

the exponentials (! and ?) have the type o → o, and the quantifiers ∀τ and

∃τ have type (τ → o) → o (for all types τ). Formulas built from the connec-

tives explicitly mentioned in the L proof system are called L-formulas. The

treatment of the quantifiers and signatures in linear logic will be essentially

the same as in classical and intuitionistic logics. As such, many of the same

conventions surrounding quantifiers will be used in the linear logic setting:

i.e., type subscripts and signatures of sequents are often not displayed when

their value is not important or can be inferred from context.

6.3.1 An informal semantics for some of linear logic

Before further developing the proof theory of linear logic, we briefly provide

some informal semantics to help understand a few inference rules in Figure 6.4.

Some of the distinctions embedded in linear logic can be motivated by viewing

it as a logic for dealing with resources instead of truth values.

Consider being someone who has built two digital fonts and wants to sell

them. Linear logic provides two different packaging concepts for pricing the

pairing of those two fonts based on its two conjunctions.

1. The right introduction rule for ⊗ suggests that one such packaging: if Γ1

resources (such resources might be the hour spent designing fonts and

computer expenses) were used to build font B1 and Γ2 resources were

used to build font B2, then we should price the pair of fonts B1 ⊗B2 to

be based on the accumulation Γ1,Γ2. The left rule suggests that once

someone has paid for such a pair, the buyer should have simultaneous

access to both fonts B1 and B2. In other words, if it costs 3e to build

one font and 7e to build the other, this kind of pairing should cost 10e.

2. The right introduction rule for & suggests another packaging: if both

fonts B1 and B2 each required Γ resources separately, then we can price

the pair of fonts B1 & B2 also with Γ. The left introduction rule for &

suggests that the buyer should be able to access either font but when

one of the fonts is picked, the other font is no longer accessible. In other

words, if it costs 5e to build one font and 5e to build the other, this

kind of pairing should still cost 5e.

We can informally view the formula !B as an unbounded number of copies

of B, an observation that is easily supported by the left rules for !, namely,

6.3 Sequent calculus proof systems for linear logic 111

Σ :: Γ ⊢ ∆

Σ :: Γ,1 ⊢ ∆
1L

Σ :: · ⊢ 1
1R

Σ :: Γ ⊢ ⊤,∆
⊤R

Σ :: Γ,0 ⊢ ∆
0L

Σ :: ⊥ ⊢ ·
⊥L

Σ :: Γ ⊢ ∆

Σ :: Γ ⊢ ⊥,∆
⊥R

Σ :: Γ, Bi ⊢ ∆

Σ :: Γ, B1 & B2 ⊢ ∆
&L (i = 1, 2)

Σ :: Γ ⊢ B,∆ Σ :: Γ ⊢ C,∆

Σ :: Γ ⊢ B & C,∆
&R

Σ :: Γ, B ⊢ ∆ Σ :: Γ, C ⊢ ∆

Σ :: Γ, B ⊕ C ⊢ ∆
⊕L

Σ :: Γ ⊢ Bi,∆

Σ :: Γ ⊢ B1 ⊕B2,∆
⊕R (i = 1, 2)

Σ :: Γ, B1, B2 ⊢ ∆

Σ :: Γ, B1 ⊗B2 ⊢ ∆
⊗L

Σ :: Γ1 ⊢ B,∆1 Σ :: Γ2 ⊢ C,∆2

Σ :: Γ1,Γ2 ⊢ B ⊗ C,∆1,∆2

⊗R

Σ :: Γ1, B ⊢ ∆1 Σ :: Γ2, C ⊢ ∆2

Σ :: Γ1,Γ2, B ` C ⊢ ∆1,∆2
`L

Σ :: Γ ⊢ B,C,∆

Σ :: Γ ⊢ B ` C,∆
`R

Σ :: Γ ⊢ B,∆

Σ :: Γ, B⊥ ⊢ ∆
(·)⊥L

Σ :: Γ, B ⊢ ∆

Σ :: Γ ⊢ B⊥,∆
(·)⊥R

Figure 6.1: The introduction rules for the propositional connectives.

Σ :: B ⊢ B
init

Σ :: Γ ⊢ B,∆ Σ :: Γ′, B ⊢ ∆′

Σ :: Γ,Γ′ ⊢ ∆,∆′ cut

Figure 6.2: The two identity rules.

Σ ⊩ t : τ Σ :: Γ, B[t/x] ⊢ ∆

Σ :: Γ,∀τx.B ⊢ ∆
∀L

y : τ,Σ :: Γ ⊢ B[y/x],∆

Σ :: Γ ⊢ ∀τx.B,∆
∀R

y : τ,Σ :: Γ, B[y/x] ⊢ ∆

Σ :: Γ, ∃τx.B ⊢ ∆
∃L

Σ ⊩ t : τ Σ :: Γ ⊢ B[t/x],∆

Σ :: Γ ⊢ ∃τx.B,∆
∃R

Figure 6.3: The introduction rules for the quantifiers.

112 Chapter 6. Linear logic

Σ :: Γ ⊢ ∆

Σ :: Γ, !B ⊢ ∆
!W

Σ :: Γ, !B, !B ⊢ ∆

Σ :: Γ, !B ⊢ ∆
!C

Σ :: Γ, B ⊢ ∆

Σ :: Γ, !B ⊢ ∆
!D

Σ :: Γ ⊢ ∆

Σ :: Γ ⊢ ?B,∆
?W

Σ :: Γ ⊢ ?B, ?B,∆

Σ :: Γ ⊢ ?B,∆
?C

Σ :: Γ ⊢ B,∆

Σ :: Γ ⊢ ?B,∆
?D

Σ :: ! Γ, B ⊢ ? ∆

Σ :: ! Γ, ?B ⊢ ? ∆
?L

Σ :: ! Γ ⊢ B, ? ∆

Σ :: ! Γ ⊢ !B, ? ∆
!R

Figure 6.4: The rules for the exponentials.

!W , !C, !D. The !R rule, also called the promotion rule for !, is more in-

teresting. Consider, for example, a restaurant that would like to offer their

clients unlimited french fries with their meals. One way to ensure this is to

ensure that the cook has access to unlimited amounts of oil, salt, and pota-

toes and can make one french fry. This strategy is the informal meaning of

the promotion rule for !. Dually, the ?L rule is the promotion rule for ?.

In these two informal descriptions, we have provided an interpretation of

sequents that may have multiple formulas on the left but only one on the right.

We will provide an informal semantics for inference rules involving sequents

that contain multiple formulas on the right when we discuss the specification

of concurrent processes Section 12.1.

6.3.2 Multiplicative additive linear logic

Multiplicative additive linear logic, or MALL for short, is the subset of linear

logic that results from collecting together the inference rules in Figure 6.1 and

6.2. MALL contains the additive and multiplicative versions of the classi-

cal disjunction, conjunction, and their units. Since MALL does not contain

weakening or contraction, the additive and multiplicative versions of these con-

nections are not inter-admissible within proofs (see Exercise 4.6). The eight

logical connectives of MALL are classified in the following table as either the

additive or multiplicative variant of an associated classical connective.

Classical Linear Additive Linear Multiplicative

t ⊤ (top) 1 (one)

f 0 (zero) ⊥ (bottom)

∧ & (with) ⊗ (tensor)

∨ ⊕ (o-plus) ` (par)

6.3 Sequent calculus proof systems for linear logic 113

Here, 1 is the unit for ⊗, ⊤ is the unit for &, ⊥ is the unit for `, and 0

is the unit for ⊕. Our presentation of linear logic will also accept negation

as a first-class connective, written as (·)⊥: the inference rules for negation in

Figure 6.1 are the same as used by Gentzen (see Section 4.5).

Exercise 6.1. Let p, q, and r be propositional constants (constants of type

o). Provide L proofs of the following sequents.

1. ⊢ p ` p⊥

2. (p⊗ q) ⊗ r ⊢ (r ⊗ q) ⊗ p

3. (p ` q) ` r ⊢ (r ` q) ` p

4. p⊗ (q ` r) ⊢ (p⊗ q) ` r

5. p⊗ (q ` r) ⊢ (p⊗ r) ` q

6. r ⊢ p ` (p⊥ ⊗ q) ` (q⊥ ⊗ r)

7. p⊥ ⊗ q⊥ ⊢ (p ` q)⊥

8. (p ` q)⊥ ⊢ p⊥ ⊗ q⊥

Let B be the formula 1 ` 1. It is the case that neither B nor its negation,

namely ⊥⊗⊥, are provable in linear logic.

Exercise 6.2. (‡) In the sequent ⊢ p ⊗ q, p⊥ ⊗ q, p ⊗ q⊥, p⊥ ⊗ q⊥, all

occurrences of the constants p and q can be matched with an occurrence of

its negation. Show, however, that this sequent is not provable in L.

It is shown in Lincoln et al. [1992] that determining the provability of

a MALL formula is PSPACE-complete. Augmenting MALL with the rules

for first-order quantifiers (as depicted in Figure 6.3, where τ is a primitive

type other than o) enhances the expressiveness of the resulting logic, yet the

resulting logic still maintains PSPACE-completeness.

6.3.3 Linear logic as MALL plus exponentials

Full linear logic is the strengthening of MALL with the addition of the quanti-

fiers ∀ and ∃ and the two operators ! and ?, collectively called the exponentials.

These operators reintroduce weakening and contraction into linear logic but

only for some occurrences of formulas marked by them. In particular, Fig-

ure 6.4 contains four rules for each of these exponentials. Of those four, one

permits weakening, and another permits contraction for the formulas they

mark. The other two rules are essentially introduction rules. The dereliction

rules !D and ?D can be understood (reading rules from conclusion to premise)

as saying that formulas that can be weakened and contracted can drop this

privilege. The promotion rules !R and ?L can similarly be read as saying

that one way to show that a formula can gain the privilege of being weakened

and contracted is to show that that formula can be proved in a context where

114 Chapter 6. Linear logic

every other formula has that privilege.

We say that two formulas B and C are equivalent in linear logic if the two

sequents B ⊢ C and C ⊢ B are provable in L. We sometimes abbreviate this

statement to B ⊣⊢ C.

Exercise 6.3. Show that the following equivalences between the exponen-

tial, additive, and multiplicative connectives hold in linear logic.

!⊤ ⊣⊢ 1 !(B & C) ⊣⊢ !B ⊗ !C ?0 ⊣⊢ ⊥ ?(B ⊕ C) ⊣⊢ ?B ` ?C

These equivalences are inspired by the algebraic equation xm+n = xm × xn.

Exercise 6.4. (‡) An exponential prefix is a finite sequence of zero or

more occurrences of ! and ?. Let π be an exponential prefix. Prove that

ππB ⊣⊢ πB holds for all formulas B. Use that result to show that there

are only seven exponential prefixes in linear logic up to equivalence: the

empty prefix, !, ?, ! ?, ? !, ! ? !, and ? ! ?.

Exercise 6.5. Add a second tensor to linear logic, say, ⊗̂, with the same

inference rules as ⊗. Show that B ⊗ C ⊣⊢ B ⊗̂ C. In this sense, the

inference rules for tensor define it uniquely. Show that this is true for all

logical connectives of linear logic except for the exponentials ! and ?.

6.3.4 Duality and polarity

The familiar De Morgan dualities of classical logic hold in a comprehensive

fashion in linear logic. Not only do the binary connectives, units, and quanti-

fiers have De Morgan duals, but the exponentials do as well. Here, we list the

De Morgan duals for all the logical connectives in linear logic.

connective ⊤ & 1 ⊗ ⊥ ` 0 ⊕ ! ? ∀ ∃
De Morgan dual 0 ⊕ ⊥ ` 1 ⊗ ⊤ & ? ! ∃ ∀

This table encodes several linear logic equivalences. For example, the following

equivalences hold.

(B ` C)⊥ ⊣⊢ B⊥ ⊗ C⊥ (B & C)⊥ ⊣⊢ B⊥ ⊕ C⊥ ⊤⊥ ⊣⊢ 0

(∃x.B)⊥ ⊣⊢ ∀x.(B⊥) (?B)⊥ ⊣⊢ !(B⊥)

As a result of equivalences of this form, it is possible to rewrite every formula

in linear logic into an equivalent formula in which negation has atomic scope.

6.3 Sequent calculus proof systems for linear logic 115

Σ :: ⊢ ⊤,∆
⊤R

Σ :: ⊢ B,∆ Σ :: ⊢ C,∆

Σ :: ⊢ B & C,∆
&R

Σ :: ⊢ 1
1R

Σ :: ⊢ B,∆1 Σ :: ⊢ C,∆2

Σ :: ⊢ B ⊗ C,∆1,∆2

⊗R

Σ :: ⊢ ∆

Σ :: ⊢ ⊥,∆
⊥R

Σ :: ⊢ B,C,∆

Σ :: ⊢ B ` C,∆
` R

Σ :: ⊢ Bi,∆

Σ :: ⊢ B1 ⊕B2,∆
⊕R (i = 1, 2)

y : τ,Σ :: ⊢ B[y/x],∆

Σ :: ⊢ ∀τx.B,∆
∀R

Σ ⊩ t : τ Σ :: ⊢ B[t/x],∆

Σ :: ⊢ ∃τx.B,∆
∃R

Σ :: ⊢ ∆

Σ :: ⊢ ?B,∆
?W

Σ :: ⊢ ?B, ?B,∆

Σ :: ⊢ ?B,∆
?C

Σ :: ⊢ B,∆

Σ :: ⊢ ?B,∆
?D

Σ :: ⊢ B, ? ∆

Σ :: ⊢ !B, ? ∆
!R

Σ :: ⊢ B,B⊥ init
Σ :: ⊢ B,∆ Σ :: ⊢ B⊥,∆′

Σ :: ⊢ ∆,∆′ cut

Figure 6.5: A one-sided sequent calculus proof system for linear logic.

Such formulas are said to be in negation normal form. If we restrict our atten-

tion to only formulas in such normal forms, it is possible to give a one-sided

sequent calculus proof system for linear logic, such as Figure 6.5. By exploit-

ing dualities, this proof system has about half the number of inference rules

as the two-sided inference system for linear logic. Note that in Figure 6.5, the

negation symbol that appears in init and cut is no longer a logical connective

(since it has no introduction rules) but should be understood as the operator

that negates its argument and then puts the result into negation normal form.

We shall, however, make only limited use of this one-sided sequent system

for linear logic. Instead, we shall continue to use two-sided sequents in what

follows.

An important and exciting aspect of linear logic is the following. It is easy

to confirm that in MALL, the right-introduction rule of a logical connective

is invertible if and only if the left-introduction rule of that connective (or

the right-introduction rule of its De Morgan dual) is not invertible. This

116 Chapter 6. Linear logic

observation leads to attributing a polarity to connectives. In particular, we

say that a connective is negative if its right-introduction rule is invertible and

positive if its left-introduction rule is invertible. The negative connectives are

⊥, ⊤, `, &, and ∀. The positive connectives are 1, 0, ⊗, ⊕, and ∃.

Another perspective on the polarity of linear logic connectives is the fol-

lowing. If the right-introduction rule for a connective requires information

from an oracle or its context, then that rule introduces a positive connective.

For example, the ⊕R rule requires knowing which disjunct should be selected,

the ⊗R rule needs to know how to split a context, the 1R rule needs to know

if its surrounding context is empty, and the ∃R rule needs to be given a term.

Dually, the right-introduction rules for negative connectives do not need any

additional information for their successful application. (Note that the eigen-

variable condition for the ∀R rule requires that the eigenvariable is not cur-

rently free in the sequent: however, it is a simple matter to organize things so

that new names are always selected independently from the context.) In this

latter sense, it is possible to then classify ! as a positive connective since its

right rule (the promotion rule !R), requires the information from the context

that all formulas in the context are marked appropriately with an exponential.

As a result, we also consider ? (the De Morgan dual of !) as negative.

The polarity of a non-atomic formula is negative or positive depending

only on the polarity of its topmost connective. We adopt the convention that

atoms have negative polarity to extend the notion of polarity to all linear

logic formulas. This convention was initially adopted by Andreoli [1992] since

it provided a natural connection to uniform proofs.

Exercise 6.6. Let B and C be two formulas for which B ⊣⊢ !B and

C ⊣⊢ !C are provable. Show that the following equivalences using the

positive connectives are also provable: 1 ⊣⊢ !1, 0 ⊣⊢ !0, B⊗C ⊣⊢ !(B⊗C),

∃x.B ⊣⊢ !∃x.B, B ⊕C ⊣⊢ !(B ⊕C). Dually, let B and C be two formulas

such that B ⊣⊢ ?B and C ⊣⊢ ?C are provable. Show that the following

equivalences using the negative connectives are also provable: ⊥ ⊣⊢ ?⊥,

⊤ ⊣⊢ ?⊤, B ` C ⊣⊢ ?(B ` C), B & C ⊣⊢ ?(B & C), ∀x.B ⊣⊢ ? ∀x.B.

Exercise 6.7. Let B be a linear logic formula. Prove that if the only

occurrences of atomic formulas and negative connectives in B are in the

scope of occurrences of !, then B ⊣⊢ !B holds. Dually, prove that if the

only occurrences of atomic formulas and positive connectives are in the

scope of occurrences of ?, then B ⊣⊢ ?B holds.

6.3 Sequent calculus proof systems for linear logic 117

Exercise 6.8. Assuming that we have the cut-elimination theorem for the

L proof system, prove the invertibility of &R, `R, ⊗L, and ⊕L using the

style argument in the proof of Proposition 4.17.

Exercise 6.9. The following three entailments hold in classical logic.

mix: A ∧B ⊢ A ∨B

switch: (A ∨B) ∧ C ⊢ A ∨ (B ∧ C)

medial: (A ∧ C) ∨ (B ∧D) ⊢ (A ∨B) ∧ (C ∨D)

(The names for these entailments are taken from Guglielmi [2007].) Con-

sider mapping the pair of classical logic connectives ⟨∧,∨⟩ into one of the

four pairs of linear logic connectives ⟨⊗,`⟩, ⟨⊗,⊕⟩, ⟨&,`⟩, and ⟨&,⊕⟩.
For each of the above three classical logic entailments, find which of these

mappings of connectives yields an entailment provable in linear logic. For

example, applying the first of these mappings to the Mix entailment yields

A⊗B ⊢ A ` B, which is not generally provable in linear logic.

Exercise 6.10. The connectives of MALL can be given four attributes:

arity (0 for a unit or 2 for a binary connective), additive/multiplicative,

polarity (positive/negative), and conjunctive/disjunctive. Show that if we

fix the arity, then, given any two of the remaining three attributes, the third

can be determined uniquely. For example, there is a unique binary connec-

tive that is conjunctive and positive (the multiplicative ⊗) and a unique

unit that is disjunctive and additive (the positive 0). Show also that the De

Morgan dual of a connective flips polarity and the conjunctive/disjunctive

attribute while leaving the other two attributes unchanged.

6.3.5 Introducing implications

Since implication has played a large role in the design of the logic programming

languages we have seen in earlier chapters, we add implication as a logical

connective into linear logic. In fact, we add two implications, namely the linear

implication ⊸ and the intuitionistic implication ⇒. The linear implication

B ⊸ C can be defined as B⊥ ` C and the intuitionistic implication B ⇒ C

can be defined as (!B) ⊸ C. Since both of these implications are based

on the multiplicative disjunction `, these connectives are multiplicative and

have negative polarity. Instead of introducing implications as definitions, we

choose to make them proper connectives by providing them with left and

right-introduction rules. The left and right-introduction rules for ⊸ are the

118 Chapter 6. Linear logic

following.

Σ :: Γ1 ⊢ B,∆1 Σ :: Γ2, C ⊢ ∆2

Σ :: Γ1,Γ2, B ⊸ C ⊢ ∆1,∆2
⊸ L

Σ :: Γ, B ⊢ C,∆

Σ :: Γ ⊢ B ⊸ C,∆
⊸R

We sometimes write B ˛ C as an abbreviation for (B ⊸ C)&(C ⊸ B).

Since the right introduction rules for & and ` are invertible (see Exercise 6.8),

the formula (B ⊸ C) & (C ⊸ B) is provable in linear logic if and only if

B ⊣⊢ C holds.

Exercise 6.11. Prove the following curry/uncurry equivalences are prov-

able in linear logic.

1 ⊸ H ˛ H (B ⊗ C) ⊸ H ˛ B ⊸ C ⊸ H

0 ⊸ H ˛ ⊤ (B ⊕ C) ⊸ H ˛ (B ⊸ H) & (C ⊸ H)

(∃x.B x) ⊸ H ˛ ∀x.(B x ⊸ H)

Many presentations of linear logic make little or no use of implications

since they often focus on the rich symmetries allowed by the negation of linear

logic. In particular, every logical connective of linear logic, except for the

implications ⊸ and ⇒, have other logical connectives that are their De Morgan

duals. In what follows, we will view B⊥ as an abbreviation for B ⊸ ⊥.

One issue with adding the intuitionistic implication directly to a proof

system for linear logic is deciding how to specify its left and right-introduction

rules. For example, it is tempting to write the following candidate introduction

rules for ⇒.

Σ :: Γ1 ⊢ !B,∆1 Σ :: Γ2, C ⊢ ∆2

Σ :: Γ1,Γ2, B ⇒ C ⊢ ∆1,∆2

Σ :: Γ, !B ⊢ C,∆

Σ :: Γ ⊢ B ⇒ C,∆

These rules, however, break the usual pattern for introduction rules in sequent

calculus: exactly one occurrence of a logical connective appears in the conclu-

sion while no new occurrences of a logical connective appears in a premise. In

both of these rules, the occurrence of ! in the premise violates this pattern.

This pattern has already been violated, in principle, by the rules for the ex-

ponentials. In particular, the contraction rule !C inserts two occurrences of !

into a premise while !R requires possibly many occurrences of ! and ? to be

present in the conclusion. We address these issues around the implications and

the exponentials by introducing a new style of sequent calculus proof system

in the next section.

6.4 Introducing zones into sequents 119

Exercise 6.12. Let p be a propositional constant and let B be the formula

p ⊗ !(p ⊸ (p ⊗ p)) ⊗ !(p ⊸ 1). Show that the sequents B ⊢ B ⊗ B and

B ⊢ 1 are provable in L.

6.4 Introducing zones into sequents

One of our hopes with introducing linear logic is to provide a means to enrich

the logic programming languages described in Chapter 5. To that end, we will

analyze goal-directed proofs, backchaining, and focused proof systems within

linear logic. This analysis will show that all of linear logic can be presented

as an abstract logic programming language. Before showing that result, we

show how to relate proofs in linear logic with I-proofs and C-proofs.

If linear logic does serve as a more refined and low-level setting for both

classical and intuitionistic logics, then we might expect that simply replacing

the logical connectives in ⇓L0, namely {t,∧,⊃, ∀} (see Section 5.5), with the

corresponding linear logic connectives {⊤,&,⇒, ∀} should allow us to repro-

duce intuitionistic proofs within linear logic. If that is indeed the case, adding

⊸ to this last set of connectives might provide us with an extension to fohh.

We will soon show that such an extension does exist.

Let L1 be the set of logical connectives {⊤,&,⊸,⇒,∀}. An L1-formula

is any first-order formula whose logical connectives come from L1. Figure 6.6

presents an (unfocused) proof system P for the formulas taken from L1. To

solve the problem of specifying introduction rules for ⇒ mentioned at the end

of the previous section, the P proof system features an innovation: the left-

hand context in sequents is divided into two zones. In particular, this proof

system uses sequents of the form Σ::Ψ; Γ ⊢ B. Here, both Ψ and Γ are multisets

of L1 formulas, and B is an L1 formula. We say that Ψ is the left-unbounded

zone while Γ is the left-bounded zone of this sequent. We shall also refer to

the right-hand side of a P sequent as its right-bounded zone. The informal

reading of the sequent B1, . . . , Bn;C1, . . . , Cm ⊢ E is given by the linear logic

sequent !B1, . . . , !Bn, C1, . . . , Cm ⊢ E. All the introduction rules in Figure 6.6

have the desired property that the conclusion has one occurrence of a logical

connective and the premises have no explicit mention of logical connectives.

The presences of two zones on the left of sequents also necessitates having two

versions of the cut rule, cutl and cut !, and two versions of the decide rule,

decidel and decide !.

The additive rules treat formulas occurring in these two zones the same;

i.e., a context formula occurrence in either the left or right-bounded zone or the

left-unbounded zone of the conclusion also occurs in the corresponding zone in

all premises. The multiplicative rules have a more hybrid behavior: a context

formula occurring in the left-unbounded zone of the conclusion also occurs

120 Chapter 6. Linear logic

Σ :: Ψ;A ⊢ A
init

Σ :: Ψ, B; Γ, B ⊢ C

Σ :: Ψ, B; Γ ⊢ C
absorb

Σ :: Ψ; Γ ⊢ ⊤
⊤R

Σ :: Ψ; Γ, Bi ⊢ C

Σ :: Ψ; Γ, B1 & B2 ⊢ C
&L (i = 1, 2)

Σ :: Ψ; Γ ⊢ B Σ :: Ψ; Γ ⊢ C

Σ :: Ψ; Γ ⊢ B & C
&R

Σ :: Ψ; Γ ⊢ B Σ :: Ψ; Γ′, C ⊢ E

Σ :: Ψ; Γ,Γ′, B ⊸ C ⊢ E
⊸ L

Σ :: Ψ; Γ, B ⊢ C

Σ :: Ψ; Γ ⊢ B ⊸ C
⊸R

Σ :: Ψ; · ⊢ B Σ :: Ψ; Γ, C ⊢ E

Σ :: Ψ; Γ, B ⇒ C ⊢ E
⇒L

Σ :: Ψ, B; Γ ⊢ C

Σ :: Ψ; Γ ⊢ B ⇒ C
⇒ R

Σ :: Ψ; Γ, B[t/x] ⊢ C

Σ :: Ψ; Γ,∀x.B ⊢ C
∀L

y : τ,Σ :: Ψ; Γ ⊢ B[y/x]

Σ :: Ψ; Γ ⊢ ∀τx.B
∀R

Σ :: Ψ; Γ ⊢ B Σ :: Ψ; Γ′, B ⊢ C

Σ :: Ψ; Γ,Γ′ ⊢ C
cutl

Σ :: Ψ; · ⊢ B Σ :: Ψ, B; Γ ⊢ C

Σ :: Ψ; Γ ⊢ C
cut !

Figure 6.6: The single-conclusion, two-zone proof system P for L1.

in the left-unbounded zone of all premises, while a context formula occurring

in either the left or right-bounded zone occurs in the corresponding zone in

exactly one premise. This hybrid behavior for the multiplicative inference

rules is possible because contraction is available for the left unbounded zone.

For example, the following derivation illustrates how the multiplicative ⊸ L

rule plus contraction (!L) can justify this hybrid treatment.

! Ψ,Γ1 ⊢ B ! Ψ,Γ2, C ⊢ E

! Ψ, ! Ψ,Γ1,Γ2, B ⊸ C ⊢ E

! Ψ,Γ1,Γ2, B ⊸ C ⊢ E
!C

Two inference rules in Figure 6.6, namely ⇒L and cut !, require the bounded

part of one of its premises to be empty. When that context is empty, as in

B1, . . . , Bn; · ⊢ E, the corresponding linear logic sequent is !B1, . . . , !Bn ⊢ E.

When that sequent is provable in linear logic, then !B1, . . . , !Bn ⊢ !E is also

provable (using the !R rule in Figure 6.4). Thus, requiring a premise to have

an empty left-bounded zone can also guarantee that a (hidden) ! formula is

proved from the left-unbounded context.

The absorb rule in Figure 6.6 is a combination of the contraction and

dereliction rules for !: it allows for a formula in the left-unbounded zone to be

6.4 Introducing zones into sequents 121

copied into the left-bounded context.

The following function translates formulas that may involve implications

into formulas where those implications are replaced by their definitions. Let

B⋄ be the result of repeatedly replacing within B all occurrences of C1 ⇒ C2

with (!C1)
⊥ ` C2 and all occurrences of C1 ⊸ C2 with C1

⊥ ` C2. We also

allow ⋄ to be applied to a multiset of formulas, which results in the multiset

of ⋄ applied to each member. The following proposition relates the P and L

proof systems.

Proposition 6.13. Let B be an L1-formula and let Ψ and Γ be multisets

of L1-formulas. The sequent Ψ; Γ ⊢ B has a P-proof if and only if the

sequent !(Ψ⋄),Γ⋄ ⊢ B⋄ has an L proof.

Proving the forward direction is a straightforward induction on the struc-

ture of proofs. Proving the converse is more challenging and not given here

since it will follow directly from the proof of the completeness of the focused

proof system ⇓L2 (displayed in Figure 6.11) given in Chapter 7.

Although several properties of the P proof system could be stated and

proved, this unfocused proof system is not best suited for studying general-

izations of goal-directed search and backchaining. We now motivate a focused

version of the P proof system.

As in Section 5.4, we organize the left-hand rules using the backchaining

discipline. We do this by presenting two proof systems: the first uses ⇓ to

denote the focus of the backchain rule, and a second proof system in which

backchaining is described as a single inference rule BC.

Figure 6.7 contains a proof system in which the left-introduction rules are

applied to a designated formula from the left (compare these rules to those

in Figure 5.1). The new sequent, written as Σ :: Ψ; Γ ⇓ D ⊢ A, displays that

designated formula between the ⇓ and the ⊢. That displayed formula is the

only one on which left-introduction rules may be applied. The two decide rules

are used to turn the attempt to prove an atomic formula into an attempt to use

a focused formula. The sequent Σ :: Ψ; Γ ⊢ G or the sequent Σ :: Ψ; Γ ⇓ D ⊢ A

has a ⇓L1-proof if it has a proof using the rules in Figure 6.7.

Note that the rule for ⊸ L requires splitting the bounded zone into two

parts (when reading the rule bottom-up). There are, of course, 2n such split-

tings if that zone has n ≥ 0 distinct formulas.

The soundness and completeness of the ⇓L1 proof system for sequents

using formulas only from L1 will follow from a stronger result that we shall

prove in some detail in Section 7.4.

Consider the following definition for a second (less proof-theoretic) descrip-

tion of backchaining. Let the syntactic variable B range over L1-formulas.

Define ∥B∥Σ to be the smallest set of triples of the form ⟨Ψ,Γ, B′⟩, where Ψ

122 Chapter 6. Linear logic

Σ :: Ψ; Γ ⊢ ⊤
⊤R

Σ :: Ψ; Γ ⊢ B Σ :: Ψ; Γ ⊢ C

Σ :: Ψ; Γ ⊢ B & C
&R

Σ :: Ψ; Γ, B ⊢ C

Σ :: Ψ; Γ ⊢ B ⊸ C
⊸R

Σ :: Ψ, B; Γ ⊢ C

Σ :: Ψ; Γ ⊢ B ⇒ C
⇒ R

y : τ,Σ :: Ψ; Γ ⊢ B[y/x]

Σ :: Ψ; Γ ⊢ ∀τx.B
∀R

Σ :: Ψ, D; Γ ⇓ D ⊢ A

Σ :: Ψ, D; Γ ⊢ A
decide !

Σ :: Ψ; Γ ⇓ D ⊢ A

Σ :: Ψ; Γ, D ⊢ A
decidel

Σ :: Ψ; · ⇓ A ⊢ A
init

Σ ⊩ t : τ Σ :: Ψ; Γ ⇓ D[t/x] ⊢ A

Σ :: Ψ; Γ ⇓ ∀τx.D ⊢ A
∀L

Σ :: Ψ; Γ ⇓ Di ⊢ A

Σ :: Ψ; Γ ⇓ D1 & D2 ⊢ A
&L (i = 1, 2)

Σ :: Ψ; Γ1 ⊢ G Σ :: Ψ; Γ2 ⇓ D ⊢ A

Σ :: Ψ; Γ1,Γ2 ⇓ G ⊸ D ⊢ A
⊸ L

Σ :: Ψ; · ⊢ G Σ :: Ψ; Γ ⇓ D ⊢ A

Σ :: Ψ; Γ ⇓ G ⇒ D ⊢ A
⇒L

Figure 6.7: The focused proof system ⇓L1.

and Γ are multisets of formulas, such that

1. ⟨∅, ∅, B⟩ ∈ ∥B∥Σ;

2. if ⟨Ψ,Γ, B1&B2⟩ ∈ ∥B∥Σ then ⟨Ψ,Γ, B1⟩ ∈ ∥B∥Σ and ⟨Ψ,Γ, B2⟩ ∈ ∥B∥Σ;

3. if ⟨Ψ,Γ, B1 ⇒ B2⟩ ∈ ∥B∥Σ then ⟨Ψ ∪ {B1},Γ, B2⟩ ∈ ∥B∥Σ;

4. if ⟨Ψ,Γ, B1 ⊸ B2⟩ ∈ ∥B∥Σ then ⟨Ψ,Γ ∪ {B1}, B2⟩ ∈ ∥B∥Σ; and

5. if ⟨Ψ,Γ,∀τx.B′⟩ ∈ ∥B∥Σ and t is a Σ-term of type τ , then

⟨Ψ,Γ, B′[t/x]⟩ ∈ ∥B∥Σ.

Let ⇓L′
1 be the proof system that results from replacing init and the four

left-introduction rules in Figure 6.7 with the backchaining inference rule in

Figure 6.8.

6.5 Embedding fohh into linear logic 123

Σ :: Ψ; · ⊢ B1 . . . Σ :: Ψ; · ⊢ Bn Σ :: Ψ; Γ1 ⊢ C1 . . . Σ :: Ψ; Γm ⊢ Cm

Σ :: Ψ; Γ1, . . . ,Γm, B ⊢ A
BC

provided n,m ≥ 0, ⟨{B1, . . . , Bn}, {C1, . . . , Cm}, A⟩ ∈ ∥B∥Σ, and A is

atomic.

Figure 6.8: Backchaining for the linear logic fragment L1.

Proposition 6.14. Let {B} ∪ Ψ ∪ Γ be a multiset of L1-formulas. The

sequent Σ :: Ψ; Γ ⊢ B has a ⇓L1 proof if and only if it has a ⇓L′
1 proof.

This proposition follows directly from the completeness of the ⇓L1 proof

system, following the same lines used to prove the analogous results in Sec-

tion 5.7. Using the terminology introduced in Section 3.3, the BC rule in

Figure 6.8 is multiplicative if we take the occurrences of A and B in the con-

clusion to be the target occurrences of this rule.

It is now clear from the ⇓L1-proof system that the dynamics of proof search

in this setting has improved beyond that described for fohh (Section 5.12). In

particular, every sequent in a ⇓L1-proof of the sequent Σ :: Ψ; Γ ⊢ G is either

of the form Σ,Σ′ ::Ψ,Ψ′; Γ′ ⊢ G′ or Σ,Σ′ ::Ψ,Ψ′; Γ′ ⇓ D ⊢ A. Just as with fohh,

the signature can grown by adding Σ′ and the unbounded zone can grown by

adding Ψ′. However, the bounded zone, Γ′, can change in much more general

and arbitrary ways. Formulas in the bounded zone that were present at the

root of a proof may not necessarily be present later (higher) in the proof. As

we shall see later, we can use formulas in the bounded zone to represent, say,

the state of a computation or a switch that is off but later on.

6.5 Embedding fohh into linear logic

The abstract logic programming language ⟨L1,L1,⊢L⟩ has been also called

Lolli (after the lollipop shape of the ⊸). As a programming language, Lolli

appears to be L0 with ⊸ added. To make this connection more precise,

we should show how L0 can be embedded into Lolli (since, technically, they

use different sets of connectives). Girard [1987] has presented a mapping of

intuitionistic logic into linear logic that preserves not only provability but also

proofs. On the fragment of intuitionistic logic containing t, ∧, ⊃, and ∀, his

translation is given by:

(A)0 = A, where A is atomic,

124 Chapter 6. Linear logic

(t)0 = ⊤,

(B1 ∧B2)
0 = (B1)

0 & (B2)
0,

(B1 ⊃ B2)
0 = (B1)

0 ⇒ (B2)
0,

(∀x.B)0 = ∀x.(B)0.

However, if we are willing to focus attention on only cut-free proofs in in-

tuitionistic and linear logic, it is possible to define a different translation.

Consider the following two translation functions.

(A)+ = (A)− = A, where A is atomic

(t)+ = 1 (t)− = ⊤
(B1 ∧B2)

+ = (B1)
+ ⊗ (B2)

+

(B1 ∧B2)
− = (B1)

− & (B2)
−

(B1 ⊃ B2)
+ = (B1)

− ⇒ (B2)
+

(B1 ⊃ B2)
− = (B1)

+ ⊸ (B2)
−

(∀x.B)+ = ∀x.(B)+

(∀x.B)− = ∀x.(B)−

If we allow positive occurrences of ∨ and ∃ within cut-free proofs, as in proofs

involving the hereditary Harrop formulas, we need to include the following two

clauses.

(B1 ∨B2)
+ = (B1)

+ ⊕ (B2)
+

(∃x.B)+ = ∃x.(B)+

Proposition 6.15. Let Σ be a signature, B be a Σ-formula and ∆ a set of

Σ-formulas, all over the logical constants t,∧,⊃, and ∀. Define ∆− to be

the multiset {C− | C ∈ ∆}. Then, the sequent Σ :: ∆ ⊢ B has an I-proof if

and only if the sequent Σ :: ∆−; · ⊢ B+ has a cut-free proof in ⇓L1.

This proposition is a consequence of the more general Proposition 7.18.

In fact, if one considers ⇓L0-proofs instead of I-proofs, then ⇓L0-proofs of

Σ :: ∆ ⊢ B are essentially ⇓L1-proofs of Σ :: ∆−; · ⊢ B+. This suggests how

to design the concrete syntax of a linear logic programming language so that

the interpretation of Prolog and λProlog programs remains unchanged when

embedded into this new setting. In particular, the Prolog syntax

A0 : − A1, . . . , An

is traditionally intended to denote (the universal closure of) the formula

(A1 ∧ . . . ∧An) ⊃ A0.

Given the negative translation above, such a Horn clause is translated to the

linear logic formula

(A1 ⊗ . . .⊗An) ⊸ A0.

6.6 A model of resource consumption 125

Thus, the comma in Prolog denotes ⊗ and : − denotes the converse of ⊸.

Another example is the natural deduction rule for the introduction of im-

plication, often expressed using the diagram

(A)
...

B

A ⊃ B ’

which can be written as the following first-order formula for specifying a prov-

ability predicate:

∀A.∀B.((prov(A) ⊃ prov(B)) ⊃ prov(A imp B)).

Here, the domain of quantification is over propositional formulas of the object-

language and imp is the object-level implication. This formula is written in

λProlog using the syntax

prov (A imp B) :- prov A => prov B.

Given the above proposition, this formula can be translated to the formula

∀A.∀B.((prov(A) ⇒ prov(B)) ⊸ prov(A imp B)),

which means that the λProlog symbol => should denote ⇒. Thus, in the impli-

cation introduction rule displayed above, the metalevel implication represented

as three vertical dots can be interpreted as an intuitionistic implication while

the metalevel implication represented as the horizontal bar can be interpreted

as a linear implication.

6.6 A model of resource consumption

This book does not present many details about the implementation of proof

search, but the following considerations seem high-level and useful to mention.

As we discussed in Section 6.4, an attempt to apply the multiplicative infer-

ence rule ⊸L from either Figure 6.6 or Figure 6.7 requires splitting a multiset

of formulas into two multisets: in general, an exponential number of such split-

tings is possible. A better strategy than trying each possible splitting is needed

if the logic L1 is to be the foundation of a usable logic programming language.

Such a strategy is possible and rests on two observations. First, instead of

splitting the formulas in the left bounded zone at the moment of applying the

⊸L rule, we can send all the formulas in the bounded zone to the process

searching for a proof of the left premise. If a proof of that premise is found,

some of those bounded formulas are consumed. The remaining unconsumed,

126 Chapter 6. Linear logic

subcontext O I

Σ :: Ψ; [I ∥O] ⊢ ⊤
⊤R

Σ :: Ψ; [I ∥O] ⊢ B Σ :: Ψ; [I ∥O] ⊢ C

Σ :: Ψ; [I ∥O] ⊢ B & C
&R

Σ :: Ψ; [⟨B⟩ :: I ∥ ◦ :: O] ⊢ C

Σ :: Ψ; [I ∥O] ⊢ B ⊸ C
⊸R

Σ :: Ψ, B; [I ∥O] ⊢ C

Σ :: Ψ; [I ∥O] ⊢ B ⇒ C
⇒ R

y : τ,Σ :: Ψ; [I ∥O] ⊢ B[y/x]

Σ :: Ψ; [I ∥O] ⊢ ∀τx.B
∀R

Σ :: Ψ, D; [I ∥O] ⇓ D ⊢ A

Σ :: Ψ, D; [I ∥O] ⊢ A
decide !

pick I D M Σ :: Ψ; [M ∥O] ⇓ D ⊢ A

Σ :: Ψ; [I ∥O] ⊢ A
decidel

Σ :: Ψ; [I ∥ I] ⇓ A ⊢ A
init

Σ ⊩ t : τ Σ :: Ψ; [I ∥O] ⇓ D[t/x] ⊢ A

Σ :: Ψ; [I ∥O] ⇓ ∀τx.D ⊢ A
∀L

Σ :: Ψ; [I ∥O] ⇓ Di ⊢ A

Σ :: Ψ; [I ∥O] ⇓ D1 & D2 ⊢ A
&L (i ∈ {1, 2})

Σ :: Ψ; [I ∥M] ⊢ G Σ :: Ψ; [M ∥O] ⇓ D ⊢ A

Σ :: Ψ; [I ∥O] ⇓ G ⊸ D ⊢ A
⊸L

Σ :: Ψ; [I ∥ I] ⊢ G Σ :: Ψ; [I ∥O] ⇓ D ⊢ A

Σ :: Ψ; [I ∥O] ⇓ G ⇒ D ⊢ A
⇒L

The symbol :: is use both as the list constructor (in the supporting code

in Figure 6.10) as well as the symbol separating a signature from the

rest of a sequent.

Figure 6.9: The IO proof system.

6.6 A model of resource consumption 127

kind opt type -> type.

type none opt A.

type some A -> opt A.

type pick list (opt A) -> A -> list (opt A)-> o.

type subcontext list (opt A) -> list (opt A)-> o.

pick (some B::I) B (none::I).

pick (C::I) B (C::O) :- pick I B O.

subcontext nil nil.

subcontext (C::O) (C::I) :- subcontext O I.

subcontext (none::O) (some B::I) :- subcontext O I.

As with the type for lists, the type for options is also given a polymor-

phic typing: here, A is a type variable.

Figure 6.10: The formal definition of the predicates used in Figure 6.9.

bounded formulas can then be sent to the right premise to be consumed there.

Second, the decide inference rule in Figure 6.7 consumes a bounded formula.

Figure 6.9 contains the IO proof system, which is a modification of the

⇓L1 proof system in Figure 6.7 in which the bounded zone (written using

the schematic variable Γ) is replaced by the pairing [I ∥O], where I and O

denote, respectively, collections of input and output formulas. Since we need

to support the process of deleting formulas from an input to arrive at an

output, the structures encoding I and O will be lists of option formulas. By

an option formula we mean a term of the form ⟨B⟩, for B a formula, or ◦,

which denotes that a formula has been deleted. The pick relation used in the

decidel rule in Figure 6.9 is used to select an occurrence of a formula from an

input list and return the result of deleting that occurrence in the output list.

The formal definition of the pick and subcontext predicates is given using

the Horn clauses displayed in Figure 6.10.

Exercise 6.16. The predicate subcontext can be removed from the proof

system in Figure 6.9 by making use of the pick predicate instead. In par-

ticular, show that the one rule in Figure 6.9 that references subcontext

can be replaced by the following two rules.

Σ :: Ψ; [I ∥ I] ⊢ ⊤
⊤R

pick I D M Σ :: Ψ; [M ∥O] ⊢ ⊤
Σ :: Ψ; [I ∥O] ⊢ ⊤

⊤R

128 Chapter 6. Linear logic

There are several observations to make about the rules in Figure 6.9.

1. Most rules are such that when the pair [I ∥O] appears in the conclusion,

it also appears in all its premises. The exceptions are described next.

2. When reading inference rules from conclusion to premises, the ⊸R rule

can be seen as taking the pair [I ∥O] and giving to the premise the

input ⟨B⟩ (encoded as (some B) in Figure 6.10). At the same time,

the corresponding output structure contains ◦ (encoded as none), which

denotes the deletion of B. As a result, this modified rule indicates that

B must be consumed to prove the premise.

3. The decidel rule employs the pick predicate to nondeterministically se-

lect a formula D from the input structure while marking it deleted in

the output structure.

4. The left premise of the ⇒L rule contains the pairing [I ∥ I]. Such a

pairing means that all formulas in the input are also in the output: no

formulas have been deleted. The init rule uses a similar pairing.

5. The condition (subcontext O I) appearing in the premise of the ⊤R is

true if O results from deleting some formulas occurring in I.

In order to prove the correctness of the proof system in Figure 6.9, we define

the formal difference, I−O, whenever it is the case that subcontext O I holds:

in particular, I − O is the multiset of formulas D such that ⟨D⟩ occurs in I

and the corresponding position in O is the symbol ◦. The following lemma

states some simple properties of this difference operator.

Lemma 6.17. Given a list of option formulas I, the difference I− I is the

empty multiset. Whenever subcontext I M and subcontext M O hold

then subcontext I O holds and I −O is the multiset union of I −M and

M −O. Finally, if pick I D O holds, then I−O is the multiset containing

one occurrence of D.

The following lemma is proved by a simple induction on the structure of

IO-proofs.

Lemma 6.18. If Σ::Ψ; [I ∥O] ⊢ G has an IO-proof then subcontext O I

holds. The same is true if Σ :: Ψ; [I ∥O] ⇓ D ⊢ G has an IO-proof.

The following proposition shows that this approach to the lazy splitting of

contexts is sound.

6.7 Multiple-conclusion uniform proofs 129

Proposition 6.19. If Σ::Ψ; [I ∥O] ⊢ G has an IO-proof then Σ::Ψ; I−O ⊢
G has a ⇓L1-proof. Similarly, if Σ :: Ψ; [I ∥O] ⇓ D ⊢ G has an IO-proof

then Σ :: Ψ; I −O ⇓ D ⊢ G has a ⇓L1-proof.

Proof. Let Ξ be an IO-proof of Σ :: Ψ; [I ∥O] ⊢ G. We can convert Ξ to a

⇓L1-proof by simply replacing every occurrence of the pairing [I ∥O] in Ξ

with the multiset I −O. For example, consider the IO inference rule

Σ :: Ψ; [I ∥M] ⊢ G Σ :: Ψ; [M ∥O] ⇓ D ⊢ A

Σ :: Ψ; [I ∥O] ⇓ G ⊸ D ⊢ A
⊸L

If we set Γ1 and Γ2 to be, respectively, I−M and M−O, then by Lemma 6.17,

I − O is the multiset union of Γ1 and Γ2. Thus, the rule above is converted

to the ⇓L1 inference rule

Σ :: Ψ; Γ1 ⊢ G Σ :: Ψ; Γ2 ⇓ D ⊢ A

Σ :: Ψ; Γ1,Γ2 ⇓ G ⊸ D ⊢ A
⊸L

The remaining cases all follow as simply as this case.

6.7 Multiple-conclusion uniform proofs

Our current treatment of linear logic proof theory via goal-directed search and

backchaining captures only a part of linear logic. As we will see in Exercise 6.20

below, if we extend the L1 collection of connectives with ⊥, we can encode

all of linear logic’s connectives. This fact suggests that adding the unit for

the multiplicative disjunction might be interesting, especially since it has the

negative polarity like the other connectives in L1. It also seems sensible to add

not just ⊥ but also ` and ? since they are all negative polarity connectives

and they represent the 0-ary, 2-ary, and “∞-ary” multiplicative disjunction.

To that end, we define L2 to be the set of connectives

L2 = L1 ∪ {⊥,`, ?} = {⊤,&,⊸,⇒,∀,⊥,`, ?},

and we say that an L2-formula is any first-order formula built using the L2

connectives. This presentation of linear logic using the logical connectives

in L2 is called the Forum presentation of linear logic in Miller [1996]. The

proof system we give for these additional connectives uses multiple-conclusion

sequents.

130 Chapter 6. Linear logic

Exercise 6.20.(‡) Show that the set of connectives L1 ∪ {⊥} is complete

for linear logic by defining the formulas B⊥, 0, 1, !B, B⊕C, B⊗C, ∃x.B,

?B, and B ` C using only the connectives in L1 ∪ {⊥}. Use the L proof

system to present the required proofs of equivalence. Can you argue why it

is the case that if L′ is a proper subset of L1 then L′ ∪ {⊥} does not yield

a complete set of connectives for linear logic.

The set of connectives L2 is redundant since we can remove ` and ? and

still have a complete set of connectives for linear logic, as the provability of

the following linear logic equivalences validate.

?B ˛ (B ⊸ ⊥) ⇒ ⊥ B ` C ˛ (B ⊸ ⊥) ⊸ C

Although the addition of ` and ? is not strictly necessary, their presence will

allow us to write natural specifications later. Also, their presence only slightly

complicates the proof theory analysis in the following chapter.

What should goal-directed search mean when there are possibly several

formulas on the right of a sequent? The key aspect of goal-directed search

that we wish to maintain is that goal formulas can be introduced without

any restriction, no matter what other formulas are on the left or right of

the sequent turnstile. Thus, it seems natural to expect that we should be

able to simultaneously introduce all the logical connectives on the right of the

sequent turnstile. Although the sequent calculus cannot deal directly with

simultaneous rule application, reference to permutations of inference rules can

indirectly address simultaneity. That is, we can require that if two or more

right-introduction rules can derive a given sequent, then all possible orders of

applying those right-introduction rules can, in fact, be done, and the resulting

proofs are all equal modulo permutations of introduction rules.

More precisely, a cut-free sequent proof Ξ is uniform if for every subproof

Ξ′ of Ξ and for every non-atomic formula occurrence B in the right-hand side of

the endsequent of Ξ′, there is a proof Ξ′′ that is equal to Ξ′ up to permutations

of inference rules and is such that the last inference rule in Ξ′′ introduces the

top-level logical connective of B. This notion of uniform proof clearly extends

the one given in Section 5.1. We similarly extend the notion of abstract logic

programming language to be a triple ⟨D,G,⊢⟩ such that for all sequents with

formulas from D on the left and formulas from G on the right, that sequent

has a proof if and only if it has a uniform proof. Instead of discussing

multiple-conclusion uniform proofs as a separate concept, we now introduce

a new focused sequent system that will yield a specific kind of uniform proof

system.

The ⇓L2-proof system, given in Figure 6.11, contains sequents having the

form

Σ :: Ψ; Γ ⊢ ∆; Υ and Σ :: Ψ; Γ ⇓ B ⊢ ∆; Υ,

6.7 Multiple-conclusion uniform proofs 131

where Σ is a signature, and Γ, ∆, Ψ and Υ are multiset of Σ-formulas from L2.

These two sequents have Ψ as its left-unbounded zone, Γ as its left-bounded

zone, ∆ as its right-bounded zone, and Υ as its right-unbounded zone. The

intended meanings of these two sequents in linear logic are

Σ :: ! Ψ,Γ ⊢ ∆, ? Υ and Σ :: ! Ψ,Γ, B ⊢ ∆, ? Υ,

respectively. The ⇓L2-proof system contains right rules only for sequents of

the form Σ::Ψ; Γ ⊢ ∆; Υ. The syntactic variable A used in Figure 6.11 denotes

a multiset of atomic formulas. As we have seen before, left-introduction rules

are applied only to the formula between the ⇓ and the ⊢ in its conclusion.

Returning to the terminology in Section 3.3, the right introduction rules

are all additive (assuming that the formula introduced is the subject occur-

rence) while the left introduction rules are all multiplicative (assuming that

the formula introduced is the subject occurrence).

The L proof system can serve as an (unfocused) proof system for L2: we

simply need to replace the implications in L2-formulas with their definitions,

using the (·)⋄ function from Proposition 6.13. Given the intended interpreta-

tion of sequents in L2, the following soundness theorem can be proved by a

simple induction on the structure of ⇓L2-proofs.

Theorem 6.21 (Soundness). If the sequent Σ::Ψ; Γ ⊢ ∆; Υ has a ⇓L2-proof

then ! Ψ⋄,Γ⋄ ⊢ ∆⋄, ? Υ⋄ has an L proof. If the sequent Σ :: Ψ; Γ ⇓ B ⊢ A; Υ

has a ⇓L2-proof then ! Ψ⋄,Γ⋄, B⋄ ⊢ ∆⋄, ? Υ⋄ has an L proof.

We will prove in the next chapter that three kinds of cut rules are admis-

sible in ⇓L2 and use that fact to prove the completeness of ⇓L2-proof.

Exercise 6.22. The ⇓L2-proof rule for ?L is unlike the other left-

introduction rules in that it does not maintain focus as one moves from

the conclusion to a premise. Consider the following variation to that rule.

Σ :: Ψ; · ⇓ B ⊢ ·; Υ

Σ :: Ψ; · ⇓ ?B ⊢ ·; Υ
?L′

Show that if we replace ?L with ?L′ then the resulting proof system is no

longer complete. Hint: consider the formula ?(a ⊸ b) ⊸ ?(a ⊸ b).

Exercise 6.23. The L2 presentation of linear logic uses the 8 logical con-

nectives {⊤,&,⊸,⇒,∀,⊥,`, ?}. Show that all the 64 pairings of the right-

introduction rules for these 8 connectives permutes over each other.

132 Chapter 6. Linear logic

Σ :: Ψ; Γ ⊢ ⊤,∆; Υ
⊤R

Σ :: Ψ; Γ ⊢ B,∆; Υ Σ :: Ψ; Γ ⊢ C,∆; Υ

Σ :: Ψ; Γ ⊢ B & C,∆; Υ
&R

Σ :: Ψ; Γ ⊢ ∆; Υ

Σ :: Ψ; Γ ⊢ ⊥,∆; Υ
⊥R

Σ :: Ψ; Γ ⊢ B,C,∆; Υ

Σ :: Ψ; Γ ⊢ B ` C,∆; Υ
` R

Σ :: Ψ;B,Γ ⊢ C,∆; Υ

Σ :: Ψ; Γ ⊢ B ⊸ C,∆; Υ
⊸ R

Σ :: B,Ψ; Γ ⊢ C,∆; Υ

Σ :: Ψ; Γ ⊢ B ⇒ C,∆; Υ
⇒ R

y : τ,Σ :: Ψ; Γ ⊢ B[y/x],∆; Υ

Σ :: Ψ; Γ ⊢ ∀τx.B,∆; Υ
∀R

Σ :: Ψ; Γ ⊢ ∆;B,Υ

Σ :: Ψ; Γ ⊢ ?B,∆; Υ
?R

Σ :: Ψ; Γ ⇓ B ⊢ A; Υ

Σ :: Ψ;B,Γ ⊢ A; Υ
decidel

Σ :: B,Ψ; Γ ⇓ B ⊢ A; Υ

Σ :: B,Ψ; Γ ⊢ A; Υ
decide !

Σ :: Ψ; Γ ⊢ A, B;B,Υ

Σ :: Ψ; Γ ⊢ A;B,Υ
decide?

Σ :: Ψ; · ⇓ A ⊢ A; Υ
init

Σ :: Ψ; · ⇓ A ⊢ ·;A,Υ
init ?

Σ :: Ψ; · ⇓ ⊥ ⊢ ·; Υ
⊥L

Σ :: Ψ;B ⊢ ·; Υ

Σ :: Ψ; · ⇓ ?B ⊢ ·; Υ
?L

Σ :: Ψ; Γ ⇓ Bi ⊢ A; Υ

Σ :: Ψ; Γ ⇓ B1 & B2 ⊢ A; Υ
&Li

Σ :: Ψ; Γ ⇓ B[t/x] ⊢ A; Υ

Σ :: Ψ; Γ ⇓ ∀τx.B ⊢ A; Υ
∀L

Σ :: Ψ; Γ1 ⇓ B ⊢ A1; Υ Σ :: Ψ; Γ2 ⇓ C ⊢ A2; Υ

Σ :: Ψ; Γ1,Γ2 ⇓ B ` C ⊢ A1,A2; Υ
` L

Σ :: Ψ; Γ1 ⊢ A1, B; Υ Σ :: Ψ; Γ2 ⇓ C ⊢ A2; Υ

Σ :: Ψ; Γ1,Γ2 ⇓ B ⊸ C ⊢ A1,A2; Υ
⊸L

Σ :: Ψ; · ⊢ B; Υ Σ :: Ψ; Γ ⇓ C ⊢ A; Υ

Σ :: Ψ; Γ ⇓ B ⇒ C ⊢ A; Υ
⇒L

The rule ∀R has the proviso that y is not in the signature Σ, and the rule

∀L has the proviso that t is a Σ-term of type τ . In &Li, i = 1 or i = 2.

The syntactic variable A ranges over multisets of atomic formulas.

Figure 6.11: The ⇓L2-proof system.

6.8 Conservativity results 133

Exercise 6.24. Assume that a, b, c, d are all propositional constants (i.e.,

they have type o). Prove the following formulas using the ⇓L2-proof system.

Note that proving the formula B using ⇓L2 means proving the sequent

· :: ·; · ⊢ B; ·.

1. ((a ⊸ ⊥) ⊸ ⊥) ⊸ a

2. (d ⊸ (a ` b)) ⊸ (1 ⊸ (c ` d)) ⊸ (a ` b ` c)

3. ? b ⊸ (b ⊸ ⊥) ⇒ ⊥ and ((b ⊸ ⊥) ⇒ ⊥) ⊸ ? b

4. (b ` c) ⊸ (b ⊸ ⊥) ⊸ c and ((b ⊸ ⊥) ⊸ c) ⊸ (b ` c)

Exercise 6.25. Show that the contrapositive of a linear implication is

equivalent to the linear implication. In particular, provide a ⇓L2-proof

of (a ⊸ b) ˛ ((b ⊸ ⊥) ⊸ (a ⊸ ⊥)) where a and b are constants.

By examining the ⇓L2-proof system, we can see that the dynamics of

proof search in this proof system is a simple generalization of the dynamics

described for ⇓L1. That is, during the search for a ⇓L2-proof, the signature

and unbounded zones (on the left and right) can grow, while the changes in

the bounded zones (on the left and right) can change in more general and

arbitrary ways.

6.8 Conservativity results

We say that a sequent is an L1-sequent if all formulas in that sequent (with

or without a ⇓) are L1-formulas. The following two exercises show that a

⇓L2-proof of an endsequent that is a single-conclusion L1-sequent contains

only single-conclusion sequents.

Exercise 6.26.(‡) Prove that there is no ⇓L2-proof of an L1 sequent with

an empty right side.

Exercise 6.27. (‡) Prove that if Ξ is a ⇓L2-proof of a single-conclusion

L1-sequent then all sequents in Ξ are single-conclusion sequents.

The ⇓L1-proof system is defined as the ⇓L2-proof system of Figure 6.11

but without the introduction rules for ⊥, `, and ? and without the init?

and decide? rules. The following proposition is a simple consequence of the

observations in the two exercises above.

134 Chapter 6. Linear logic

Proposition 6.28 (⇓L2 is conservative over ⇓L1). If B is an L1 Σ-formula

such that Σ :: ·; · ⊢ B; · has the ⇓L2-proof Ξ then Ξ is a ⇓L1-proof.

In Section 5.3, we defined the set of connectives L0 to be {t,∧,⊃,∀}. Now

that we have seen linear logic, it seems that this set can also be viewed as being

{⊤,&,⇒, ∀}. If we allow this renaming of intuitionistic connectives to be these

linear logic connectives, we have the following conservative proposition. We

say that a sequent is an L0-sequent if all formulas in that sequent (with or

without a ⇓) are L0-formulas (assuming this renaming of connectives).

Proposition 6.29 (⇓L2 is conservative over ⇓L0). If B is an L0 Σ-formula

such that Σ :: ·; · ⊢ B; · has the ⇓L2-proof Ξ then Ξ is a ⇓L0-proof.

It is a consequence of these propositions that the proofs in ⇓L2 are also

proofs in the ⇓L1 and ⇓L0 proof systems when their endsequents are L1-

sequents and L0-sequents, respectively.

6.9 Generalizing synthetic inference rules

We generalize two notions introduced in Section 5.7. A border sequent is

a sequent of the form Σ :: Ψ; Γ ⊢ A; Υ, where the right-bounded zone con-

tains only atoms. (Since occurrences of Σ in sequent denoting binders, we

shall not refer to it as a zone.) A synthetic inference rule is then the infer-

ence rule that results from moving from a border sequent upwards through

a decidel or decide ! rule, followed by a left-introduction phase and then a

right-introduction phase: if the latter has any open premises, these are neces-

sarily border phases. Schematically, a synthetic inference rule can be seen as

composed of focused inference rules as follows.

. . . Σ,Σ′ :: Ψ,Ψ′; Γ′ ⊢ A′; Υ,Υ′ . . .

... · · ·
...

right-intro phase

...
...

...

left-intro phase

Σ :: Ψ; Γ ⊢ A; Υ
decidel or decide !

The decide? rule can also generate synthetic inferences rule but the internal

structure of such a rule has an empty left-introduction phase.

Chapter 8 will present numerous examples of logic programs using L2 for-

mulas that illustrate features of linear logic. We give a simple example here.

Assume that we would like to move from, say, step1 to step2 in a compu-

tation (proof search), and in the process of making that change, we wish to

6.9 Generalizing synthetic inference rules 135

flip a switch. In other words, we would like to write a logic specification that

could justify the following inference rules.

Ψ; Γ, on ⊢ step2

Ψ; Γ, off ⊢ step1

Ψ; Γ, off ⊢ step2

Ψ; Γ, on ⊢ step1

Using the Prolog-style syntax described above, the following two clauses im-

plement these rules.

step1 :- off , on -o step2.

step1 :- on , off -o step2.

To illustrate this specification, assume that the formulas

off ⊸ (on ⊸ step2) ⊸ step1 and on ⊸ (off ⊸ step2) ⊸ step1

are members of Ψ. The following partial derivation in L2 justifies the second

of these rules above.

Ψ; · ⇓ on ⊢ on
init

Ψ; on ⊢ on
decidel

Ψ; Γ, off ⊢ step2

Ψ; Γ ⊢ off ⊸ step2
⊸R

Ψ; · ⇓ step1 ⊢ step1
init

Ψ; Γ ⇓ (off ⊸ step2) ⊸ step1 ⊢ step1
⊸L

Ψ; Γ, on ⇓ on ⊸ (off ⊸ step2) ⊸ step1 ⊢ step1
⊸L

Ψ; Γ, on ⊢ step1
decide !

The two occurrences of ⊸L require splitting the bounded zone in their conclu-

sions. There can be many possible splittings of these multisets, depending on

the size of Γ. However, in this particular setting, the bound context can only

be split one way: all other splitting would not have allowed for completing the

phase and, thus, completing the left-introduction phase. If ⇒ replaced ⊸ in

this example, the resulting inference rules would be

Ψ, off, on; · ⊢ step2

Ψ, off; · ⊢ step1

Ψ, on, off; · ⊢ step2

Ψ, on; · ⊢ step1

Clearly, this would be a poor implementation of a switch.

The partial derivation given above is not, however, a synthetic rule since

it contains two decide rules: rather, it is composed of two synthetic rules.

Given that the ⇓L2-proof system has multisets on the left and the right sides

of sequents, it is possible to rewrite this example by putting the state of the

switch on the right of the sequent instead of on the left. In other words, we

would like to write a logic specification that justifies the following inference

rules.
Ψ; Γ ⊢ step2, on,∆; Υ

Ψ; Γ ⊢ step1, off,∆; Υ

Ψ; Γ ⊢ step2, off,∆; Υ

Ψ; Γ ⊢ step1, on,∆; Υ

136 Chapter 6. Linear logic

We introduce the symbol || into our λProlog-style syntax to denote `. The

following two clauses implement these rules.

step1 || off :- on || step2.

step1 || on :- off || step2.

These clauses denote the logical formulas

(on ` step2) ⊸ (step1 ` off) and (off ` step2) ⊸ (step1 ` on).

In this example, the toggling of a switch is achieved via synthetic inference

rules and not a combination of two of them.

6.10 Bibliographic notes

The material in Section 6.1 is based on text by Liang and Miller [2024] while

the material in Section 6.2 is based on a blog post by Miller [2022a]. Addi-

tional observations about interactions between the structural rules and cut-

elimination are given by Danos et al. [1997] and Lafont in [Girard et al., 1989].

The informal semantics given in Section 6.3.1 can be elaborated into a

more extensive (and still informal) semantics often called Lafont’s restaurant

semantics for linear logic: see Okada [1998]. Girard [1987] refers to ! as “of

course” and ? as “why not”.

The notion of the polarity of logical connectives that we have used here is

due to Andreoli [1990, 1992] and Girard [1993]. Those papers also introduced

the notion of multi-zone sequents to treat bounded and unbounded zones in

sequents for linear logic.

As Exercise 6.5 shows, linear logic can have a collection of different expo-

nentials. A presentation of linear logic with such additional operators was first

given in Danos et al. [1993]. Since these additional operators do not necessar-

ily need to permit weakening and contraction, these additional operators do

not necessarily satisfy the exponential laws (as described in Exercise 6.3). For

these reasons, such additional operators have been called subexponentials in

Nigam and Miller [2009]: that paper also illustrates how subexponentials can

enhance the expressiveness of proof search specifications based on linear logic

(see also Chaudhuri [2018], Liang and Miller [2015], and Olarte et al. [2015]).

When Girard [1987] introduced linear logic, he also introduced proof-nets

as a proof system specifically designed to capture parallelism in proofs better

than sequent calculus proofs. To capture parallelism in proof construction in

a sequent calculus setting, Delande and Miller [2008] introduced the notion of

multifocusing in which more than one formula can be focused on at a time.

Multifocusing has been used in Chaudhuri et al. [2008a] and Chaudhuri et al.

[2016] to capture parallel actions within a proof structure.

6.10 Bibliographic notes 137

Exercise 6.6 illustrated a property of formulas B for which B ˛ !B is

provable. If we restrict B to come from MALL, then few formulas have this

property. In full linear logic, any formula of the form !C has this property since

!C ˛ ! !C is provable. If one extends MALL with least fixed points and term

equality (thus moving linear logic closer to model checking and arithmetic),

then many other formulas satisfy that equivalence: see Baelde [2012], Baelde

and Miller [2007], and Heath and Miller [2019].

An implementation of a programming language based on ⇓L1 was de-

scribed in Hodas and Tamura [2001]. L2 has been given a couple of implemen-

tations: see López and Pimentel [1998] and Urban [1997]. An important part

of these implementations is the lazy splitting of multisets during proof search,

a technique described in Section 6.6. This technique was presented by Hodas

and Miller [1991, 1994] and extended in Cervesato et al. [2000b], Cervesato

et al. [1996], and Hodas et al. [1998]. Mackie [1994] described type inference

for a linear functional programming language using a similar technique.

The ⇓L2 proof system uses multiple-conclusion sequents, similar to Gentzen’s

LK for classical logic, whereas ⇓L1 uses single-conclusion sequents, reminis-

cent of LJ for intuitionistic logic. Consequently, ⇓L2 is frequently referred to

as classical linear logic and ⇓L1 as intuitionistic linear logic (see, for instance,

Hodas and Miller [1994] and Laurent [2018]). A key distinction lies in the

origin of the single-conclusion property. In Gentzen’s work, intuitionistic logic

is obtained by restricting LK to single conclusions. In contrast, ⇓L1’s single-

conclusion property is a consequence of its inherent structure—specifically,

its reduced set of connectives—rather than a deliberate restriction of ⇓L2

(Proposition 6.28).

Although the Curry paradox regarding mixing logical connectives and un-

typed λ-conversion can be avoided by typing, it can also be avoided if con-

traction is not available in the logic. In particular, the problematic λ-term

λx.(x ⇒ f) mentioned in Exercise 2.5 is no longer problematic if we write

λx.(x ⊸ 0) and work in the subset of linear logic without the exponentials:

see Grishin [1981], Girard [1992], and Schroeder-Heister [1993].

138 Chapter 6. Linear logic

Chapter7
Formal properties of linear

logic focused proofs

This chapter presents the main proof theory results regarding the presentation

of first-order linear logic using the connectives L2 = {⊤,&,⊸,⇒, ∀,⊥,`, ?}.

Readers interested mainly in specifying logic programs using linear logic can

skip this chapter and continue with Chapter 8.

The outline of this chapter, which follows roughly the outline of Section 5.5

for the L0 subset of intuitionistic logic, is the following.

1. Define paths in L2-formulas and their associated sequents.

2. Use paths to describe the right-introduction and left-introduction phases.

3. Prove the admissibility of the non-atomic initial rule in ⇓L2.

4. Add four cut rules to ⇓L2 and then prove that they can be eliminated.

5. Prove the completeness of ⇓L2 with respect of the proof system L.

6. Prove the cut-elimination theorem for the L proof system.

We will not explicitly state the admissibility of cut rules for ⇓L1-proofs nor

the completeness of ⇓L1-proofs for L, since these results follow immediately

from the corresponding and stronger theorems related to the cut-elimination

theorem for ⇓+L2-proofs (Theorem 7.15) and the completeness of ⇓L2-proofs

(Theorem 7.18).

7.1 Generalized paths and introduction phases

We move the notion of a path given in Section 5.5 from L0-formulas to L2-

formulas. In particular, we define the relationship · ↑ · on L2-formulas as

140 Chapter 7. Formal properties of linear logic focused proofs

follows (here, A ranges over atomic formulas).

A ↑ A

B1 ↑ P

B1 & B2 ↑ P

B2 ↑ P

B1 & B2 ↑ P

B ↑ P

C ⇒ B ↑ C ⇒ P

B ↑ P

∀τx.B ↑ ∀τx.P

⊥ ↑ ⊥ ?B ↑ ?B

B ↑ P

C ⊸ B ↑ C ⊸ P

B1 ↑ P1 B2 ↑ P2

B1 ` B2 ↑ P1 ` P2

The elimination of & from paths can be justified using the provability of the

following formulas.

C ` (B1 & B2) ˛ (C ` B1) & (C ` B2)

C ⊸ (B1 & B2) ˛ (C ⊸ B1) & (C ⊸ B2)

C ⇒ (B1 & B2) ˛ (C ⇒ B1) & (C ⇒ B2)

∀x. (B1 & B2) ˛ (∀x. B1) & (∀x. B2)

By using these equivalences (and other equivalences from Section 5.5 related

to ⇒ and ∀), it is possible to pull various occurrences of & within a formula to

the outside of the formula. That is, we have the provability of B ˛ ˘
B↑P

P .

Paths have a more complex structure in this setting than in Section 5.5.

Fortunately, paths have a reasonably simple normal form. Using the provabil-

ity of the formulas

B ` (∀x.C) ˛ ∀x.(B ` C)

B ⊸ (∀x.C) ˛ ∀x.(B ⊸ C)

B ⇒ (∀x.C) ˛ ∀x.(B ⇒ C),

a path can be written in the form ∀x1. . . .∀xn.P ′ where n ≥ 0, and every

occurrence of ∀ in P ′ occurs in the scope of a ? or to the left of either ⊸ or

⇒. Similarly, using the provability of the formulas

(B ⊸ C1) ` C2 ˛ B ⊸ (C1 ` C2)

(B ⇒ C1) ` C2 ˛ B ⇒ (C1 ` C2)

B ⊸ C ⇒ D ˛ C ⇒ B ⊸ D,

and the unit rule B ` ⊥ ˛ B, and the commutativity of `, all paths have

the following normal form,

∀x̄.[C1 ⇒ . . . ⇒ Cn ⇒ B1 ⊸ . . . ⊸ Bm ⊸ A1 ` . . . ` Ap ` ?E1 . . . ` ?Eq]

where n,m, p, q are non-negative integers, A1, . . . , Ap are atomic formulas,

B1, . . . , Bm, C1, . . . , Cn, E1, . . . , Eq are L2-formulas, and ∀x̄ is a list of univer-

sally quantified variables. If a path P has the normal form above, then we

7.1 Generalized paths and introduction phases 141

say that the multiset {C1, . . . , Cn} is its intuitionistic arguments, the multiset

{B1, . . . , Bm} is its linear arguments, the multiset {A1, . . . , Ap} is its atomic

targets, and the multiset {E1, . . . , Eq} is its ?-targets. Finally, x̄ is the list of

bound variables of P (we assume that all these bound variables are distinct

and subject to α-conversion). Since these various components of the normal

form of a path are multisets, this decomposition of a path is unique. We shall

also display this normal form as the sequent

x̄ :: C1, . . . , Cn;B1, . . . , Bm ⊢ A1, . . . , Ap;E1, . . . , Eq.

Finally, we say that this sequent is associated to this path.

Consider the shape of the right-introduction phase and the left-introduction

phase when applied to the formula

∀x̄(C ⇒ B1 ⊸ B2 ⊸ A1 ` A2 ` ?E),

which is its own path formula since it has no occurrences of &. The right-

introduction phase can be written schematically as follows.

x̄ :: C;B1, B2 ⊢ A1, A2;E

· :: ·; · ⊢ ∀x̄(C ⇒ B1 ⊸ B2 ⊸ A1 ` A2 ` ?E); ·

Note that the unique premise of this phase ends with the sequent associated

with that path. Of course, if we place any items in any of the zones in the

conclusion, they should also be placed into the same zone in the premise. The

following derivation is the left-introduction phase that results from focusing

on this same formula.

Ψ; · ⊢ Ĉ; Υ Ψ; Γ1 ⊢ B̂1,A1; Υ Ψ; Γ2 ⊢ B̂2,A2; Υ Ψ; Ê ⊢ ·; Υ

Ψ; Γ1,Γ2 ⇓ ∀x̄(C ⇒ B1 ⊸ B2 ⊸ A1 ` A2 ` ?E) ⊢ Â1, Â2,A1,A2; Υ

Here, Â1, Â2, B̂1, B̂2, Ĉ, Ê are the result of applying θ to the formulas in

A1, A2, B1, B2, C,E, and θ is the substitution for the variables x̄ that tab-

ulates the substitutions used in the ∀L rules.

We can view the construction of the right-introduction phase as a rewriting

process. The objects that we rewrite are multisets of sequents, all of the form

Σ :: Ψ; Γ ⊢ ∆; Υ. One-step rewriting is given as follows. Select some member

of this multiset: i.e., write the given multiset of sequents as M∪ {S}. Next,

consider any right-introduction rule with conclusion S and the multiset of

premises M′ (this multiset will contain 0, 1, or 2 elements). The multiset

union M∪M′ is the result of this rewrite. When this relation holds, we write

M∪ {S} → M∪M′

The following observations are easy to establish about this notion of rewriting.

142 Chapter 7. Formal properties of linear logic focused proofs

1. A multiset of border sequents does not rewrite. In this sense, collections

of border sequents are normal forms.

2. Define the size of sequents of the form Σ::Ψ; Γ ⊢ ∆; Υ to be the number of

occurrences of logical connectives in ∆, and define the size of a multiset

M to be the sum of the sizes of all sequents in M. The length of a series

of rewritings starting with M is bounded by the size of M. Thus, this

rewriting system is always terminating.

We wish to prove that every right-introduction phase with a fixed endse-

quent has the same multiset of premises. Regarding rewriting, we want to

prove that our rewriting system is confluent. As is well-known, we only need

to prove that our system is locally confluence to conclude that our terminating

rewrite system is confluence. In our situation, proving local confluence means

proving that if M rewrites in one step to M1 and to M2, then there exists

M0 such that both M1 and M2 rewrite to M0.

Proposition 7.1. The rewriting systems encoding the right-introduction

phase are confluent.

Proof. As we commented above, we only need to show local confluence. Thus,

assume that M rewrites in one step to M1 and M2. We now need to prove

that there exists M0 such that both M1 and M2 rewrite to M0. If the

two rewrites M → M1 and M → M2 select two different sequents to apply

introduction rules, then M0 is just the result of selecting the other sequent for

rewriting in both M1 and M2. Otherwise, these two rewrites select the same

sequent in M, say, Σ :: Ψ; Γ ⊢ ∆; Υ. Thus, there are two non-atomic formulas

in ∆ that are introduced. For example, the multiset

M∪ {Σ :: Ψ; Γ ⊢ B ` C,D & E,∆′; Υ}

can be rewritten to both M∪ {Σ :: Ψ; Γ ⊢ B,C,D & E,∆′; Υ} and to

M∪ {Σ :: Ψ; Γ ⊢ B ` C,D,∆′; Υ, Σ :: Ψ; Γ ⊢ B ` C,E,∆′; Υ}

Since the right-introduction rules for ` and & permute over each other, the

desired common redex M0 is simply

M∪ {Σ :: Ψ; Γ ⊢ B,C,D,∆′; Υ, Σ :: Ψ; Γ ⊢ B,C,E,∆′; Υ}

All other cases can be similarly proved since all right-introduction rules for the

L2 connectives permute over each other (Exercise 6.23). Thus, local confluence

is guaranteed by the permutation of inference rules.

The next proposition follows from the rewriting argument just given: the

right-introduction phase can select one particular formula to decompose en-

tirely before considering other formulas in the endsequent.

7.1 Generalized paths and introduction phases 143

Proposition 7.2. Consider a ⇓L2-proof Ξ of the sequent Σ :: Ψ; Γ ⊢
G,∆; Υ. There is a ⇓L2-proof Ξ′ of this same sequent that differs only

in permutations of right-introduction rules such that the formula G is de-

composed first. More specially, that right-introduction phase can be written

as 
Ξi

Σ,Σi :: Ψ,Ψi; Γ,Γi ⊢ Ai,∆; Υ,Υi


G↑Pi

Σ :: Ψ; Γ ⊢ G,∆; Υ

where the path Pi is associated with the sequent Σi :: Ψi; Γi ⊢ Ai; Υi and

where Ξi a proof of the ith premise.

As regards left-introduction phases, we note that every premise of a left-

introduction rule with endsequent Σ :: Ψ; Γ ⇓ B ⊢ A; Υ is such that the sig-

nature and the two unbounded zones are identical to the corresponding sig-

nature and zones in the endsequent: that is, these sequents are of the form

Σ :: Ψ; Γ′ ⊢ ∆′; Υ, for multisets Γ′ and ∆′. Thus, only the bounded zones vary

during the construction of the left-introduction phase.

Proposition 7.3. Let Ξ be a ⇓L2-proof of the sequent Σ::Ψ; Γ ⇓ B ⊢ A; Υ.

The left-introduction phase at the bottom of Ξ, which has a multiset of

premises M, can be described as followings. There is a path P in B with

the associated sequent

Σ′ :: C1, . . . , Cn;B1, . . . , Bm ⊢ A1, . . . , Ap;E1, . . . , Eq;

and a substitution θ that maps the variables in Σ′ to Σ-terms such that

1. A is equal to the multiset union {A1θ, . . . , Apθ} ∪ A1 ∪ · · · ∪ Am;

2. Γ is the multiset union Γ1 ∪ · · · ∪ Γm; and

3. M is the following multiset union,

{Σ :: Ψ; · ⊢ Ciθ; Υ}ni=1 ∪ {Σ :: Ψ; Γi ⊢ Biθ,Ai; Υ}mi=1

∪ {Σ :: Ψ;Eiθ ⊢ ·; Υ}qi=1.

Proof. This equivalence is proved by induction on the structure of the L2-

formula B in a fashion similar to that given in Proposition 5.20.

144 Chapter 7. Formal properties of linear logic focused proofs

7.2 Admissibility of the general initial rule

We can now prove the admissibility of generalized initial rules for L2-formulas.

Theorem 7.4 (Initial admissibility). Let Ψ and Υ be multisets of L2 Σ-

formulas. Let B be an L2 Σ-formulas.

1. The sequent Σ :: Ψ;B ⊢ B; Υ is provable.

2. If B is a member of Ψ then Σ :: Ψ; · ⊢ B; Υ is provable.

3. If B is a member of Υ then Σ :: Ψ;B ⊢ ·; Υ is provable.

Proof. We proceed to prove all three of these claims simultaneously by induc-

tion on the structure of the formula B.

We prove the first claim by building a ⇓L2-proof of Σ :: Ψ;B ⊢ B; Υ. By

Proposition 7.2, the right-introduction phase with the endsequent Σ :: Ψ;B ⊢
B; Υ has a premise of the form

Σ,Σ′ :: Ψ, C1, . . . , Cn;B,B1, . . . , Bm ⊢ A1, . . . , Ap; Υ, E1, . . . , Eq,

where Σ′ ::C1, . . . , Cn;B1, . . . , Bm ⊢ A1, . . . , Ap;E1, . . . , Eq is the sequent asso-

ciated to a path P in B. To complete the proof of the premises corresponding

to path P , first use the decidel rule to decide on B in the left-bounded zone of

the premise. By Proposition 7.3, there is a left-introduction phase correspond-

ing to the same P . By setting θ to the identity substitution on the variables

in Σ′, we have A = A′θ and Ai is empty for i = 1, . . . ,m and the sequents

{Σ,Σ′ :: Ψ, C1, . . . , Cn; · ⊢Ci; Υ, E1, . . . , Eq}ni=1 ∪
{Σ,Σ′ :: Ψ, C1, . . . , Cn;Bi ⊢Bi; Υ, E1, . . . , Eq}mi=1 ∪
{Σ,Σ′ :: Ψ, C1, . . . , Cn;Ei ⊢ · ; Υ, E1, . . . , Eq}qi=1.

are all the open premises of that left-introduction phase. The first inductive

assumption proves the middle group of sequents. The first group is proved

using inductive assumption for the second claim, and the third group is proved

using the third claim.

The proof of the second claim proceeds just as for the first claim except

that the decide ! rule is used instead of the decidel rule.

The proof of the third claim proceeds by using the first claim to prove

Σ :: Ψ;B ⊢ B; Υ, B and then using decide? to prove Σ :: Ψ;B ⊢ ·; Υ, B.

7.3 Cut rules and cut elimination 145

Exercise 7.5. Prove that the following pairs of sequents are provable in

the ⇓L2-proof system for all Σ-formulas B.

1. Σ :: ·; (B ⊸ ⊥) ⊸ ⊥ ⊢ B; · and Σ :: ·;B ⊢ (B ⊸ ⊥) ⊸ ⊥; ·.
2. Σ :: ·; (B ⇒ ⊥) ⊸ ⊥ ⊢ B; · and Σ :: B; · ⊢ (B ⇒ ⊥) ⊸ ⊥; ·.
3. Σ :: ·; ?B ⊢ ·;B and Σ :: ·;B ⊢ ?B; ·

7.3 Cut rules and cut elimination

Figure 7.1 introduces four cut rules involving L2 sequents. The first three

rules in Figure 7.1 are the regular cut rules while the fourth, the key cut, is

introduced for technical use within the cut-elimination procedure (compare

this rule to the rule by the same name in Section 5.5). The key cut is the only

cut rule containing a ⇓-sequent. The formula B is the cut formula in each

rule. The bounded zones are treated multiplicatively in these cut inference

rules, while the unbounded zones are treated additively. An occurrence of a

regular cut rule is called a border cut if its conclusion is a border sequent.

The right-premise of a border cut rule is a border sequent. An occurrence

of a regular cut rule is a non-border cut rule occurrence if its conclusion is

not a border sequent. The ⇓+L2 proof system combines the inference rules in

Figure 6.11 and Figure 7.1. Proofs in that system are ⇓+L2-proofs. A proof is

cut-free if it has no occurrences of these four cut rules. In this section, we will

prove the cut-elimination theorem for ⇓+L2: if a sequent has a ⇓+L2 proof, it

has a ⇓L2-proof.

The special status of ?. Within L2, the ? connective provides an elegant

symmetry since it is treated using an unbounded zone on the right of sequents,

complementing the left unbounded zone. However, this connective is excep-

tional in the following senses. It is superfluous since ?B can be defined using

other L2 connectives as (B ⊸ ⊥) ⇒ ⊥: as mentioned in Section 6.7, ` is

similarly redundant. Also, the rules related to ? in ⇓L2-proofs are different

than the other rules of a similar kind. For example, the decide? rule does

not link a left and right-introduction phase but occurs between two adjacent

right-introduction phases. Also, the left-introduction rule ?L does not main-

tain the ⇓ in its premise (see Exercise 6.22). For these reasons, we will treat

? with certain special conditions in the following proof of the cut-elimination

theorem for ⇓+L2-proofs. Although removing ` and ? from consideration can

make the proof of cut elimination more direct, we keep these connectives for

the sake of the examples and discussions that follow in this book.

The cut-elimination argument uses various measurements attached to oc-

currences of both regular and key-cut rules. A thread in the ⇓+L2-proof Ξ is

146 Chapter 7. Formal properties of linear logic focused proofs

Three Regular Cuts

Σ :: Ψ; · ⊢ B; Υ Σ :: Ψ, B; Γ ⊢ ∆; Υ

Σ :: Ψ; Γ ⊢ ∆; Υ
cut !

Σ :: Ψ; Γ ⊢ ∆;B,Υ Σ :: Ψ;B ⊢ ·; Υ

Σ :: Ψ; Γ ⊢ ∆; Υ
cut?

Σ :: Ψ; Γ1 ⊢ B,∆1; Υ Σ :: Ψ; Γ2, B ⊢ ∆2; Υ

Σ :: Ψ; Γ1,Γ2 ⊢ ∆1,∆2; Υ
cutl

The Key Cut

Σ :: Ψ; Γ1 ⊢ B,∆; Υ Σ :: Ψ; Γ2 ⇓ B ⊢ A; Υ

Σ :: Ψ; Γ1,Γ2 ⊢ ∆,A; Υ
cutk

Figure 7.1: The four cut rules of the ⇓+L2-proof system.

a list of sequent occurrences S1, . . . , Sn in Ξ such that n ≥ 1, S1 is an oc-

currence of the conclusion of an init rule, Sn is the endsequent of Ξ, and, for

i = 1, . . . , n − 1, there is an inference rule occurrence of Ξ that has Si as a

premise and Si+1 as its conclusion. Such a thread is said to have length n.

The rank of Ξ is the maximal number of occurrences of decide and cut

rules in threads in Ξ that do not contain a sequent occurrence that is the left

premise of a cutl, cut !, or cutk. When we care about the rank of a proof,

that proof will contain no occurrences of cut?. The degree of a formula is the

number of occurrences of logical connectives in that formula.

Every occurrence of a cut rule in a given proof is given a measure as follows.

Let Ξ be the subproof determined by having that occurrence of cut as its last

inference rule. We define |Ξ| to be the triple of natural numbers ⟨d, q, w⟩,
where d is the degree of its cut formula, q is the number of occurrences of

cut? in Ξ, and w is the rank of Ξ. Such triples are well-ordered using the

lexicographic ordering on triples. The proofs of the following two propositions

follow from straightforward inductions on the structure of ⇓+L2-proofs.

Proposition 7.6 (Weakening ⇓+L2-proofs). If Σ::Ψ; Γ ⊢ ∆; Υ has a ⇓+L2-

proof Ξ then Σ,Σ′ :: Ψ,Ψ′; Γ ⊢ ∆; Υ,Υ′ has a ⇓+L2-proof Ξ′. Furthermore,

every instance of a cut rule in Ξ corresponds to an instance of cut in Ξ′,

and they have the same measure.

7.3 Cut rules and cut elimination 147

Proposition 7.7 (Substitution into ⇓+L2-proofs). Let Σ be a signature, x

be a variable not declared in Σ, τ be a primitive type (other than o), and

t be a Σ-term of type τ . If Σ, x : τ :: Ψ; Γ ⊢ ∆; Υ has a ⇓+L2-proof Ξ then

Σ :: Ψ[t/x]; Γ[t/x] ⊢ ∆[t/x]; Υ[t/x] has a ⇓+L2-proof Ξ′. Furthermore, every

instance of a cut rule in Ξ corresponds to an instance of cut in Ξ′, and they

have the same measure.

The following proposition states that if a formula occurrence in the un-

bounded zones of a sequent is never decided on within the proof of that se-

quent, then that occurrence can be removed from its zone, and the result will

still be a proof with the same measure. The proof of this proposition follows

from a straightforward induction on the structure of ⇓+L2-proofs.

Proposition 7.8 (Strengthening ⇓+L2-proofs). Assume that we have a

⇓+L2 proof Ξ of either Σ :: Ψ, B; Γ ⊢ ∆; Υ or Σ :: Ψ, B; Γ ⇓ D ⊢ ∆; Υ in

which there is no occurrence of decide! used with the formula B. Then

there is a ⇓+L2 proof Ξ′ of either

Σ :: Ψ; Γ ⊢ ∆; Υ or, respectively, Σ :: Ψ; Γ ⇓ D ⊢ ∆; Υ.

Furthermore, every instance of a cut rule in Ξ corresponds to an instance

of cut in Ξ′ and they have the same measure. Similarly, assume that we

have a ⇓+L2 proof Ξ of either Σ :: Ψ; Γ ⊢ ∆;B,Υ or Σ :: Ψ; Γ ⇓ D ⊢ ∆;B,Υ

in which there is no occurrence of decide? used with the formula B. Then

there is a ⇓+L2 proof Ξ′ of either

Σ :: Ψ; Γ ⊢ ∆; Υ or, respectively, Σ :: Ψ; Γ ⇓ D ⊢ ∆; Υ.

Furthermore, every instance of a cut rule in Ξ corresponds to an instance

of cut in Ξ′, and they have the same measure.

An instance of the cutk rule is called an atomic key cut if its cut formula is

atomic. Note that the right premise of an atomic cutk rule can only be proved

using init or init?.

Σ :: Ψ; Γ ⊢ ∆, A; Υ Σ :: Ψ; · ⇓ A ⊢ A; Υ
init

Σ :: Ψ; Γ ⊢ ∆, A; Υ
cutk

Σ :: Ψ; Γ ⊢ ∆, A;A,Υ Σ :: Ψ; · ⇓ A ⊢ ·;A,Υ
init?

Σ :: Ψ; Γ ⊢ ∆;A,Υ
cutk

Both of these derivations resemble the following inferences, where A denotes

148 Chapter 7. Formal properties of linear logic focused proofs

an atomic formula.

Σ :: Ψ; Γ ⊢ ∆, A; Υ

Σ :: Ψ; Γ ⊢ ∆, A; Υ
Rep

Σ :: Ψ; Γ ⊢ ∆, A;A,Υ

Σ :: Ψ; Γ ⊢ ∆;A,Υ
absorb

Here, Rep is a variation of the repetition rule used by Mints [1992] to prove a

cut-elimination theorem for a different logic. An important feature of atomic

key-cut rules is that their measure is always ⟨0, 0, 1⟩ since the structure of

the proof of their left premise is not part of the measurement calculation.

Ultimately, our cut-elimination procedure will first eliminate all cuts except

for atomic key cuts. A second stage will eliminate all of these atomic key cuts

- this second elimination stage does not rely on the measure (the rank) of cut

formulas. In this second stage, we eliminate the Rep rules (trivially) and the

absorb rules as described next.

The following lemma states the easy to prove fact that the side-formulas in

the right-bounded zone for atomic key cuts (the schematic variable ∆ above)

in both the shape of the Rep and absorb rules, can be restricted to contain

only atomic formulas: that is, the conclusion of such rules can be assumed to

be border sequents.

Lemma 7.9. By permuting Rep rules up over right-introduction rules,

we can assume that all occurrences of Rep involve only border sequents.

Similarly, by permuting absorb rules up over introduction rules, we can

replace every absorb rule with decide? (which requires the right-bounded

zone to contain only atomic formulas).

Note that permuting right-introduction rules below a Rep or absorb rule

might change the number of occurrences of such rules but will not change their

measure, which is maintained at ⟨0, 0, 1⟩.
A ⇓+L2-proof is called a ⇓aL2-proof if the only occurrences of cut rules in

it are atomic key cuts. A redex is a ⇓+L2-proof where the last inference rule is

a regular or key cut and where that rule’s two immediate subproofs are ⇓aL2-

proofs. A redex is classified as atomic or non-atomic depending on whether

the cut formula of its final cut rule is atomic or non-atomic. A redex is also

classified by the kind of cut rule it ends with: e.g., a cut?-redex is a redex in

which the last inference rule is an instance of the cut? rule.

As a result of Lemma 7.9, the characterization of right-introduction and

left-introduction phases given by Propositions 7.2 and 7.3 also works for ⇓aL2-

proofs.

We now provide several lemmas that show how various redexes can be

replaced with proofs involving strictly smaller redexes.

7.3 Cut rules and cut elimination 149

Lemma 7.10 (Replace cut? with cutl). Let Ξ be a cut? redex. Then there

exists a proof of the same endsequent in which the only instances of cut

rules are either cutl or atomic cutk, and all such instances of cuts have a

measure strictly less than |Ξ|.

Proof. Consider the following redex Ξ.

Ξ1

Σ :: Ψ; Γ ⊢ ∆;B,Υ
Ξ2

Σ :: Ψ;B ⊢ ·; Υ

Σ :: Ψ; Γ ⊢ ∆; Υ
cut?

Here, the subproofs Ξ1 and Ξ2 are ⇓aL2-proofs. Consider a subderivation of

Ξ1 of the form

Ξ′

Σ,Σ′ :: Ψ,Ψ′; Γ′ ⊢ A, B;B,Υ,Υ′

Σ,Σ′ :: Ψ,Ψ′; Γ′ ⊢ A;B,Υ,Υ′ decide? .

Here, the variables bound in Σ′ are not bound in Σ, and Ψ′, Υ′, and Γ′ are

multisets. This subproof can be converted to the subproof

Ξ′

Σ,Σ′ :: Ψ,Ψ′; Γ′ ⊢ A, B;B,Υ,Υ′
Ξ̂2

Σ,Σ′ :: Ψ,Ψ′;B ⊢ ·; Υ,Υ′

Σ,Σ′ :: Ψ,Ψ′; Γ′ ⊢ A;B,Υ,Υ′
cutl.

Here, Ξ̂2 is the necessary weakening of Ξ2 to be used in this cut rule. In

this way, we remove every occurrence of decide? on B in Ξ1. The resulting

derivation, say Ξ′
1, is a proof of Σ :: Ψ; Γ ⊢ ∆;B,Υ in which no occurrences of

decide? on B appear. By Proposition 7.8, Ξ′
1 can be modified to yield a proof

Ξ′′
1 of the sequent Σ :: Ψ; Γ ⊢ ∆; Υ. This proof can now replace our original

redex. Since all new occurrences of cuts have B as their cut formula, and since

we have removed an occurrence of cut?, the measure of all the cut-rules in Ξ′′
1

is strictly smaller than |Ξ|.

Lemma 7.11 (Replace cut ! with cutk). Let Ξ be a cut ! redex. Then there

exists a proof of the same endsequent in which the only instances of cut

rules are either cutl or atomic cutk, and all such instances of cuts have a

measure strictly less than |Ξ|.

Proof. Consider the following cut !-redex Ξ.

Ξl

Σ :: Ψ; · ⊢ B; Υ
Ξr

Σ :: Ψ, B; Γ ⊢ ∆; Υ

Σ :: Ψ; Γ ⊢ ∆; Υ
cut !

150 Chapter 7. Formal properties of linear logic focused proofs

Here, the subproofs Ξl and Ξr are ⇓aL2-proofs. Consider a subderivation of Ξr

that ends in decide !, such as

Ξ0

Σ,Σ′ :: Ψ,Ψ′, B; Γ′ ⇓ B ⊢ A; Υ,Υ′

Σ,Σ′ :: Ψ,Ψ′, B; Γ′ ⊢ A; Υ,Υ′ decide !,

where the variables bound in Σ′ are not bound in Σ and where Ψ′ and Υ′ are

multisets. This inference rule can be converted to the derivation

Ξ̂l

Σ,Σ′ :: Ψ,Ψ′; · ⊢ B; Υ,Υ′
Ξ0

Σ,Σ′ :: Ψ,Ψ′, B; Γ′ ⇓ B ⊢ A; Υ,Υ′

Σ,Σ′ :: Ψ,Ψ′, B; Γ′ ⊢ A; Υ,Υ′
cutk.

Here, Ξ̂l is the result of weakening Ξl using Proposition 7.6. We can thus

removed all occurrences of decide ! on B in Ξr to obtain the proof Ξ′
r of Σ ::

Ψ, B; Γ ⊢ ∆; Υ. By Proposition 7.8, we can strengthen Ξ′
l to get a proof Ξ′′

l of

Σ :: Ψ; Γ ⊢ ∆; Υ. This proof can now replace our original redex. Since all new

occurrences of cuts have B as their cut formula and since the rank part of the

measure of redexes does not consider the subproof of the left premise of cut !

and cutl, the measure of all the cut-rules in Ξ′′
l is strictly smaller than |Ξ|.

The two previous lemmas were proved by replacing specific decide rules

with specific cut rules. The treatment of the cutl rule is not so easily handled.

In particular, we will use the following lemma to show that the “side cut” case

can be treated by moving that rule over an entire left-introduction phase.

Lemma 7.12 (Side cutl case). Let Ξ be a cutl-redex such that a decide rule

is the last inference rule of the proof of the right premise. If the formula

decided on is not the cut formula, then there exists a ⇓+L2-proof with the

same endsequent in which all instances of cuts have a measure strictly less

than |Ξ|.

Proof. We need to consider three cases depending on which decide rule is used

in the proof of the right premise.

Let Ξ be the following proof.

Ξl

Σ :: Ψ; Γ ⊢ C,∆; Υ

Ξr

Σ :: Ψ; Γ′, C ⇓ B ⊢ A; Υ

Σ :: Ψ; Γ′, B,C ⊢ A; Υ
decidel

Σ :: Ψ; Γ,Γ′, B ⊢ ∆,A; Υ
cutl

Here, the subproofs Ξl and Ξr are ⇓aL2-proofs, and A is a multiset of atomic

formulas. By Proposition 7.3, the sequent Σ :: Ψ; Γ′, C ⇓ B ⊢ A; Υ is the end-

sequent of a left-introduction phase with a multiset of premises M determined

7.3 Cut rules and cut elimination 151

by a path P in B with the associated sequent

Σ′ :: C1, . . . , Cn;B1, . . . , Bm ⊢ A1, . . . , Ap;E1, . . . , Eq;

and there is a substitution θ that maps the variables in Σ′ to Σ-terms such

that

1. A is equal to the multiset union {A1θ, . . . , Apθ} ∪ A1 ∪ · · · ∪ Am;

2. Γ′ ∪ {C} is the multiset union Γ1 ∪ · · · ∪ Γm; and

3. M is the following multiset union,

{Σ :: Ψ; · ⊢ Ciθ; Υ}ni=1 ∪ {Σ :: Ψ; Γi ⊢ Biθ,Ai; Υ}mi=1

∪ {Σ :: Ψ;Eiθ ⊢ ·; Υ}qi=1.

Since the left-phase is multiplicative, there is a unique k ∈ {1, . . . ,m} such

that C occurs in Γk. Let Γ′
k be the result of removing one occurrence of C

from Γk. Thus, one of the premises in M is

Σ :: Ψ; Γ′
k, C ⊢ Bkθ,Ak; Υ

By using the cutl rule, we have, together with a proof of the above sequent,

the following proof.

Ξl

Σ :: Ψ; Γ′ ⊢ C,A; Υ Σ :: Ψ; Γ′
k, C ⊢ Bkθ,Ak; Υ

Σ :: Ψ; Γ′,Γ′
k ⊢ Bkθ,Ak,A; Υ

cutl

We can move this left-introduction phase below the cutl rule using the same

path above. Thus the original cutl rule has been moved up, and its measure

has decreased.

Let Ξ be the following proof, and assume that B is a member of Ψ.

Ξl

Σ :: Ψ; Γ ⊢ C,∆; Υ

Ξr

Σ :: Ψ; Γ′, C ⇓ B ⊢ A; Υ

Σ :: Ψ; Γ′, C ⊢ A; Υ
decide !

Σ :: Ψ; Γ,Γ′ ⊢ ∆,A; Υ
cutl

Here, the subproofs Ξl and Ξr are ⇓aL2-proofs, and A is a multiset of atomic

formulas. This case is treated the same as the previous case.

Let Ξ be the following proof, and assume that B is a member of Υ.

Ξl

Σ :: Ψ; Γ ⊢ C,∆; Υ

Ξr

Σ :: Ψ; Γ′, C ⊢ A, B; Υ

Σ :: Ψ; Γ′, C ⊢ A; Υ
decide?

Σ :: Ψ; Γ,Γ′ ⊢ ∆,A; Υ
cutl

152 Chapter 7. Formal properties of linear logic focused proofs

Here, the subproofs Ξl and Ξr are ⇓aL2-proofs, and A is a multiset of atomic

formulas. If it is the case that all the formulas in ∆ are atomic, then we can

now permute the decide? and cutl rules to get

Ξl

Σ :: Ψ; Γ ⊢ C,∆; Υ
Ξr

Σ :: Ψ; Γ′, C ⊢ A, B; Υ

Σ :: Ψ; Γ,Γ′ ⊢ ∆,A, B; Υ
cutl

Σ :: Ψ; Γ,Γ′ ⊢ ∆,A; Υ
decide? .

This proof has a smaller measure. If there are non-atomic formulas in ∆, we

must first permute this cut instance up over the left introduction phase in Ξl.

This permutation may produce several occurrences of cutl, but they all have

an atomic right-bounded zone. We can then permute the decide? and cutl as

above to reduce the measure of all these instances of cutl.

As a result of this lemma, an instance of cutl on B in the endsequent can

then be lifted to several instances of cutl that are not side cuts, a change that

does not affect the measure of any cuts. Now, resolve the cut/decide pairing

as described in the following proof.

Lemma 7.13 (Replace cutl with cutk). Let Ξ be a cutl redex. Then there

exists a proof of the same endsequent in which the only instances of cut

rules are cutk, and all such instances of cuts have a measure strictly less

than |Ξ|.

Proof. Consider the following cutl-redex Ξ.

Ξl

Σ :: Ψ; Γ1 ⊢ B,∆1; Υ
Ξr

Σ :: Ψ; Γ2, B ⊢ ∆2; Υ

Σ :: Ψ; Γ1,Γ2 ⊢ ∆1,∆2; Υ
cutl

Here, the subproofs Ξl and Ξr are ⇓aL2-proofs. Given the discussion above,

we only need to consider the situation where the right-bounded zone contains

only atomic formulas and that the last inference rule of Ξr is a decide rule.

Case: Ξr ends in the decidel rule. If the formula selected for the focus is

B, then the proof Ξr has the form

Ξ′
r

Σ :: Ψ; Γ′
2 ⇓ B ⊢ ∆′

2; Υ

Σ :: Ψ; Γ′
2, B ⊢ ∆′

2; Υ
decidel.

In this case, the instance of the cutl rule above can be replaced with the

7.3 Cut rules and cut elimination 153

following instance of cutk.

Ξl

Σ :: Ψ; Γ1 ⊢ B,∆1; Υ

Ξ′
r

Σ :: Ψ; Γ2 ⇓ B ⊢ ∆2; Υ

Σ :: Ψ; Γ1,Γ2 ⊢ ∆1,∆2; Υ
cutk

If the formula selected for the focus is some other formula than B, then the

proof Ξr has the form (Γ2 is of the form C,Γ′
2)

Ξ′
r

Σ :: Ψ; Γ′
2, B ⇓ C ⊢ ∆2; Υ

Σ :: Ψ; Γ′
2, B,C ⊢ ∆2; Υ

decidel.

We now use Lemma 7.12 to construct a ⇓+L2-proof of Σ :: Ψ; Γ′
2, C ⊢ ∆2; Υ of

lower right rank.

Case: Ξr ends in either the decide ! or decide? rule. Then the redex Ξ

necessarily ends in a side cut, so Lemma 7.12 provides the necessary rewriting

of this redex.

Lemma 7.14 (Reduce cutk). Let Ξ be a cutk redex. Then there exists a

proof of the same endsequent in which all of its redexes have a measure

strictly less than |Ξ|.

Proof. Consider a cutk-redex Ξ of the form

Ξl

Σ :: Ψ; Γ′ ⊢ B,∆; Υ
Ξr

Σ :: Ψ; Γ′′ ⇓ B ⊢ A; Υ

Σ :: Ψ; Γ′,Γ′′ ⊢ ∆,A; Υ
cutk,

where Ξl and Ξr are ⇓aL2-proofs. If B is atomic, then A is the multiset

containing exactly B and the result of eliminating cutk is Ξl.

Now assume that B is not atomic. Thus, Ξl ends in a right-introduction

phase, and Ξr ends in a left-introduction phase. By Proposition 7.3, there is

a path P in B that has the associated sequent representation

Σ′ :: C1, . . . , Cn;B1, . . . , Bm ⊢ A1, . . . , Ap;E1, . . . , Eq

and there is a substitution θ that maps the variables in Σ′ to Σ-terms such

that A is the multiset union {A1θ, . . . , Apθ}∪A1∪· · ·∪Am, Γ′′ is the multiset

union Γ1 ∪ · · · ∪ Γm, and this phase has n + m + q premises

{Σ :: Ψ; · ⊢ Ciθ; Υ}ni=1 ∪ {Σ :: Ψ; Γi ⊢ Biθ,Ai; Υ}mi=1

∪ {Σ :: Ψ;Eiθ ⊢ ·; Υ}qi=1.

154 Chapter 7. Formal properties of linear logic focused proofs

By Proposition 7.2, Ξl ends with a right-introduction phase that contains a

premise of the form

Ξ0

Σ,Σ′ :: Ψ, C1, . . . , Cn; Γ, B1, . . . , Bm ⊢ A, A1, . . . , Ap;E1, . . . , Eq,Υ.

By repeated application of Proposition 7.7, we know that the sequent

Ξ′
0

Σ :: Ψ, C1θ, . . . , Cnθ; Γ, B1θ, . . . , Bmθ ⊢ A, A1θ, . . . , Apθ;E1θ, . . . , Eqθ,Υ

has a ⇓aL2 proof. We can take Ξ′
0 and use cutl, cut !, and cut? with the proofs

of the n+m+ q premises above to yield a proof with n+m+ q occurrences of

these cut rules to build a proof of the endsequent Σ::Ψ; Γ′,Γ′′ ⊢ ∆,A; Υ. Note

that the sizes of the cut formulas C1θ, . . . , Cnθ,B1θ, . . . , Bmθ,E1θ, . . . , Eqθ are

strictly smaller than the size of the original cut formula B.

We can combine these lemmas to prove the main cut-elimination theorem

for ⇓+L2 proofs.

Theorem 7.15 (Elimination of cuts). If a sequent has a ⇓+L2-proof, it has

a (cut-free) ⇓L2-proof.

Proof. We divide this proof into two parts. The first part proves that if a

sequent has a ⇓+L2-proof, it has a ⇓aL2-proof. The second part proves that if

a sequent has a ⇓aL2-proof, it has a (cut-free) ⇓L2-proof.

Thus, assume that we have a ⇓+L2-proof. We proceed by induction on

the number of occurrences of cut rules in that proof that are not atomic key

cuts. If the number of such redexes is zero, we are finished with the first

part of this proof. Otherwise, select a redex Ξ that is not an atomic key

cut redex. We prove by induction on the measure |Ξ| that this redex can

be replaced by a ⇓aL2-proof of the same endsequent. If Ξ is a cut?-redex

then apply Lemma 7.10; if Ξ is a cut !-redex then apply Lemma 7.11; if Ξ is

a cutl-redex then apply Lemma 7.13; and, finally, if Ξ is a cutk-redex then

apply Lemma 7.14. The result of such applications is a proof of the same

endsequent as Ξ in which all redexes have a measure strictly less than |Ξ|.
Thus, by induction, all of these can be replaced by ⇓aL2-proofs.

To complete the second part of this proof, we proceed to prove by induction

on the number n ≥ 0 of atomic key cuts in the ⇓aL2-proof Ξ that there is a

⇓L2-proof of the same endsequent. If n is 0, then we are finished. Otherwise,

pick any atomic key cut occurrence in Ξ. That occurrence is either of the Rep

type, which is trivial to remove, or of the absorb type, in which case Lemma 7.9

guarantees that occurrence can be replaced by a decide? (following suitable

rule permutations).

7.4 The focused proof system is sound and complete 155

At the end of Section 6.1, we described an interaction between the struc-

tural and cut rules in LK that makes cut elimination into a pronounced non-

deterministic procedure. In the focused proof system ⇓+L2, such interactions

cannot happen. For example, consider the cut ! inference rule.

Σ :: Ψ; · ⊢ B; Υ Σ :: Ψ, B; Γ ⊢ ∆; Υ

Σ :: Ψ; Γ ⊢ ∆; Υ
cut !

The occurrence of the cut formula B in the left premise cannot be weakened

since it will be the subject of a right-introduction rule. The occurrence of B

in the right premise can, however, be weakened (by an application of an initial

rule). A similar statement holds for the cut? rule while for the cutl rule, the

occurrences of the cut formula in the premises cannot be weakened in either

premise. As a result, the kind of problem arising from weakening and cut that

can appear in LK is avoided in ⇓+L2.

7.4 The focused proof system is sound and complete

We now wish to show that the ⇓L2-proof system proves all the same theorems

as the L proof system proves. We would also like to go one more step and

show that some of the proof theory of L can be inferred from the proof theory

of ⇓L2. Since these two proof systems use different sets of logical connectives,

we must first define a mapping from formulas used in the L proof system into

L2-formulas.

Recall that the negatively polarized logical connectives of L are ⊥, ⊤, `,

&, ∀, and ? while the positively polarized logical connectives are 1, 0, ⊗, ⊕,

∃, and !. We consider a formula that is a top-level negation as being neither

positively nor negatively polarized: one does not know the intended polarity

of a negated formula until one considers the formula that is negated.

We define two functions, namely, (·)▽ that maps L formulas into L2-

formulas and (·)▼ that maps those formulas with a positively polarized top-

level logical connective into L2-formulas. If A is an atomic formula, then

A▽ = A. These functions are defined for other formulas as follows.

⊤▽ = ⊤ 0▼ = ⊤
⊥▽ = ⊥ 1▼ = ⊥

(B ` C)▽ = B▽ ` C▽ (B ⊗ C)▼ = B▽ ⊸ C▽ ⊸ ⊥
(B & C)▽ = B▽ & C▽ (B ⊕ C)▼ = (B▽ ⊸ ⊥) & (C▽ ⊸ ⊥)

(∀x.B)▽ = ∀x.B▽ (∃x.B)▼ = ∀x.(B▽ ⊸ ⊥)

(?B)▽ = ?(B▽) (!B)▼ = (B▽) ⇒ ⊥

For formulas P with a positively polarized top-level logical connective, set

(P)▽ = (P)▼ ⊸ ⊥. If the top-level connective is a negation, then (B⊥)▽ =

156 Chapter 7. Formal properties of linear logic focused proofs

B▽ ⊸ ⊥. If Γ is a multiset of L formulas then we write Γ▽ to denote the

multiset of L2-formulas {B▽ | B ∈ Γ}: assume a similar definition for Γ▼

whenever all formulas in Γ have a positive polarity connective as their top-

level connective.

For convenience, we use the notation Σ::Ψ; Γ ⊢⇓ ∆; Υ to denote the propo-

sition that the sequent Σ :: Ψ; Γ ⊢ ∆; Υ has a ⇓L2-proof.

As one expects, the following soundness property for the (·)▽ translation

has a straightforward proof with many simple cases to consider.

Proposition 7.16 (Soundness of ⇓L2-proofs). Let Γ and ∆ be Σ-formulas

in L such that Σ :: ·; Γ▽ ⊢ ∆▽; · has a (cut-free) ⇓L2-proof. Then Σ :: Γ ⊢ ∆

has a cut-free proof in L.

Proof. We prove the following strengthening of this proposition. Let Θ be a

multiset of Σ-formulas all of which have a top-level positive connective and let

Γ, ∆, Ψ, and Υ be multisets of Σ-formulas in L.

1. If Σ :: Ψ▽; Γ▽,Θ▼ ⊢ ∆▽; Υ▽ has a ⇓L2-proof then Σ :: ! Ψ,Γ ⊢ Θ,∆, ? Υ

has a cut-free proof in L.

2. If B is an L Σ-formula and Σ :: Ψ▽; Γ▽,Θ▼ ⇓ B▽ ⊢ ∆▽; Υ▽ has a ⇓L2-

proof then Σ :: ! Ψ,Γ, B ⊢ Θ,∆, ? Υ has a cut-free proof in L.

3. If B is an L Σ-formula with a top-level positive connective and Σ ::

Ψ▽; Γ▽,Θ▼ ⇓ B▼ ⊢ ∆▽; Υ▽ has a ⇓L2-proof then Σ::! Ψ,Γ ⊢ B,Θ,∆, ? Υ

has a cut-free proof in L.

We shall also assume that we only consider ⇓L2-proofs that satisfy the follow-

ing invariant: every sequent in a ⇓L2-proof that has an occurrence of ⊥ in the

right-bounded zone is the conclusion of the ⊥R inference rule (an immediate

consequence of Proposition 7.2).

We proceed by mutual induction on the structure of ⇓L2-proofs of these

three kinds of sequents. First, let Ξ be ⇓L2-proof of Σ ::Ψ▽; Γ▽,Θ▼ ⊢ ∆▽; Υ▽.

The last inference rule in Ξ is either a right-introduction or decide rule. We

consider the following cases.

1. Assume that this last inference rule introduced a negative polarity L

connective. For example, if that rule is ` R then ∆ can be written as

B ` C,∆′ and that last inference rule is of the form

Σ :: Ψ▽; Γ▽,Θ▼ ⊢ B▽, C▽,∆▽; Υ▽

Σ :: Ψ▽; Γ▽,Θ▼ ⊢ (B ` C)▽,∆▽; Υ▽ ` R.

By the inductive hypothesis, Σ :: ! Ψ,Γ ⊢ B,C,Θ,∆, ? Υ has an L proof

and, by the ` R rule in L, we have an L proof of Σ :: ! Ψ,Γ ⊢ B `

7.4 The focused proof system is sound and complete 157

C,Θ,∆, ? Υ. The remaining negative polarity connectives are handled

in a simple and direct fashion.

2. Assume that the last inference rule of Ξ is ⊸ R. (Note that ⇒ R is

not possible here.) Thus, ∆ can be written as B,∆′ where B is either

a negation or a top-level positive polarity connective. In the first case,

write B as C⊥ and the last two inference rules in Ξ are

Σ :: Ψ▽; Γ▽, C▽,Θ▼ ⊢ ∆▽; Υ▽

Σ :: Ψ▽; Γ▽, C▽,Θ▼ ⊢ ⊥,∆▽; Υ▽ ⊥R

Σ :: Ψ▽; Γ▽,Θ▼ ⊢ C▽ ⊸ ⊥,∆▽; Υ▽ ⊸R.

By the inductive hypothesis, Σ::! Ψ,Γ, C ⊢ Θ,∆, ? Υ has an L proof and,

by the (·)⊥R rule in L, we have an L proof of Σ :: ! Ψ,Γ ⊢ C⊥,Θ,∆, ? Υ.

The other case to consider is when B is a top-level positive polarity

connective, in which case, the last two inference rules of Ξ are

Σ :: Ψ▽; Γ▽, B▼,Θ▼ ⊢ ∆▽; Υ▽

Σ :: Ψ▽; Γ▽, B▼,Θ▼ ⊢ ⊥,∆▽; Υ▽ ⊥R

Σ :: Ψ▽; Γ▽,Θ▼ ⊢ B▼ ⊸ ⊥,∆▽; Υ▽ ⊸ R.

By the inductive hypothesis, Σ :: ! Ψ,Γ ⊢ B,Θ,∆, ? Υ has an L proof,

which also serves as the desired proof for this case.

3. Assume that the last inference rule of Ξ is one of the decide rules. In

the case of the decide? inference rule, that rule translates directly to the

uses of the contraction and dereliction rules (?C and ?D) for ?. In the

case of the decidel rule, the desired L proof follows immediately from

the mutual inductive hypothesis. Finally, in the case of the decide ! rule,

the desired L proof follows from the mutual inductive hypothesis and

the contraction and dereliction rules (!C and !D) for !.

Now consider the second mutually inductive statement. Assume that Ξ is

a ⇓L2-proof of Σ ::Ψ▽; Γ▽,Θ▼ ⇓ B▽ ⊢ ∆▽; Υ▽. Again, there are three cases to

consider for B. If B has a top-level negative polarity logical connective, then

the corresponding inference rule to use with the inductive assumption is the

L left-introduction rule for that connective. If B is the negation C⊥, then the

last two inference rules of Ξ are

Σ :: Ψ▽; Γ▽,Θ▼ ⊢ C▽,∆▽; Υ▽ Σ :: Ψ▽; · ⇓ ⊥ ⊢ ·; Υ▽ ⊥L

Σ :: Ψ▽; Γ▽,Θ▼ ⇓ C▽ ⊸ ⊥ ⊢ ∆▽; Υ▽ ⊸ L.

By the inductive assumption, Σ :: ! Ψ,Γ ⊢ C,Θ,∆, ? Υ has a cut-free proof in

L. The desired final proof uses the (·)⊥L rule. The final case to consider for

158 Chapter 7. Formal properties of linear logic focused proofs

B is when it has a top-level positive logical connective. In this case, Ξ is of

the form

Ξ′

Σ :: Ψ▽; Γ▽,Θ▼ ⊢ B▼,∆▽; Υ▽ Σ :: Ψ▽; · ⇓ ⊥ ⊢ ·; Υ▽ ⊥L

Σ :: Ψ▽; Γ▽,Θ▼ ⇓ B▼ ⊸ ⊥ ⊢ ∆▽; Υ▽ ⊸ L.

Here, the definition of (·)▼ matters. We illustrate this with B being B1 ⊗ B2

(the other cases are similar). In this case, Ξ′ must be of the form

Σ :: Ψ▽; Γ▽, B▽
1 , B

▽
2 ,Θ

▼ ⊢ ∆▽; Υ▽

Σ :: Ψ▽; Γ▽, B▽
1 , B

▽
2 ,Θ

▼ ⊢ ⊥,∆▽; Υ▽ ⊥R

Σ :: Ψ▽; Γ▽, B▽
1 ,Θ

▼ ⊢ B▽
2 ⊸ ⊥,∆▽; Υ▽ ⊸ R

Σ :: Ψ▽; Γ▽,Θ▼ ⊢ B▽
1 ⊸ B▽

2 ⊸ ⊥,∆▽; Υ▽ ⊸ R.

By the inductive hypothesis, we know that the sequent Σ :: ! Ψ,Γ, B1, B2 ⊢
Θ,∆, ? Υ has a cut-free L proof. The desired L proof for this case follows

from applying the ⊗L rule of L.

Now consider the third and final mutually inductive statement. Assume

that Ξ is a ⇓L2-proof of Σ :: Ψ▽; Γ▽,Θ▼ ⇓ B▼ ⊢ ∆▽; Υ▽. Again, the definition

of (·)▼ matters, and we illustrate it for ⊗: the other cases are done similarly.

Let B be B1 ⊗B2. Thus, Ξ be of the form

Ψ▽; Γ▽
1 ,Θ

▼
1 ⊢ B▽

1 ,∆
▽
1 ; Υ▽

Ψ▽; Γ▽
2 ,Θ

▼
2 ⊢ B▽

2 ,∆
▽
2 ; Υ▽ Ψ▽; · ⇓ ⊥ ⊢ ·; Υ▽

Ψ▽; Γ▽
2 ,Θ

▼
2 ⇓ B▽

2 ⊸ ⊥ ⊢ ∆▽
2 ; Υ▽

Ψ▽; Γ▽
1 ,Γ

▽
2 ,Θ

▼
1 ,Θ

▼
2 ⇓ B▽

1 ⊸ B▽
2 ⊸ ⊥ ⊢ ∆▽

1 ,∆
▽
2 ; Υ▽

,

where Γ, ∆, and Θ are split into their respective pairs of multisets (the

signature binder is dropped for readability). By the inductive hypothesis,

there are cut-free L proofs for Σ :: ! Ψ,Γ1 ⊢ B1,Θ1,∆1, ? Υ and Σ :: ! Ψ,Γ2 ⊢
B2,Θ2,∆2, ? Υ. The ⊗R rule of L provides the final, desired L proof of

Σ :: ! Ψ,Γ2 ⊢ B1 ⊗B2,Θ2,∆2, ? Υ.

Recalling from Section 6.1, an inference rule is invertible if whenever its

conclusion is provable, its premises are provable. We state an inversion lemma

for ⇓L2-proofs.

Lemma 7.17. All the right-introduction rules of ⇓L2 are invertible. Fur-

thermore, the following equivalences hold.

Σ :: Ψ; Γ, (B ⇒ ⊥) ⊸ ⊥ ⊢⇓ ∆; Υ if and only if Σ :: Ψ, B; Γ ⊢⇓ ∆; Υ.

Σ :: Ψ; Γ ⊢⇓ ?B,∆; Υ if and only if Σ :: Ψ; Γ ⊢⇓ ∆; Υ, B.

7.4 The focused proof system is sound and complete 159

Proof. The proofs that the eight right rules are invertible all follow the same

pattern (see Exercise 6.8). We illustrate that pattern with two examples.

Consider the ?R rule. Assume that Σ :: Ψ; Γ ⊢⇓ ∆, ?B; Υ. Since the sequent

Σ::·; ?B ⊢ ·;B has a ⇓L2-proof, then the cut rule and cut-elimination theorem

yields Σ::Ψ; Γ ⊢⇓ ∆;B,Υ. For a second example, consider the &R rule. Assume

that Σ :: Ψ; Γ ⊢⇓ ∆, B1 & B2; Υ. Since the sequents Σ :: ·;B1 & B2 ⊢ Bi; · have

⇓L2-proofs (for i = 1 and i = 2), then the cut rule and cut-elimination

theorem yields Σ :: Ψ; Γ ⊢⇓ ∆;B1,Υ and Σ :: Ψ; Γ ⊢⇓ ∆;B2,Υ.

Now consider the first equivalence. If we assume that Σ::Ψ; Γ, (B ⇒ ⊥) ⊸
⊥ ⊢⇓ ∆; Υ then, using the cut rule with a proof of Σ :: B; · ⊢ (B ⇒ ⊥) ⊸ ⊥; ·
(see also Exercise 7.5), we have (after applying cut-elimination) a ⇓L2-proof

of Σ :: Ψ, B; Γ ⊢ ∆; Υ. Conversely, assume that Σ :: Ψ, B; Γ ⊢ ∆; Υ has a

⇓L2-proof Ξ. This proof ends with a right-introduction phase, and we list the

n ≥ 0 premises of that phase as the sequents Σ,Σi :: Ψ,Ψi, B; Γi ⊢ Ai; Υ,Υi,

for 1 ≤ i ≤ n. Given all of these ⇓L2-proofs, we can build the following n

additional proofs (for 1 ≤ i ≤ n).

Σ,Σi :: Ψ,Ψi, B; Γi ⊢ Ai; Υ,Υi

Σ,Σi :: Ψ,Ψi, B; Γi ⊢ ⊥,Ai; Υ,Υi
⊥R

Σ,Σi :: Ψ,Ψi; Γi ⊢ B ⇒ ⊥,Ai; Υ,Υi
⇒ R

Σ,Σi :: Ψ,Ψi; · ⇓ ⊥ ⊢ ·; Υ,Υi
⊥L

Σ,Σi :: Ψ,Ψi; Γi ⇓ (B ⇒ ⊥) ⊸ ⊥ ⊢ Ai; Υ,Υi
⊸ L

Σ,Σi :: Ψ,Ψi; Γi, (B ⇒ ⊥) ⊸ ⊥ ⊢ Ai; Υ,Υi

decidel

We can now build a proof of Σ :: Ψ; Γ, (B ⇒ ⊥) ⊸ ⊥ ⊢ ∆; Υ by attaching the

right phase at the end of Ξ to these other premises.

Now consider the second equivalence. From Σ :: Ψ; Γ ⊢⇓ ∆; Υ, B we imme-

diate conclude Σ :: Ψ; Γ ⊢⇓ ∆, ?B; Υ by using the ?R rule. Conversely, assume

Σ :: Ψ; Γ ⊢⇓ ∆, ?B; Υ. Since all right-introduction rules permute over each

other, we can assume that the ?R has been applied first (reading the proof

bottom-up), which has the premise Σ :: Ψ; Γ ⊢ ∆; Υ, B.

Theorem 7.18 (Completeness of ⇓L2-proofs). Let ∆ and Γ be multisets

of L formulas. If Σ :: Γ ⊢ ∆ has a L proof then Σ :: ·; Γ▽ ⊢ ∆▽; · has a

⇓L2-proof.

Proof. We prove completeness by showing that the inference rules of the L

proof system are all admissible (via the (·)▽ mapping) in the ⇓L2-proof system.

Assume that Σ :: ∆ ⊢ Γ has an L proof Ξ. We proceed by induction on the

structure of Ξ.

If Ξ is an instance of the initial rule, ∆ and Γ are equal and contain the

single element B. By Proposition 7.4, Σ :: ·;B▽ ⊢⇓ B▽; ·. In the case that the

160 Chapter 7. Formal properties of linear logic focused proofs

last inference rule is an instance of the cut rule

Σ :: Γ1 ⊢ B,∆1 Σ :: Γ2, B ⊢ ∆2

Σ :: Γ1,Γ2 ⊢ ∆1,∆2

cut,

we are allowed to assume that Σ :: ·; Γ▽
1 ⊢⇓ B▽,∆▽

1 ; · and Σ :: ·; Γ▽
2 , B

▽ ⊢⇓ ∆▽
2 ; ·.

Using the cutl rule of ⇓+L2 and the cut-elimination theorem (Theorem 7.15),

we know that Σ :: ·; Γ▽
1 ,Γ

▽
2 ⊢⇓ ∆▽

1 ,∆
▽
2 ; ·.

Since the right-introduction rules for the connectives {⊤,&, ∀,⊥,`} are

essentially the same in the L and ⇓L2 proof systems, it is immediate to treat

the case where the proof Ξ is a right-introduction rule for one of these con-

nectives. On the other hand, the left-introduction rules for these connectives

can be applied even when the right is not a collection of atomic formulas. In

these cases, we use the cut-elimination result for ⇓+L2 proofs. For example,

assume that the last inference rule for Ξ is

Σ :: Γ, Bi ⊢ ∆

Σ :: Γ, B1 & B2 ⊢ ∆
&L (i = 1, 2).

By the inductive hypothesis, we know that Σ :: ·; Γ▽, B▽
i ⊢⇓ ∆▽; ·. By Proposi-

tion 7.4 we know that Σ:: ·;B▽
1 &B▽

2 ⊢ B▽
1 &B▽

2 ; · has a ⇓L2-proof. Immediate

subproofs of that proof are proofs of Σ :: ·;B▽
1 & B▽

2 ⊢ B▽
i ; · for i = 1 and

i = 2. Using the cut-elimination result (Theorem 7.15), we can conclude that

Σ :: ·; Γ▽, B▽
1 &B▽

2 ⊢⇓ ∆▽; ·. The left-introduction rules for {⊤,∀,⊥,`} can be

done similarly, invoking an application of the cut-elimination theorem.

To illustrate how to treat the introduction rules for the positive connectives

{0,⊕, ∃,1,⊗}, we consider the cases where the last inference rule of Ξ is ⊕R

and ⊕L. Consider the right-introduction rule first.

Σ :: Γ ⊢ Bi,∆

Σ :: Γ ⊢ B1 ⊕B2,∆
⊕R (i = 1, 2)

By the inductive hypothesis, we can assume that Σ :: ·; Γ▽ ⊢⇓ B▽
i ,∆

▽; ·. Also

note that the sequent Σ :: ·;B▽
i , (B

▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥) ⊢ ·; · has a ⇓L2-

proof (an observation that requires the use of Theorem 7.4). These ⇓L2-

proofs can be brought together to prove the (·)▽ translation of the sequent

Σ :: Γ ⊢ B1 ⊕B2,∆.

Σ :: ·; Γ▽ ⊢ B▽
i ,∆

▽; · Σ :: ·;B▽
i , (B

▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥) ⊢ ·; ·
Σ :: ·; Γ▽, (B▽

1 ⊸ ⊥) & (B▽
2 ⊸ ⊥) ⊢ ∆▽; ·

cut

Σ :: ·; Γ▽, (B▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥) ⊢ ⊥,∆▽; ·
⊥R

Σ :: ·; Γ▽ ⊢ ((B▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥)) ⊸ ⊥,∆▽; ·
⊸R

7.4 The focused proof system is sound and complete 161

Next, consider the case in which the final inference rule of Ξ is

Σ :: Γ, B ⊢ ∆ Σ :: Γ, C ⊢ ∆

Σ :: Γ, B ⊕ C ⊢ ∆
⊕L.

By the inductive assumption, we have both Σ :: ·; Γ▽, B▽ ⊢⇓ ∆▽; · and Σ ::

·; Γ▽, C▽ ⊢⇓ ∆▽; ·. Attaching the ⇓L2-proofs of these two sequents to the

following derivation finishes the proof for the ⊕L introduction rule.

Σ :: ·; Γ▽, B▽
1 ⊢ ∆▽; ·

Σ :: ·; Γ▽, B▽
1 ⊢ ⊥,∆▽; ·

Σ :: ·; Γ▽ ⊢ B▽
1 ⊸ ⊥,∆▽; ·

Σ :: ·; Γ▽, B▽
2 ⊢ ∆▽; ·

Σ :: ·; Γ▽, B▽
2 ⊢ ⊥,∆▽; ·

Σ :: ·; Γ▽ ⊢ B▽
2 ⊸ ⊥,∆▽; ·

Σ :: ·; Γ▽ ⊢ (B▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥),∆▽; ·

Since the sequent

Σ :: ·; (B▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥), ((B▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥)) ⊸ ⊥ ⊢ ·; ·

has a ⇓L2-proof, we can use the cut-elimination theorem to obtain a proof of

the (·)▽ translation of Σ :: Γ, B1 ⊕B2 ⊢ ∆.

The introduction rules for 0, 1, ⊗, and ∃, can be done similarly, invoking

an application of the cut-elimination theorem. Thus, the remaining rules in

L that need to be considered are the exponentials. We consider the four rules

for ! in the ⇓L2-proof systems.

Assume that the last inference rule of Ξ is

Σ :: Γ ⊢ ∆

Σ :: Γ, !B ⊢ ∆
!W.

By the inductive hypothesis, we know that Σ :: ·; Γ▽ ⊢⇓ ∆▽; ·. By Proposi-

tion 7.6, we can weaken this sequent and conclude that Σ :: B▽; Γ▽ ⊢⇓ ∆▽; ·.
By applying Lemma 7.17, we have Σ :: ·; Γ▽, (B▽ ⇒ ⊥) ⊸ ⊥ ⊢⇓ ∆▽; ·, which

completes this case.

Assume that the last inference rule of Ξ is

Σ :: Γ, !B, !B ⊢ ∆

Σ :: Γ, !B ⊢ ∆
!C.

By the inductive hypothesis, we know that Σ :: ·; Γ▽, (!B)▽, (!B)▽ ⊢⇓ ∆▽; ·.
Using cut-elimination on the following proof (where the proofs of the two left

premises are guaranteed by Exercise 7.5),

Σ :: B▽; · ⊢ (!B)▽; ·
Σ :: B▽; · ⊢ (!B)▽; · Σ :: ·; Γ▽, (!B)▽, (!B)▽ ⊢ ∆▽; ·

Σ :: B▽; Γ▽, (!B)▽ ⊢ ∆▽; ·
cut

Σ :: B▽; Γ▽ ⊢ ∆▽; ·
cut

162 Chapter 7. Formal properties of linear logic focused proofs

we have Σ :: B▽; Γ▽ ⊢⇓ ∆▽; ·. Using Lemma 7.17, we can conclude that Σ ::

·; Γ▽, (B▽ ⇒ ⊥) ⊸ ⊥ ⊢⇓ ∆▽; ·.
The case when the last inference rule of Ξ is

Σ :: Γ, B ⊢ ∆

Σ :: Γ, !B ⊢ ∆
!D

follows simply from a use of the cut rule and a proof of Σ :: ·; (!B)▽ ⊢ B; ·
(Exercise 7.5).

Assume that the last rule of Ξ is

Σ :: ! Γ ⊢ B, ? ∆

Σ :: ! Γ ⊢ !B, ? ∆
!R.

By the inductive hypothesis, we know that Σ :: ·; (! Γ)▽ ⊢⇓ B▽, (? ∆)▽; ·. By re-

peatedly applying Lemma 7.17, we can conclude that Σ::Γ▽; · ⊢⇓ B▽, (? ∆)▽; ·.
Since all the right rules permute over each other, we can assume that the ?R

rule is applied below the rules related to B, leading us to Σ :: Γ▽; · ⊢⇓ B▽; ∆▽.

With a proof of that sequent, we now build the following proof.

Σ :: Γ▽; · ⊢ B▽; ∆▽ Σ :: Γ▽; · ⇓ ⊥ ⊢ ·; ∆▽ ⊥L

Σ :: Γ▽; · ⇓ B▽ ⇒ ⊥ ⊢ ·; ∆▽ ⇒L

Σ :: Γ▽;B▽ ⇒ ⊥ ⊢ ·; ∆▽
decidel

Σ :: Γ▽;B▽ ⇒ ⊥ ⊢ ⊥; ∆▽ ⊥R

Σ :: Γ▽; · ⊢ (B▽ ⇒ ⊥) ⊸ ⊥; ∆▽ ⊸R

By repeated application of Lemma 7.17, we can conclude

Σ :: ·; (! Γ)▽ ⊢⇓ (B▽ ⇒ ⊥) ⊸ ⊥; ∆▽

and by repeated application of the ?R rule, we have

Σ :: ·; (! Γ)▽ ⊢⇓ (B▽ ⇒ ⊥) ⊸ ⊥, (? ∆)▽; ·,

which provides a proof of our desired sequent.

The only remaining L rules to consider are the four rules for the ?-expo-

nential. Since ? is translated directly to ? by (·)▽, the proofs involving ? are

similar but simpler than for the !-exponential. We do not include these cases

here.

A simple consequence of cut elimination for ⇓+L2-proofs is that cut can be

eliminated from the L system.

Theorem 7.19. A sequent provable in L can be proved without the cut

rule.

7.5 Bibliographic notes 163

Proof. We first show that a sequent in L that is the conclusion of the cut rule

applied to two cut-free proofs can be proved by a cut-free proof. Once this

is done, a simple induction can remove all instances of the cut rule from a

proof. Thus, assume that Σ :: B,∆1 ⊢ Γ1 and Σ :: ∆2 ⊢ Γ2, B have cut-free

L proofs. By the completeness of ⇓L2-proofs (Theorem 7.18), we know that

Σ :: ·;B▽,∆▽
1 ⊢ Γ▽

1 ; · and Σ :: ·; ∆▽
2 ⊢ B▽,Γ▽

2 ; · have ⇓L2-proofs. Using the cut

inference rule of L2, we know that Σ::·; ∆▽
1 ,∆

▽
2 ⊢⇓ Γ▽

1 ,Γ
▽
2 ; · has ⇓+L2-proof. By

the cut-elimination theorem for ⇓+L2-proofs (Theorem 7.15), we know that this

sequent also has a (cut-free) ⇓L2-proof. By the soundness theorem of ⇓L2-

proofs (Theorem 7.16) we finally know that Σ :: ∆1,∆2 ⊢ Γ1,Γ2 has a cut-free

proof.

7.5 Bibliographic notes

A one-sided sequent calculus proof system for linear logic is given in Figure 6.5.

A focused variant of that proof system, which first appeared in Andreoli [1992],

is given in Figure 7.2. The main difference between Andreoli’s original system

and the one in Figure 7.2 is that the zone between ⊢ and ⇑ is a list in his

system while it is a multiset in Figure 7.2. The D1 rule corresponds to the

decidel rule while the D2 rule corresponds to the decide ! rule. Similarly, the

I1 rule corresponds to the init rule while the I2 rule corresponds to the init ?

rule. The rules [R ⇑] and [R ⇓] are not needed in ⇓L2-proofs given our use

of only negative connectives and two-sided sequents. The right-introduction

and left-introduction phases in ⇓L2 correspond to what Andreoli called the

asynchronous and synchronous phases, respectively.

The first major result that one usually attempts to prove about focused

proof systems is that they are complete with respect to their unfocused version.

Andreoli proved this result using a permutation argument in which unfocused

proofs could be made progressively more focused. The proof of the complete-

ness of ⇓L2-proofs given in Miller [1996] directly relied on Andreoli’s proof of

completeness. A direct proof of cut elimination for a focused proof system for

linear logic was given by Bruscoli and Guglielmi [2006] and Guglielmi [1996]

for the subset of ⇓L2 that does not include the (redundant) ? exponential and

in which formulas were limited to what we call paths here. Their proofs of

the cut-elimination theorem described cut elimination at the level of synthetic

inference rules.

The style of completeness proof given here first proves that the general-

ized initial rule and the cut rule are admissible in the focused proof system.

Given those results, it is then a simple matter to conclude the completeness

of focusing. This approach to proving properties about focused proof systems

was given in Chaudhuri [2006] and Chaudhuri et al. [2008b] for intuitionis-

tic linear logic and was later extended by Liang and Miller [2011] and Liang

164 Chapter 7. Formal properties of linear logic focused proofs

Σ ⊢ Γ ⇑ ∆; Υ

Σ ⊢ ⊥,Γ ⇑ ∆; Υ
[⊥]

Σ ⊢ F,G,Γ ⇑ ∆; Υ

Σ ⊢ F ` G,Γ ⇑ ∆; Υ
[`]

Σ ⊢ Γ ⇑ ∆; Υ, F

Σ ⊢ ?F,Γ ⇑ ∆; Υ
[?]

Σ ⊢ ⊤,Γ ⇑ ∆; Υ
[⊤]

Σ ⊢ F,Γ ⇑ ∆; Υ Σ ⊢ G,Γ ⇑ ∆; Υ

Σ ⊢ F & G,Γ ⇑ ∆; Υ
[&]

y : τ,Σ ⊢ B[y/x],Γ ⇑ ∆; Υ

Σ ⊢ ∀τx.B,Γ ⇑ ∆; Υ
[∀]

Σ ⊢ 1 ⇓ ·; Υ
[1]

Σ ⊢ F ⇓ ∆1; Υ Σ ⊢ G ⇓ ∆2; Υ

Σ ⊢ F ⊗G ⇓ ∆1,∆2; Υ
[⊗]

Σ ⊢ F ⇑ ·; Υ

Σ ⊢ !F ⇓ ·; Υ
[!]

Σ ⊢ Fi ⇓ ∆; Υ

Σ ⊢ F1 ⊕ F2 ⇓ ∆; Υ
[⊕i]

Σ ⊩ t : τ Σ ⊢ B[t/x] ⇓ ∆; Υ

Σ ⊢ ∃τx.B ⇓ ∆; Υ
[∃]

Σ ⊢ Γ ⇑ ∆, F ; Υ

Σ ⊢ F,Γ ⇑ ∆; Υ
[R ⇑] provided F is a literal or a positive formula

Σ ⊢ F ⇑ ∆; Υ

Σ ⊢ F ⇓ ∆; Υ
[R ⇓] provided that F is a negative formula

Σ ⊢ A⊥ ⇓ A; Υ
[I1]

Σ ⊢ A⊥ ⇓ ·; Υ, A
[I2]

Σ ⊢ F ⇓ ∆; Υ

Σ ⊢ · ⇑ ∆, F ; Υ
[D1]

Σ ⊢ F ⇓ ∆; Υ, F

Σ ⊢ · ⇑ ∆; Υ, F
[D2]

The rule [∀] has the proviso that y is not in Σ. In [⊕i], i = 1 or i = 2.

Figure 7.2: A one-sided focused proof system for linear logic.

7.5 Bibliographic notes 165

and Miller [2024] to intuitionistic and classical logics. Further developments

of this style of proof (along with a formal verification) are given by Simmons

[2014] for propositional intuitionistic logic. Felty et al. [2021] provide a me-

chanically verified proof of cut admissibility for the proof system in Figure 7.2

and apply their framework to conclude various properties of object-logic proof

systems that are encoded into linear logic using a technique to be presented

in Section 8.7.

Section 5.6 presents a Kripke model that served as a canonical model for the

intuitionistic provability of L0-formulas. Hodas and Miller [1994] generalized

that model to a resource-indexed model in such a way that cut admissibility for

linear logic over L1-formulas is equivalent to the equivalence between cut-free

provability and truth in the canonical resource-indexed model (compare with

Theorem 5.32).

166 Chapter 7. Formal properties of linear logic focused proofs

Chapter8
Linear logic programming

In this chapter, we present several small examples of linear logic programs.

Subsequent chapters will present more substantial examples.

8.1 Encoding multisets as formulas

Consider the following encoding of multisets of terms as formulas in linear

logic. Let token item be a predicate of one argument: the linear logic atomic

formula item x will denote the multiset containing just the one element x

occurring once. There are two natural encodings of multisets into formulas

using this predicate. The conjunctive encoding uses 1 for the empty multiset

and ⊗ to combine two multisets. For example, the multiset {1, 2, 2} is encoded

by the linear logic formula item 1 ⊗ item 2 ⊗ item 2. Proof search using this

style encoding manipulates such multisets on the left of the sequent turnstile.

This approach is favored when an intuitionistic subset of linear logic is used,

such as in the L1 subset of linear logic (Section 6.4). The dual encoding, the

disjunctive encoding, uses ⊥ for the empty multiset and ` to combine two

multisets. Proof search using this style encoding manipulates such multisets

on the right of the sequent turnstile, and multiple-conclusion sequents are now

required, such as in the ⇓L2 presentation of linear logic (Section 6.7).

Exercise 8.1. (‡) Let A1, . . . , An, B1, . . . , Bm be atomic formulas, P1 be

A1 ` · · · ` An, and P2 be B1 ` · · · ` Bm. Prove that if P1 ⊸ P2 is

provable in linear logic, then P2 ⊸ P1 is also provable.

Exercise 8.2. Redo Exercise 8.1 but this time replace ` with ⊗.

Let S and T be the two formulas item s1 ` · · · ` item sn and item t1 `

168 Chapter 8. Linear logic programming

· · · ` item tm, respectively (n,m ≥ 0). Exercise 8.1 allows us to conclude that

S ⊸ T is provable if and only if T ⊸ S is provable if and only if the two

multisets {s1, . . . , sn} and {t1, . . . , tm} are equal. Now consider the following

two ways to encode the multiset inclusion S ⊑ T .

1. S ` 0 ⊸ T . This formula mixes multiplicative connectives with the

additive connective 0: the latter allows items in T that are not contained

in S to be deleted.

2. ∃q(S ` q ⊸ T). This formula mixes multiplicative connectives with a

higher-order quantifier. Intuitively, we would like to consider the instan-

tiation for q to be the multiset difference of S from T . However, such

a restriction on q is not part of this formula, and q can be instantiated

with any linear logic formula.

As it turns out, these two approaches are equivalent in (higher-order) linear

logic because the following formula is provable.

∀S.∀T.[(S ` 0 ⊸ T) ˛ ∃q.(S ` q ⊸ T)]

Recall that the expression B ˛ C is an abbreviation for (B ⊸ C)&(C ⊸ B).

8.2 A syntax for Lolli programs

In order to present several examples in this chapter, we extend Prolog and

λProlog syntax to accommodate Lolli logic programs. As we have already

indicated in Section 6.5, the symbols => and :- of λProlog are used to represent

⇒ and the converse of ⊸, respectively. We shall also write -o and <= to

represent the ⊸ and the converse of ⇒. We also use the symbols & and erase

to denote, respectively, & and ⊤. Given these connectives we can define (in the

sense described in Section 5.8) the symbols true, , (comma), ; (semicolon),

exists, and bang which represent the linear logic connectives 1, ⊗, ⊕, ∃, and

!, respectively. These definitions are displayed in Figure 8.1. Those clauses

encode only the right-introduction rules for their respective logical connective.

8.3 Permuting a list

Since the bounded part of contexts in L-proofs are multisets, it is simple to

permute a list of items by first loading the list’s members into the bounded part

of a context and then unloading them. The latter operation is nondeterministic

and can succeed for each permutation of the loaded list. Consider the following

simple program:

8.3 Permuting a list 169

type true o.

type , o -> o -> o.

type ; o -> o -> o.

type exists (A -> o) -> o.

type bang o -> o.

true.

(P , Q) :- P :- Q.

(P ; Q) :- P.

(P ; Q) :- Q.

exists B :- (B T).

bang G <= G.

Figure 8.1: Logic programs for defining the positive polarity connec-

tives.

type load list A -> list A -> o.

type unload list A -> o.

load nil K :- unload K.

load (X::L) K :- (item X -o load L K).

unload nil.

unload (X::L) :- item X, unload L.

The meaning of load and unload depends on the contents of the bounded

part of the context, so the correctness of these clauses must be stated relative

to a context. Let Ψ be a multiset of formulas containing the four formulas

displayed above and any other formulas that do not contain either item, load,

or unload as their head symbol. (The head symbol of a clause of the form A

or G ⊸ A is the predicate symbol that is the head of the atom A.) Let ∆ be

the multiset containing exactly the atomic formulas

item a1, . . ., item an.

We shall say that such a context encodes the multiset {a1, . . . , an}. It is now

an easy matter to prove the following two assertions about load and unload.

1. The sequent Σ ::Ψ; ∆ ⊢ (unload K); · is provable if and only if K is a list

containing the same elements with the same multiplicity as the multiset

encoded in ∆.

2. The sequent Σ ::Ψ; ∆ ⊢ (load L K); · is provable if and only if K is a list

containing the same elements with the same multiplicity as in the list L

together with the multiset encoded in the context ∆.

170 Chapter 8. Linear logic programming

In order for load and unload to correctly permute the elements of a list,

we must guarantee two things about the context: first, the predicates item,

load, and unload cannot be used as head symbols in any part of the context

except as specified above and, second, the bounded zone must be empty at the

start of the computation of a permutation. It is possible to handle the first

condition by making use of appropriate quantifiers over the predicate names

item, load, and unload (we discuss such a use of higher-order quantification

in Section 9.8). The second condition—that the unbounded zone is empty—

can be managed by using the exponential !, which we now discuss in more

detail.

Consider proving the sequent Σ :: Ψ; ∆ ⊢ !G1 ⊗ G2; ·, where G1 and G2

are goal formulas, and ! and ⊗ are specified using the clauses in Figure 8.1.

Given the completeness of ⇓L1, this is provable if and only if the two sequents

Σ :: Ψ; · ⊢ G1; · and Σ :: Ψ; ∆ ⊢ G2; · are provable. In other words, using the !

operator forces G1 to be proved with an empty bounded zone.

It is now clear how to define the permutation of two lists given the example

program above: add either the formula

perm L K :- bang(load L K).

or, equivalently, the formula

perm L K <= load L K.

to those defining load and unload. Thus, attempting to prove (perm L K)

will only reduce to an attempt to prove (load L K) if the bounded zones are

empty. From the description of load above, L and K must be permutations of

each other.

Exercise 8.3. Let Ψ0 be the collection of L1-formulas given in Figure 8.1,

and let Ψ be a collection of L1-formulas that do not contain occurrences of

the symbols introduced in that figure. Prove the following about provability

in ⇓L1. The sequent Σ :: Ψ0,Ψ; ∆ ⊢ bang G; · is provable if and only

if Σ :: Ψ0,Ψ; ∆ ⊢ true & G; · is provable if and only if ∆ is empty and

Σ :: Ψ0,Ψ; · ⊢ G; · is provable.

8.4 Multiset rewriting on the left

The ideas presented in the permutation example can easily be expanded to

show how the bounded zone can be employed for multiset rewriting. Let H be

the multiset rewriting system {⟨Li, Ri⟩ | i ∈ I} where for each i ∈ I (a finite

index set), Li and Ri are finite multisets. Define the relation M =⇒H N on

finite multisets to hold if there is some i ∈ I and some multiset C such that

8.4 Multiset rewriting on the left 171

M is C ∪Li and N is C ∪Ri. Let =⇒∗
H be the reflexive and transitive closure

of =⇒H .

Given a rewriting system H, we wish to specify a binary predicate rewrite

such that (rewrite L K) is provable if and only if the multisets encoded by

L and K stand in the =⇒∗
H relation. Let Γ0 be the following set of formulas

(these are independent of H):

rewrite L K <= load L K.

load (X::L) K :- (item X -o load L K).

load nil K :- rew K

rew K :- unload K.

unload (X::L) :- item X, unload L.

unload nil.

Taken alone, these clauses give a slightly different version of the permute

program of the last example. The only addition is the binary predicate rew,

which will be used as a socket into which we can plug a particular rewrite

system.

In order to encode a rewrite system H, each rewrite rule in H is given by

a formula specifying an additional clause for the rew predicate as follows: If

H contains the pair ⟨{a1, . . . , an}, {b1, . . . , bm}⟩ then this pair is encoded by

the clause:

rew K :- item a1 , ..., item an ,

(item b1 -o ... -o item bm -o rew K).

If either n or m is zero, the appropriate portion of the formula is deleted.

Operationally, this clause reads the ai’s out of the bounded zone, loads the

bi’s, and then attempts another rewrite. Let ΓH be the set resulting from

encoding each pair in H. For example, if H = {⟨{a, b}, {b, c}⟩, ⟨{a, a}, {a}⟩}
then ΓH is the set containing the following two clauses.

rew K :- item a, item b, (item b -o (item c -o rew K)).

rew K :- item a, item a, (item a -o rew K).

One drawback of this example is that rewrite is a predicate on lists,

though its arguments are intended to represent multisets. Unfortunately, there

can be as many as n! lists that denote the a given multiset of n items. This

redundancy might be addressed by exploring a noncommutative variant of

linear logic (see references at the end of Chapter 10).

172 Chapter 8. Linear logic programming

Exercise 8.4.(‡) Consider again Exercise 5.43, in which it was argued that

computing the maximum of a multiset of natural numbers was not possible

if that multiset was encoded as atomic formulas in the left-side of sequents

in I-proofs. It is possible to write such a program when using ⇓L1 proofs.

Write a logic program P using L1-formula such that the following holds. If

N is a set of natural numbers {n1, . . . , nk} and k ≥ 1 then the ⇓L1-sequent

·::P; a n1, . . . , a nk ⊢ maxa m; · is provable if and only if m is the maximum

of {n1, . . . , nk}.

Exercise 8.5.(‡) As in Exercise 8.4, let k ≥ 1 and let N be a multiset of

natural numbers {n1, . . . , nk}. Write a logic program P that computes the

sum n1 + · · · + nk. More precisely, the ⇓L1-sequent · :: P; a n1, . . . , a nk ⊢
sumup m; · is provable if and only if m = n1 + · · · + nk. Contrast this

exercise with the predicate sumup in Figure 5.4.

Exercise 8.6. Represent the finite graph G = (N,E), with nodes N and

edges E ⊆ N ×N , as the two sets of atomic formulas

N = {node(x) | x ∈ N} and E = {edge(x, y) | ⟨x, y⟩ ∈ E}.

Consider the logic program P that consists of the following declarations and

clauses.

kind node type.

type connected , loop o.

type node , nd node -> o.

connected :- node u, (nd u => loop).

loop.

loop :- nd u, edge u v, node v, (nd v => loop).

Show that the sequent · :: P, E ;N ⊢ connected; · is provable in ⇓L1 if and

only if the graph G is connected.

8.5 Context management in a theorem prover

Logic programming provides a high-level framework for implementing theorem

provers for various logics. Since such implementations deal with two logics, we

call the logic underlying the logic programming language the metalogic and

the target logic being implemented the object logic.

Intuitionistic logic is a useful metalogic for specifying provability in various

object logics. For example, consider specifying natural deduction provability

8.5 Context management in a theorem prover 173

in propositional, intuitionistic logic over the logical symbols imp, and, and

or, denoting object-level implication, conjunction, and disjunction (see the

declarations in Figure 8.2). Natural deduction rules specify the two senses of

provability for a logical connective—how to reason from and reason to (see

Section 3.7)—using elimination and introduction rules, respectively. A rea-

sonable specification of the natural deduction inference rule for implication

introduction is

pv (A imp B) :- hyp A => pv B.

where pv and hyp are metalevel predicates denoting provability and hypothesis

(see Figure 8.4 for their type declarations). Operationally, this formula states

that one way to prove A imp B is to add the object level hypothesis A to the

context and attempt a proof of B. In the same setting, conjunction elimination

can be expressed by the formula

pv G :- hyp (A and B), (hyp A => hyp B => pv G).

This formula states that in order to prove some object level formula G, check

to see if there is a conjunctive hypothesis, say (A and B), in the context and,

if so, attempt a proof of G from the context extended with the two hypotheses

A and B. Other introduction and elimination rules can be specified similarly.

Finally, the formula

pv G :- hyp G.

is needed to complete a proof.

It is easy to write a specification P (a multiset of L0 formulas) in this style

so that there is a proof in the metalogic of (pv G) from P and the atomic

formulas (hyp H1), . . ., (hyp Hi) if and only if there is a proof in the object

logic of G from the assumptions H1, . . . ,Hi. Unfortunately, intuitionistic logic

has its drawbacks as a metalogic even in this simple setting. In particular, the

set of assumptions of the form (hyp H) increases during the search for proofs,

even though some assumptions need to be used at most once within some sub-

proofs. For example, if we use the rule of cases (i.e., the elimination rule for

disjunction in natural deduction) on a disjunctive assumption, then that dis-

junction is not needed during the search for the proofs of either subcase dealing

with the disjuncts. In order to have more explicit control of the collection of

hypotheses, we abandon natural deduction for sequent calculus. In particular,

the sequent calculus proof system in Figure 8.3 shows one way to organize a

proof system for propositional intuitionistic logic so that the only hypothesis

that might be used more than once are those that are implications. This proof

system uses single-conclusion sequents with multisets on the left, and it does

not contain rules for either weakening or contraction. The specification of ⊃L

requires that the introduced implication in its conclusion must also appear in

its left premise.

174 Chapter 8. Linear logic programming

kind fm type.

type p, q, r fm.

type or , and imp fm -> fm -> fm.

infixr or 3.

infixr and 4.

infixr imp 5.

Figure 8.2: Declarations for the constructors of an object logic.

Γ ⊢ B Γ ⊢ B

Γ ⊢ A ∧B
∧R

Γ, A ⊢ B

Γ ⊢ A ⊃ B
⊃R

Γ ⊢ A

Γ ⊢ A ∨B
∨R

Γ ⊢ B

Γ ⊢ A ∨B
∨R

Γ, A,B ⊢ G

Γ, A ∧B ⊢ G
∧L

Γ, A ⊢ G Γ, B ⊢ G

Γ, A ∨B ⊢ G
∨L

Γ, C ⊃ B ⊢ C Γ, B ⊢ G

Γ, C ⊃ B ⊢ G
⊃L

Γ, A ⊢ A
init, A atomic

Figure 8.3: A proof system for propositional intuitionistic logic.

type pv , hyp , isatom fm -> o.

pv (A and B) :- pv A & pv B.

pv (A imp B) :- hyp A -o pv B.

pv (A or B) :- pv A.

pv (A or B) :- pv B.

pv G :- hyp (A and B), (hyp A -o hyp B -o pv G).

pv G :- hyp (A or B),

((hyp A -o pv G) & (hyp B -o pv G)).

pv G :- hyp (C imp B),

((hyp (C imp B) -o pv C) & (hyp B -o pv G)).

pv A :- isatom A, hyp A, erase.

isatom p & isatom q & isatom r.

Figure 8.4: A specification of the rules in Figure 8.3.

8.5 Context management in a theorem prover 175

Γ, A,B ⊢ G

Γ, A,A ⊃ B ⊢ G
⊃L1, A atomic

Γ, C ⊃ D ⊃ B ⊢ G

Γ, (C ∧D) ⊃ B ⊢ G
⊃L2

Γ, C ⊃ B,D ⊃ B ⊢ G

Γ, (C ∨D) ⊃ B ⊢ G
⊃L3

Γ, D ⊃ B ⊢ C ⊃ D Γ, B ⊢ G

Γ, (C ⊃ D) ⊃ B ⊢ G
⊃L4

Figure 8.5: Replacements for the ⊃L Rule.

pv G :- hyp (A imp B), isatom A, hyp A,

(hyp B -o hyp A -o pv G).

pv G :- hyp ((C and D) imp B),

(hyp (C imp (D imp B)) -o pv G).

pv G :- hyp ((C or D) imp B),

(hyp (C imp B) -o hyp (D imp B) -o pv G).

pv G :- hyp ((C imp D) imp B),

((hyp (D imp B) -o pv (C imp D)) &

(hyp B -o pv G)).

Figure 8.6: A contraction-free formulation of ⊃L.

The proof system in Figure 8.3 is captured by the Lolli specification in

Figure 8.4, along with a (partial) specification of isatom used to recognize

object-level atomic formulas. Sequents that appear in proofs involving these

clauses have left-bounded zones containing only atomic formulas of the form

(hyp H). Note that the two additive rules in Figure 8.3, namely, ∧R and

∨L, are encoded in the Lolli specification using the additive conjunction (&),

and that the additive true (erase) is used to force the weakening of any side

formulas in the init rule.

The logic program in Figure 8.4 does not yield a terminating search pro-

cedure because an implication on the left can be used multiple times: for

example, consider attempting to prove the sequent p ⊃ p ⊢ p. Fortunately,

an alternative presentation of the implication left-introduction rule can solve

this particular problem. For example, proof systems given in Dyckhoff [1992]

and Hudelmaier [1992] can be expressed directly in this setting. In those pa-

pers, the left-introduction rule for implication can be replaced by the four

rules in Figure 8.5. Thus, consider modifying the specification in Figure 8.4

by replacing its one formula specifying ⊃L with the four clauses in Figure 8.6

(derived from Figure 8.5). Executing this linear logic program in a depth-first

interpreter can yield a decision procedure for propositional intuitionistic logic.

176 Chapter 8. Linear logic programming

8.6 Multiset rewriting on the right

Since formulas in L1 are also in L2, the techniques for rewriting multisets

using the bounded left-side zone can also be used in L2. However, it is also

possible to use the bounded right-side zone as well. To illustrate that approach,

consider the clause

a ` b › c ` d ` e.

When presenting examples of L2 specifications, we continue the habit of using

› and ⇐ as the converses of ⊸ and ⇒ since they provide a more natural

operational reading of clauses (similar to the use of :- in Prolog). Here, `
binds tighter than › and ⇐. Consider the ⇓L2 sequent Σ :: Ψ; ∆ ⊢ a, b,Γ; Υ,

where the above clause is a member of Ψ. A proof of this sequent can proceed

as follows.

Σ :: Ψ; ∆ ⊢ c, d, e,Γ; Υ

Σ :: Ψ; ∆ ⊢ c, d ` e,Γ; Υ

Σ :: Ψ; ∆ ⊢ c ` d ` e,Γ; Υ

Σ :: Ψ; · ⇓ a ⊢ a; Υ Σ :: Ψ; · ⇓ b ⊢ b; Υ

Σ :: Ψ; · ⇓ a ` b ⊢ a, b; Υ

Σ :: Ψ; ∆ ⇓ c ` d ` e ⊸ a ` b ⊢ a, b,Γ; Υ

Σ :: Ψ; ∆ ⊢ a, b,Γ; Υ
decide !

We can interpret this fragment of a proof as a reduction of the multiset a, b,Γ

to the multiset c, d, e,Γ by backchaining on the clause displayed above.

Of course, a clause may have multiple top-level implications. In this case,

the surrounding context must be manipulated properly to prove the sub-goals

that arise in backchaining. Consider using the decide ! rule on the formula

A1 ` A2 ⇐ G4 › G3 ⇐ G2 › G1

to prove the sequent Σ::Ψ; ∆ ⊢ A1, A2,A; Υ. An attempt to prove this sequent

would then lead to the attempt to prove the four sequents

Σ :: Ψ; ∆1 ⊢ G1,A1; Υ Σ :: Ψ; · ⊢ G2; Υ

Σ :: Ψ; ∆2 ⊢ G3,A2; Υ Σ :: Ψ; · ⊢ G4; Υ

where ∆ is the multiset union of ∆1 and ∆2, and A is the multiset union of

A1 and A2. In other words, those subgoals immediately to the right of an ⇐
are attempted with empty bounded zones: the bounded zones, here ∆ and A,

are divided up and used in attempts to prove those goals immediately to the

right of ›.

For an example of computing using multisets on the right of ⇓L2 sequents,

consider again computing the sum of a multiset of natural numbers. Assume

that we take the encoding of natural numbers and addition (sum) given in

Figure 5.3, and make them available as ⇓L2 formulas. Now add the following

two formulas and consider the following exercise.

8.7 Specification of sequent calculus proof systems 177

sumall M :- acc M -o acc z.

acc N || a M :- sum N M S, acc S.

Exercise 8.7. Let Σ and Ψ be the signature and logic programs given above

for sumall and acc. Show that the sequent

Σ :: Ψ; · ⊢ a n1 ` a n2 ` · · · ` a ni ` sumall m; ·

is provable if and only if m is the sum of n1, . . . , ni.

More examples of specifications written using the L2 presentation of linear

logic appear in Chapters 11, 12, and 13.

8.7 Specification of sequent calculus proof systems

In this section, we provide a different style of specification of sequent calculus

rules from what was illustrated in Section 8.5 that makes use of multiset

rewriting using the right-bounded zone of sequents in ⇓L2.

As we have described in Section 4.1, the distinction between sequents in

classical, intuitionistic, and linear logics can be described, in part, by where

the structural rules of weakening and contraction can be applied. In classical

logic, these structural rules are allowed on both sides of the sequent turnstile; in

intuitionistic logic, no structural rules are allowed on the right of the turnstile;

and in linear logic, they are not allowed on either side of the turnstile. This

suggests the following representation of sequents in these three systems. Let

fm be the type of object-level propositional formulas and let ⌊·⌋ and ⌈·⌉ be

two metalevel predicates of type fm → o. Sequents in these three logics can

be specified as follows: object-logic sequents will be two-sided, and the left

and right contexts will be paired using −→ (following the original notation in

Gentzen [1935]).

Linear: The sequent B1, . . . , Bn −→ C1, . . . , Cm (n,m ≥ 0) is represented by

the metalevel formula

⌊B1⌋ ` · · · ` ⌊Bn⌋ ` ⌈C1⌉ ` · · · ` ⌈Cm⌉.

Intuitionistic: The sequent B1, . . . , Bn −→ C (n ≥ 0) is represented by the

metalevel formula

?⌊B1⌋ ` · · · ` ?⌊Bn⌋ ` ⌈C⌉.

Classical: The sequent B1, . . . , Bn −→ C1, . . . , Cm (n,m ≥ 0) is represented

by the metalevel formula

?⌊B1⌋ ` · · · ` ?⌊Bn⌋ ` ?⌈C1⌉ ` · · · ` ?⌈Cm⌉.

178 Chapter 8. Linear logic programming

(⊃ R) ⌈A ⊃ B⌉ › ?⌊A⌋ ` ⌈B⌉.
(⊃ L) ⌊A ⊃ B⌋ ⇐ ⌈A⌉ › ?⌊B⌋.
(∧R) ⌈A ∧B⌉ › ⌈A⌉ › ⌈B⌉.
(∧L1) ⌊A ∧B⌋ › ?⌊A⌋.
(∧L2) ⌊A ∧B⌋ › ?⌊B⌋.
(∨L) ⌊A ∨B⌋ › ?⌊A⌋ & ?⌊B⌋.
(∨R1) ⌈A ∨B⌉ › ⌈A⌉.
(∨R2) ⌈A ∨B⌉ › ⌈B⌉.

(initial) ⌈B⌉ ` ⌊B⌋.
(cut) ⊥ › ?⌊C⌋ ⇐ ⌈C⌉.

Figure 8.7: The specification J of a sequent calculus.

The ⌊·⌋ and ⌈·⌉ predicates are used to identify which object-level formulas

appear on which side of the sequent, and the ? exponential is used to mark

the formulas to which weakening and contraction can be applied.

As we now show, Figure 8.7 contains a specification of intuitionistic logic

provability of the connectives ∧, ∨, and ⊃ using L2 as the metalevel logic.

Expressions displayed as they are in Figure 8.7 are abbreviations for closed

formulas: the intended formulas are those that result from applying ! to their

universal closure. Let J be the set of clauses displayed in Figure 8.7 and let

Σ0 be the set of constants containing object-level logical connectives (as in

Figure 8.2) along with the two predicates ⌊·⌋ and ⌈·⌉.
Now consider the synthetic inference rules that result from using the decide !

rule with a formula in Figure 8.7. If Γ is a multiset of object-level formulas

(terms of type fm), let ⌊Γ⌋ denote the multiset {⌊B⌋ | B ∈ Γ}. The synthetic

rule resulting from using decide ! on the (⊃ R) clause in Figure 8.7 is

· :: J; · ⊢ ⌈B⌉; ⌊A⌋, ⌊Γ⌋
· :: J; · ⊢ ⌈A ⊃ B⌉; ⌊Γ⌋

.

Thus, this synthetic inference rule captures exactly the object-level inference:

that is, proving the object-level sequent Γ −→ A ⊃ B has been successfully

reduced to proving the sequent A,Γ −→ B (see the ⊃ R rule in Figure 8.8).

It is a simple matter to compute the synthetic inference rule that arises

from using decide ! on the (cut) clause, namely,

· :: J; · ⊢ ⌈C⌉;L · ::J; · ⊢ ⌈B⌉; ⌊C⌋,L
· :: J; · ⊢ ⌈B⌉;L

.

This metalevel synthetic rule captures the object-level inference rule called cut

in Figure 8.8. Note that the occurrence of ⇐ in the specification of (cut) is

8.7 Specification of sequent calculus proof systems 179

Γ, A ⊃ B −→ B Γ, A ⊃ B,B −→ E

Γ, A ⊃ B −→ E
⊃ L

A,Γ −→ B

Γ −→ A ⊃ B
⊃ R

Γ, A −→ E

Γ, A ∧B −→ E
∧L1

Γ, B −→ E

Γ, A ∧B −→ E
∧L2

Γ −→ A Γ −→ B
Γ −→ A ∧B

∧R

Γ −→ A
Γ −→ A ∨B

∨R1
Γ −→ B

Γ −→ A ∨B
∨R2

Γ, A −→ E Γ, B −→ E

Γ, A ∨B −→ E
∨L

Γ, B −→ B
initial

Γ −→ C C,Γ −→ B

Γ −→ B
cut

Figure 8.8: The inference rules encoded by J.

important here: consider the following modification of the specification of the

object-level cut inference rule.

(cut′) ⊥ › ?⌊C⌋ › ⌈C⌉.

Two synthetic inference rules result from using decide ! on this formula, namely,

the one displayed above and the following.

· :: J; · ⊢ ⌈B⌉, ⌈C⌉;L · ::J; · ⊢ ·; ⌊C⌋,L
· :: J; · ⊢ ⌈B⌉;L

This additional synthetic rule corresponds to the following object-level infer-

ence rule.
Γ −→ B,C C,Γ −→ ·

Γ −→ B

In other words, the clause (cut′) does not properly restrict the occurrences of

B in the premises. It is possible to prove that if B moves to the right side

of the left premise, that left premise will not ultimately be provable (from J).

Nonetheless, we wish to have exactly one synthetic inference rule arising from

our metalevel specification of the cut rule. Hence, the (cut) rule and the (⊃ L)

rules both have occurrences of ⇐. Recall that in Section 6.2, we pointed out

that both (cut) and (⊃ L) are different from other sequent calculus rules for

intuitionistic logic: in J, that difference is captured by the use of ⇐ instead

of › in the specification of these two rules (see also Proposition 4.2).

Exercise 8.8. Show that the formula ∀B. !⌈B⌉ ˛ (?⌊B⌋)⊥, which illus-

trates a duality between left and right occurrences of an object-level formula,

is provable from the formulas (initial) and (cut) in Figure 8.7.

180 Chapter 8. Linear logic programming

8.8 Bibliographic notes

Multiset rewriting provides a flexible framework for specifying a wide range

of computationally interesting systems. For instance, it has been used to

specify various algorithms (see Banâtre and Métayer [1993, 1996]) and several

specification systems, including Petri Nets (see Engberg and Winskel [1990];

Gehlot and Gunter [1990]; Asperti et al. [1990]; Marti-Oliet and Meseguer

[1991]; Kanovich [1995]; Delzanno [2002]) and process calculi (see Berry and

Boudol [1992]). The connection between multiset rewriting and linear logic

enabled natural encodings of these algorithms and specifications as linear logic

programs (see Andreoli and Pareschi [1991a,b]; Miller [1993]).

In the 1990s, various other proposals for linear logic programming lan-

guages were proposed. Pym and Harland [1994] and Harland et al. [1996]

proposed the Lygon language based on a notion of goal-directed proof in a

multiple-conclusion setting that differs from that described in Section 6.7.

Kobayashi and Yonezawa [1995] and Kobayashi et al. [1999] proposed the

ACL language for encoding simple notions of asynchronous communication by

identifying the send and read primitives with two complementary and mul-

tiplicative linear logic connectives. Miller [2004] is a survey article of early

linear logic programming languages and their applications.

The examples of Lolli logic programs in Sections 8.3, 8.4, and 8.5 are

taken from Hodas and Miller [1994]. The examples of L2 logic programs in

Sections 8.6 and 8.7 are taken from Miller [1996]. The proof system in Fig-

ure 8.3 and the proof system arising from replacing the ⊃L rule with the rules

in Figure 8.5 are part of the proof systems called, respectively, G3ip and G4ip

in Troelstra and Schwichtenberg [1996]. The analysis of object-level sequent

systems using linear logic as a metatheory given in in Section 8.7 can be signif-

icantly extended and it can easily accommodate first-order quantifiers in the

object logic: see, for example, Miller and Pimentel [2004], Miller and Pimentel

[2013], Nigam et al. [2014], and Felty et al. [2021]. Miller [2023] presents a

similar framework for specifying inference rules via multiset rewriting, but

without the explicit use of linear logic as a metalogic.

Linear logic programming has found useful applications in parsing natural

language sentences. In particular, both Pareschi and Miller [1990] and Ho-

das [1994, 1999] have shown how phenomena such as gap threading can be

captured, at least in part, by Lolli specifications.

It is not surprising that a programming language directly exploiting proof

theory ideas and techniques can specify a sequent calculus (as in Section 8.7)

and a theorem prover (as in Section 8.5). Subsequent chapters (starting with

Chapter 10) will show several other applications of linear logic programming

in domains that are not overtly connected with logic and proof theory.

Chapter9
Higher-order quantification

9.1 Introduction

The higher-order version of linear logic we present in this chapter uses the

same connectives as L2, although we no longer restrict the type τ on the

quantifiers ∀τ and ∃τ . Removing this restriction on τ means that τ is allowed

to have occurrences of the → constructor as well as the primitive type o.

If we only accept the first of these additions, then the proof theory of the

resulting logic is essentially the same as for first-order logic. Although the

complex operation of λ-conversion is more pronounced in such a logic, that

complexity occurs only at the level of terms. As we shall soon illustrate, if τ

is allowed occurrences of o, the result of instantiating a universal quantifier

can have more occurrences of logical connectives than the original universally

quantified expression. Formulas that allow ∀τ for arbitrary τ , and the other

logical constants of L2, will be called Lω
2 formulas.

In the following paragraphs, we address an array of issues that separates

our logic with higher-order quantification (Lω
2) from the corresponding logic

with only first-order quantification (L2).

Soundness, completeness, and incompleteness In the remaining chap-

ters, we give several examples of using higher-order quantification in the logic

programming setting. For anyone familiar with the typed λ-calculus and λ-

conversion (as presented in Chapter 2), these examples should not be chal-

lenging to understand. One might be worried, however, about other concerns

often raised regarding higher-order logic. For example, since it is possible to

formalize arithmetic in Lω
2 , Gödel’s incompleteness theorems applies to this

logic. However, we are not directly concerned with model-theoretic semantics

for the proof systems we explore (except for the material on Kripke model

semantics in Section 5.6). The fact that there are true statements of Peano

182 Chapter 9. Higher-order quantification

Arithmetic that do not have proofs in higher-order linear logic is not particu-

larly interesting to us here. Sequent calculus proof systems provide the only

meaning we give to the logical connectives. As a result, the proposition that

“a given sequent is provable in a given proof system” is always recursively

enumerable. In this text, when we use the terms soundness and completeness,

we generally refer to claims that provability in one proof system corresponds

to provability in another.

Cut-elimination and consistency In Section 9.3, we will give two proof

systems, ⇓N and ⇓Lω
2 , for Lω

2 . Following an argument in Section 3.7, it is easy

to show that those proof systems are consistent if the cut rule is admissible

in them. By Gödel’s second incompleteness theorem, the proof of cut admis-

sibility will involve inductions that are much stronger than those involved in

the proof of cut elimination given for the first-order proof systems we saw in

Chapter 7. Such a stronger induction can be achieved using the candidats de

réductibilité of Girard [1972] (see also Girard et al. [1989] and Gallier [1990]).

The dynamics of instantiation of a higher-order quantifier On the

surface, the instantiation of the quantifier ∀τx.B by a term t of type τ , written

as B[t/x], is the same in first-order and higher-order logic. A major difference

between these two settings is that once one performs a (capture-avoiding) sub-

stitution of t for x is B, the result in first-order logic is a formula in β-normal

form. In the higher-order setting, the resulting formula may have β-redexes

(Section 2.1), and, since reducing these β-redexes requires doing more sub-

stitutions, the size of a term or formula can grow significantly in some cases.

During such quantifier instantiations, the resulting instantiation might well

have more occurrences of logical connectives than the original quantified ex-

pression. For example, if B contains n ≥ 0 occurrences of logical connectives,

then instantiating ∀op.p ⇒ p with B replaces a formula with two occurrences

of logic connectives with one containing 2n+1 such occurrences. In Section 9.5

the quantified expression ∀p.∀q.p ⇒ q (with three occurrences of logical con-

nectives) is instantiated first with ∀p.p ⊸ p to yield ∀q.(∀p.p ⊸ p) ⇒ q and

then with p ⊸ q to get (∀p.p ⊸ p) ⇒ (p ⊸ q) (with four occurrences of

logical connectives).

The subformula property As described in Section 3.7, cut-free proofs in

first-order logic have the subformula property : that is, every occurrence of a

formula in any sequent of a cut-free proof is a subformula of a formula in the

endsequent. In that section, we also informally stated that “instantiations of

quantified expressions must also be considered subformulas of that quantified

formula.” In the first-order setting, this is an interesting and useful definition.

9.2 Higher-order quantification 183

As the previous examples illustrate, this notion is trivialized in the general

higher-order setting: for example, all formulas are subformulas of ∀p.p.

Logical connectives can appear in non-logical contexts In the first-

order logic setting, an occurrence of a logical connective in a formula is either

a top-level occurrence or in the scope of only other occurrences of logical

connectives. In the higher-order logic setting, there is a third possibility: an

occurrence of a logical connective can be in the scope of some non-logical

constants and variables. This aspect of our higher-order logic is exploited by

higher-order programming in logic programming, a topic we discuss more in

Section 9.6.

9.2 Higher-order quantification

We now allow ∀τ and ∃τ to quantify variables of type τ where τ can be any

type built from → and the primitive types S ∪ {o}. The rules for introducing

these two quantifiers are exactly as in Figure 4.1, namely, the following.

Σ :: Γ, B[t/x] ⊢ ∆

Σ :: Γ,∀τx.B ⊢ ∆
∀L

Σ, c : τ : Γ ⊢ ∆, B[c/x]

Σ :: Γ ⊢ ∆,∀τx.B
∀R

Σ, c : τ : Γ, B[c/x] ⊢ ∆

Σ :: Γ, ∃τx.B ⊢ ∆
∃L

Σ :: Γ ⊢ ∆, B[t/x]

Σ :: Γ ⊢ ∆, ∃τx.B
∃R

Here, τ can now be any type. Also, recall that the result of applying the

substitution operator B[t/x] is always in λ-normal form. In the first-order

setting, this can be a simple operation; in the higher-order setting, there can

be a cascade of β-reductions following other β-reductions.

For the purposes of the following exercises, let Cω and Iω be the proof

systems that result from using the higher-order versions of the quantifier intro-

duction rules given above within C and I proof, respectively (see Section 4.1).

Exercise 9.1.(‡) Prove that the formulas ∀oP.P is logically equivalent to

f using Iω-proofs.

The following example illustrates how higher-order quantification can con-

ceal (or simulate) cuts in proofs.

184 Chapter 9. Higher-order quantification

Exercise 9.2. Note the similarities between the cut inference rule and an

instance of the ⊃L rule.

Σ :: Γ1 ⊢ B Σ :: Γ2, B ⊢ C

Σ :: Γ1,Γ2 ⊢ C
cut

Σ :: Γ1 ⊢ B Σ :: Γ2, B ⊢ C

Σ :: B ⊃ B,Γ1,Γ2 ⊢ C
⊃L

Use this similarity to prove the following result: if Σ :: Γ ⊢ C has a Cω

proof (respectively, an Iω proof) then the sequent Σ :: ∀op.(p ⊃ p),Γ ⊢ ∆

has a cut-free Cω proof (respectively, an Iω proof). Provide a direct proof

of this statement that does not use the cut-elimination theorem.

One approach to defining the equality of the two terms t and s is that all

properties holding for one terms hold for the other. This notation of equality

is often referred to as Leibniz equality and can be defined using the formula

∀i→oP.(Pt ⊃ Ps).

Exercise 9.3. (‡) Let t and s be two terms of type i. Consider the bi-

nary relationship between these terms given by the provability in Iω of the

sequent ⊢ ∀i→oP.(Pt ⊃ Ps). Prove that this relation is an equivalence

relation, i.e., prove that it is reflective, symmetric, and transitive. For ex-

ample, symmetry can be proved by constructing an Iω-proof of the sequent

⊢ ∀P.(Pt ⊃ Ps) ⊃ ∀P.(Ps ⊃ Pt).

Exercise 9.4. Let t and s are two terms of the same type τ . Repeat Exer-

cise 9.2 replacing ∀oP.(P ⊃ P) with ∀τ→oP.(Pt ⊃ Ps).

In Lω
2 , we have two choices for the implication used in the definition of

Leibniz equality. Exercise 9.15 shows that these two choices result in logically

equivalent formulas.

9.3 Near-focused proofs

An important invariant in the setting of proofs for first-order logic is that a

first-order substitution applied to an atomic formula returns an atomic for-

mula. Similarly, Proposition 7.7 states that substituting a term for a variable

of primitive type (other than o) in a ⇓+L2 proof yields another ⇓+L2 proof. A

similar property does not hold in the higher-order setting. For example, the

following is a ⇓+L2 proof.

q : i → o, p : i → o, a : i :: ·; · ⇓ pa ⊢ pa; ·
init

9.3 Near-focused proofs 185

If we instantiate p with the expression λw.qw ⇒ qa in this proof, we have the

sequent

q : i → o, a : i :: ·; · ⇓ qa ⇒ qa ⊢ qa ⇒ qa; ·,

which does not have a ⇓+L2 proof: recall that the init rule can only be used on

atomic formulas. More generally, applying a substitution for a variable with

target type o can take a ⇓L2-proof to a proof-like structure that has two kinds

of erroneous inference rules.

1. The initial rules init and init? may no longer involve atomic formulas.

2. The conclusion of the decide rules and most left-introduction rules may

no longer contain only atoms in the right-bounded zone.

Given these observations, we introduce the near-focused proof system ⇓N
in Figure 9.1. Here, the proof rules of ⇓N are the same as those for ⇓L2 in

Figure 6.11 except for the following three modifications.

1. The formulas used in sequents can now be Lω
2 formulas.

2. The initial rules are generalized so that the formula in focus can be a

general formula. In particular, the schematic variable B in the two initial

rules in Figure 9.1 can range over arbitrary Lω
2 formulas.

3. The three decide rules are not constrained to have the right-bounded

zone consisting of only atomic formulas. In particular, the schematic

variable ∆ in the three decide rules in Figure 9.1 can range over multisets

of arbitrary Lω
2 formulas.

Formally speaking, a ⇓Lω
2 -proof is a ⇓N proof in which the right-bounded

zone of the concluding sequent of all left-introduction rules and all decide rules

contain only atomic formulas.

Our goal for the rest of this section is to show that if Σ :: Ψ; Γ ⊢ ∆; Υ has

a ⇓N proof, then it has a ⇓Lω
2 proof. We do this in following steps.

1. We introduce the follow definitions where the adjective atomic is applied

to certain occurrences of inference rules. An instance of the ⊸L rule

is atomic if the right-bounded zone of its left premise (the schematic

variable ∆1 in Figure 9.1) contains only atomic formulas. An instance

of a decide rule is atomic if the right-bounded zone of its conclusion (the

schematic variable ∆ in Figure 9.1 for all three kinds of decide rules)

contains only atomic formulas. (Recall that an instance of init is atomic

if the formula under focus is atomic.)

2. We prove that the init? rule is not needed in ⇓N proofs (Lemma 9.5).

3. We show that all instances of the init rule can be replaced by instances

of an atomic init rule (Lemma 9.6).

186 Chapter 9. Higher-order quantification

Σ :: Ψ; Γ ⊢ ⊤,∆; Υ
⊤R

Σ :: Ψ; Γ ⊢ B,∆; Υ Σ :: Ψ; Γ ⊢ C,∆; Υ

Σ :: Ψ; Γ ⊢ B & C,∆; Υ
&R

Σ :: Ψ; Γ ⊢ ∆; Υ

Σ :: Ψ; Γ ⊢ ⊥,∆; Υ
⊥R

Σ :: Ψ; Γ ⊢ B,C,∆; Υ

Σ :: Ψ; Γ ⊢ B ` C,∆; Υ
` R

Σ :: Ψ;B,Γ ⊢ C,∆; Υ

Σ :: Ψ; Γ ⊢ B ⊸ C,∆; Υ
⊸ R

Σ :: B,Ψ; Γ ⊢ C,∆; Υ

Σ :: Ψ; Γ ⊢ B ⇒ C,∆; Υ
⇒ R

y : τ,Σ :: Ψ; Γ ⊢ B[y/x],∆; Υ

Σ :: Ψ; Γ ⊢ ∀τx.B,∆; Υ
∀R

Σ :: Ψ; Γ ⊢ ∆;B,Υ

Σ :: Ψ; Γ ⊢ ?B,∆; Υ
?R

Σ :: Ψ; Γ ⇓ B ⊢ ∆; Υ

Σ :: Ψ;B,Γ ⊢ ∆; Υ
decidel

Σ :: B,Ψ; Γ ⇓ B ⊢ ∆; Υ

Σ :: B,Ψ; Γ ⊢ ∆; Υ
decide !

Σ :: Ψ; Γ ⊢ ∆, B;B,Υ

Σ :: Ψ; Γ ⊢ ∆;B,Υ
decide?

Σ :: Ψ; · ⇓ B ⊢ B; Υ
init

Σ :: Ψ; · ⇓ B ⊢ ·;B,Υ
init?

Σ :: Ψ; · ⇓ ⊥ ⊢ ·; Υ
⊥L

Σ :: Ψ;B ⊢ ·; Υ

Σ :: Ψ; · ⇓ ?B ⊢ ·; Υ
?L

Σ :: Ψ; Γ ⇓ Bi ⊢ ∆; Υ

Σ :: Ψ; Γ ⇓ B1 & B2 ⊢ ∆; Υ
&Li

Σ :: Ψ; Γ ⇓ B[t/x] ⊢ ∆; Υ

Σ :: Ψ; Γ ⇓ ∀τx.B ⊢ ∆; Υ
∀L

Σ :: Ψ; Γ1 ⇓ B ⊢ ∆1; Υ Σ :: Ψ; Γ2 ⇓ C ⊢ ∆2; Υ

Σ :: Ψ; Γ1,Γ2 ⇓ B ` C ⊢ ∆1,∆2; Υ
` L

Σ :: Ψ; Γ1 ⊢ ∆1, B; Υ Σ :: Ψ; Γ2 ⇓ C ⊢ ∆2; Υ

Σ :: Ψ; Γ1,Γ2 ⇓ B ⊸ C ⊢ ∆1,∆2; Υ
⊸L

Σ :: Ψ; · ⊢ B; Υ Σ :: Ψ; Γ ⇓ C ⊢ ∆; Υ

Σ :: Ψ; Γ ⇓ B ⇒ C ⊢ ∆; Υ
⇒L

The usual provisos are assumed on the rules ∀R and ∀L. In the &Li

rule, i is 1 or 2. There are no side conditions regarding atomic formulas

in this proof system.

Figure 9.1: The near-focused proof system ⇓N .

9.3 Near-focused proofs 187

4. We show how to replace occurrences of the decide? rule with atomic

versions of that rule (Lemma 9.7).

5. Finally, we show how to replace occurrences of ⊸L with atomic versions

of ⊸L (Lemma 9.8).

After these lemmas have been established, the proof that the existence of a

near-focus proof implies the existence of a focused proof (Proposition 9.9)

following easily.

The following lemma shows that within ⇓N proofs, the inference rule init?

is not needed since that rule can systematically be replaced by a pair of decide?

and init rules.

Lemma 9.5. If Σ :: Ψ; Γ ⊢ ∆; Υ has a ⇓N proof, then it has a ⇓N proof

with no occurrences of the init? rule.

Proof. Consider a right-introduction phase of the following shape.

· · · Σ :: Ψ; Γ ⇓ B ⊢ ·;B,Υ
init?

· · ·
Ξ

Σ :: Ψ; Γ ⇓ D ⊢ ·;B,Υ

That is, Ξ is some collection of left-introduction rules. We first prove by

induction on the structure of Ξ that this collection of inference rules can be

reorganized to provide a proof of

· · · Σ :: Ψ; Γ ⇓ B ⊢ B;B,Υ
init

· · ·
Ξ′

Σ :: Ψ; Γ ⇓ D ⊢ B;B,Υ

The base case occurs when the conclusion of Ξ is an occurrence of init?, in

which case D and B must be the same formula. In that case, we use the init

rule.

Σ :: Ψ; Γ ⇓ B ⊢ B;B,Υ
init

Otherwise, the last inference rule of Ξ is one of the five left-introduction rules

&Li, ∀L, ` L, ⊸L, or ⇒ L. If the last inference rule is &Li, then Ξ has the

following shape.

· · · Σ :: Ψ; Γ ⇓ B ⊢ ·;B,Υ
init?

· · ·
Ξ1

Σ :: Ψ; Γ ⇓ Di ⊢ ·;B,Υ

Σ :: Ψ; Γ ⇓ D1 & D2 ⊢ ·;B,Υ
&i

188 Chapter 9. Higher-order quantification

Invoking the inductive assumption yields the following inference rules.

· · · Σ :: Ψ; Γ ⇓ B ⊢ B;B,Υ
init

· · ·
Ξ′
1

Σ :: Ψ; Γ ⇓ Di ⊢ B;B,Υ

Σ :: Ψ; Γ ⇓ D1 & D2 ⊢ B;B,Υ
&i

If the last inference rule of Ξ is ⊸L, then Ξ has the following shape.

Ξ0

Σ :: Ψ; Γ1 ⊢ D1;B,Υ

· · · Σ :: Ψ; Γ2 ⇓ B ⊢ ·;B,Υ
init?

· · ·
Ξ1

Σ :: Ψ; Γ2 ⇓ D2 ⊢ ·;B,Υ

Σ :: Ψ; Γ1,Γ2 ⇓ D1 ⊸ D2 ⊢ ·;B,Υ
⊸L

Invoking the inductive assumption yields the following inference rules.

Ξ0

Σ :: Ψ; Γ1 ⊢ D1;B,Υ

· · · Σ :: Ψ; Γ2 ⇓ B ⊢ B;B,Υ
init

· · ·
Ξ′
1

Σ :: Ψ; Γ2 ⇓ D2 ⊢ B;B,Υ

Σ :: Ψ; Γ1,Γ2 ⇓ D1 ⊸ D2 ⊢ B;B,Υ
⊸L

The remaining three cases can be proved similarly.

Now consider the following occurrences of init? along with the path from

it to the border sequent below it within a ⇓N proof.

· · · Σ :: Ψ; Γ ⇓ B ⊢ ·;B,Υ
init?

· · ·
Ξ

Σ :: Ψ; Γ ⇓ D ⊢ ·;B,Υ

Σ :: Ψ; Γ ⊢ ·;B,Υ
decide !

(or the similar case where this last inference rule is decidel instead of decide !).

By the previous argument, we can assemble the following inference rules.

· · · Σ :: Ψ; Γ ⇓ B ⊢ B;B,Υ
init

· · ·
Ξ′

Σ :: Ψ; Γ ⇓ D ⊢ B;B,Υ

Σ :: Ψ; Γ ⊢ B;B,Υ
decide !

Σ :: Ψ; Γ ⊢ ·;B,Υ
decide?

Thus, we have described how to replace an occurrence of init? with occurrences

of init and decide?. By simply repeating this replacement process, we can

finally arrive at a ⇓N proof of the same end sequent Σ :: Ψ; Γ ⊢ ∆; Υ but

without occurrences of init?.

9.3 Near-focused proofs 189

Lemma 9.6. If Σ :: Ψ; Γ ⊢ ∆; Υ has a ⇓N proof, then it has a ⇓N proof

with no occurrences of init? and every occurrence of init is an atomic init.

Proof. Assume that Σ :: Ψ; Γ ⊢ ∆; Υ has a ⇓N proof Ξ. By Lemma 9.5, we

can assume that Ξ contains no occurrences of init?. An occurrence of a logical

connective in a formula is said to be a top-level occurrence if it is not in the

scope of a variable or a non-logical constant. Let the off-focus measure of an

occurrence of the inference rule init be the number of occurrences of top-level

logical connectives in the focused formula. The off-focus measure of a ⇓N
proof is the sum of the off-focus measure for every occurrence of the init rules.

We now prove that if a ⇓N proof has a non-zero off-focus measure, we can

reorganize that proof to yield a ⇓N proof with a strictly smaller off-focus

measure.

An occurrence of init in Ξ must appear within a left-introduction phase of

the form (here, D ∈ Ψ)

· · · Σ :: Ψ; · ⇓ B ⊢ B; Υ
init

· · ·
Π

Σ :: Ψ; Γ ⇓ D ⊢ B,∆; Υ

Σ :: Ψ; Γ ⊢ B,∆; Υ
decide !

(or the similar case where this last inference rule is decidel). We shall argue

that if B is not atomic, the derivation Π can be reorganized to provide a

near-focus proof with a strictly smaller off-focus measure.

Consider, for example, the case where B is B1 & B2. The proof structure

above is then of the form

· · · Σ :: Ψ; · ⇓ B1 & B2 ⊢ B1 & B2; Υ
init

· · ·
Π

Σ :: Ψ; Γ ⇓ D ⊢ B1 & B2,∆; Υ

Σ :: Ψ; Γ ⊢ B1 & B2,∆; Υ
decide !

The following reorganization reduces the off-focus measure by one.

· · ·
Σ :: Ψ; · ⇓ B1 ⊢ B1; Υ

init

Σ :: Ψ; · ⇓ B1 & B2 ⊢ B1; Υ
&L

Π′

Σ :: Ψ; Γ ⇓ D ⊢ B1,∆; Υ

Σ :: Ψ; Γ ⊢ B1,∆; Υ
decide !

· · ·
Σ :: Ψ; · ⇓ B2 ⊢ B2; Υ

init

Σ :: Ψ; · ⇓ B1 & B2 ⊢ B2; Υ
&L

Π′′

Σ :: Ψ; Γ ⇓ D ⊢ B2,∆; Υ

Σ :: Ψ; Γ ⊢ B2,∆; Υ
decide !

Σ :: Ψ; Γ ⊢ B1 & B2,∆; Υ
&R

190 Chapter 9. Higher-order quantification

Here, the derivations Π′ and Π′′ differ from Π by replacing occurrences of

B1 & B2 on the right-hand side of the sequents on the path to the designated

init with B1 and B2, respectively.

Consider the case where B is B1 ⇒ B2.

· · · Σ :: Ψ; · ⇓ B1 ⇒ B2 ⊢ B1 ⇒ B2; Υ
init

· · ·
Π

Σ :: Ψ; Γ ⇓ D ⊢ B1 ⇒ B2,∆; Υ

Σ :: Ψ; Γ ⊢ B1 ⇒ B2,∆; Υ
decide !

These inference rules can be reorganized as below, yielding a new near-focused

proof of strictly smaller off-focus measure.

· · ·

Σ :: Ψ, B1;B1 ⇓ · ⊢ B1;
init

Σ :: Ψ, B1; · ⊢ B1; Υ
decide !

Σ :: Ψ, B1; · ⇓ B2 ⊢ B2; Υ
init

Σ :: Ψ, B1; · ⇓ B1 ⇒ B2 ⊢ B2; Υ
⇒ L

Π′

Σ :: Ψ, B1; Γ ⇓ D ⊢ B2,∆; Υ

Σ :: Ψ, B1; Γ ⊢ B2,∆; Υ
decide !

Σ :: Ψ; Γ ⊢ B1 ⇒ B2,∆; Υ
⇒ R

Consider the case where B is ?B′.

· · · Σ :: Ψ; · ⇓ ?B′ ⊢ ?B′; Υ
init

· · ·
Π

Σ :: Ψ; Γ ⇓ D ⊢ ?B′,∆; Υ

Σ :: Ψ; Γ ⊢ ?B′,∆; Υ
decide !

These inference rules can similarly be reorganized.

· · ·

Σ :: Ψ; · ⇓ B′ ⊢ B′;B′,Υ
init

Σ :: Ψ;B′ ⊢ B′;B′,Υ
decidel

Σ :: Ψ;B′ ⊢ ·;B′,Υ
decide?

Σ :: Ψ; · ⇓ ?B′ ⊢ ·;B′,Υ
?L

· · ·
Π′

Σ :: Ψ; Γ ⇓ D ⊢ ∆;B′,Υ

Σ :: Ψ; Γ ⊢ ∆;B′,Υ
decide !

Σ :: Ψ; Γ ⊢ ?B′,∆; Υ
?R

9.3 Near-focused proofs 191

Here, the derivation Π′ differs from Π by replacing occurrences of ?B′ in the

right-bounded zone with occurrences of B′ in the right-unbounded zone in all

sequents in Π′.

Such reorganization of right-introduction rules can be done for all the re-

maining cases for the top-level connective (⊥, `, ⊤, ⊸) and for the cases where

an occurrence of decidel appears as the conclusion of the right-introduction

phase. Thus, in all of these cases, the off-focus measure strictly decreases.

Thus, by repeated application of such proof reorganization, we finally termi-

nate with a proof with an off-focus measure of zero. Thus, all occurrences of

init in the resulting proof are, in fact, atomic.

Lemma 9.7. If a sequent has a ⇓N proof, then it has a ⇓N proof for

which all occurrences of decide? are atomic.

Proof. Using the previous two lemmas, we can restrict our attention to ⇓N
proofs without occurrences of init? and with only atomic instances of init. In

such proofs, we show how to replace one non-atomic instance of a decide?

rule with possibly many instances of atomic decide? rules. Assume we have a

proof of the following form

Ξ

Σ :: Ψ; Γ ⊢ ∆, B;B,Υ

Σ :: Ψ; Γ ⊢ ∆;B,Υ
decide? .

Here, we also assume that this occurrence of decide? is such that the proof

Ξ contains only atomic instances of decide?. Using Proposition 7.2, we can

reorganize this right-introduction phase so that formulas in ∆ are all inserted

into that phase before B is inserted. We can now permute this one occurrences

of decide? up over the premises of this partial right-introduction phase. All of

these new instances of decide? will have in their conclusion a right-bounded

zone that contains only atomic formulas.

Lemma 9.8. If a sequent has a ⇓N proof, then it has a ⇓N proof for

which all occurrences of ⊸L are atomic.

Proof. This proof is similar to the proof of Lemma 9.7 in that we need to

permute right introduction rules used to proved the left premise of ⊸L below

that rule. In particular, assume that we have the following occurrence of the

⊸L rule.
Ξ

Σ :: Ψ; Γ1 ⊢ ∆1, B; Υ Σ :: Ψ; Γ2 ⇓ C ⊢ ∆2; Υ

Σ :: Ψ; Γ1,Γ2 ⇓ B ⊸ C ⊢ ∆1,∆2; Υ
⊸L

192 Chapter 9. Higher-order quantification

Here, we also assume that this occurrence of ⊸L is such that the proof Ξ

contains only atomic instances of ⊸L. Using Proposition 7.2, we can reorga-

nize this right-introduction phase so that formulas in ∆1 are all inserted into

that phase before B is inserted. We can now permute this one occurrences of

⊸L up over the premises of this partial right-introduction phase. All of these

new instances of ⊸L will have in their conclusion a right-bounded zone that

contains only atomic formulas.

Proposition 9.9. If Σ :: Ψ; Γ ⊢ ∆; Υ has a ⇓N proof, it has a ⇓Lω
2 proof.

Proof. Assume that Σ :: Ψ; Γ ⊢ ∆; Υ has a ⇓N proof. By Lemma 9.6, we

know that that sequent has a ⇓N proof with no occurrences of init? and

where every occurrence of init is atomic. By Lemmas 9.7 and 9.8, we can

additionally assume that all instances of decide? and ⊸L in it are atomic.

A simple induction of the structure of such a proof now shows that in every

⇓-sequent in Ξ, the right-bounded zone contains only atomic formulas. Hence,

Ξ is, in fact, a ⇓Lω
2 proof.

Proposition 9.9 provides a new proof that generalized initial rules are ad-

missible: contrast this to the proof provided by Theorem 7.4.

Corollary 9.10. Let B be an Lω
2 Σ-formula. The following sequents have

⇓Lω
2 -proofs.

1. Σ :: Ψ, B; · ⊢ B; Υ

2. Σ :: Ψ;B ⊢ B; Υ

3. Σ :: Ψ, B; · ⊢ ·;B,Υ

4. Σ :: Ψ;B ⊢ ·;B,Υ

Proof. We note that every one of these sequents has a ⇓N proof using some

combination of init, init?, decidel, and decide !. Thus, Proposition 9.9 entails

that all these sequents also have ⇓Lω
2 proofs.

9.4 The proof theory of higher-order quantification

This section states the major proof-theoretic results about ⇓N proofs and

⇓Lω
2 proofs.

Define ⇓N+ as the proof system resulting from adding the four cut rules

from Figure 7.1 to ⇓N . The following lemma has a straightforward inductive

proof on the structure of ⇓N+ proofs.

9.4 The proof theory of higher-order quantification 193

Lemma 9.11 (Substitution into ⇓N+-proofs). Let Σ be a signature, x be a

variable not declared in Σ, τ be a type, and t be a Σ-term of type τ . If Σ, x :

τ :: Ψ; Γ ⊢ ∆; Υ has an ⇓N+-proof then Σ :: Ψ[t/x]; Γ[t/x] ⊢ ∆[t/x]; Υ[t/x]

has a ⇓N+-proof.

Proposition 9.12 (Substitution into ⇓Lω
2 -proofs). Let Σ be a signature,

x be a variable not declared in Σ, τ be a type, and t be a Σ-term of type

τ . If Σ, x : τ :: Ψ; Γ ⊢ ∆; Υ has an ⇓Lω
2 -proof then Σ :: Ψ[t/x]; Γ[t/x] ⊢

∆[t/x]; Υ[t/x] has a ⇓Lω
2 -proof.

Proof. Assume that Σ, x : τ :: Ψ; Γ ⊢ ∆; Υ has a ⇓Lω
2 -proof. That proof is also

a ⇓N proof. As a result of Lemma 9.11, Σ :: Ψ[t/x]; Γ[t/x] ⊢ ∆[t/x]; Υ[t/x]

has a ⇓N proof. By Proposition 9.9, this same sequent has a ⇓Lω
2 -proof.

There are at least two major reasons why proving the cut-elimination the-

orem for ⇓N+ proofs (Theorem 9.13) cannot be done using the same kind of

proof we gave in Chapter 7. First, the proof system for ⇓Lω
2 and the technical

device of path (see Section 7.1) both rely on the notion of atomic formulas.

Since this notion is not stable under the substitution for variables of higher-

order type, they cannot play a central role in the cut-elimination argument.

Second, the measure of a cut (defined in Section 7.3) will not decrease in the

presence of such substitutions.

The following theorem is the key result concerning ⇓N+ proofs.

Theorem 9.13 (Cut-elimination for ⇓N+-proofs). If a sequent has a ⇓N+

proof, it has a ⇓N proof.

We do not prove this theorem here. Many issues surrounding the permut-

ing of the cut rules with other rules are essentially the same as in Chapter 7.

The major difference is that the termination of a systematic cut-elimination

procedure is significantly harder to achieve. As mentioned in the introduction

of this chapter, the candidats de réductibilité of Girard [1972] can achieve such

a termination argument. Given this theorem, the following cut-admissibility

result follows immediately.

Theorem 9.14 (Cut-admissibility for ⇓Lω
2 -proofs). The four cut rules in

Figure 7.1 are admissible in ⇓Lω
2 .

Proof. Consider the following occurrence of a cut ! rule where both premises

194 Chapter 9. Higher-order quantification

have ⇓Lω
2 -proofs.

Σ :: Ψ; · ⊢ B; Υ Σ :: Ψ, B; Γ ⊢ ∆; Υ

Σ :: Ψ; Γ ⊢ ∆; Υ
cut !

Thus, this endsequent has a ⇓N+ proof since every ⇓Lω
2 proof is a ⇓N+

proof. By Theorem 9.13, this endsequent must also have a ⇓N proof. By

Proposition 9.9, this same endsequent has a ⇓Lω
2 proof. The admissibility of

the other three cut rules in Figure 7.1 follow an analogous argument.

9.5 Examples using quantification of type o

The following are noteworthy equivalences provable in linear logic.

1. The additive units are definable using only higher-order quantification.

⊢ 0 ˛ ∀p.p ⊢ ⊤ ˛ ∃p.p

2. The multiplicative units are definable using higher-order quantification

and multiplicative connectives.

⊢ 1 ˛ ∀p.p ⊸ p ⊢ ⊥ ˛ ∃p.p⊗ p⊥

3. The additive connectives are definable using higher-order quantification,

multiplicative connectives, and exponentials.

⊢ A & B ˛ ∃p. !(p ⊸ A) ⊗ !(p ⊸ B) ⊗ p

⊢ A⊕B ˛ ∀p.(A ⊸ p) ⇒ (B ⊸ p) ⇒ p

It is worth noting that all of these equivalences are between formulas of oppo-

site polarities.

Since it is possible to prove that 1 is equivalent to ∀p.p ⇒ p, we also have

the provability of the formula (∀p.p ⇒ p) ⊸ (∀p.p ⊸ p). Below is the (nearly

complete) proof of a similar implication that instantiates two variables of type

o with the terms ∀p.p ⊸ p and p ⊸ q in the ∀L rules.

po, qo : ·; p ⊢ p

po, qo : ·; · ⊢ ∀p..p ⊸ p
∀R,⊸ R

po, qo : ·; p ⊸ q, p ⊢ q

po, qo : ·; (∀p.p ⊸ p) ⇒ (p ⊸ q), p ⊢ q
⇒ L

po, qo : ·;∀p.∀q.p ⇒ q, p ⊢ q
∀L× 2

· : ·; ∀p.∀q.p ⇒ q ⊢ ∀p.∀q.p ⊸ q
∀R,⊸ R

9.6 Higher-order programming 195

Exercise 9.15. (‡) Let t and s be two Σ-terms of type τ . In ⇓Lω
2 , one

can express the equality of these two terms using the Leibniz equality as

either E1 = ∀P.(Pt ⇒ Ps) or E2 = ∀P.(Pt ⊸ Ps). Prove that these two

formulas are provably equivalent: i.e., provide ⇓Lω
2 -proofs of the sequents

Σ :: E1; · ⊢ E2; · and Σ :: E2; · ⊢ E1; ·.

The higher-order logic program used in Section 5.8 to define the disjunctive

and existential goals can be written as the following ⇓Lω
2 formulas (using

λProlog syntax and its polymorphic typing).

type or o -> o -> o.

type exists (A -> o) -> o.

or P Q :- P.

or P Q :- Q.

exists B :- B T.

9.6 Higher-order programming

The availability of quantification over predicates makes it a simple matter

to specify programs that are often referred to as higher-order programs. Fig-

ure 9.2 contains several examples of higher-order programs using the (poly-

morphic) typing and syntax of λProlog. The other predicates in that figure

can be described and illustrated as follows. (Here, we assume that the logic

program consists of the clauses in Figure 9.2 and Figure 9.3).

1. The formula forevery P L holds if the predicate P holds for every mem-

ber of the list L. For example, forevery (x\ adj x B) [b, e] is prov-

able if and only if B is instantiated with the node d.

2. The formula forsome P L holds if the predicate P holds for some member

of the list L. For example, forsome (x\ adj x c) [b, e] is provable,

while forsome (x\ adj e x) [a, b, c, e] is not provable.

3. mappred P L K succeeds if the corresponding elements of the lists L and

K satisfy the binary predicate P. For example, the formula

mappred adj [a,b,d] L

is provable if and only if L is instantiated with one of the lists

[b, c, c], [b, d, c], [e, c, c], [e, d, c].

4. sublist P L K succeeds if K is a sublist of L and every element of K

satisfies the predicate P. For example, the formula

sublist (x\sigma y\ adj x y) [a,b,c,d,e] K.

196 Chapter 9. Higher-order quantification

type forevery , forsome

(A -> o) -> list A -> o.

type mappred (A -> B -> o) -> list A -> list B -> o.

type sublist (A -> o) -> list A -> list A -> o.

type ref , sym , trans

(A -> A -> o) -> A -> A -> o.

forevery P nil.

forevery P (X::L) :- P X, forevery P L.

forsome P (X::L) :- P X; forsome P L.

mappred P nil nil.

mappred P (X::L) (Y::K) :- P X Y, mappred P L K.

sublist P (X::L) (X::K) :- P X, sublist P L K.

sublist P (X::L) K :- sublist P L K.

sublist P nil nil.

ref R X X.

ref R X Y :- R X Y.

sym R X Y :- R X Y; R Y X.

trans R X Y :- R X Y.

trans R X Z :- R X Y, trans R Y Z.

Figure 9.2: Some simple higher-order logic programs.

kind node type.

type a, b, c, d, e node.

type adj node -> node -> o.

adj a b & adj a e & adj b c & adj b d

& adj d c & adj e d.

Figure 9.3: A small graph given by its adjacency relation.

9.6 Higher-order programming 197

succeeds if and only if K is instantiated with the list [a, b, d, e] or

with any sublist of that list (including the empty list).

5. Let R be a binary predicate on a given type. Then the three binary

predicates rel R, sym R, and trans R denote, respectively, the reflexive,

symmetric, and transitive closures of R. For example, the formula

sublist (x\ trans adj x e) [a,b,c,d,e] K.

succeeds if and only if K is instantiated with [a] or the empty list nil.

Note that the formula (mappred P L K) is an atomic formula since it has

a non-logical constant as its head symbol. Although substitution instances of

this atomic formula remain atomic, it is possible that such instances contain

occurrences of logical constants since substitutions for P can contain logical

constants. Such occurrences of logic constants within atomic formulas are not

possible in the logics we have seen based on first-order quantification.

The concept of tactics and tacticals was introduced by Milner [1979] and

Gordon et al. [1979] as a way to explicitly program in a goal-directed fashion.

Although the first specifications of these concepts were given as higher-order

programs in the ML functional programming language, it was later shown

by Felty and Miller [1988] and Felty [1989, 1993] how the same concepts can

be given a flexible and declarative specification using higher-order logic pro-

grams. We illustrate briefly how these two concepts can be specified using

logic programming.

The structure of goals is given by the signature in Figure 9.4. In many

implementations of tactics, goals are given as lists of primitive goals, where a

list of primitive goals represents their conjunction. In general, however, one

must also have an explicit representation of universally quantified goals. The

signature of the type goal thus contains the constructors trueg to denote the

goal with no sub-tasks, cc to denote the conjunction of two collections of goals,

and allg to denote the explicitly universal quantification of a goal. Finally,

primgoal is a predicate that separates primitive goals from those built from

these three constructors.

A good example of a primitive goal is one that encodes an object-logic

sequent. For example, the signature in Figure 9.5 describes a small first-order

logic (with conjunction, disjunction, implication, universal quantification, and

three predicate constants). In this case, the clause

primgoal (seq Gamma B).

declares that a structure intended to encode the two-sided sequent Γ ⊢ B is a

primitive goal.

A tactic is a binary relation on goals, i.e., a tactic is a predicate of type

goal -> goal -> o. If tac is a tactic, the intended meaning of the goal

tac G Gs is that the primitive goal G can be achieved if all the goals in Gs

198 Chapter 9. Higher-order quantification

kind goal type.

type trueg goal.

type allg (A -> goal) -> goal.

type cc goal -> goal -> goal.

infixr cc 3.

type primgoal goal -> o.

Figure 9.4: The definition of a goal structure.

kind i, fm type.

type q fm.

type p i -> fm.

type r i -> i -> fm.

type and , or , imp fm -> fm -> fm.

type all (i -> fm) -> fm.

type seq list fm -> fm -> goal.

Figure 9.5: An example of a primitive goal.

can be achieved. A tactical is an expression whose arguments can be tactics.

Thus, specifications of tactical are typically higher-order logic programs.

Examples of tactics are the predicates andR, orR, and impR that are spec-

ified in Figure 9.6. The tactic called andR states that in order to achieve the

goal of proving seq Gamma (and B C), one can instead attempt to achieve the

two goals of proving seq Gamma B and seq Gamma C. In this example, tactics

are essentially inference rules.

Tactics can be combined to form other tactics using tacticals. Figure 9.7

presents a few familiar tacticals. The maptac tactical is responsible for apply-

ing a tactic to all the primitive goals within a more complex goal structure.

The orelse tactical specifies the union of two tactics, the then tactical de-

scribes the relational composition (natural join) of two tactics, and repeat

allows for repeated applications of a tactic. The trivial tactic is idtac. For

a complete description of this approach to encoding tactics and tacticals, see

Felty [1993] and Miller and Nadathur [2012].

9.7 Proving that reverse is symmetric

One of the reasons to use logic as the source code for a programming language

is that the actual artifact that is the program should be amenable to direct

manipulation and analysis in ways that might be challenging or impossible in

more conventional programming languages. One method for reasoning directly

9.7 Proving that reverse is symmetric 199

type andR , orR , impR , allR , init goal -> goal -> o.

andR (seq Gamma (and B C)) ((seq Gamma B) cc

(seq Gamma C)).

orR (seq Gamma (or B C)) (seq Gamma B).

orR (seq Gamma (or B C)) (seq Gamma C).

impR (seq Gamma (imp B C)) (seq (B:: Gamma) C).

allR (seq Gamma (all B)) (allg x\ seq Gamma (B x)).

init (seq Gamma B) trueg :- memb B Gamma.

Figure 9.6: Inference rules as primitive tactics.

type maptac (goal -> goal -> o) ->

goal -> goal -> o.

type idtac goal -> goal -> o.

type repeat (goal -> goal -> o) ->

goal -> goal -> o.

type then , orelse (goal -> goal -> o) ->

(goal -> goal -> o) ->

goal -> goal -> o.

maptac Tac trueg trueg.

maptac Tac (I1 cc I2) (O1 cc O2) :- maptac Tac I1 O1 ,

maptac Tac I2 O2.

maptac Tac (allg I) (allg O) :-

pi t\ maptac Tac (I t) (O t).

maptac Tac I O :- primgoal I, Tac I O.

idtac I I.

then Tac1 Tac2 I O :- Tac1 I M, maptac Tac2 M O.

orelse Tac1 Tac2 I O :- Tac1 I O ; Tac2 I O.

repeat Tac I O :- orelse (then Tac (repeat Tac))

idtac I O.

Figure 9.7: The definition of some useful tacticals.

200 Chapter 9. Higher-order quantification

on logic programming involves the cut rule and cut elimination. We give a

first example of such reasoning in this section. We provide several more in

subsequent chapters.

Although much of the motivation for designing logic programming lan-

guages based on linear logic has been to add expressiveness to such languages,

linear logic can also help shed some light on conventional programs. In this

section, we consider the linear logic specification for the reverse of lists and

formally show that it is symmetric.

In Section 5.11, we presented two specifications of the predicate that relates

two lists if the second is the reversal of the first. One of these specifications

used Horn clauses, while the second used hereditary Harrop formulas. Both

specifications use an auxiliary predicate. We now revisit the second of these

specifications.

One way to compute the reverse of a list is illustrated using a pair of lists,

the first initialized to the list we wish to reverse and the second initialized to

be empty. Next, repeatedly move the top element from the first list to the top

of the second list. When the first list is empty, the second list is the reverse of

the original list. For example, the following is a trace of such a computation.

(a :: b :: c :: nil) nil

(b :: c :: nil) (a :: nil)

(c :: nil) (b :: a :: nil)

nil (c :: b :: a :: nil)

To design a specification to capture these dynamics, first, pick a binary relation

rv to denote the pairing of lists above (this predicate will be an auxiliary

predicate to reverse). If we wish to reverse the list L to get K, then start with

the atomic formula (rv L nil) and do a series of backchaining steps using the

clause

∀X.∀P.∀Q.(rv P (X ::Q) ⊸ rv (X ::P) Q)

to get to the formula (rv nil K). Once this is done, K is the result of reversing

L. The entire specification of reverse can be given as the following formula.

∀L.∀K.[∀rv .((∀X.∀P.∀Q.(rv P (X ::Q) ⊸ rv (X ::P) Q)) ⇒
rv nil K ⊸ rv L nil) ⊸ reverse L K]

Note that the clause used for repeatedly moving the top elements of lists is

to the left of an intuitionistic implication (so it can be used any number of

times) while the formula representing the base case of the recursion, namely

(rv nil K), is to the left of a linear implication (thus, it must be used exactly

once). This specification of reverse is similar to the one using hereditary

Harrop formulas in Section 5.11, except that the auxiliary predicate rv is

9.8 Exploiting the hiding of specification details 201

hidden using a higher-order quantifier and that the base case of the recursion

is explicitly treated linearly.

Consider proving that reverse is symmetric: that is, if (reverse L K) is

proved from the above clause, then so is (reverse K L). The informal proof of

this is simple: in the table of pairs above, flip the rows and flip the columns.

What results is a correct computation of reversing, but the start and final lists

have exchanged roles. This informal proof is easily made formal by exploiting

the metatheory of linear logic as follows. Assume that (reverse L K) can be

proved. There is only one way to prove this (backchaining on the above clause

for reverse). Thus the formula

∀rv .((∀X.∀P.∀Q.(rv P (X ::Q) ⊸ rv (X ::P) Q)) ⇒ rv nil K ⊸ rv L nil)

is provable. By Proposition 9.12, we can instantiate this quantifier with any

binary predicate expression, and the result is still provable. So, we choose to

instantiate it with the λ-expression λxλy.(rv y x)⊥. The flip of the columns

is captured by changing the order of the variables x and y between when they

are abstracted and when they are arguments. The flip of the rows arises from

the use of negation. The resulting formula

(∀X.∀P.∀Q.(rv (X ::Q) P)⊥ ⊸ (rv Q (X ::P))⊥) ⇒
(rv K nil)⊥ ⊸ (rv nil L)⊥

can be simplified by using the contrapositive rule for negation and linear im-

plication (Exercise 6.25), and, hence, yields

(∀X.∀P.∀Q.rv Q (X ::P) ⊸ rv (X ::Q) P) ⇒ rv nil L ⊸ rv K nil.

If we now universally generalize on rv, we again have proved the body of the

reverse clause, but this time with the quantifiers for L and K switched. Note

that we have succeeded in proving this fact about reverse without explicit

reference to induction.

9.8 Exploiting the hiding of specification details

Given that logic programs are logical formulas and computation is modeled by

logical deduction, it is natural to expect that we can reason directly on logic

programs in the following way. Let P and P ′ be Lω
2 logic programs such that

Σ :: P; · ⊢ G; · has a ⇓Lω
2 -proof and Σ :: P ′; · ⊢ P ; · has a ⇓Lω

2 -proof for every

P ∈ P (i.e., the program P ′ entails the program P). By repeated application of

the cut-elimination theorem, there is a ⇓Lω
2 -proof for Σ::P ′; · ⊢ G; ·. Although

this syllogism is correct, it’s conclusion is surprisingly weak for at least two

reasons. First, the logic of ⇓Lω
2 does not include induction, a proof technique

generally used to reason about recursive programs. Second, every clause for

202 Chapter 9. Higher-order quantification

every predicate free in program P must be accounted for by program P ′.

For example, assume that these two logic programs provide different ways to

specify the binary relation between lists L and K of natural numbers so that

K is the result of sorting L in increasing order. The two programs could make

use of rather different auxiliary predicates and clauses in order to specify such

sorting. The requirement that all the clauses of all the auxiliary predicates

of P must be entailed by P ′ means that all but trivial differences can exist

between these two programs. At least, that is the conclusion in the first-order

setting where predicates cannot be quantified and hidden. In the higher-order

setting, predicates can be hidden within individual programs, and, as a result,

richer entailments can be expected.

The example that proves that a particular specification of the reverse pro-

gram yields a symmetric relation illustrates how using explicit quantification

over variables of predicate types in a specification can hide details of an im-

plementation. Such hiding then enables avenues for certain simple logical

techniques to be used to reason about such specifications.

To illustrate in another way the usefulness of higher-order quantification

for hiding details, consider again the specification of the reverse predicate

first introduced in Section 5.11 using the three first-order Horn clauses and

two predicates in Figure 9.8. Using higher-order quantification, it is possible

to hide the predicate rev and its two clauses, as in the single formula in

Figure 9.9. The formula uses rev as a local predicate only, and no other

program clauses outside of this clause can invoke this predicate and its code.

Given the universal quantification in this specification, it is possible to

directly manipulate this description of reverse to get a different specifica-

tion of reverse. In particular, assume that reverse L K is proved from the

specification in Figure 9.9. Thus, the body of that clause, namely,

∀rev .[(∀L.(rev nil L L)) ⇒
(∀L.∀M.∀N.∀X. rev M (X ::N) L ⊸ rev (X ::M) N L) ⇒

rev L nil K]

is provable. Since this quantified expression is provable, every instance of it

must be provable (using Proposition 9.12). We then chose to instantiate rev

with

λL.λK.λM.aux K ⊸ rv L M.

Here, we assume that aux and rv are tokens of the appropriate type. Thus,

the following formula must be provable.

(∀L.aux L ⊸ rv nil L) ⇒
(∀L.∀M.∀N.∀X. (aux (X ::N) ⊸ rv M L) ⊸ aux N ⊸ rv (X ::M) L) ⇒

aux nil ⊸ rv L K

9.8 Exploiting the hiding of specification details 203

type reverse list A -> list A -> o.

type rev list A -> list A -> list A -> o.

reverse L K :- rev L nil K.

rev nil L L.

rev (X::M) N L :- rev M (X::N) L.

Figure 9.8: A specification of reverse in fohc.

reverse L K :- pi rev\ (

(pi L\ rev nil L L) =>

(pi L\ pi M\ pi N\ pi X\

rev (X::M) N L :- rev M (X::N) L) =>

rev L nil K).

Figure 9.9: A specification of reverse using higher-order quantification.

reverse L K :- pi rv\ pi aux\ (

(pi L\ rv nil L :- aux L) =>

(pi L\ pi M\ pi N\ pi X\

rv (X::M) L :- acc N, acc (X::N) -o rv M L) =>

aux nil -o rv L K).

Figure 9.10: A specification of reverse in Lω
2 .

(Note that the variables L and K are bound in different ways: implicitly

around the entire clause and explicitly within this clause.) Given that this

formula is provable, the result of universally generalizing on the two new vari-

ables (i.e., attaching the quantifiers ∀rv.∀aux. to this formula) must also be

provable. We can then see that this formula is (logically equivalent) to the

body of the specification of reverse in Figure 9.10. Thus, purely logical ma-

nipulations and the metatheory of ⇓Lω
2 proofs allow us to conclude that if

the atomic formula reverse L K is provable from Figure 9.9 then it is also

provable from Figure 9.10.

Exercise 9.16. Prove the converse of the statement just made. That is,

if the atomic formula reverse L K is provable from Figure 9.10, then it is

also provable from Figure 9.9. Such a proof will likely be an inductive argu-

ment on the structure of ⇓Lω
2 -proofs. Explain why this converse cannot be

proved if the rev predicate variable in the discussion above was instantiated,

instead, with the term λL.λK.λM.aux K ⇒ rv L M .

204 Chapter 9. Higher-order quantification

9.9 Synthetic rules and higher-order logic

The concept of synthetic inference rules introduced in Section 5.7 allowed

replacing L0 formulas of clause order 2 or less with inference rules involving

only atomic formulas (see Exercise 5.37). Although it is possible to extend

the notion of synthetic inference rule to L1 and L2 formulas, extending this

notion to Lω
2 is problematic since neither clause order nor the status of being

atomic is stable under the substitution of higher-order variables. We illustrate

two problems next.

The first problem is that the clausal order of formulas is not stable under

instantiation. Consider, for example, the following simple clause.

type call o -> o

call G :- G.

Using the definition of clausal order in Section 2.4, this formula has order 1.

However, instantiating the variable G in this clause with a formula of order

n results in a clause of order n + 1. Thus, the instantiation of a Horn clause

might no longer be a Horn clause.

To describe the second problem, we first introduce some terminology. We

say that the formula A is a rigid atomic formula if A has a non-logical constant

as its topmost symbol and is a flexible atomic formula if A has a variable as

its topmost symbol. Note that the substitution instance of a rigid atomic

formula is a rigid atomic formula. The second problem arises when the head

of a clause is a flexible atom. In this case, a great deal of nondeterminism can

be introduced into the goal-directed search for proofs. For example, consider

having the clause ∀op.p ⊃ p as a member of the logic program Γ. In the simple

setting of two-sided sequent calculi for intuitionistic logic, the inference rule

Σ :: Γ ⊢ B

Σ :: Γ ⊢ B

is built using ∀L, ⊃ L, and init. Although Mints [1992] has considered such a

repetition rule, its presence in the proof-search setting is not useful. Similarly,

the use of Leibniz equality is also problematic. If a and b are two constants of

type τ , the formula ∀τP.Pa ⊃ Pb can motivate the inference rule

Σ :: Γ ⊢ Pb

Σ :: Γ ⊢ Pa
.

Here, the schema variable P has type τ → o, and, as a result, P can be sub-

stituted by expressions of the form λx.B, where B can be a complex formula

and x may have zero or more occurrences in B. In particular, if x is not free

in B, then this rule is another instance of the above repetition rule. Even if

9.9 Synthetic rules and higher-order logic 205

we were to restrict this rule from being applied when the right-hand side is

an atomic formula, there is much nondeterminism present with this rule. For

example, assume that the right-hand side is the atomic formula A and that

there are n occurrences of the constant b in A. There are 2n terms λx.B such

that (λx.B)b λ-reduces to A.

This issue with having flexible atoms at the head of clauses has led to the

following definitions of higher-order versions of Horn clauses and hereditary

Harrop formulas.

Higher-order Horn clauses These formulas are defined as the D-formulas

in the following definition.

G := t | A | G1 ∧G2 | G1 ∨G2 | ∃x.G
D := Ar | G ⊃ Ar | ∀x.D | D1 ∧D2.

Here, the syntactic variable Ar ranges over rigid atomic formulas. Addition-

ally, all formulas are restricted so that the connectives ⊃ and ∀ are not allowed

within atomic formulas. It is proved in Miller and Nadathur [1986] and Na-

dathur and Miller [1990] that uniform proofs are complete for classical logic for

sequents in which the left-hand sides are D-formulas and the right-hand sides

are G-formulas. Note that the clauses displayed in Figure 9.2 and Figure 9.7

are all examples of higher-order Horn clauses.

Higher-order hereditary Harrop formulas These formulas are defined

as the D-formulas in the following definition.

G := t | A | G1 ∧G2 | G1 ∨G2 | ∀x.G | ∃x.G | D ⊃ G

D := Ar | G ⊃ Ar | ∀x.D | D1 ∧D2.

Again, the syntactic variable Ar ranges over rigid atomic formulas. Addi-

tionally, all formulas are restricted so that the connective ⊃ is not allowed

within atomic formulas. It is proved in Miller et al. [1991] that uniform proofs

are complete for intuitionistic logic for sequents in which the left-hand side

contains D-formulas, and the right-hand side is a single G-formula.

The restriction to rigid atoms in the definition of the higher-order general-

izations of Horn clauses and hereditary Harrop formulas makes it possible to

know how many left-introduction rules are in a left-introduction phase. For

example, if D is a higher-order hereditary formula, then a left-introduction

phase above a sequent of the form Σ :: Ψ; Γ ⇓ D ⊢ ∆; Υ is limited by the shape

of D: in particular, higher-order instantiations during the left-introduction

phase will not affect this shape.

Another consequence of using rigid atomic formulas is that it is possible

to conclude that a given set of higher-order hereditary Harrop formulas must

206 Chapter 9. Higher-order quantification

be consistent in the sense that not just any formula is provable. In particular,

if q is a propositional symbol that does not appear in such a set of formulas,

then q cannot be proved from that set.

9.10 Bibliographic notes

The textbooks by Andrews [1986] and Farmer [2023] provide a good back-

ground in higher-order logics similar to the Simple Theory of Types in Church

[1940]. The implementation of proof search strategies for logics containing

simply typed λ-terms usually starts with the problem of how to unify such

terms. Huet [1975] described the (pre)unification of simply typed λ-terms,

and in Huet [1973b], he also showed how such unification can be incorpo-

rated into a prover based on resolution refutations. Andrews led a long-term

effort to build an automated theorem prover for Church’s Simple Theory of

Types. His system, the TPS theorem-proving system, described in Miller et al.

[1982], Andrews et al. [1986], Andrews et al. [1996] and Andrews et al. [2000]

employed Huet’s unification procedure. Interpreters employing focused proof

search and Huet’s unification procedure have been described for higher-order

Horn clauses (see Nadathur [1987] and Nadathur and Miller [1990]) and for

higher-order hereditary Harrop formulas, the foundations of λProlog (see Na-

dathur and Miller [1988] and Miller and Nadathur [2012]).

It is important to note that the unification of simply typed λ-terms is, in

general, undecidable, and when unifiers are known to exist, there might not

be a most general unifier. If one moves instead to the weaker setting of higher-

order pattern unification introduced in Miller [1991b], one loses expressiveness

but regains the decidability of unification as well as the existence of most

general unifiers for unifiable terms. Both the Isabelle theorem prover (see

Nipkow et al. [2002]) and the Elf implementation (see Pfenning [1991]) of the

LF specification language of Harper et al. [1993] implement unification of typed

λ-calculi. The handbook chapter by Benzmüller and Miller [2014] provides an

overview of different approaches to the automation of higher-order logic.

Finding instantiations for predicate variables during proof search in higher-

order logic is a difficult and largely open problem. Some early steps in that

direction were taken by Bledsoe [1979], Bledsoe and Feng [1993], and Felty

[2000].

Exercise 9.2, which is taken from Baaz and Leitsch [2000], illustrates that

simple higher-order assumptions, such as ∀p.(p ⊃ p), can mask or simulate

cut rules. Benzmüller et al. [2009] show that such cut-simulation can also be

done using other higher-order formulas such as those used by Church [1940]

to formulate the axioms of extensionality and choice.

There are significant challenges to making model-theoretic semantics for

higher-order versions of Horn clauses and hereditary Harrop formula, espe-

9.10 Bibliographic notes 207

cially since the proof systems we have adopted here are not extensional in the

sense that the equivalence ∀τx.px ≡ qx might be provable while the equation

p = q might not be provable. For example, in the proof system ⇓Lω
2 , the

terms λx.px & qx and λx.qx & px are not βη-convertible and, hence, are not

equal. Models dealing with such non-extensional logics have been considered

by Andrews [1971, 1972], Benzmüller et al. [2004], Lipton and Nieva [2018],

and others.

The proof that reverse is symmetric using higher-order instantiations is due

to Miller [1997]. As is argued in Miller and Nadathur [2012], this proof can be

done without reference to linear logic: while the same higher-order substitution

involving negation and the use of contrapositive forces the underlying proof

theory to move from intuitionistic to classical logic, the transformed clauses

are only Horn clauses. As a result, Proposition 5.5 ensures that a classical

logic entailment can be replaced by an intuitionistic logic entailment.

The use of quantification to hide predicates can also be applied to hide the

constructors used to build a given data structure. This approach has been used

proposed by Miller [1989a] and Miller and Nadathur [2012] as a mechanism

for building abstract data types within λProlog.

208 Chapter 9. Higher-order quantification

Chapter10
Specifying computations

using multisets

This chapter provides an extended example that illustrates how higher-order

linear logic and ⇓Lω
2 -proofs can specify some well-known concepts of compu-

tation, including finite automata and pushdown automata. Since all examples

in this chapter are based on the notion of multiset rewriting (developed in

Sections 8.4 and 8.6), we start by providing some simple illustrations of using

multisets to encode data and rewriting to encode computation.

10.1 Numerals as multisets

Figure 5.3 encodes the natural numbers with the following specification.

kind nat type.

type z nat.

type s nat -> nat.

nat z.

nat (s X) :- nat X.

The following specification provides an alternative approach to encoding nat-

ural numbers, this time using atomic formulas.

type zero o.

type succ o -> o.

zero.

succ X :- X.

This second encoding makes zero a proposition denoting zero, and succ en-

codes successor as a predicate. If we let P be this logic program, then the

210 Chapter 10. Specifying computations using multisets

following is easily proved: for every natural number n, · ::P; · ⊢ succn(zero); ·
has a ⇓Lω

2 -proof. Here, of course, succn denotes the n-fold application of

succ. A following variant of this sequent is also provable for all natural num-

bers n.

· :: ∀x.(x ⊸ succ x); zero ⊢ succn(zero); ·

Note that in this sequent, zero occurs in the left-bounded zone.

Let ⋆ be a token of type o. The natural number n can be encoded using

the multiset that consists of ⋆ with multiplicity n. In particular, let ⋆n denote

{⋆, . . . , ⋆} where ⋆ occurs exactly n times. If n is 0, then ⋆n is the empty

multiset.

Exercise 10.1.(‡) Give a ⇓Lω
2 -proof of (∀x.(x ⊸ ⋆ ` x)) ˛ (⊥ ⊸ ⋆).

By reclassifying a couple of tokens from being non-logical constants to

being eigenvariables, the sequent displayed above can be written as follows.

zero : o, succ : o → o :: ∀x.(x ⊸ succ x); zero ⊢ succn(zero); ·

Consider the following instantiations for zero and succ.

zero 7→ ⊥ succ 7→ λw.⋆ ` w.

By using Proposition 9.12 and this substitution, as well as the equivalence

from Exercise 10.1, we have that

· :: ⊥ ⊸ ⋆;⊥ ⊢ ⋆ ` · · · ` ⋆ ` ⊥; ·

must be provable, where there are n occurrences of ⋆ on the right. (Of course,

this simple result could be proved directly without using a higher-order in-

stantiation argument.) This observation provides a separate characterization

of natural-numbers-com-multisets: If ∆ is a multiset of atomic formulas, then

· :: ⊥ ⊸ ⋆;⊥ ⊢ ∆; ·

has a ⇓Lω
2 -proof if and only if ∆ is ⋆n for some natural number n.

Let the non-logical signature Σ0 contain at least the declarations ⋆ : o,

z : nat, s : nat → nat, and f : nat → o, and let P be the following specification.

f z.

f (s z) ` ⋆.

∀x. (f x ⊸ f (s x) ⊸ f (s (s x))).

This logic program specifies the Fibonacci numbers in the following sense. If

∆ is a multiset of atomic Σ0-formulas then the sequent

· :: P; · ⊢ f (sn z),∆; ·

10.2 Letters and words 211

has a ⇓Lω
2 -proof if and only if ∆ is ⋆m where m is the nth Fibonacci number.

Here, the zeroth Fibonacci number is 0, the first is 1, and the remaining are

the sum of the preceding two: e.g., the twelfth Fibonacci is 144.

type star o.

type zero , one , two o.

type suc o -> o.

type plus o -> o -> o.

zero.

one || star.

two || star || star.

three || star || star || star.

suc P || star :- P.

plus P Q :- P :- Q.

Figure 10.1: Using multisets of tokens to do simple arithmetic.

Exercise 10.2. Let P be the logic program in Figure 10.1. Prove that the

following equivalence holds: If ∆ is a multiset of atomic formulas then

· :: P;⊥ ⊢ plus (plus (suc three) two) three,∆; ·

has a ⇓Lω
2 -proof if and only if ∆ is the multiset that contains star with

multiplicity 9.

10.2 Letters and words

Let Λ be a finite and nonempty set. We use this set as an alphabet : that is,

members of this set are the tokens that denote letters used to build words. A

word is a finite list of letters written using concatenation. The empty word is

denoted as ϵ. By Λ∗, we mean the set of all words that can be formed using

the letters in Λ: e.g., the set {a, b}∗ contains ϵ, aba, and baabba.

Letters in Σ are encoded in logic as constants of type o → o and a word

is encoded as a term of type o → o built from the tokens denoting letters:

e.g., λx.(u (v (u x))), λx.(v (v x)), and λx.x denote the words uvu, vv, and ϵ,

respectively. Note that the concatenation of two words w and w′ is given by

function composition at the level of terms, namely, λx.w(w′x). In this chapter,

the set of non-logical symbols Σ0 will generally contain Λ.

212 Chapter 10. Specifying computations using multisets

10.3 Encoding finite automata

Let Q and Λ be two nonempty, finite sets of non-overlapping tokens. Elements

of Q will be used as the states of an automaton, while Λ will be used as the

alphabet of the input language to an automaton. A finite automata F is a

quintuple ⟨Q,Λ, δ, s,F⟩ where Q and Λ are given as above and where

1. s ∈ Q is the initial state,

2. F ⊆ Q is the set of final states (possibly empty), and

3. δ ⊆ Q× Λ∗ ×Q is the set of transitions.

We write p
w−→ q to denote the fact that ⟨p, w, q⟩ ∈ δ. The transition

p
ϵ−→ q is called an ϵ-transition. The three-place relation p

w−→* q is defined

as the smallest relation such that: (i) p
ϵ−→* p holds for all p ∈ Q, and (ii)

if p
u−→ r and r

v−→* q then p
uv−→* q. A word w is accepted by F if there is

a final state f ∈ F such that s
w−→* f . The set L(F) is defined as the set of

words accepted by F .

We now encode finite automata into linear logic in such a way that we use

no primitive type other than o. The members of Q are encoded as constants

of type o, and, as such, will also be members of the signature of non-logical

constants Σ0. A transition relation, δ, will be encoded as the theory T (δ)

composed of one clause of the form

∀x.[q ` x ⊸ p ` (w x)] for every ⟨p, w, q⟩ ∈ δ.

The ϵ-transition p
λx.x−→ q is therefore encoded as the formula ∀x.[q ` x ⊸

p ` x], which is logically equivalence to the formula q ⊸ p. Let T ′(δ) be

the same as T (δ) except that ϵ-transitions are written as q ⊸ p instead of

∀x.[q ` x ⊸ p ` x]. Clearly, T ′(δ) and T (δ) prove the same formulas.

Exercise 10.3. Let p, q ∈ Q. Give ⇓Lω
2 -proofs that ∀x.[q ` x ⊸ p ` x]

entails q ⊸ p and vice versa.

The formulas in T ′(δ) give rise to synthetic inference rules of the following

two kinds.

· :: T ′(δ); Γ ⊢ q,∆; ·
· :: T ′(δ); Γ ⊢ p,∆; ·

⟨p, ϵ, q⟩
· :: T ′(δ); Γ ⊢ q, t,∆; ·

· :: T ′(δ); Γ ⊢ p, (w t),∆; ·
⟨p, w, q⟩

The first of these corresponds to the ϵ-transition p
ϵ−→ q and the second to the

transition p
w−→ q where w encodes a nonempty word. Here, t is some Σ-term

of type o. The following collection of inference rules in L2 justifies the second

10.3 Encoding finite automata 213

of these synthetic rules.

· :: T ′(δ); Γ ⊢ q, t,∆; ·
· :: T ′(δ); Γ ⊢ q ` t,∆; ·

· :: T ′(δ); · ⇓ p ⊢ p; · · :: T ′(δ); · ⇓ (w t) ⊢ (w t); ·
· :: T ′(δ); · ⇓ p ` (w t) ⊢ p, (w t); ·

· :: T ′(δ); Γ ⇓ q ` t ⊸ p ` (w t) ⊢ p, (w t),∆; ·
· :: T ′(δ); Γ ⇓ ∀x.[q ` x ⊸ p ` (w x)] ⊢ p, (w t),∆; ·

· :: T ′(δ); Γ ⊢ p, (w t),∆; ·
decide !

We can now prove that the cut-free ⇓Lω
2 -proofs can faithfully model tran-

sitions within a finite automaton.

Proposition 10.4. Let F = ⟨Q,Λ, δ, s, {f1, . . . , fn}⟩ be a finite automata.

1. The transition p
w−→* q holds if and only if the sequent

· :: T (δ); · ⊢ ∀x.[q ` x ⊸ p ` (w x)]; ·

is provable in ⇓Lω
2 .

2. The word w ∈ L(F) if and only if the sequent

· :: T (δ); · ⊢ ∀x.[(f1 & · · · & fn) ` x ⊸ s ` (w x)]; ·

is provable in ⇓Lω
2 .

Proof. To prove item 1 above, assume that p
w−→* q. We proceed by induction

on the definition of this proposition. Given the base case p
ϵ−→* p, it is trivial

to show that ∀x.[p ` x ⊸ p ` x] is provable. For the inductive case, assume

that there are words u and v such that w is uv and a state r ∈ Q such that

both p
u−→ r and r

v−→* q hold. By the inductive hypothesis, it is the case

that

· :: T (δ); · ⊢ ∀x.[q ` x ⊸ r ` (v x)]; ·

is provable. By invertibility, it must be the case that

x : o :: T (δ); q ` x ⊢ r, (v x); ·

has a ⇓Lω
2 -proof. The desired proof then adds the following synthetic inference

rule plus a right-introduction phase to that proof.

x : o :: T (δ); q ` x ⊢ r, (v x); ·
x : o :: T (δ); q ` x ⊢ p, (u (v x)); ·

⟨p, u, r⟩

· :: T (δ); · ⊢ ∀x.[q ` x ⊸ p ` (u (v x))]; ·

214 Chapter 10. Specifying computations using multisets

To prove the converse of item 1 above, assume that

· :: T (δ); · ⊢ ∀x.[q ` x ⊸ p ` (w x)]; ·

has a ⇓Lω
2 -proof. Since they prove the same formulas, we can replace T (δ)

with T ′(δ) in this sequent. Using the invertibility of right-introduction rules,

we can conclude that the sequent

x : o :: T ′(δ); q ` x ⊢ p, (w x); ·

has a ⇓Lω
2 -proof say Ξ. We proceed by induction on the decide depth of Ξ.

The last inference rule of Ξ is a decidel or decide !. If decidel is used, the focus

must be on q ` x: this only leads to a proof if p and q are the same and w is

λx.x. Thus, p
w−→* q holds. If decide ! is used, this rule must select a formula

in T ′(δ) as its focus. If that formula encodes an ϵ-transition, it is of the form

r ⊸ p for some r ∈ Q. In this case, the proof Ξ ends in the synthetic inference

rule determined by r ⊸ p, that is, Ξ is of the form

Ξ′

x : o :: T ′(δ); q ` x ⊢ r, (w x); ·
x : o :: T ′(δ); q ` x ⊢ p, (w x); ·

⟨p, ϵ, r⟩

By the inductive assumption, Ξ′ encodes r
w−→* q, which together with the

ϵ-transition p
ϵ−→ r yields p

w−→* q. On the other hand, assume that the

focused formula is of the form ∀x.[r ` x ⊸ p ` (u x)] where u is a prefix of

w (meaning that there is a word v such that w is uv) and r ∈ Q. Thus, Ξ is

of the form
Ξ′

x : o :: T ′(δ); q ` x ⊢ r, (v x); ·
x : o :: T ′(δ); q ` x ⊢ p, (u (v x)); ·

⟨p, u, r⟩

The inductive hypothesis ensures that r
v−→* q and, therefore, p

uv−→* q.

To prove point 2 above, assume that w ∈ L(F). Thus, there is an fi
(i ∈ {1, . . . , n}) such that s

w−→* fi. By point 1 above, this implies that

· :: T (δ); · ⊢ ∀x.[fi ` x ⊸ s ` (w x)]; ·

has a ⇓Lω
2 -proof. By invertibility, the sequent

x : o :: T (δ); fi ` x ⊢ s, (w x); ·

also has a ⇓Lω
2 -proof. Given that there is a simple ⇓Lω

2 -proof of

x : o :: ·; (f1 & · · · & fn) ` x ⊢ fi ` x; ·,

10.4 Properties about finite automata 215

the cut rule Figure 7.1 along with the cut-elimination theorem (Theorem 9.13)

yields a proof of x : o :: T (δ); (f1 & · · · & fn) ` x ⊢ s, (w x); ·, which concludes

the forward direction of point 2. To prove the converse, assume that

· :: T (δ); · ⊢ ∀x.[(f1 & · · · & fn) ` x ⊸ s ` (w x)]; ·

has a ⇓Lω
2 -proof. Reading this proof from conclusion to premises, it is a series

of synthetic rules based on formulas selected from T (δ) ending with a decide

rule with the conclusion

x : o :: ·; (f1 & · · · & fn) ` x ⊢ fi ` x; ·.

We can now modify that proof by replacing all occurrences of (f1 & · · · & fn)

with fi and this will give us a proof of

· :: T (δ); · ⊢ ∀x.[fi ` x ⊸ s ` (w x)]; ·

Thus, by point 1, this is equivalent to s
w−→* fi which is also equivalent to

w ∈ L(F).

Exercise 10.5. If we only attempt to compute words that label paths be-

tween two states (as in Proposition 10.4), then we do not need to use the

` connective. Let par be a new constant of type o → o → o. Show how the

formula p ` t can systematically be replaced in T (δ) by the atomic formula

(par p t) in such a way that capturing a transition from p to q by word w is

captured by proving the implication ∀x.[(par q x) ⊸ (par p (w x))]. Prove

also that this encoding task can be reduced further by replacing all occur-

rences of ⊸ with ⇒. The result of such a transformation on T (δ) would

yield a collection of binary clauses, i.e., formulas of the form ∀x̄.[A ⇒ A′],

where A and A′ are atomic formulas. (See also Section 13.5.)

10.4 Properties about finite automata

Once finite automata are defined, one usually attempts to introduce different

versions of such machines (e.g., deterministic finite automata), and to prove

various properties of these various machines and the languages they accept.

Many of those developments could be attempted in this setting, although there

is no guarantee that our proof-theoretic setting would make establishing those

results easier. We can, however, illustrate a few occasions where using the

proof-theoretic setting is interesting or illuminating in this setting.

Since proofs allow for the substitution of eigenvariables and since constants

can be considered eigenvariables within our higher-order logic setting, it is

immediate to prove the following.

216 Chapter 10. Specifying computations using multisets

Let h is a mapping from Λ to Λ∗. By the homomorphic extension of h we

mean a mapping from Λ∗ to Λ∗ (which we also write as h) given by setting

h(u1u2 . . . un) to the concatenation of the words h(u1), h(u2), . . ., h(un).

Proposition 10.6. Let h be a mapping form Λ to Λ∗. If L is a language

accepted by a finite automaton, then the language h(L) = {h(w) | w ∈ L}
is also accepted by a finite automata.

Proof. Let F1 = ⟨Q,Λ, δ, s, {f1, . . . , fn}⟩ be a finite automata that accepts L.

Let Λ be the set of letters {v1, . . . , vn} (n ≥ 1).

We first pick a new alphabet that is essentially a copy of Λ. Let Λ̄ be

the set of letters {v̄1, . . . , v̄n}, all of which are assumed to be new (i.e., not

members of Q or Λ). For w ∈ Λ∗, let w̄ denote the word in Λ̄∗ that results

from relabeling the letters v in w with v̄. Finally, let the mapping h̄ from Λ∗

to Λ̄∗ be defined by h̄(w) = h(w).

Let F2 be the automaton ⟨Q, Λ̄, h̄(δ), s, {f1, . . . , fn}⟩ where its transitions

are given by

h̄(δ) = {p
h̄(w)
−→ q | p w−→ q ∈ δ}.

We now show that F2 accepts the language h̄(L).

Let w ∈ L(F2). Thus, there is m ≥ 0, words w1, . . . , wm in Λ̄∗, and states

p0, . . . , pm such that p0 is s, pm ∈ {f1, . . . , fn}, and the transition pi
wi+1−→ pi+1

is in h̄(δ) (0 ≤ i < n). Thus, there are words {z1, . . . , zn} ⊆ Λ∗ such that

h̄(zi) = wi and pi
zi+1−→ pi+1 is in δ (0 ≤ i < n). Thus, the string z1 · · · zn is

accepted by F1 and h̄(z1 · · · zn) = w. Thus, w ∈ h̄(L(F1)) = h̄(L).

Conversely, assume that w ∈ h̄(L). Thus, there is a word z ∈ L such that

w = h̄(z). By Proposition 10.4, the sequent

· :: T (δ); · ⊢ ∀x.[(f1 & · · · & fn) ` x ⊸ s ` (w x)]; ·

has a ⇓Lω
2 proof. By repeatedly applying Proposition 7.7 with the substitu-

tions v 7→ h̄(v) (v ∈ Λ), we can conclude that

Q, Λ̄ :: T (h̄(δ)); · ⊢ ∀x.[(f1 & · · · & fn) ` x ⊸ s ` (h̄(w) x)]; ·

is provable. (These substitutions can be applied in any order since the letters

in the domain do not appear in the range: this is the reason why the alphabet

Λ̄ was introduced.) Thus, h̄(w) is accepted by F2.

We have now shown that h̄(L) is accepted by the automaton F2. Finally, if

we let F3 be the automaton that is identical to F2 except that all occurrences

of the letter ūi are replaced by ui. It is then the case that h(L) is accepted by

the automaton F3.

10.4 Properties about finite automata 217

Given that this is a rather direct theorem, the use of a proof-theoretic

characterization of finite automata in this proof is rather minor.

Assume that we have a finite automaton in which we have a transition

p
uv−→ q for words u and v. It is an easy matter to modify that automaton

by adding a new state, say r, and by replacing that transition with the two

transitions p
u−→ r and r

v−→ q. At the level of a linear logic specification,

consider the following two formulas.

D1 = ∀x.[q ` x ⊸ p ` (u(v x))]

D2 = ∃r.
[

∀x.[q ` x ⊸ r ` (v x)] ⊗
∀x.[r ` x ⊸ p ` (u x)]

]
Let D′

2 be the formula under the existential quantifier of D2: i.e., D2 is ∃r.D′
2.

The linear implication D2 ⊸ D1 is equivalent in linear logic to ∀r.(D′
2 ⊸ D1).

It is an easy matter to prove this formula since there is a short ⇓Lω
2 proof

of the sequent r : o :: ·;D′
2 ⊢ D1; ·. Thus, by using cut and cut elimination

with our logic specification, any word accepted by the original machine must

be accepted by the modified machine. The converse entailment does not,

however, hold, as is evident from the fact that the formula p ` (u ⊤) is

provable from D2 but not from D1. Although D2 is technically stronger than

D1, inductive arguments about ⇓Lω
2 -proofs in which the structure of atomic

formulas is restricted to be related to sequences of letters can prove such a

converse relation.

Given this result, we can always replace a transition with two or more

letters with two transitions with shorter transitions. If we repeat this process

enough, we can build a machine in which transitions are limited to either a

letter or the empty word. This argument can introduce a restricted form of

finite automata in which the restriction on the relation δ can be changed from

being Q× Λ∗ ×Q to being Q× (Λ ∪ {ϵ}) ×Q.

The finite automata defined here are nondeterministic in the sense from

state p and word w, there can be δ-transitions to several states, say, q1, . . . , qn
(n ≥ 0). As formulas in linear logic, T (δ) can contain the clauses

∀x.[q1 ` x ⊸ p ` wx]

...

∀x.[qn ` x ⊸ p ` wx]

The conjunction of these n formulas (using &) is logically equivalent to the

single formula

∀x.[(q1 ⊕ · · · ⊕ qn) ` x ⊸ p ` (w x)]

Thus, some aspects of nondeterminism within the specification of a finite au-

tomata can be captured using the additive disjunction in such an explicit

fashion.

218 Chapter 10. Specifying computations using multisets

Given that observation, it is certainly possible to consider a variation of

finite automata where this additive disjunction is replaced with an additive

conjunction. That is, one could allow logic specifications such as

∀x.[(q1 & · · · & qn) ` x ⊸ p ` (w x)].

Such a clause would specify that the string wu is accepted starting from p if

u is accepted starting at qi for every i = 1, . . . , n. Variants of such machines

are known as alternating finite automata.

10.5 Encoding pushdown automata

A simple extension to the specification we used for finite automata yields an

encoding of pushdown automata. As in the definition of finite automata, let

Q and Λ be a set of states and an alphabet. Let Ω be an additional set

of tokens to be used as the set of stack symbols: this set is assumed to be

finite and disjoint from Q and Λ. A pushdown automaton F is a sextuplet

⟨Q,Λ,Ω, δ, s,F⟩ where Q, Λ, and Ω are given as above and where

1. s ∈ Q is the initial state,

2. F ⊆ Q is the set of final states (possibly empty), and

3. δ ⊆ Q× Λ∗ × Ω∗ ×Q× Ω∗ is the set of transitions.

We write p, γ
w−→ q, γ′ to denote the fact that ⟨p, w, γ, q, γ′⟩ ∈ δ. The fact

that δ contains the tuple ⟨p, w, γ, q, γ′⟩ indicates that this pushdown automa-

ton can make a transition when (i) the automata is in state p, (ii) the top of

the automata’s stack is γ, and (iii) the input word has w as a prefix. If these

three conditions hold, then the automata can transition to state q, and the

state is changed by dropping the γ prefix (popping symbols from the stack)

followed by concatenating γ′ onto the stack (pushing symbols onto the stack).

Of course, the w prefix on the input string is dropped during this transition.

This informal specification can be made precise by directly encoding it into

linear logic. To do this, we repeat the encoding of state and alphabet symbols

as constants of type o and o → o, respectively. In addition, stack symbols

will also be encoded as constants of type o → o. Furthermore, the transition

relation, δ, is encoded as the theory T (δ) composed of one clause of the form

∀x.∀y.[q ` x ` (γ′y) ⊸ p ` (w x) ` (γ y)]

for every tuple ⟨p, w, γ, q, γ′⟩ ∈ δ. Note the difference between the treatment

of the input string and the stack: when reading this implication from right

to left, the input string does not grow while the stack might become longer.

It is also the case, that w can be λx.x, in which case the input string does

10.6 Bibliographic notes 219

not change during the transition. If γ is empty and γ′ is not empty, then the

stack is treated as a push with the symbols in γ′. Conversely, if γ′ is empty

and γ is not empty, then the stack is treated as a pop of the symbols in γ. If

both γ and γ′ are empty, the stack does not change, and if both γ and γ′ are

not empty, then a push and pop operation occurs simultaneously during this

transition.

In the case that Ω is empty, the only member of Ω∗ is the empty word. In

that case, every transition will be encoded as a clause of the form

∀x.∀y.[q ` x ` y ⊸ p ` (w x) ` y]

which is logically equivalence to the formula

∀x.[q ` x ⊸ p ` (w x)].

In this sense, a pushdown automaton with an empty set of stack symbols is a

finite automaton.

In a complete analogy with finite automata, a word is accepted by the

pushdown automaton ⟨Q,Λ,Ω, δ, s,F⟩ if the following sequent is provable in

linear logic.

T (δ) ⊢ ∀x.∀y.[(f1 & · · · & fn) ` x ` y ⊸ s ` (w x) ` y]

Note that the stack starts empty and must be empty again at the end of an

accepting run.

10.6 Bibliographic notes

The connection between multiset rewriting and Fibonacci numbers has been

developed by Kanovich [2014] to provide new proofs of results in the theory

of additive partitions of natural numbers. Kanovich [1996] has also explored

the use of linear logic to specify various kinds of machine models.

The encoding of words into λ-terms given in Section 10.3 goes back to at

least the proof in Huet [1973a] that third-order unification is undecidable, a

proof that reduces the Post correspondence problem to solving such unification.

An important precursor to linear logic was the work of Lambek [1958,

1988], in which he studied Gentzen’s original sequent calculus but without

any of the structural rules: i.e., he shuns the exchange rule as well as the

weakening and contraction rules. In that setting, the contexts in sequents are

lists and not multisets. A noncommutative variant of linear logic arises in that

setting, and words can be encoded directly as lists of tokens (encoding letters)

of type o instead of type o → o. See the handbook chapter by Moortgat [1996]

for more on this approach to deduction without exchange.

220 Chapter 10. Specifying computations using multisets

Chapter11
Collection analysis for Horn

clauses

In this chapter, we use both proof theory and linear logic to provide a cer-

tain kind of static checking—called collection analysis—of Horn clause logic

programs.

11.1 Introduction

Static analysis of logic programs can provide useful information for program-

mers and compilers. Type checking, an example of a static analysis, is valuable

during the development of code since type errors often represent program er-

rors that are caught at compile time when they are easier to find and fix

than at runtime when they are much harder to locate. Static-type informa-

tion also provides valuable documentation of code since it provides a concise

approximation to what the code does.

To illustrate what is called collection analysis, consider a Horn clause spec-

ification of list sorting that maintains duplicates of elements (see, for example,

Figure 5.6). Part of the correctness of a sort program includes the fact that if

the atomic formula (sort t s) is provable, then s is a permutation of t that is

in order. The proof of such a property is likely to involve inductive arguments

requiring the invention of invariants: in other words, this may not be a prop-

erty that can be inferred statically during compile time. On the other hand, if

the lists t and s are approximated by multisets (that is, if we forget the order

of items in lists), then it might be possible to establish that if the atomic

formula (sort t s) is provable, then the multiset associated to s is equal to the

multiset associated to t. If that is so, then it is immediate that the lists t and

s are, in fact, permutations of one another (in other words, no elements were

dropped, duplicated, or created during sorting). As we shall see, such prop-

222 Chapter 11. Collection analysis for Horn clauses

erties based on using multisets to approximate lists can often be established

statically. As a result, at least part of the correctness of the sort specification

can be established automatically. Besides lists, other data structures, such as

trees, can be approximated by various collections of the items they contain.

Such approximations can provide partial correctness properties of Horn clause

logic programs.

We present a scheme by which such collection analysis can be structured

and automated. Central to this scheme is the use of linear logic as a compu-

tational logic underlying the logic of Horn clauses.

11.2 The undercurrents

Various themes underlie this approach to inferring properties of Horn clause

programs. We list them explicitly below. The rest of this chapter can be seen

as a particular example of how these themes can be developed.

If typing is important, why use only one type system? Types and

other static properties of programming languages have proved important on

several levels. Typing can be useful for programmers: they can offer impor-

tant invariants and code documentation. Compilers can also use static anal-

ysis to uncover useful structures that allow compilers to make choices that

can improve execution. Although compilers might use multiple static analy-

sis regimes, programmers do not usually have convenient access to multiple

static analyses for the code they are composing. Sometimes, a programming

language provides no static analysis, as is the case with Lisp and Prolog.

Other programming languages offer exactly one typing discipline, such as the

polymorphic typing disciplines of Standard ML and λProlog. It seems clear,

however, that such code analysis, if it can be done quickly and incrementally,

might have significant benefits for programmers while writing code. For exam-

ple, a programmer might find it valuable to know that a particular recursive

program has linear or quadratic runtime complexity or that a particular re-

lation defines a function. An open set of properties and analysis tools is an

interesting direction for designing a programming language. The collection

analysis we discuss here could be just one such analysis tool.

Constants and eigenvariables During the search for cut-free proofs, eigen-

variables act as scoped constant . Once an eigenvariable is introduced into a

proof, it does not vary. When eliminating cut rules, it is the case that eigen-

variables are instantiated (i.e., they act as variables): see Propositions 5.25

and 7.7. Thus, within cut-free proofs, the difference between a constant and an

eigenvariables is really only one of scope: a constant has a global scope, while

an eigenvariable has scope only within the subproof into which it is introduced

11.3 Abstraction and substitution in proof theory 223

(using the ∀R rule). This scoped nature of constants has also been hinted at

by the introduction of three different kinds of signatures in Section 2.4: the

signature of the logical connectives used in a logic is written as Σ−1, the sig-

nature of non-logical constants used in logic programs is written as Σ0, and

the part of sequents used to bind eigenvariables is usually written as Σ. In a

higher-order setting, it is possible to move all the constants in Σ0 into Σ. In

this chapter, we shall use the substitution of non-logical constants in order to

“split the atom:” for example, by substituting for the predicate p in the atom

p(t1, . . . , tn), we replace that atom with a formula, which, in this chapter, will

be a linear logic formula.

Linear logic underlies computational logic As we have illustrated re-

peatedly in this book, linear logic is able to explain the proof theory of various

logic programming languages, even those that were not originally conceived

as being built on linear logic. Linear logic is also able to provide natural

means to reason about resources, such as items in multisets and sets. Thus,

linear logic will allow us to sit within one declarative framework to describe

both usual logic programming as well as “sub-atomic” reasoning about the

resources implicit in the arguments of predicates.

11.3 Abstraction and substitution in proof theory

We now outline three ways to instantiate items appearing within the sequent

calculus.

Substituting for types The primitive type o is fixed in this book as the

type used by logical formulas. All other primitive types can be considered non-

logical since these are provided when one specifies logic programs. We shall

allow for the formal substitution of non-logical primitive types with some

simple type. It is an easy matter to show that if one takes a proof with a

primitive type constant σ and replaces it everywhere with some type, say,

τ , one gets another valid proof. Since we have used polymorphic typing for

lists in this book, we shall consider a particular instance of the list type, e.g.,

(list nat) as a primitive type.

Substituting for non-logical constants Assume that the following se-

quent has a ⇓Lω
2 -proof.

Σ, p : τ :: D1, D2,Γ; · ⊢ p(t1, . . . , tm); ·,

Here, assume that the type τ is a predicate type (i.e., it is of the form τ1 →
· · · → τm → o) and where p appears in, say, D1 and D2 and in no formula

224 Chapter 11. Collection analysis for Horn clauses

of Γ. Let θ be the substitution [p 7→ λx1 . . . λxm.S], where S is formula (i.e.,

a term of type o) over the signature Σ ∪ {x1, . . . , xm}. By an application of

Proposition 7.7, there is a ⇓Lω
2 -proof also of

Σ :: D1θ,D2θ,Γ; · ⊢ S[t1/x1, . . . , tm/xm]; ·.

As this example illustrates, it is possible to instantiate a predicate (here, p)

with an abstraction of a formula (here, λx1 . . . λxm. S). Such instantiations

carry a provable sequent to a provable sequent. Depending on the structure

of the formula S, the formula Diθ may have a complicated logical structure

even if Di is simply a first-order Horn clause.

Substituting for assumptions An instance of the cut rule is the following.

Σ :: Γ; · ⊢ C; · Σ :: Γ, C; · ⊢ B; ·
Σ :: Γ; · ⊢ B; ·

cut !

This inference rule (especially when associated with the cut-elimination pro-

cedure) provides a way to merge (substitute) the proof of a formula (here, C)

with the use of that formula as an assumption. For example, consider the

following situation. Continuing the example above, assume that we can prove

Σ :: Γ; · ⊢ D1θ; · and Σ :: Γ; · ⊢ D2θ; ·

Using two instances of the cut rule, the proofs of these sequents, and the cut-

elimination theorem, it is possible to obtain a cut-free proof of the sequent

Σ :: Γ; · ⊢ S[t1/x1, . . . , tm/xm]; ·.

Thus, by a series of instantiations, it is possible to move from a proof of

Σ, p : τ :: D1, D2,Γ; · ⊢ p(t1, . . . , tm); ·

to a proof of

Σ :: Γ; · ⊢ S[t1/x1, . . . , tm/xm]; ·.

We shall use this style of reasoning several times in this chapter. Such reason-

ing will allow us to replace the atomic formula p(t1, . . . , tm) with the formula

S[t1/x1, . . . , tm/xm] and to transform proofs of that atom into proofs of this

new formula. In what follows, the formula S will be a linear logic formula that

provides an encoding of some judgment about the data structures encoded in

the terms t1, . . . , tm.

11.4 Multiset approximations 225

11.4 Multiset approximations

From the purposes of this chapter, a multiset expression is a formula in linear

logic built from the predicate symbol item (denoting the singleton multiset),

the linear logic multiplicative disjunction ` (for multiset union), and the unit

⊥ for ` (used to denote the empty multiset). We shall also allow variables

of type o to be used to denote a (necessarily open) multiset expression. An

example of an open multiset expression is item (f X) ` ⊥ ` Y , where Y

is a variable of type o, X is a first-order variable, and f is some first-order

term constructor. A closed multiset expression denotes an actual multiset that

arises from collecting the arguments of all items in it. If S is a closed multiset

expression, we write ⌜S⌝ to denote this multiset of atomic formulas denoted

by S. Thus, ⌜item (f a) ` ⊥ ` item a ` item a⌝ is the multiset {a, a, (f a)}.

Let S and T be two multiset expressions. The two multiset judgments

that we wish to capture are multiset inclusion, written as S ⊑ T , and equality,

written as S
m
= T . We use the syntactic variable ρ to range over these two

judgments, which are formally binary relations of type o → o → o. A multiset

statement is a formula of the form

∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

where the quantified variables x̄ are either first-order or of type o and formulas

S0, T0, . . . , Sn, Tn are possibly open multiset expressions.

If S and T are closed multiset expressions, then we write |=m S ⊑ T

whenever ⌜S⌝ is contained in ⌜T⌝, and we write |=m S
m
= T whenever the

multisets ⌜S⌝ and ⌜T⌝ are equal. Similarly, we write

|=m ∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

if for all closed substitutions θ such that |=m (Siθ) ρi (Tiθ) for all i = 1, . . . , n,

it is the case that |=m (S0θ) ρ0 (T0θ).

Assume that S and T are closed multiset expressions. The following are

proved by simple inductions and references to the invertibility of `R and ⊥R

(see Exercise 8.1).

1. The following are equivalent: (a) the judgment |=ms S
m
= T holds, (b)

⌜S⌝ and ⌜T⌝ are the same multiset, (c) T ⊸ S is provable, (d) S ⊸ T

is provable, and (e) S ˛ T is provable.

2. The following are equivalent: (a) the judgment |=ms S ⊑ T holds, (b)

⌜T⌝ is a multiset of the form ⌜S⌝∪∆, for some multiset ∆ of item-atoms,

and (c) the formula S ` 0 ⊸ T is provable.

The following proposition is central to our use of linear logic to establish

multiset statements for Horn clause programs.

226 Chapter 11. Collection analysis for Horn clauses

Proposition 11.1. Let S0, T0, . . . , Sn, Tn (n ≥ 0) be multiset expressions,

all of whose free variables are in the list of variables x̄. For each judgment

s ρ t we write s ρ̂ t to denote (s ` 0 ⊸ t) if ρ is ⊑ and s ˛ t if ρ is
m
=. If

∀x̄[S1 ρ̂1 T1 & . . . & Sn ρ̂n Tn ⇒ S0 ρ̂0 T0] (∗)

is provable in linear logic, then

|=ms ∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

Proof. Assume that the formula (∗) is provable in linear logic. Let θ be a

closed substitution such that |=m (Siθ) ρi (Tiθ) for all i = 1, . . . , n. By the

observations above, we have ⊢ (Siθ) ρ̂i (Tiθ) for all i = 1, . . . , n. Using the

provability of (∗) and cut-elimination, we conclude that ⊢ (S0θ) ρ̂0 (T0θ) and,

hence, |=ms (S0θ) ρ̂0 (T0θ).

This proposition shows that linear logic can infer valid multiset statements.

Note that the converse does not hold: the statement

∀x∀y.(x ⊑ y) & (y ⊑ x) ⇒ (x
m
= y)

is valid, but its translation into linear logic is not provable.

To illustrate how deduction in linear logic can establish the validity of

a multiset statement, consider the first-order Horn clause program in Fig-

ure 11.1. Three predicates—append, split, sort—are defined in that figure,

while two other predicates—leq, gr—denote order relations, are apparently

defined elsewhere.

If we think of lists as collections of items, then we might want to check that

the sort program, as written, does not drop, duplicate, or create any elements.

That is, if the atom (sort s t) is provable then the multiset of items in the

list s is equal to the multiset of items in the list t. If this property holds then

t and s are lists that are permutations of each other: of course, this does not

say that it is the correct permutation but this more simple fact is one that, as

we show, can be inferred automatically.

Computing this property of our example logic programming follows the

following three steps.

First, we provide an approximation of lists using multiset: more precisely,

as formulas denoting multisets. The first step, therefore, must be to substi-

tute list nat with o in the signature of Figure 11.1. Next we map the list

constructors into linear logic expressions using the substitution

nil 7→ ⊥, :: 7→ λxλy. item x ` y.

11.4 Multiset approximations 227

type append list nat -> list nat -> list nat -> o.

type sort list nat -> list nat -> o.

type split nat -> list nat ->

list nat -> list nat -> o.

type leq nat -> nat -> o.

type gr nat -> nat -> o.

append nil K K.

append (X::L) K (X::M) :- append L K M.

split X nil nil nil.

split X (A::R) (A::S) B :- leq A X, split X R S B.

split X (A::R) S (A::B) :- gr A X, split X R S B.

sort nil nil.

sort (F::R) S:- split F R Sm B, sort Sm SS , sort B BS ,

append SS (F::BS) S.

Figure 11.1: Some Horn clauses for specifying a sorting relation.

append 7→ λxλyλz. (x ` y) ˛ z

split 7→ λuλxλyλz. (y ` z) ˛ x

sort 7→ λxλy. x ˛ y

leq 7→ λxλy. 1

gr 7→ λxλy. 1

Figure 11.2: An instantiation for various predicate symbols.

∀K(⊥`K ˛ K)

∀X,L,K,M(L`K ˛ M) ⇒ (itemX`L`K ˛ itemX`M)

∀X(⊥`⊥ ˛ ⊥)

∀X,A,B,R, S.(S`B ˛ R) ⇒ 1 ⇒ (item A`S`B ˛ item A`R)

∀X,A,B,R, S.(S`B ˛ R) ⇒ 1 ⇒ (S` item A`B ˛ item A`R)

(⊥ ˛ ⊥)

∀F,R, S, Sm,Bg, SS,BS.

[(Sm`B ˛ R) & (Sm ˛ SS) & (B ˛ BS) &

(SS` item F `BS ˛ S)] ⇒
(item F `R ˛ S)

Figure 11.3: The result of instantiating these various predicates.

228 Chapter 11. Collection analysis for Horn clauses

Under such a mapping, the list (1::3::2::nil) is mapped to the multiset

expression item 1 ` item 3 ` item 2 ` ⊥.

Second, we associate with each predicate in Figure 11.1 a multiset judg-

ment that encodes an invariant concerning the multisets denoted by the pred-

icate’s arguments. For example, if (append r s t) or (split u t r s) is provable

then the multiset union of the items in r with those in s is equal to the multiset

of items in t, and if (sort s t) is provable then the multisets of items in lists

s and t are equal. This association of multiset judgments to atomic formulas

can be achieved formally using the substitutions in Figure 11.2. The pred-

icates leq and gr (for the least-than-or-equal-to and greater-than relations)

relate numbers and not the items being collected so that they are substituted

with the trivial tautology 1. Figure 11.3 presents the result of applying these

mappings to Figure 11.1.

Third, we must now attempt to prove each of the resulting formulas. In

the case of Figure 11.3, all the displayed formulas are trivial theorems of linear

logic.

Having taken these three steps, we now claim that we have proved the

intended collection judgments associate with each of the logic programming

predicates above: in particular, we have now shown that our particular sort

program computes a permutation.

Exercise 11.2.(‡) Use the same kind of argument to prove that the stan-

dard Horn clause encoding of reverse (given below) yields a permutation of

its elements.

reverse L K :- rev L nil K.

rev nil L L.

rev (X::M) N L :- rev M (X::N) L.

11.5 Formalizing the method

The formal correctness of this three stage approach is easily justified given the

substitution properties we presented in Section 11.3 for the sequent calculus

presentation of linear logic.

Let Γ denote a multiset of formulas that contains those in Figure 11.1.

Let θ denote the substitution described above for the type (list nat), for

the constructors nil and ::, and for the predicates in Figure 11.1. If Σ is

the signature for Γ then split Σ into the two signatures Σ1 and Σ2 so that Σ1

is the domain of the substitution θ and let Σ3 be the signature of the range

of θ (in this case, it just contains the constant item). Thus, Γθ is the set of

formulas in Figure 11.3.

Assume now that Σ1,Σ2; Γ ⊢ sort(t, s) is provable. Given the discussion

11.6 Set approximations 229

in Section 11.3, we know that

Σ1,Σ3; Γθ ⊢ tθ ˛ sθ

is provable. Since the formulas in Γθ are provable, we can use substitution

into proofs (using the cut rule) to conclude that Σ1,Σ3; ⊢ tθ ˛ sθ. Given

Proposition 11.1, we can conclude that |=m tθ
m
= sθ: that is, that tθ and sθ

encode the same multiset.

Consider the following model-theoretic argument for establishing similar

properties of Horn clauses. Let M be the model that captures the invariants

that we have in mind. In particular, M contains the atoms (append r s t) and

(split u t r s) if the items in the list r added to the items in list s are the

same as the items in t. Furthermore, M contains all closed atoms of the form

(leq t s) and (gr t s), and closed atoms (sort s t) where s and t are lists that

are permutations of one another. One can now show that M satisfies all the

Horn clauses in Figure 11.1. Due to the soundness of first-order classical logic,

any atom provable from the clauses in Figure 11.1 must be true in M. By the

construction of M, the desired invariant holds for all atoms proved from the

program.

The approach suggested here—using linear logic and deduction—remains

syntactic and proof theoretic. In particular, deduction within linear logic

replaces showing that a model satisfies a Horn clause.

11.6 Set approximations

The method just described for using multisets to reason about list structures

can be modified to reason about sets instead. In particular, we shall switch

from relying on the multiplicative connective ` to the additive connective &.

In particular, the set {x1, . . . , xn} can be encoded as the formula item x1 &

· · · & item xn.

A set expression is a formula in linear logic built from the predicate symbol

item (denoting the singleton set), the linear logic additive disjunction & (for

set union), and the unit ⊤ for & (used to denote the empty set). We shall also

allow a predicate variable (a variable of type o) to denote a (necessarily open)

set expression. An example of an open set expression is (item (f X)) &⊤&Y ,

where Y is a variable of type o, X is a first-order variable, and f is some

first-order term constructor. A closed set expression denotes an actual set

that arises from collecting the arguments of all items in it. If S is a closed

set expression, we write ⌞S⌟ to denote the set of atomic formulas in S. Thus,

⌞item (f a) & ⊤ & item a⌟ is the set {a, (f a)}.

Let S and T be two set expressions. The two set judgments we wish to

capture are set inclusion, written as S ⊆ T , and set equality, written as S
s
= T .

230 Chapter 11. Collection analysis for Horn clauses

split X nil nil nil.

split X (X::R) S B :- split X R S B.

split X (A::R) (A::S) B :- lt A X, split X R S B.

split X (A::R) S (A::B) :- gr A X, split X R S B.

Figure 11.4: Splitting a list while dropping duplicates.

∀X.((itemX & ⊤) ⇔ (itemX & ⊤ & ⊤))

∀X,B,R, S. ((itemX & R) ⇔ (itemX & S & B)) ⇒
((itemX & (itemX & R)) ⇔ (itemX & S & B))

∀X,A,B,R, S. 1 & ((itemX & R) ⇔ (itemX & S & B)) ⇒
((itemX & (item A & R)) ⇔ (itemX & item A & S & B))

∀X,A,B,R, S. 1 & ((itemX & R) ⇔ (itemX & S & B)) ⇒
((itemX & (item A & R)) ⇔ (itemX & S & item A & B))

Figure 11.5: The set statements produced by the split program above.

We shall use the syntactic variable ρ to range over these two judgments, which

are formally binary relations of type o → o → o. A set statement is a formula

of the form

∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

where the quantified variables x̄ are either first-order or of type o and formulas

T0, S0, . . . , Tn, Sn are possibly open set expressions.

If S and T are closed set expressions, we write |=s S ⊆ T whenever ⌞S⌟ ⊆
⌞T⌟ and |=s S

s
= T whenever the sets ⌞S⌟ and ⌞T⌟ are equal. Finally, we

write

|=s ∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

if for all closed substitutions θ such that |=s (Siθ) ρi (Tiθ) for all i = 1, . . . , n,

it is the case that |=s (S0θ) ρ0 (T0θ).

Assume that S and T are closed set expressions. It is easy to prove (using

the invertibility of &R and ⊤R) that the judgment |=s S ⊆ T holds if and

only if the formula T ⊸ S is provable. Notice also that T ⊸ S is provable

in linear logic if and only if T ⇒ S is provable in linear logic. Similarly,

|=s S
s
= T holds if and only if the formula T ˛ S is provable in linear logic.

Also, T ˛ S is provable if and only if T ⇔ S is provable. Here, we abbreviate

(B ⇒ C) & (C ⇒ B) by B ⇔ C.

For a simple example of using sets as approximations, consider modifying

the sorting program provided before so that duplicates are not kept in the

11.7 Automation of analysis 231

sorted list. We achieve this modification by replacing the previous specification

for splitting a list with the clauses in Figure 11.4. That figure contains a new

definition of splitting that contains three clauses for deciding whether or not

the pivot for the splitting X is equal to, less than (using the lt predicate),

or greater than the first member of the list being split. Using the following

substitutions for predicates

append 7→ λxλyλz. (x & y) ⇔ z

split 7→ λuλxλyλz. (item u & x) ⇔ (item u & y & z)

sort 7→ λxλy. x ⇔ y

(as well as the trivial substitution for lt and ge), we obtain new linear logic

formulas: those formulas arising from the clauses for split are in Figure 11.5.

By proving that those formulas are all linear logic theorems, we show that

sort relates two lists only if the same set approximates those lists.

The following proposition is analogous to Proposition 11.1.

Proposition 11.3. Let S0, T0, . . . , Sn, Tn (n ≥ 0) be set expressions all of

whose free variables are in the list of variables x̄. For each judgment s ρ t

we write s ρ̂ t to denote t ⇒ s if ρ is ⊆ and t ⇔ s if ρ is
s
=. If

∀x̄[S1 ρ̂1 T1 & . . . & Sn ρ̂n Tn ⇒ S0 ρ̂0 T0]

is provable in linear logic, then

|=s ∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

Proof. We only need to consider the case where the judgment ρ is ⊆, since
s
= is a conjunction of two inclusion judgments. The proof here is similar

and simpler than for Proposition 11.1 and the observation that the judgment

|=s S ⊆ T holds if and only if the sequent · :: ·;T ⊢ S; · has a ⇓Lω
2 -proof.

Lists can be approximated by sets by using the following substitution:

nil 7→ ⊤, :: 7→ λxλy. item x & y.

Under such a mapping, the list (1::2::2::nil) is mapped to the set expres-

sion item 1 & item 2 & item 2 & ⊤. This expression is equivalent (˛) to the

set expression item 1 & item 2.

11.7 Automation of analysis

We describe how to automate proving the set and multiset statements de-

scribed in Propositions 11.1 and 11.3.

232 Chapter 11. Collection analysis for Horn clauses

j ∈ I

R | &i Ai ⊢ Aj
&L

{R | D ⊢ Ai | i ∈ I}
R | D ⊢ &i∈IAi

&R

R, B ⇒ (&i∈IAi) | D ⊢ B j ∈ I

R, B ⇒ (&i∈IAi) | D ⊢ Aj
BC

The schematic variable A ranges over with propositional variables or

formulas of the form item t, for some term t. A set expression can be

written as &i∈IAi for some finite index set I. If that index set is the

empty set, then this expression denotes ⊤.

Figure 11.6: Specialized proof rules for proving set statements.

We first consider the treatment of set statements. Note that in this case,

there is no loss of generality if we only consider the subset judgment since set

equality can be expressed as two inclusions. Figure 11.6 contains a small proof

system that can decide if a set expression is provable. This proof system uses

sequents of the form R | S ⊢ T where S and T are set expressions and where

R is a multiset of set judgments (inclusions).

Proposition 11.4. Let S0, T0, . . . , Sn, Tn (n ≥ 0) be set expressions, all of

whose free variables are in the list of variables x̄. The formula

∀x̄[(S1 ⇒ T1) & . . . & (Sn ⇒ Tn) ⇒ (S0 ⇒ T0)]

is provable in linear logic if and only if the sequent

S1 ⇒ T1, . . . , Sn ⇒ Tn | S0 ⊢ T0

is provable using the proof system in Figure 11.6.

Proof. Given a proof using the rules in Figure 11.6, a proof in ⇓Lω
2 can easily

be constructed. The completeness of that proof system also follows simply

from the completeness of ⇓Lω
2 (Proposition 7.18). Note that this proof system

treats the quantified variables x̄ in the linear logic formula above as constants.

It is easy to note that proof search using the rules in Figure 11.6 is de-

cidable. In particular, when one attempts to find a proof of a sequent by

searching from conclusion to premise, the left-hand side of sequents does not

change, and only a finite number of atomic right-hand sides can appear. Thus,

any looping proof search can be terminated.

11.7 Automation of analysis 233

Γ | S ⊢ ∆

Γ | S ⊢ ⊥,∆
⊥R

Γ | S ⊢ T1, T2,∆

Γ | S ⊢ T1 ` T2,∆
` R

Γ | S ⊢ B,∆

Γ | S ⊢ A1, . . . , An,∆
BC

· | S ⊢ ∆

Γ | S ⊢ ∆
decide

· | T1 ⊢ ∆1 · | T2 ⊢ ∆2

· | T1 ` T2 ⊢ ∆1,∆2
`L

· | ⊥ ⊢ · ⊥L · | 0 ⊢ ∆
0L · | A ⊢ A

init

The schematic variable A ranges over atomic formula (i.e., propositional

variables or formulas of the form item t, for some term t). The decide

and BC rules have the proviso that the right side of the conclusion

contains only formulas that are either atomic or 0. Additionally, the

BC inference rule is constrained so that n ≥ 0 and Γ contains the

formula B ⊸ (A1 ` · · · ` An).

Figure 11.7: Specialized proof rules for proving multiset statements.

The proof system in Figure 11.7 can characterize the structure of proofs

of the linear logic encoding of multiset statements. Let

∀x̄[S1 ρ̂1 T1 & . . . & Sn ρ̂n Tn ⇒ S0 ρ̂0 T0]

be the translation of a multiset statement into linear logic. The provability of

this formula can be reduced to attempting to prove S0 ρ̂0 T0 from assumptions

of the form (B1 ` · · · ` Bm) ⊸ (A1 ` · · · ` An), where A1, . . . , An are

atomic, and B1, . . . , Bm are atomic or 0.

Proposition 11.5. Let S0, T0, . . . , Sn, Tn (n ≥ 0) be multiset expressions,

all of whose free variables are in the list of variables x̄. The formula

∀x̄[(S1 ⊸ T1) & . . . & (Sn ⊸ Tn) ⊸ (S0 ⊸ T0)]

is provable in linear logic if and only if the sequent

S1 ⊸ T1, . . . , Sn ⊸ Tn | S0 ⊢ T0

is provable using the proof system in Figure 11.7.

Proof. Since the proof system in Figure 11.7 is essentially the focused proof

system for ⇓Lω
2 , soundness and completeness follow from the soundness and

completeness of the ⇓Lω
2 proof system.

234 Chapter 11. Collection analysis for Horn clauses

Note that the proofs using the rules in Figure 11.7 are straight-line proofs

with no branching until the point where the decide inference rule is used. Dur-

ing the search for proofs, the left-hand side of sequents remains constant during

this non-branching part, but the right-hand side captures multiset rewriting

based on the rewrite rules encoded by the left-unbounded zone. Given this

observation, this proof system captures multiset rewriting and, since such

rewriting can easily encode the reachability problem of Petri Nets (as shown

in Esparza and Nielsen [1994] and Leroux and Schmitz [2019]), the complexity

of proving judgments in this logic has a TOWER lower bound by a result in

Czerwiński et al. [2020]. It is likely that in the context of multiset collection

analysis of Horn clause representing actual Prolog programs, the proof system

in Figure 11.7 is more effective than this lower bound suggests.

11.8 List approximations

Collection analysis can be used with other structures than the lists structures

we illustrated in Sections 11.4 and 11.6. For example, a binary tree might be

approximated by a collection of its leaves. In such a setting, lists themselves

might be a useful structure for collecting together items: that is, we might

consider using lists of items instead of multisets and sets of items. Since lists

have more structure than sets and multisets, encoding and reasoning with

them is more involved. We only illustrate their possible encoding and use

here.

Since the order of elements in a list is important, encoding lists into linear

logic must involve a connective that is not commutative. Linear implication

provides a good candidate for encoding the order used in lists. For example,

the list (a::b::nil) can be encoded as the formula

(((⊥ ⊸ p) ⊸ item b) ⊸ p) ⊸ item a

for some (fixed) propositional constant p. This formula is equivalent to

item a ` (p⊥ ⊗ (item b ` p⊥)).

The example above suggests that lists and list equality can be captured

directly in linear logic using the following encoding:

nil 7→ λl.⊥ :: 7→ λxλRλl. ((R l) ⊸ l) ⊸ item x

The encoding of the list (a::b::nil) is given by the λ-abstraction

λl.(((⊥ ⊸ l) ⊸ item b) ⊸ l) ⊸ item a.

The following proposition can be proved by induction on the length of lists.

11.9 Bibliographic notes 235

Proposition 11.6. Let s and t be two lists (built using nil and ::) and

let S and T be the translation of those lists into expressions of type o → o

via the substitution above. Then ∀l.(Sl) ˛ (T l) is provable in linear logic

if and only if s and t are the same list.

This presentation of lists can be degraded to multisets simply by applying

the translation of a list to the formula ⊥. For example, applying the translation

of (a::b::nil) to ⊥ yields the formulas

(((⊥ ⊸ ⊥) ⊸ item b) ⊸ ⊥) ⊸ item a,

which is linear logically equivalent to item a ` item b.

Given this presentation of lists, there appears to be no simple combinator

for, say, list concatenation, and, as a result, there is no direct way to express

the judgments of prefix, suffix, and sublist. Thus, beyond equality of lists (by

virtual of Proposition 11.6) there seem to be few natural judgments that can

be stated for lists.

11.9 Bibliographic notes

Probably the most common form of static analysis of logic programs is typing.

Polymorphic typing is available in λProlog: see Nadathur and Miller [1988]

and Nadathur and Pfenning [1992]. Various other forms of typing have also

been explored for logic programming languages: see Pfenning [1992] for a

collection of papers on this topic. The Ciao system preprocessor described in

Hermenegildo et al. [2005] allows a programmer to write various properties

about code that the preprocessor attempts to verify statically.

In Section 11.8, the linear logic formula used to represent a list could be

viewed as an asynchronous process that alternates between the output of list

elements and the input of a control token. See Chapter 12 for more on encoding

asynchronous processes in linear logic in this way.

In the case of determining the validity of a set statement, the use of linear

logic here appears to be rather weak when compared to the large body of

results for solving set-based constraint systems: see Aiken [1994] and Pacholski

and Podelski [1997].

This chapter is based on two papers by Miller [2006, 2008a].

236 Chapter 11. Collection analysis for Horn clauses

Chapter12
Encoding security protocols

By extending the encoding of multiset rewriting in linear logic that was pre-

sented in Section 8.6, we find a natural setting to encode some features of

communicating processes. By exploiting a mild form of higher-order quantifi-

cation, we can also capture some aspects of communicating securely over a

public communication structure.

12.1 Communicating processes

The left side of Figure 12.1 depicts a common view of a data structure based

on pointers. If we have access to the pointer in the top left corner, then we

also have access to both resource A and resource B (computer memory serves

as a good example of a resource). Viewed in this way, the pair of pointers to

A and B exhibits a similarity to linear logic’s ⊗ conjunction. Naturally, it is

tempting to apply linear logic’s negation to this diagram and the conjunction

to obtain a dualized representation of this fundamental resource characteristic.

To this end, consider the right side of the figure. Here, the arrows have been

inverted, and the static resource (something that is accessed) has been dual-

ized into a process (the entity that performs the accessing). The operational

interpretation of this right-hand diagram is that two processes, P and Q, con-

verge (synchronize) at the ` symbol and are then replaced by a new process.

This interpretation precisely aligns with the intended meaning of backchaining

on a clause of the form

P ` Q › R,

where R represents the process resulting from the interaction between P and

Q. Therefore, the ` connective signifies a location, a forum, where processes

can interact. This aspect of ` is the origin of the name “Forum” for the

programming language based on the ⇓L2 proof system.

238 Chapter 12. Encoding security protocols

⊗

A B

`

P Q

Figure 12.1: Illustrating how to interpret the operational reading of the

dual connectives ⊗ and `.

To illustrate this approach to encoding processes using linear logic as a

logic programming language, we consider here briefly the π-calculus of Milner

et al. [1992a]. The principle computation mechanism of the π-calculus is the

synchronization of two agents during which a name is transferred from one

agent to another. The expression x̄z.P describes an agent willing to transmit

the name z on the wire with the name x. The expression x(y).Q denotes

an agent that is willing to receive a name on wire x and formally binds that

value to y. The bound variable y in this expression is scoped over Q. The

central computational step of the π-calculus is the reduction of the parallel

composition x̄z.P | x(y).Q to the expression P | Q[z/y]. The agents P and

Q[z/y] are now able to continue their interactions with their environment

independently.

Another important aspect of the π-calculus is the notion of scope restric-

tion: in the agent expression (x)P , x is bound and invisible to the outside. The

scoped value x, however, can be communicated outside its scope, providing a

phenomenon known as scope extrusion. For example, (z)(x̄z.P | Q) | x(y).R

is structurally equivalent to (z)(x̄z.P |Q | x(y).R), provided that z is not free

in x(y).R. This proviso is always easy to accommodate since we assume that

α-conversion is available to change the name of bound variables. This ex-

pression can be reduced to (z)(P |Q |R[z/y]): the restricted name z has now

moved into the agent R[z/y]. This mechanism of generating new names (using

α-conversion) and sending them outside their scope is an important part of

the computational power of the π-calculus.

For an example, consider the following process expression where a, b, and

12.1 Communicating processes 239

x are free names.

(x(y).ȳa.ȳb.0) | (z)(x̄z.z(u).z(v).ūv.0)

(Here, 0 is the null process.) Given the informal description of how a π-

calculus expression evolves, the scope of the (z) restriction enlarges to yield

the expression

(z)
(

(x(y).ȳa.ȳb.0) | (x̄z.z(u).z(v).ūv.0)
)

Next, communication can take place within the scope of the restriction, yield-

ing the expression

(z)
(

(z̄a.z̄b.0) | (z(u).z(v).ūv.0)
)

Two more internal communication steps yield the expression

(z)
(
0 | (āb.0)

)
.

Since z is not free in the scope of the restriction (z) and since 0 is the unit of

parallel composition, this last expression is essentially the same as the expres-

sion (āb.0).

We encode some of the behavior of the π-calculus as proof search within

⇓Lω
2 using the following primitive type and four non-logical symbols.

kind name type.

type or o -> o -> o.

type send name -> name -> o -> o.

type get name -> (name -> o) -> o.

type match name -> name -> o -> o.

As is clear from these types, the bound variable of the input prefix get will be

mapped to the λ-abstraction in logic. The following mapping translates some

π-calculus expressions into linear logic.

⟨⟨P |Q⟩⟩ = ⟨⟨P ⟩⟩ ` ⟨⟨Q⟩⟩ ⟨⟨(x)P ⟩⟩ = ∀x.⟨⟨P ⟩⟩ ⟨⟨0⟩⟩ = ⊥

⟨⟨x̄y.P ⟩⟩ = send x y ⟨⟨P ⟩⟩ ⟨⟨x(y).P ⟩⟩ = get x λy⟨⟨P ⟩⟩

⟨⟨P + Q⟩⟩ = or ⟨⟨P ⟩⟩ ⟨⟨Q⟩⟩ ⟨⟨[x = y]P ⟩⟩ = match x y ⟨⟨P ⟩⟩

To describe the meaning of the four non-logical constants, we have the follow-

ing Lω
2 specification.

get X R || send X Y Q :- R Y || Q.

match X X P :- P.

or P Q :- P.

or P Q :- Q.

240 Chapter 12. Encoding security protocols

Note that these axioms are higher-order in the sense that they allow quantifi-

cation over predicate symbols (such as P and Q) as well as variables of type

name → o (such as R).

Exercise 12.1. Show that the informal reduction of the π-calculus expres-

sions given above can be reproduced in Lω
2 as follows. Let Σ be the declara-

tion that a and b are names, and let Ψ be the multiset of the four formulas

listed above. Build the Lω
2 proof of the sequent Σ :: Ψ;P0 ⊢ P1; · where P1 is

the expression

get x (y\ send y a (send y b bot)) ||

pi z\ (send x z (get z u\ (get z v\ send u v bot)))

and P0 is the expression (send a b bot).

Exercise 12.2. Let Q be the expression

get x y (or (match y a (send x a bot))

(match y b (send x b bot)))

Also let Pa, Pb, and Pc be the expressions (send x a bot),

(send x b bot), and (send x c bot), respectively. Show that the two

Lω
2 sequents Σ :: Ψ;Pa ⊢ Pa | Q; · and Σ :: Ψ;Pb ⊢ Pb | Q; · are provable but

that Σ :: Ψ;Pc ⊢ Pc |Q; · is not provable.

A goal of this kind of encoding of process calculus into linear logic would

be to identify the notion that “process P reduces to Q” with the provability

of the Lω
2 sequent Σ :: Ψ; ⟨⟨Q⟩⟩ ⊢ ⟨⟨P ⟩⟩; ·. Although this encoding into linear

logic captures some of the nature of computation and communication in the

π-calculus, we list two of its flaws.

1. One flaw is the fact that only some combinators of the π-calculus are

translated into linear logic connectives, while others are encoded using

non-logical constants. For example, it is tempting to encode the π-

calculus’s + using the linear logic ⊕. Although the right-introduction

rules for ⊕ in linear logic does encode the nondeterministic (local) choice

of the π-calculus, the left-introduction rule for ⊕ would force us to accept

the following reduction strategy: if P reduces to Q1 and to Q2, then P

reduces to Q1 + Q2, which is a principle that is not generally seen as a

proper reduction in the π-calculus literature. It is for this reason that

the encoding of + is made with a non-logical symbol: backchaining on its

axiomatization mimics the right-hand introduction rule for ⊕ but does

not make the left-hand introduction possible.

2. The left rule for ∀ is also problematic since ∀x.∀y.Pxy ⊢ ∀x.Pxx is

12.2 Specifying communication protocols 241

Message 1 A −→ S: A,B, nA

Message 2 S −→ A: {nA, B, kAB, {kAB, A}kBS
}kAS

Message 3 A −→ B: {kAB, A}kBS

Message 4 B −→ A: {nB}kAB

Message 5 A −→ B: {nB,Secret}kAB

Figure 12.2: The Needham-Schroeder Shared Key Protocol.

provable in every quantificational logic in this book. In the setting of the

π-calculus, this would mean that we would need to accept the reduction

of (x)x̄a.x̄b.0 to the process (x)(y)x̄a.ȳb.0, which is again not an accepted

reduction in the π-calculus.

Chapter 13 contains a different specification of the π-calculus in which process

expressions are not encoded as formulas but as terms. With that encoding, a

more precise encoding of the π-calculus can be achieved.

In the rest of this chapter, we shall consider a calculus for communication

that is, in some senses, weaker than that of the π-calculus. In this weaker

setting, provability in linear logic is much more accurate and flexible.

12.2 Specifying communication protocols

Assume that Alice and Bob want to use a trusted server to help them es-

tablish their own private channel for communications. At the start of this

protocol, Alice and Bob have private encryption keys allowing them to com-

municate securely with a server. At the end of this protocol’s execution, Alice

and Bob should be sharing an encryption key that allows them to exchange

messages securely between themselves, without any additional need for the

trusted server.

Figure 12.2 is a presentation of the Needham-Schroeder Shared Key Pro-

tocol (abbreviated NS) using a standard kind of description. Here, A, B,

and S denote the agents Alice, Bob, and server, respectively. The notation

A −→ S : M implies that Alice (A) sends the message M to another agent,

say a server (S). Encryption keys and nonces are denoted by the schematic

variables k and n, respectively. Messages are tuples of data items that include

structures of the form {t1, . . . , tn}k, denoting the result of encrypting the tuple

t1, . . . , tn using the key k.

One of our goals is to replace this specific syntax with one based on a

direct use of logic. We do this now by identifying a sequence of aspects of this

242 Chapter 12. Encoding security protocols

conventional presentation that can be captured in linear logic.

12.2.1 Communicating on a public network

The notation A −→ B :M is misleading since it seems to indicate a “three-way

synchronization” between Alice, Bob, and a message M . However, it is impor-

tant to understand that the intended communication is, in fact, asynchronous,

in the sense that Alice is meant to put the message M into a public network

(say, the internet) and that at some time later, Bob is meant to retrieve that

message from that network. It should be possible to interleave these two ac-

tions with some actions of an intruder who might read, delete, and/or modify

the message M . Thus, a better syntax is inspired by multiset rewriting (we

use N · to denote network messages). We use | as the multiset constructor.

A −→ A′ | NM
B | NM −→ B′

...

E | NM −→ E′ | NM

Here, the first line indicates that Alice in state A puts a message on the

network and transitions to state A′. The second line indicates that Bob in

state B makes a transition only if there is a message in the network: when

there is such a message, that message is consumed, and Bob moves to state

B′. The last line encodes an eavesdropper E who waits for a message and

after consuming it, readmits it while moving to state E′. This last state might

store information contained in that message in the agent’s internal memory.

More generally, we can imagine that the action of an agent could be described

as

A | NM1 | · · · | NMp −→ A′ | NP1 | · · · | NPq

where p, q ≥ 0. This line specifies that Alice in state A can consume messages

M1, . . . ,Mp and then transition to state A′ while posting messages P1, . . . , Pq.

12.2.2 Static distribution of keys

Consider a protocol containing the following steps.
...

Message i A −→ S: {M}k
Message j S −→ A: {P}k

...
In the general setting, we need to declare exactly which agents have access to

which keys: in the steps above, we know two places where the k is used, but

we must separately declare, for example, that the key is not known to any

other agents. This declaration is critical for modularity and for establishing

12.2 Specifying communication protocols 243

correctness later: it can also be made statically by using a local declaration,

such as the following.

local k.


...

A −→ A′ | N {M}k
S | N {P}k −→ S′

...


This declaration appears to be similar to a quantifier. The intention is that

we can statically examine all occurrences of the bound variable k in the scope

of this quantifier and thereby know which agents do and do not contain occur-

rences of this key. If there are lines of the protocol that are outside the scope

of this bound variable, then that key is not statically available to the agents

and messages listed in that part of the protocol.

12.2.3 Dynamic creation of new symbols

During the execution of a protocol, new symbols representing nonces (used to

help guarantee “freshness”) and keys for encryption are needed in protocols.

Using the syntax in Figure 12.2, one needs to explicitly point out that, for

example, nA, nb, and kAB need to be freshly generated symbols during the

execution of this protocol. The following more explicit syntax seems better

for this purpose.

a1 S −→ new k. (a2 k S) | N {M}k

This new operator resembles, of course, a quantifier: it should support α-

conversion and seems to be a bit like reasoning generically. The scope of new

is over the body of this rule. Here, we have also replaced the simple token

denoting Alice with a structured object that encodes different stages of an

agent and her memory at different points of the protocol.

12.2.4 Mapping the new notation into linear logic

There are two approaches to view the new notation we have introduced as

logical connectives.

| unit −→ new local

disjunctive ` ⊥ › ∀ ∃
conjunctive ⊗ 1 ⊸ ∃ ∀

The disjunctive approach allows protocols to be seen as specifications within

Lω
2 . The conjunctive approach is also popular and has been used in, say, the

MSR system of Cervesato et al. [1999]. From the linear logic perspective,

these two approaches yield essentially the same dynamics when doing proof

244 Chapter 12. Encoding security protocols

search: the only difference is that what happens in the right-hand side of

sequents using the disjunctive approach happens essentially unchanged on the

left-hand side using the conjunctive approach.

For the rest of this chapter, we assume that the primitive types are S =

{o, d}. We use the type d to encode the data within messages. For convenience,

we shall assume that all strings are included in this type. The tupling operator

⟨·, ·⟩, for pairing data together, has type d → d → d. Expressions such as

⟨·, ·, . . . , ·⟩ denote pairing associated to the right.

Finally, the communications network is represented as a multiset of atomic

formulas all with the predicate N of type d → o. For example, the following

are examples of network messages.

N ⟨"alice", "account34"⟩ N ⟨"bob", "45euros"⟩

Such network messages could be used to facilitate a financial transaction. Since

we model the public network as an evolving multiset of atomic formulas repre-

senting network messages and agents, all agents—not just Alice and Bob—can

access and read all messages. It is likely that we do not intend these financial

transactions to be viewable and mutable by just anyone with access to the

network.

12.2.5 Encrypted data as an abstract data type

A final step of encoding communicating protocols involves encryption keys and

encrypted data. We shall assume that an encryption key is a symbolic function,

say, k of type d → d, and that the encrypted message {M}k is encoded as the

simple application (k M). If an agent has access to the data constructor,

which is an encryption key, then via a simple matching operation within logic,

decryption can take place. If, however, the encryption key is not available to

the agent, then decryption is impossible. Thus, we are representing encrypted

data as an abstract data type: that is, as a type in which the constructors are

given a limited scope using appropriate quantification. In order for encryption

keys to be inserted into data objects, we introduce the postfix constructor (·)◦
of type (d → d) → d that can coerce such keys into terms of type d. The use of

higher-order types means that we will also use the equations of λ-conversion

when processing encrypted data.

Consider the following specification, which contains two encryption keys.

∃kas.∃kbs.[a1 ⟨M,S⟩ › a2 S ` N (kas M).

b1 T ` N (kbs M) › b2 M T.

s1 ` N (kas P) › N (kbs P).]

(Here as elsewhere, quantification of capital letter variables is universal with

scope limited to the clause in which the variable appears.) In this example,

12.3 Protocols as theories in linear logic 245

Alice (a1, a2) communicates with Bob (b1, b2) via a server (s1). To make

the communications secure, Alice uses the key kas to communicate with the

server while Bob uses the key kbs. The server is deleted immediately after it

translates one message encrypted for Alice to a message encrypted for Bob.

The existential quantifiers establish that the occurrences of keys, say, between

Alice and the server and Bob and the server, are the only occurrences of those

keys. Even if more principals are added to this system, these occurrences

are still the only ones for these keys. Thus, the existential quantifier helps

determine the static or lexical scope of key distribution. Of course, as protocols

evolve, keys may extrude their scope and move freely onto the network. This

dynamic notion of scope extrusion is similar to that in the π-calculus.

12.3 Protocols as theories in linear logic

In order to encode communication protocols as theories in linear logic, we

make the following few definitions. An agent identifier is a symbol, say, ρ.

For some number n ≥ 1 and for i = 1, . . . , n, the pair ρi of an agent identifier

and an index is an agent state predicate all of whose arguments (if any) are of

type d. These state predicates encode an agent’s internal states as a protocol

progresses. An agent state atom is an atomic formula of the form ρi t1 . . . tm
where m ≥ 0, t1, . . . , tm are terms of type d, and ρi is an agent state predicate.

An agent clause is a linear logic formula of the form

∀x1. · · · ∀xi.[a1 ` · · · ` am › ∀y1. · · · ∀yj .[b1 ` · · · ` bn]]

where m ≥ 1 and i, j, n ≥ 0. Here, the head of such a clause is the formula

a1 ` · · · ` am and the body is ∀y1. · · · ∀yj .[b1 ` · · · ` bn]. Agent clauses also

have the following restrictions: all the atoms a1, . . . , am, b1, . . . , bn are either

network messages (atomic formulas with predicate N) or agent state atoms

such that the following hold.

1. There must be exactly one agent state atom in the head and at most

one in the body.

2. If the agent state atom in the head is (ρi t̄) and if there is any agent

state atom in the body, say, (ρ′j s̄), then ρ and ρ′ must be the same agent

identifier and i < j.

Thus, an agent clause involves, at most, a single agent (and possibly network

messages): this implies that agents cannot synchronize with other agents di-

rectly, and that one agent cannot evolve into another agent. It is allowed for

an agent to be deleted since no agent state atom must appear in the body. It

is also the case that all agents have finite runs.

246 Chapter 12. Encoding security protocols

∃kas.∃kbs.{

a1 S › ∀na. a2 na S ` N ⟨alice, bob, na⟩.
a2 N S ` N (kas⟨N, bob,K,E⟩) › a3 K S ` NE.

a3 Key◦ S ` N (Key Nb) › a4 ` N (Key⟨Nb, S⟩).
b1 ` N (kbs⟨Key◦, alice⟩) › ∀nb. b2 nb Key

◦ ` N (Key nb).

b2 Nb Key
◦ ` N (Key⟨Nb, S⟩) › b3 S.

s1 ` N ⟨alice, bob, N⟩ › ∀k.N (kas⟨N, bob, k◦, (kbs⟨k◦, alice⟩)⟩).
}

Figure 12.3: Encoding the NS protocol.

A agent theory is a linear logic formula of the form

∃x1. · · · ∃xr. [C1 ⊗ · · · ⊗ Cs],

where r, s ≥ 0, C1, . . . , Cs are agent clauses, x1, . . . , xr are variables of type

d or d → d, and whenever Ci and Cj have the same agent state predicate in

their head then i = j. This last condition implies that agents in protocols

are deterministic. This condition can easily be relaxed within linear logic if

nondeterministic agents are of interest.

Many other restrictions or generalizations could be considered here for the

definition of agents theory and agent clauses, but for our simple considerations

here, this definition is sufficient. Ultimately, we will introduce a different

syntax for agents that will not need to use these rather awkward agent state

predicates.

Figure 12.3 contains a linear logic implementation of the NS protocol con-

tained in Figure 12.2. Let C1, . . . , C6 be the six agent clauses in Figure 12.3 (re-

membering that there are implicit universal quantifiers around agent clauses).

It is easy to show that this protocol implements the specification

∀x.[a1 x ` b1 ` s1 › a4 ` b3 x],

in the sense that there is a simple ⇓Lω
2 -proof of the sequent

Σ, kas, kbs :: C1, . . . , C6; · ⊢ ∀x.[a4 ` b3 x ⊸ a1 x ` b1 ` s1]; ·.

That is, this protocol can transform the initial states of Alice (with some

secret), Bob, and the server to the final states of Alice and Bob (now with the

secret).

For another example, consider the following two clauses for Alice.

a K◦ ` N (K M) › a′ M. (3.1)

a ` N (K M) › a′ M. (3.2)

12.4 Abstracting internal states 247

In the first case, Alice possesses an encryption key and uses it to decrypt

a network message. In the second case, it appears that she is decrypting a

message without knowing the key, an inappropriate behavior, of course. Note

that (3.2) is logically equivalent (and, hence, operationally indistinguishable

using proof search) to both of the formulas

∀M.∀X.[a ` NX › a′ M] and ∀X.[a ` NX › ∃M.a′ M].

This last clause clearly illustrates that Alice is not actually decoding an exist-

ing message but simply guessing (using ∃) at some data value M , and contin-

ues with that guess as a′ M . If we think operationally instead of declaratively

about proof search involving clause (3.2), we would consider possible unifiers

for matching the pattern (K M) with a network message, say, (k secret), for

two constants k and secret. Unification on simply typed λ-terms yields exactly

the following three distinct unifiers:

[M 7→ (k secret),K 7→ λw.w] [M 7→ s,K 7→ k] [M 7→ M,K 7→ λw.k secret]

Thus, M can be bound to either (k secret) or s or any term: in other words,

M can be bound to any expression of type d.

Logical entailment can help in reasoning about agent clauses and theories.

As the following exercise illustrates, such entailments are strengthened by the

presence of quantification at type d → d.

Exercise 12.3.(‡) The following clauses specify that Alice takes a step that

generates a new encryption key and then outputs a message (either m or

m′) using that encryption key.

a1 › ∀k. N (k m) a1 › ∀k. N (k m′).

In both cases, Alice has no continuation, and, therefore, she and access to

the key disappear. These two clauses are operationally similar since they

both generate an unreadable message. Show, in fact, that these two formulas

are logically equivalent.

12.4 Abstracting internal states

The internal states of agents are denoted by predicates that have limited roles:

they can only be used internally by an agent. It is possible to use existential

quantification over predicates (in particular, agent state predicates) to provide

an interesting rewriting of the structure of agent theories. To illustrate this,

we step back from considering only agent theories for a moment.

General n-way synchronization (n ≥ 3) is allowed within the setting of

multiset rewriting. Such synchronization can be rewritten using only 2-way

248 Chapter 12. Encoding security protocols

synchronization by the introducing new, intermediate, and hidden predicates.

For example, the following two formulas are logically equivalent.

∃l1.∃l2.


a ` b › l1
l1 ` c › l2 ` e

l2 › d ` f

 ⊣⊢ a ` b ` c › d ` e ` f

The clause on the right specifies a 3-way synchronization and the spawning of

3 atomic formulas, whereas the formula on the left is limited to rewriting at

most two atoms into at most 2 atoms. The proof of the forward entailment

in linear logic is straightforward, while the proof of the reverse entailment

involves the two higher-order substitutions of a ` b for ∃l1 and d ` f for ∃l2.
As long as we use logical entailment, these two formulas are indistinguishable

and can be used interchangeably in all contexts. If instead, we could observe

possible failures in the search for proofs, then it is possible to distinguish these

formulas: consider the search for a proof of a sequent containing a and b but

not c. The proof theory of linear logic we have presented here does not observe

such failures since that proof theory is generally involved with reasoning about

complete proofs.

Existential quantification over program clauses can also hide predicates

encoding agents. In fact, one might argue that the various restrictions on sets

of process clauses (no synchronization directly with atoms encoding agents

and no agent changing into another agent) might all be considered a way

to enforce locality (i.e., hiding) of predicates. Existential quantification can,

however, achieve this same notion of locality but much more directly. For

example, the following two formulas are logically equivalent.

∃a2.∃a3.


a1 ` Nm0 › a2 ` Nm1

a2 ` Nm2 › a3 ` Nm3

a3 ` Nm4 › a4 ` Nm5

 ⊣⊢

a1 ` Nm0 › (Nm1 › (Nm2 › (Nm3 › (Nm4 › (Nm5 ` a4)))))

The changing of polarity that occurs when moving to the right of a › flips

expressions from output (e.g., Nm1) to input (e.g., Nm2), and back again. We

develop this observation further in the next section.

12.5 Agents as nested implications

The observation that abstracting over internal states results in an equivalent

syntax with nested › suggests an alternative syntax for agents. Consider the

following two syntactic categories of linear logic formulas.

H ::= A | ⊥ | H ` H K ::= H | H › K | ∀x..K

12.5 Agents as nested implications 249

Here, A denotes the class of atomic formulas encoding network messages (in

particular, formulas of the form N ·). Formulas belonging to the class H denote

bundles of messages used as either input or output to the network. Formulas

belonging to the class K can have deep nesting of implications. As we shall see,

the nesting of › can model the alternation between a process that outputs a

message to one that is willing to input a message. We call K formulas agent

formulas, and they can replace agent clauses. Note that the only predicate in

an agent formula is N.

To see this mechanism in the proof search setting, consider building proofs

of the ⇓Lω
2 sequent Σ :: ·; Γ ⊢ ∆,A; ·, where both ∆ and Γ are multisets of

K formulas and A is a multiset of atomic formulas (hence, formulas with the

predicate N). The right-introduction phase captures the process of performing

all the possible output actions by all processes in ∆ while the left-introduction

phase captures the input action of any agent formula chosen to be the focus.

For example, let P be the formula

∀dx.∀dy.(N (fx) ` N (gxy) › P̂ xy)

Here, we assume that f is a constructor of type d → d, g is a constructor of

type d → d → d, and P̂ xy is K-formula possibly containing x and y free. If

P is on the right of a sequent, the right-introduction phase for this sequent

yields the derivable inference rule

Σ, x, y :: ·; Γ, P̂ xy ⊢ ∆,A, N (fx), N (gxy); ·
Σ :: ·; Γ ⊢ ∆,A, P ; ·

.

This rule can be read as the process P creates two new tokens x and y, outputs

to the network the atomic formulas N (fx) and N (gxy), and then moves into

input mode since P̂ xy, the body of the P formula, moves to the left. If this

same expression appears on the left, then the left phase yields the following

derivable inference rule

Σ :: ·; Γ ⊢ ∆,A, P̂ t s; ·
Σ :: ·; Γ, P ⊢ ∆,A, N (f t), N (g t s); ·

.

Here, t and s are two Σ-terms of type d.

Negation flips the status of a process from input to output and vice versa.

For example, if the process formula ⊥ › P is on the right of a sequent, it

outputs ⊥, which makes no effect on the network messages, and P moves to

the left into input mode. The dual statement holds if we start with ⊥ › P

on the left of the sequent. Various equivalences found in linear logic also make

sense from the point-of-view of asynchronous communication. For example,

if one skips a phase (by outputting or inputting an empty multiset), the two

250 Chapter 12. Encoding security protocols

(Out) ∀na. N ⟨alice, bob, na⟩ ›
(In) (∀Key.∀E. N (kas⟨na, bob, Key◦, E⟩) ›
(Out) (NE ›
(In) (∀N. N (Key N) ›
(Out) (N (Key⟨N, secret⟩) ›
(Cont) a4))).

The agent for Alice

(Out) ⊥ ›
(In) (∀Key. N (kbs⟨Key◦, alice⟩) ›
(Out) (∀nb. N (Key nb) ›
(In) (∀S. N (Key⟨nb, S⟩) ›
(Cont) b3 S))).

The agent for Bob

(Out) ⊥ ›
(In) (∀N. N ⟨alice, bob, N⟩ ›
(Out) (∀k. N (kas⟨N, bob, k◦, kbs⟨k◦, alice⟩⟩))).

The agent for the server

Figure 12.4: The agents of Alice, Bob, and a server.

adjacent phases can be contracted as follows:

p › (⊥ › (q › k)) ⊣⊢ p ` q › k

p › (⊥ › ∀x.(q x › k x)) ⊣⊢ ∀x.(p ` q x › k x)).

Figure 12.4 displays three agent formulas. The first represents Alice, the

second Bob, and the final one, the server. (All agents in this figure are written

in output mode: since Bob and the server essentially start with inputs, these

two agents are negated, meaning they first output nothing and then move to

input mode.) These formulas are a second way to encode the NS protocol

within linear logic. If the three formulas in Figure 12.4 are placed on the

right-hand side of a sequent turnstile (with no formulas on the left) then the

agent formula for Alice will output a message and move to the left side of

the sequent turnstile (reading inference rules bottom-up). Bob and the server

output nothing and move to the left-hand side. At that point, the server will

need to be chosen for the focus of the left-introduction phase, causing it to

12.6 Bibliographic notes 251

input the message Alice sent and then move its continuation to the right-hand

side. It will then immediately output another message, and so on.

Variations on this simple scheme can easily be explored. For example, one

might want an agent, such as the server, to be persistent. In that case, the

first line of Figure 12.4 for the server could be simply changed by replacing

› with ⇐. In a setting where one wishes to model attacks on protocols, it

seems more appropriate for network messages to occur in the right-unbounded

zone since adversaries can be assumed to be capable of reading and replacing

every network message that appears. Thus, even if a network message were

to disappear from the right-bounded zone, the adversary can be assumed to

have remembered its content. In this case, the ? exponential could be used on

all output messages.

The style of specification given in Figure 12.4 is similar to that of process

calculus: in particular, the implication › is syntactically similar to the dot

prefix in, say, CCS. Universal quantification can appear in two modes: in out-

put mode, it is used to generate new eigenvariables (similar to the π-calculus

restriction operator) and in input mode, it is used for variable binding (similar

to value-passing CCS). If we use || to denote the parallel composition of pro-

cesses and use a dot to prefix a process with an input action, then the formula

scheme a › (b › (c › (d › · · ·))) can denote processes described as

ā || (b. (c̄ || (d. · · ·))) or a. (b̄ || (c. (d̄ || · · ·)))

depending on which side of the sequent it occurs. This formula and its negation

can also be written without linear implications as

a ` (b⊥ ⊗ (c ` (d⊥ ⊗ . . .))) resp, a⊥ ⊗ (b ` (c⊥ ⊗ (d ` . . .))).

12.6 Bibliographic notes

The encoding of parts of the π-calculus in Section 12.1 are taken from Miller

[1993]. Examples such as the Needham-Schroeder Shared Key Protocol in

Section 12.2 can be found in the work on MSR by Cervesato et al. [1999,

2000a] and Cervesato and Stehr [2007]. See also Durgin et al. [2004] for more

about analyzing security protocols using an encoding of multisets in linear

logic.

Material on using existential quantifiers at predicate types to hide the in-

ternal states of processes is taken from Miller [2003]. Andreoli [1992] used a

compilation method to reduce an arbitrary linear logic formula to a collec-

tion of bipolar formulas. Applying his compiling technique to the formula in

Figure 12.4 yields the formulas in Figure 12.3.

252 Chapter 12. Encoding security protocols

Chapter13
Formalizing operational

semantics

This chapter provides an overview of a few ways that logic programming can

specify the operational semantics of various programming and specification

languages. Establishing these links between logic and operational seman-

tics has many advantages for operational semantics: logic programming in-

terpreters can animate semantic specifications; the proof-theoretic treatment

of term-level binding structures can address binding structures in the syntax

of programs; and the declarative nature of logical specifications provides broad

avenues for reasoning about semantic specifications. We shall illustrate all of

these advantages in this chapter.

This chapter will use the term “logic specification” interchangeably with

“logic program” and “theory.” Additionally, when we speak of “programming

languages” we include specification languages such as the λ-calculus and the

π-calculus.

13.1 Three frameworks for operational semantics

Numerous formalisms have been employed to define the computational be-

havior of programming languages. When building upon these formalisms to

develop various concepts (e.g., observational equivalence, static analysis) and

tools (e.g., interpreters, model checkers, theorem provers), the quality of these

encodings significantly impacts the success of the endeavor. This chapter

uses logic to directly encode operational semantics, eschewing alternative for-

malisms such as complete partial orders, algebras, games, and Petri nets.

Proof search within this logical framework will endow logical specifications

with the dynamics necessary to capture a range of operational specifications.

254 Chapter 13. Formalizing operational semantics

We concentrate on three prominent frameworks for specifying operational se-

mantics and outline the logic frameworks most naturally aligned with each.

Multiset rewriting Specifying computations by computing directly on mul-

tisets was proposed in the 1990s with the Gamma programming language of

Banâtre and Métayer [1993] and the chemical abstract machine of Berry and

Boudol [1992], as well as later with the specification of security protocols in

Bistarelli et al. [2005], Cervesato et al. [1999], and Durgin et al. [2004]. As

we have seen in Section 8.1 and Chapter 10, it is a simple matter to capture

multiset rewriting using proof search in linear logic.

Structural operational semantics First introduced by Milner [1980] and

Plotkin [1981, 2004], structural operational semantics (SOS) has been widely

used to characterize a diverse range of programming language features, in-

cluding concurrency, functional computation, and stateful computations. This

style of specification, commonly referred to as small-step SOS, facilitates a nat-

ural treatment of concurrency through interleaving. Big-step SOS, introduced

by Kahn [1987], proves particularly convenient for specifying nonconcurrent

specifications, such as functional programming. Both of these operational

semantics paradigms define relations using inductive systems formalized by

inference rules. As we shall observe, Horn clauses and hereditary Harrop for-

mulas typically provide suitable frameworks for encoding these inference rules.

Abstract machines A specific form of term rewriting can be interpreted

as encoding abstract machines, where entities such as code, environments,

and argument stacks are directly manipulated. The SECD machine of Landin

[1964] serves as an early example of such an abstract machine. These abstract

machines can frequently be represented using binary clauses, a restricted form

of Horn clause where the clause body contains only a single atomic formula.

Proof search with these clauses naturally characterizes simple, iterative algo-

rithms. Arbitrary Horn clause programs can also be transformed into binary

clauses through a continuation-passing-style transformation. Consequently,

binary clauses can be viewed as encapsulating a thread of computation com-

prising a sequence of instructions or commands. Although binary clauses

represent a retreat from logic in the sense that they employ fewer logical

connectives (such as conjunction) than general Horn clauses, they offer two

significant advantages: (1) the ability to explicitly specify the order of com-

putation and (2) a foundation for an extension to linear logic that enables the

natural representation of concurrency and imperative features within big-step

structural operational semantics.

13.2 The abstract syntax of programs-as-terms 255

13.2 The abstract syntax of programs-as-terms

To encode a programming language, we first translate its syntactic expres-

sions into terms within a suitable logic, such as Church’s Simple Theory

of Types (see Section 2.3) or higher-order logic (Lω
2). Since most program-

ming languages involve binding constructs, we directly represent them using

λ-abstraction, a primitive concept in these logics. Language constructors are

mapped to corresponding term constructors, with the latter’s types reflect-

ing the syntactic categories of the constructed objects. Typically, we model

term construction with function application. Similarly, language binders are

translated to λ-abstractions that bind variables within the encoded scope. We

illustrate this encoding approach by using both the untyped λ-calculus and

the π-calculus as examples.

The untyped λ-calculus (see Section 2.1) can be encoded as simply typed

λ-terms using one syntactic type, say tm, and two constructors for application

and abstraction. Using λProlog syntax, these tokens can be declared as follows.

kind tm type.

type app tm -> tm -> tm.

type abs (tm -> tm) -> tm.

Note that abs is applied to a term-level abstraction: the argument type tm →
tm acts as the syntactic type of term abstractions over terms. The following

is a list of some untyped λ-terms along with their encoding as a simply type

λ-term of type tm.

λx.x (abs λx x)

λxλy.x (abs λx (abs λy x))

λx. (x x) (abs λx (app x x))

λxλyλz. (x z) (y z) (abs λx (abs λy (abs λz ((app (app x z) (app y z))))))

It is important to observe that two untyped λ-terms are α-convertible if and

only if their encodings as terms of type tm are βη-convertible.

As we have already see in Section 12.1, processes in the finite π-calculus

are described by the grammar

P ::= 0 | x̄y.P | x(y).P | τ.P | (y)P | [x = y]P | P |P | P + P.

(Many treatments of the π-calculus also include a replication operator or re-

cursion: their absence here is why we are describing the finite π-calculus.)

We use the symbols P and Q to denote processes and lower case letters, e.g.,

x, y, z to denote names. The occurrences of y in the processes x(y).P and (y)P

are binding occurrences with P as their scope. The notions of free and bound

variables are the usual ones, and we consider processes to be syntactically

equal if they are equal up to α-conversion.

256 Chapter 13. Formalizing operational semantics

kind n, p type.

type null p.

type taup p -> p.

type plus , par p -> p -> p.

type match , out n -> n -> p -> p.

type nu (n -> p) -> p.

type in n -> (n -> p) -> p.

Figure 13.1: Declarations of the primitive types and constructors for

the finite π-calculus.

In Section 12.1, we suggested defining the operational semantics of π-

calculus expressions by mapping them into linear logic formulas. Here, we

encode π-calculus expressions as terms using the declarations of two primi-

tives types, for names and processes, and process constructors in Figure 13.1.

The precise translation of the π-calculus syntax into simply typed λ-terms is

given using the following function [[·]] that translates process expressions to

βη-long normal terms of type p.

[[0]] = null [[P + Q]] = plus [[P]] [[Q]]

[[τ.P]] = taup [[P]] [[P |Q]] = par [[P]] [[Q]]

[[x(y).P]] = in x (λy.[[P]]) [[x̄y.P]] = out x y [[P]]

[[(x)P]] = nu (λx.[[P]]) [[[x = y]P]] = match x y [[P]]

For example, the π-calculus expression νy.[x = y]x̄z.0 is translated into the ex-

pression (nu y\ match x y (out x z null)) which contains the free names

x and z.

13.3 Big-step semantics: call-by-value evaluation

Figure 13.2 contains a common, big-step semantic specification of call-by-value

evaluation for the λ-calculus: this specification is given as both inference rules

as well as Horn clause specification. The (infix) predicate symbol % is of type

tm → tm → o and is written simply as eval in these clauses. The encod-

ing of the atomic evaluation judgment R[U/x] % V in Figure 13.2 is simply

(eval (R U) V) in the clausal specification: that is, the logic specification

forms the expression (R U) and once R is instantiated with a λ-abstraction,

the logic’s built-in treatment of β-reduction performs the necessary substitu-

tion.

Such a specification is referred to as big-step since the predicate % relates

an expression to its final value. In contrast, as we now illustrate, small-step

13.4 Small-step semantics: π-calculus transitions 257

λx.R % λx.R

M % (λx.R) N % U R[U/x] % V

(M N) % V

type eval tm -> tm -> o.

eval (abs R) (abs R).

eval (app M N) V :-

eval M (abs R), eval N U, eval (R U) V.

Figure 13.2: Big-step specification of the call-by-value evaluation of the

untyped λ-calculus via inference rules and λProlog clauses.

specifications encode just a single computation step in a possibly long series

of transitions.

13.4 Small-step semantics: π-calculus transitions

The relation of one-step (late) transition for the π-calculus in Milner et al.

[1992b] is denoted by P
α

−−→ Q, where P and Q are processes and α is

an action. Figure 13.3 contains a standard specification of this transition

semantics for the finite π-calculus. Figure 13.4 presents this same semantic

as an L0 logic program. This specification introduces a new primitive sort a

to denote actions and uses three constructors for actions: τ : a (for the silent

action) and the two constants ↓ and ↑, both of type n → n → a (for building

input and output actions, respectively). The free output action x̄y, is encoded

as ↑xy while the bound output action x̄(y) is encoded as λy (↑xy) (or the

η-equivalent term ↑x). The free input action xy is encoded as ↓xy while the

bound input action x(y) is encoded as λy (↓xy) (or simply ↓x). Note that

bound input and bound output actions have type n → a instead of a.

Our encoding splits the labeled transition relation in Figure 13.3 into two

relations depending on whether or not the transition involves a free or bound

action. The relation between the two processes, P and Q, and an action A is

encoded using the arrow P
A

−−→ Q: this arrow is encoded using a predicate

of type p → a → p → o. The relation between a process P , a bound action

A, and an abstracted process Q is encoded using the harpoon P
A

−−⇀ Q: this

arrow is encoded using a predicate of type p → (n → a) → (n → p) → o.

One-step transition judgments are translated to atomic formulas as follows

258 Chapter 13. Formalizing operational semantics

τ.P
τ

−−→ P
tau

x(y).P
x(w)
−−→ P [w/y]

in, w ̸∈ fn((y)P)

x̄y.P
x̄y

−−→ P

out P
α

−−→ P ′

[x = x]P
α

−−→ P ′
match

P
α

−−→ P ′

P + Q
α

−−→ P ′
sum

P
α

−−→ P ′

P | Q
α

−−→ P ′ | Q
par, bn(α) ∩ fn(Q) = ∅

P
α

−−→ P ′

(y)P
α

−−→ (y)P ′
res, y ̸∈ n(α)

P
x̄y

−−→ P ′

(y)P
x̄(w)
−−→ P ′[w/y]

open, y ̸= x,w ̸∈ fn((y)P ′)

P
x̄(w)
−−→ P ′ Q

x(w)
−−→ Q′

P | Q
τ

−−→ (w)(P ′ | Q′)
close

P
x̄y

−−→ P ′ Q
x(z)
−−→ Q′

P | Q
τ

−−→ P ′ | Q′[y/z]
comm

The functions fn(P) (free variables of P), bn(P) (bound variables of

P), and n(P) (the union of fn(P) and bn(P)) are defined in Milner

et al. [1992b]. The logic specification in Figure 13.4 does not need such

functions and provisos.

Figure 13.3: The late transition rules for the finite π-calculus.

(we extend the use of the symbol [[.]] from Section 13.2).

[[P
xy

−−→ Q]] = [[P]]
↓xy
−−→ [[Q]] [[P

x(y)
−−→ Q]] = [[P]]

↓x
−−⇀ λy.[[Q]]

[[P
x̄y

−−→ Q]] = [[P]]
↑xy
−−→ [[Q]] [[P

x̄(y)
−−→ Q]] = [[P]]

↑x
−−⇀ λy.[[Q]]

[[P
τ

−−→ Q]] = [[P]]
τ

−−→ [[Q]]

Figure 13.4 contains a set of clauses, called Dπ, that encodes the opera-

tional semantics of the late transition system for the finite π-calculus. As is

customary when we display clauses, free variables are assumed to be univer-

sally quantified over the clause in which they appear. These variables have

primitive types, such as a, n, and p as well as arrow types such as n → a

and n → p. As a consequence of using the notion of binders to encode π-

calculus-level binders, the side conditions in the original specifications of the

π-calculus Figure 13.3 are no longer present in Dπ. For example, the explicit

side condition that X ̸= y in the open rule is implicit in Dπ since the quantifi-

13.5 Binary clauses 259

cation on X is outside the scope of quantification on y and, therefore, cannot

be instantiated with y (substitutions into logical expressions cannot capture

bound variable names). Figure 13.5 presents the same collection of clauses as

in Figure 13.4 but using λProlog syntax this time.

The adequacy of this encoding is stated in the following proposition (the

proof of this proposition can be found in Tiu [2004] and Tiu and Miller [2010]).

Proposition. Let P and Q be processes and α an action. Let n̄ be a list of

free names containing the free names in P , Q, and α. The transition P
α

−−→ Q

is derivable in the π-calculus if and only if ∀n̄.[[P
α

−−→ Q]] is provable from the

logical theory Dπ.

13.5 Binary clauses

A reduced class of Horn clauses, called binary clauses, can play an important

role in modeling computation. As we argue below, they can explicitly order

computations, whereas such ordering is left unspecified using more general

clauses: such an explicit ordering is important when attempting to use big-

step semantics to capture side effects and concurrency. They can also be used

to capture the notion of abstract machines, a common device for specifying

operational semantics.

13.5.1 Continuation passing in logic programming

Continuation-passing style (cps) specifications are possible in logic program-

ming using quantification over the type of formulas: see, for example, Tarau

[1992]. In fact, it is possible to cps transform Horn clauses into binary clauses

as follows. First, for every predicate p of type τ1 → . . . → τn → o (n ≥ 0), we

provide a second predicate p̂ of type τ1 → . . . → τn → o → o: that is, an addi-

tional argument of type o is added to predicate p. Thus, the atomic formula A

of the form (p t1 . . . tn) is similarly transformed to the term Â = (p̂ t1 . . . tn)

of type o → o. Using these conventions, the cps transformation of the formula

∀z1. · · · ∀zm. [(A1 ∧ . . . ∧An) ⊃ A0] (m ≥ 0, n > 0)

is the binary clause

∀z1. · · · ∀zm.∀k.[(Â1 (Â2(· · · (Ân k) · · ·))) ⊃ (Â0 k)].

Similarly, the cps transformation of the formula

∀z1. · · · ∀zm. [A0] is ∀z1. · · · ∀zm.∀k.[k ⊃ (Â0 k)].

If P is a finite set of Horn clauses and P̂ is the result of applying this cps

transformation to all clauses in P, then P ⊢ A if and only if P̂ ⊢ (Â ⊤).

260 Chapter 13. Formalizing operational semantics

tau: ⊤ ⊃ τ P
τ

−−→ P

in: ⊤ ⊃ in X M
↓X
−−⇀ M

out: ⊤ ⊃ out x y P
↑xy
−−→ P

match: P
A

−−→ Q ⊃ match x x P
A

−−→ Q

P
A

−−⇀ Q ⊃ match x x P
A

−−⇀ Q

sum: P
A

−−→ R ∨Q
A

−−→ R ⊃ P + Q
A

−−→ R

P
A

−−⇀ R ∨Q
A

−−⇀ R ⊃ P + Q
A

−−⇀ R

par: P
A

−−→ P ′ ⊃ P |Q
A

−−→ P ′ |Q

Q
A

−−→ Q′ ⊃ P |Q
A

−−→ P |Q′

P
A

−−⇀ M ⊃ P |Q
A

−−⇀ λn(M n |Q)

Q
A

−−⇀ N ⊃ P |Q
A

−−⇀ λn(P |N n)

res: ∀n.(Pn
A

−−→ Qn) ⊃ νn.Pn
A

−−→ νn.Qn

∀n.(Pn
A

−−⇀ P ′n) ⊃ νn.Pn
A

−−⇀ λm νn.P ′nm

open: ∀y.(My
↑Xy
−−→ M ′y) ⊃ νy.My

↑X
−−⇀ M ′

close: P
↓X
−−⇀ M ∧Q

↑X
−−⇀ N ⊃ P |Q

τ
−−→ νy.(My |Ny)

P
↑X
−−⇀ M ∧Q

↓X
−−⇀ N ⊃ P |Q

τ
−−→ νy.(My |Ny)

com: P
↓X
−−⇀ M ∧Q

↑XY
−−→ Q′ ⊃ P |Q

τ
−−→ MY |Q′

P
↑XY
−−→ P ′ ∧Q

↓X
−−⇀ N ⊃ P |Q

τ
−−→ P ′ |NY

Figure 13.4: The inference rules in Figure 13.3 as logical formulas.

13.5 Binary clauses 261

kind a type.

type tau a.

type dn , up n -> n -> a.

type one p -> a -> p -> o.

type oneb p -> (n -> a) -> (n -> p) -> o.

oneb (in X M) (dn X) M.

one (out X Y P) (up X Y) P.

one (taup P) tau P.

one (match X X P) A Q :- one P A Q.

oneb (match X X P) A M :- oneb P A M.

one (plus P Q) A R :- one P A R.

one (plus P Q) A R :- one Q A R.

oneb (plus P Q) A M :- oneb P A M.

oneb (plus P Q) A M :- oneb Q A M.

one (par P Q) A (par P1 Q) :- one P A P1.

one (par P Q) A (par P Q1) :- one Q A Q1.

oneb (par P Q) A (x\ par (M x) Q) :- oneb P A M.

oneb (par P Q) A (x\ par P (N x)) :- oneb Q A N.

one (nu P) A (nu Q) :- pi x\ one (P x) A (Q x).

oneb (nu P) A (y\ nu x\ Q x y) :-

pi x\ oneb (P x) A (Q x).

oneb (nu M) (up X) N :-

pi y\ one (M y) (up X y) (N y).

one (par P Q) tau (nu y\ par (M y) (N y)) :-

oneb P (dn X) M, oneb Q (up X) N.

one (par P Q) tau (nu y\ par (M y) (N y)) :-

oneb P (up X) M, oneb Q (dn X) N.

one (par P Q) tau (par (M Y) T) :-

oneb P (dn X) M, one Q (up X Y) T.

one (par P Q) tau (par R (M Y)) :-

oneb Q (dn X) M, one P (up X Y) R.

Figure 13.5: The λProlog specification of the finite π-calculus.

(((abs R) % (abs R)) ; K) ⊃ K.

((M % (abs R)) ; (N % U) ; ((R U) % V) ; K) ⊃ ((app M N) % V) ; K.

Figure 13.6: Binary version of call-by-value evaluation.

262 Chapter 13. Formalizing operational semantics

Consider again the specification of call-by-value evaluation in Figure 13.2.

In order to add side-effecting features, this specification must be made more

explicit: in particular, the exact order in which M , N , and (R U) are evaluated

must be specified. The cps transformation of that specification is given in

Figure 13.6: there, evaluation is denoted by a ternary predicate, which is

written using both the % arrow and a semicolon: e.g., the relation “M evaluates

to V with the continuation K” is denoted by (M % V) ; K. If we write this

evaluation predicate as evalc then the λProlog specification of the formulas

in Figure 13.6 can be written as follows.

type evalc term -> term -> o -> o.

evalc (abs R) (abs R) K :- K.

evalc (app M N) V K :- evalc M (abs R) (evalc N U

(evalc (R U) V K)).

In this specification, goals are now sequenced in the sense that bottom-up

proof search is forced to construct a proof of one evaluation pair before other

such pairs. The goal ((M % V) ; ⊤) is provable if and only if V is the call-

by-value result of M . The order in which evaluation is executed is now forced

not by the use of logical connectives but by the use of the non-logical constant

(· % ·) ; ·.

13.5.2 Abstract machines

Abstract machines, which are often used to specify operational semantics, can

be encoded naturally using binary clauses. To support this claim, Hannan and

Miller [1992] introduced the following definition of Abstract Evaluation System

(AES), which generalizes the notion of abstract machines.

A term rewriting system is a pair (Σ, R) such that Σ is a signature and

R is a set of directed equations {li ⇒ ri}i∈I with li, ri ∈ TΣ(X) and V(ri) ⊆
V(li). Here, TΣ(X) denotes the set of first-order terms with constants from the

signature Σ and free variables from X, and V(t) denotes the set of free variables

occurring in t. An abstract evaluation system is a quadruple (Σ, R, ρ, S) such

that the pair (Σ, R∪ {ρ}) is a term rewriting system, ρ is not a member of R,

and S ⊆ R.

Evaluation in an AES is a sequence of rewriting steps with the following

restricted structure. The first rewrite rule must be an instance of the ρ rule.

This rule can be understood as loading the machine to an initial state given

an input expression. The last rewrite step must be an instance of a rule in

S: these rules denote the successful termination of the machine and can be

understood as unloading the machine and producing the answer or final value.

We also make the following significant restriction to the general notion of

term rewriting: all rewriting rules must be applied to a term at its root. This

13.5 Binary clauses 263

M ⇒ ⟨ nil, M, nil ⟩

⟨ E, λM, X ::S⟩ ⇒ ⟨X ::E, M, S⟩
⟨ E, M ˆN, S⟩ ⇒ ⟨ E, M, {E,N} ::S⟩
⟨{E′,M} ::E, 0, S⟩ ⇒ ⟨ E′, M, S⟩
⟨ X ::E, n + 1, S⟩ ⇒ ⟨ E, n, S⟩

⟨ E, λM, nil ⟩ ⇒ {E, λM}

Figure 13.7: The Krivine machine.

M ⇒⟨nil, nil, M ::nil, nil ⟩

⟨S, E, λM ::C, D⟩⇒ ⟨{E, λM} ::S, E, C, D⟩
⟨S, E, (M ˆN) ::C, D⟩⇒ ⟨S, E, M ::N ::ap ::C, D⟩

⟨S, E, n ::C, D⟩⇒ ⟨nth(n,E) ::S, E, C, D⟩
⟨X ::{E′, λM} ::S, E, ap ::C, D⟩⇒ ⟨nil, X ::E′, M ::nil, (S,E,C) ::D⟩
⟨X ::S, E, nil, (S′, E′, C ′) ::D⟩⇒ ⟨X ::S′, E′, C ′, D⟩

⟨X ::S, E, nil, nil⟩⇒X

Figure 13.8: The SECD machine (bottom).

restriction significantly simplifies the computational complexity of applying

rewrite rules during evaluation in an AES. A term t ∈ TΣ(∅) evaluates to the

term s (with respect to the AES (Σ, R, ρ, S)) if there is a series of rewriting

rules satisfying the restrictions above that rewrites t into s.

The SECD machine in Landin [1964] and Krivine machine in Curien [1991]

are both AESs and variants of these are given in Figure 13.7 and Figure 13.8.

There, the syntax for λ-terms uses notation introduced in De Bruijn [1972]

with ˆ (infix) and λ as the constructors for application and abstraction, re-

spectively. In this notation, bound variable names are replaced by numerical

indices that count the number of λ-abstractions between the variable’s oc-

currence and its corresponding binder. The expression {E,M} denotes the

closure of term M with environment E. The first rule given for each machine

is the load rule or ρ of their AES description. The last rule given for each

264 Chapter 13. Formalizing operational semantics

is the unload rule. (In both examples, there is only one unload rule.) The

remaining rules are state transformation rules, each one moving the machine

through a computation step.

A state in the Krivine machine is a triple ⟨E,M,S⟩ in which E is an

environment, M is a single term to be evaluated, and S is a stack of arguments.

A state in the SECD machine is a quadruple ⟨S,E,C,D⟩ in which S is a stack

of computed values, E is an environment (here just a list of terms), C is a list

of commands (terms to be evaluated), and D is a dump or saved state. The

expression nth(n,E), used to access variables in an environment, is treated as

a function that returns the n + 1st element of the list E. Although Landin’s

original description of the SECD machine used variables names, our use of De

Bruijn numerals does not change the essential mechanism of that machine.

There is a natural and immediate way to see a given AES as a set of binary

clauses. Let load, unload, and rewrite be three predicates of one argument

each. Given the AES (Σ, R, ρ, S) let B be the set of binary clauses composed

of the following three groups of formulas:

1. ∀x̂.[rewrite r ⊃ load l] where ρ is the rule l ⇒ r,

2. for every rule l ⇒ r in R, add the clause ∀x̂.[rewrite r ⊃ rewrite l], and

3. for every rule l ⇒ r in S, add the clause ∀x̂.[unload r ⊃ rewrite l].

It is then easy to show that if we start with term t and evaluate it to get s (this

can be a nondeterministic relationship), then from the set of clauses B we can

prove unload t ⊃ load s. In particular, if this implication is provable from B,

then it has a proof of the form displayed in Figure 13.9: there, only synthetic

inference rules (Section 5.7) are displayed. The transitions of the abstract

machine can be read directly from this proof: given the term s, the machine’s

state is initialized to be s1, which is then repeatedly rewritten, yielding the

sequence of terms s2, . . . , sn, at which point the machine is unloaded to get

the value t.

In order to motivate our next operational semantic framework, consider the

problem of using binary clauses to specify side effects, exceptions, and concur-

rent (multi-threaded) computation. Since all the dynamics of computation is

represented via term structures (say, within s, s1, . . . , sn, t) all the information

about these threads, reference cells, and exceptions must be maintained as,

say, lists within these terms. Such an approach to specifying these features of

a programming language lacks modularity and makes little use of logic. We

now consider extending binary clauses so that these additional features have

a much more natural and modular specification.

13.6 Linear logic 265

unload t ⊢ unload t

unload t ⊢ rewrite sn

...

unload t ⊢ rewrite si

...

unload t ⊢ rewrite s1

unload t ⊢ load s

Figure 13.9: A proof involving synthetic rules based on the formulas in

B related to the execution of an abstract machine.

13.6 Linear logic

In Sections 8.4 and 8.6, we illustrated how linear logic can capture multiset

rewriting. Given that many aspects of computation can be captured using

multiset rewriting, it is possible to describe a subset of linear logic that in-

cludes binary clauses but provides a natural means to capture side effects and

concurrency.

13.6.1 Adding a counter to evaluation

Consider again the binary clause example in Figure 13.6. As we showed in

Section 6.5, the top-level intuitionistic implication ⊃ of Horn clauses can be

rewritten as the linear implication ⊸ without changing the operational reading

of proof search. With this change, the binary clauses in that figure are also an

example of multiset rewriting: in particular, one atom is repeatedly replaced

by another atom (until a final continuation replaces the atom). In this way,

binary clauses can be seen as modeling single-threaded computation. Now

that we have embedded binary clauses within the richer setting of linear logic,

it is easy to see how multi-threaded computations might be organized. We

present a couple of examples here.

Consider adding to the untyped λ-calculus a single global counter that can

be read and incremented. In particular, we shall place all integers into type

tm and add two additional constructors of type tm, namely get and inc. The

intended operational semantics of these two constants is that evaluating the

first returns the counter’s current value, and evaluating the second increments

the counter’s value and returns the counter’s old value. We also assume that

integers are values: that is, for every integer i, the clause ∀k.(k ⊸ (i % i) ; k)

266 Chapter 13. Formalizing operational semantics

is part of the evaluator’s specification. The multiset rewriting specification of

these two additional constructors can be given as the two formulas

∀K.∀V.(r V ` K ⊸ ((get % V) ; K) ` r V) and

∀K.∀V.(r (V + 1) ` K ⊸ ((inc % V) ; K) ` r V).

Here, the atom of the form (r x) denotes the “r-register” with value x. Let

D contain the two formulas in Figure 13.6, the two formulas displayed above,

and the formulas mentioned above describing the evaluation of integers. Then

D is a specification of the call-by-value evaluator with one global counter in

the sense that the Lω
2 sequent

D; · ⊢ ((M % V) ; ⊤) ` r 0; ·

is provable exactly when we expect the program M to evaluate to V in the

setting where the register r is initialized to 0.

Of course, the name of the predicate encoding a register should not be

a part of the specification of a counter. Higher-order quantification over r

makes it possible to hide the name of this register. Figure 13.10 contains

three specifications—E1, E2, and E3—of a counter: all three specifications

store the counter’s value in an atomic formula as the argument of the predicate

r. In these three specifications, the predicate r is existentially quantified over

the specification in which it is used so that the atomic formula that stores

the counter’s value is itself local to the counter’s specification. The first two

specifications store the counter’s value on the right of the sequent turnstile, and

reading and incrementing the counter occurs via a synchronization between

a %-atom and an r-atom. In the third specification, the counter is stored

as a linear assumption on the left of the sequent arrow, and synchronization

is not used: instead, the linear assumption is “destructively” read and then

rewritten in order to specify the get and inc functions (similar to the examples

in Section 8.4). Finally, in the first and third specifications, evaluating the inc

symbol causes 1 to be added to the counter’s value. In the second specification,

evaluating the inc symbol causes 1 to be subtracted from the counter’s value:

to compensate for this unusual implementation of inc, reading a counter in

the second specification returns the negative of the counter’s value.

The specifications in Figure 13.10 use several linear logic connectives not

formally part of L2. Positive connectives often appear when one uses the

curry/uncurry equivalences (see Exercise 6.11). Consider proving the sequent

Σ :: Ψ;∃r.[(r 0)⊥ ⊗ !D1 ⊗ !D2] ⊢ G; ·,

where D1, D2, and G are L2 formulas. Given invertibility of ∃L, ⊗L, and ¬L,

provability of that sequent is equivalent to the provability of the ⇓L2 sequent

Σ, r :: Ψ, D1, D2; · ⊢ G, (r 0); ·.

13.6 Linear logic 267

E1 = ∃r.[(r 0)⊥ ⊗
!∀K.∀V.(r V ` K ⊸ ((get % V) ; K) ` r V) ⊗
!∀K.∀V.(r (V + 1) ` K ⊸ ((inc % V) ; K) ` r V)]

E2 = ∃r.[(r 0)⊥ ⊗
!∀K.∀V.(r V ` K ⊸ ((get % (−V)) ; K) ` r V) ⊗
!∀K.∀V.(r (V − 1) ` K ⊸ ((inc % (−V)) ; K) ` r V)]

E3 = ∃r.[(r 0) ⊗
! ∀K.∀V.(r V ⊗ (r V ⊸ K) ⊸ ((get % V) ; K)) ⊗
! ∀K.∀V.(r V ⊗ (r (V + 1) ⊸ K) ⊸ ((inc % V) ; K))]

Figure 13.10: Three specifications of a global counter.

Although these three specifications of a global counter are different, they

should be equivalent in the sense that the process of evaluating terms cannot

tell them apart. Although there are several ways that the equivalence of

such counters can be argued, the specifications of these counters are, in fact,

logically equivalent.

Proposition 13.1. The three entailments E1 ⊢ E2, E2 ⊢ E3, and E3 ⊢ E1

are provable in linear logic.

Proof. The proof of each of these entailments proceeds (in a bottom-up fash-

ion) by choosing an eigenvariable to instantiate the existential quantifier on

the left-hand side and then instantiating the right-hand existential quantifier

with some term involving that eigenvariable. Assume that in all three cases,

the eigenvariable selected is the predicate symbol s. Then the first entailment

is proved by instantiating the right-hand existential with λx.s (−x); the sec-

ond entailment is proved using the substitution λx.(s (−x))⊥; and the third

entailment is proved using the substitution λx.(s x)⊥. The proof of the first

two entailments must also use the identities −0 = 0, −(x + 1) = −x − 1,

and −(x − 1) = −x + 1. The proof of the third entailment requires no such

identities.

Clearly, logical equivalence is a strong equivalence: it immediately implies

that evaluation cannot tell the difference between any of these different counter

specifications. For example, assume E1 ⊢ (M % V) ; ⊤. Then by the cut

inference rule and the above proposition, we have E2 ⊢ (M % V) ; ⊤.

As was shown in Chirimar [1995] and Miller [1996], it is possible to gener-

268 Chapter 13. Formalizing operational semantics

K ⊸ (none % none) ; K

(E % V) ; K ⊸ ((guard E) % (guard V)) ; K

(E % V) ; K ⊸ ((poll E) % (poll V)) ; K

(E % V) ; K ⊸ ((receive E) % (receive V)) ; K

(E % V) ; K ⊸ ((some E) % (some V)) ; K

(E % U) ; ((F % V) ; K) ⊸ ((choose E F) % (choose U V)) ; K

(E % U) ; ((F % V) ; K) ⊸ ((transmit E F) % (transmit U V)) ; K

(E % U) ; ((F % V) ; K) ⊸ ((wrap E F) % (wrap U V)) ; K

Figure 13.11: These CML-like constructors evaluate to themselves.

alize the previous example involving a single global counter to languages that

have the ability to generate references dynamically, such as is possible in Algol

and Standard ML.

13.6.2 Specifying concurrency primitives

The concurrency primitives proposed by Reppy [1991] for the design of Con-

current ML (CML) can also be specified in linear logic. We assume that the

reader is familiar with this extension of ML.

Consider extending the untyped λ-calculus with the following constructors.

none : tm.

guard, poll, receive, some, sync : tm → tm.

choose, transmit, wrap : tm → tm → tm.

spawn, newchan : (tm → tm) → tm.

The meaning of these constructors is then given using the linear logic for-

mulas in Figure 13.11 and Figure 13.12. The clauses in Figure 13.11 specify

the straightforward evaluation rules for the eight data constructors. In Fig-

ure 13.12, the predicate event is of type tm → tm → o → o and is used

to store in the right-bounded zone atomic formulas with the predicate event.

The first three clauses of that figure defined the meaning of the three special

forms sync, spawn, and newchan. The remaining clauses specify the event

predicate.

The formulas in Figure 13.12 allow for multiple evaluation threads. Eval-

uation of the spawn function initiates a new evaluation thread. The newchan

function causes a new eigenvariable to be picked (via the ∀c quantification)

and then to assume that that eigenvariable is a value (via the assumption

∀I.(I ⊸ (c % c) ; I)): such a new value can designate new channels for use

13.6 Linear logic 269

(E % U) ; (event U V K) ⊸ ((sync E) % V) ; K

(((R unit) % unit) ; ⊥) ` K ⊸ ((spawn R) % unit) ; K

∀c.(∀I.(I ⊸ (c % c) ; I) ⇒ ((R c) % V) ; K) ⊸ ((newchan R) % V) ; K

K ` L ⊸ event (receive C) V K ` event (transmit C V) unit L

event E V K ⊸ event (choose E F) V K

event F V K ⊸ event (choose E F) V K

event E U (((app F U) % V) ; K) ⊸ event (wrap E F) V K

((app F unit) % U) ; (event U V K) ⊸ event (guard F) V K

(event E U ⊤) & K ⊸ event (poll E) (some E) K

K ⊸ event (poll E) none K

Figure 13.12: Specifications of some primitives similar to those in Con-

current ML.

in synchronization. The sync primitive allows for synchronization between

threads: its use causes an “evaluation thread” to become an “event thread.”

The remaining clauses in Figure 13.12 describe the behaviors of event threads.

The primitive events are transmit and receive, representing two halves of

synchronization between two event threads. Note that the clause describing

their meaning is the only clause in Figure 13.12 that has a head with more

than one atom. The non-primitive events choose, wrap, guard, and poll are

reduced to other calls to event and %. The choice event is implemented as a

local, nondeterministic choice. (Specifying global choice, as presented in CCS

[Milner, 1989], would be much more involved.) The wrap and guard events

chain together evaluation and synchronization but in direct orders.

The only use of additive linear logic connectives, in particular & and ⊤,

in any of our semantic specifications, is in the specification of polling. In an

attempt to synchronize with (poll E) (with the continuation K) the goal

(event E U ⊤) & K

is attempted (for some unimportant term U). Thus, a copy of the current

evaluation threads is made, and (event E U ⊤) is attempted in one of these

copies. This atom is provable if and only if there is a complementary event for

E in the current environment, in which case, the continuation ⊤ brings us to

a quick completion, and the continuation K is attempted in the original and

unspoiled context of threads. If such a complementary event is not present,

then the other clause for computing a polling event can be used, in which case,

the result of the poll is none, which signals such a failure. The semantics of

270 Chapter 13. Formalizing operational semantics

polling, unfortunately, is not exactly as intended in CML since it is possible

to have a polling event return none even if the event being tested could be

synchronized. This analysis of polling is similar to the analysis of testing in

process calculus as described in Miller [1993].

13.7 Bibliographic notes

A distinction is often made between the static semantics and the dynamic

semantics of programming languages (see, for example, Clement et al. [1986]).

Static semantics refers to properties of program text that a compiler can infer:

typing is a typical example of static semantics, and the collection analysis in

Chapter 11 is another example. Dynamic semantics refers to properties of

programs that can be inferred by executing programs: termination is a typical

example of dynamic semantics. In this chapter, we have limited ourselves to

the specification of dynamic semantics of some simple programming languages

and to the π-calculus. Logic programming and its concomitant technologies

of unification and proof search has an important role in specifying the static

semantics of programming languages, particularly, in type checking and type

inference: see, for example, the so-called Hindley-Milner approach to type

inference in Hindley [1969] and Milner [1978].

There has been a long-standing interest in being able to formally specify

and reason about the static and dynamic semantic descriptions of program-

ming languages. Formal specifications of these using logic programming have

been available since the introduction of operational semantics: see, for ex-

ample, Despeyroux [1986], Hannan and Miller [1989], Hannan and Pfenning

[1992], Hannan [1993], Pfenning and Schürmann [1999], and McDowell and

Miller [2002] for some early references.

The treatment of bindings in data structures, such as those that encode

the (untyped) λ-calculus and the π-calculus, is given a simple and declarative

treatment in the logic programming setting we are using in this book. This

setting provides bindings as a primitive via the availability of simply typed

λ-terms and enables binder mobility through the use of eigenvariables during

proof search as described in Section 3.2.3 and in Miller [2019]. The Abella

proof assistant, described in Baelde et al. [2014], provides a setting in which

reasoning on such logic programs can be done.

The specification of the π-calculus [Milner et al., 1992a] in Figure 13.3 is

taken from Miller and Palamidessi [1999].

For more about translating SOS specifications of evaluation directly into

abstract machines, see Hannan and Miller [1992].

Chirimar [1995] presents a linear logic specification of a programming lan-

guage motivated by Standard ML (as defined in Milner et al. [1990]). In par-

ticular, a specification for the call-by-value λ-calculus is provided, and then

13.7 Bibliographic notes 271

modularly extended with the specifications of references, exceptions, and con-

tinuations: each of these features is specified without complicating the speci-

fications of the other features.

The general outline of this chapter is based on the short article [Miller,

2008b].

272 Chapter 13. Formalizing operational semantics

Solutions to selected exercises

Solution to Exercise 2.1 (page 12). Of the six terms listed, only the fourth

and fifth terms do not have a β-normal form.

1. ((λx.y)(λx.x)) reduces to the normal form y.

2. ((λx.x)(λx.x)) reduces to the normal form (λx.x).

3. ((λx.(xx))(λx.x)) reduces to the term above, namely, ((λx.x)(λx.x)).

Thus, its normal form is (λx.x).

4. ((λx.(xx))(λx.(xx))) reduces only to itself, and since this term is not

normal, this term has no normal form.

5. Applying β-conversion to ((λx.((xx)x))(λx.((xx)x))) yields a larger term

with more β-reduces, including this initial one. This term has no normal

form.

6. ((λx.y)((λx.(xx))(λx.(xx)))) reduces to y.

Solution to Exercise 2.3 (page 13). E2 normalizes to the Church encoding

of 16. In general, En has the λ-normal form that encodes the number

22
2·
··
2 }

n+1

There are n + 1 occurrences of 2 in this expression.

Solution to Exercise 2.4 (page 13). The abstraction (λx.w) is vacuous, i.e.,

x is not free in its scope (which is just the variable w). Since substitution is

capture-avoiding, every instance of that term remains a vacuous abstraction.

Since the term λy.y is not a vacuous abstraction, no such expression for N is

possible.

Solution to Exercise 2.5 (page 14). Let Y denote the untyped λ-term

λf.(λx.f(xx))(λx.f(xx)). Let g is any untyped λ-term. Then: (Y g) β-reduces

to (λx.g(xx))(λx.g(xx)) which β-reduces to g((λx.g(xx))(λx.g(xx))), and this

274 Solutions to selected problems

is equal to g(Y g). Now let B be the term λx.(x ⇒ f). Consider the provable

formula (Y B) ⇒ (Y B). This formula is equal to (via β-conversions) (Y B) ⇒
(B(Y B)) and (Y B) ⇒ (Y B) ⇒ f. This last formula is equivalent to (Y B) ⇒ f,

which is β-convertible to B(Y B) and (Y B). Using modus ponens, we now have

a proof of f. Any formula can replace the symbol for false f, and this proof

would have worked just the same.

Solution to Exercise 2.6 (page 16). The proof of uniqueness is a simple

induction on the structure of typing judgment proofs. For the second part of

this question, let Σ be the empty signature, and let t be the λ-term λx.x, and

assume that S contains two different primitive sorts a and b. Then we have

both Σ ⊩ t : a → a and Σ ⊩ t : b → b.

Solution to Exercise 3.2 (page 30). The multiplicative version of the ∧R

rule is
Σ :: Γ ⊢ ∆, B Σ :: Γ′ ⊢ ∆′, C

Σ :: Γ,Γ′ ⊢ ∆,∆′, B ∧ C
∧Rm.

The following derivation shows that weakening and the additive ∧R rule can

derive the multiplicative ∧Rm rule.

Σ :: Γ ⊢ ∆, B

Σ :: Γ,Γ′ ⊢ ∆,∆′, B
wR,wL

Σ :: Γ ⊢ ∆, C

Σ :: Γ,Γ′ ⊢ ∆,∆′, C
wR,wL

Σ :: Γ,Γ′ ⊢ ∆,∆′, B ∧ C
∧R

The following derivation shows that contraction and the multiplicative ∧Rm

rule can derive the additive ∧R rule.

Σ :: Γ ⊢ ∆, B Σ :: Γ ⊢ ∆, C

Σ :: Γ,Γ ⊢ ∆,∆, B ∧ C
∧Rm

Σ :: Γ ⊢ ∆, B ∧ C
cR, cL

Similarly, the ∧Lm rule can be derived from the ∧L rule with contraction.

Σ :: Γ, B,C ⊢ ∆

Σ :: Γ, B ∧ C,C ⊢ ∆
∧L

Σ :: Γ, B ∧ C,B ∧ C ⊢ ∆
∧L

Σ :: Γ, B ∧ C ⊢ ∆
cL

Finally, the ∧L rule can be derived from the ∧Lm rule with weakening.

Σ :: Γ, B ⊢ ∆

Σ :: Γ, B,C ⊢ ∆
wL

Σ :: Γ, B ∧ C ⊢ ∆
∧Rm

Solutions to selected problems 275

Solution to Exercise 4.1 (page 40). Since
√

2
√
2

is either rational or irra-

tional, we have two cases to consider. In the case that
√

2
√
2

is rational, then

set a = b =
√

2. In the case that
√

2
√
2

is irrational, then set a =
√

2
√
2

and

b =
√

2. A more satisfying proof of this fact results from assigning a =
√

2

and b = log2 9. Kuzmin [1930] proved that
√

2
√
2

is transcendental.

Solution to Exercise 4.3 (page 43). Of these examples, (3), (4), (5), (6),

and (7) all have C-proofs but no I-proofs. A C-proof of (5) is

p ⊢ p
init

p ⊢ q, p
wR

⊢ p ⊃ q, p
⊃R

p ⊢ p
init

(p ⊃ q) ⊃ p ⊢ p, p
⊃L

(p ⊃ q) ⊃ p ⊢ p
cR

· ⊢ ((p ⊃ q) ⊃ p) ⊃ p
⊃R

Solution to Exercise 4.4 (page 43). The instance of the excluded middle

B ∨ (B ⊃ f) assumed as an additional assumption is given for the examples in

Exercise 4.3 by specifying the instance of B. For (3), B is q. For (4), B is p.

For (5), B is p. For (6), B is r a. For (7), B is ∃y∀x.(r x ⊃ r y). Below is the

I-proof for (5) with the appropriate instance of the excluded middle.

p ⊢ p
init

p, (p ⊃ q) ⊃ p ⊢ p
wL

p ⊢ p
init

f ⊢ q
fL

p ⊃ f, p ⊢ q
⊃L

p ⊃ f ⊢ p ⊃ q
⊃R

p ⊢ p
init

p ⊃ f, (p ⊃ q) ⊃ p ⊢ p
⊃L

p ∨ (p ⊃ f), (p ⊃ q) ⊃ p ⊢ p
∨L

p ∨ (p ⊃ f) ⊢ ((p ⊃ q) ⊃ p) ⊃ p
⊃R

Solution to Exercise 4.5 (page 44). The list of pairs for which entailment

is provable in classical logic is

{⟨A,¬¬A⟩, ⟨¬¬A,A⟩, ⟨¬A,¬¬¬A⟩, ⟨¬¬¬A,¬A⟩, }

In intuitionistic logic, the list of pairs for which entailment is provable is the

same, except that the pair ⟨¬¬A,A⟩ is removed.

276 Solutions to selected problems

Solution to Exercise 4.7 (page 45). Assume that S contains the primitive

types i and j. The following is an I-proof.

f : i → j, y : i ⊩ (f y) : j f : i → j, y : i :: · ⊢ t
tR

f : i → j, y : i :: · ⊢ ∃jx t
∃R

f : i → j :: · ⊢ ∀iy∃jx t
∀R

f : i → j :: · ⊢ (∃jx t) ∨ (∀iy∃jx t)
∨R

The following is a C-proof of a different formula.

f : i → j, x : i ⊩ (f x) : j f : i → j, x : i :: · ⊢ t, f
tR

f : i → j, x : i :: · ⊢ ∃jx t, f
∃R

f : i → j :: · ⊢ ∃jx t, ∀ix f
∀R

f : i → j :: · ⊢ (∃jx t) ∨ (∀ix f), (∃jx t) ∨ (∀ix f)
∨R × 2

f : i → j :: · ⊢ (∃jx t) ∨ (∀ix f)
cR

There is no I-proof of this sequent since contraction on the right is necessary

to complete a proof. In both this example and Exercise 4.3(4), completing a

proof requires two subformulas separated by a disjunction to “communicate”

in the sense that one disjunction puts into the sequent context some item

(here, an eigenvariable and in Exercise 4.3(4) an assumption) that the other

disjunct uses. This communication can happen in the proof if that disjunction

is contracted on the right.

Solution to Exercise 4.11 (page 49). Let p and q be distinct constants of

type o. The following is a proof of p ⊢ q using the cut rule.

p ⊢ p

p ⊢ p ⋄ q
q ⊢ q

p ⋄ q ⊢ q

p ⊢ q
cut

Clearly, there can be no cut-free proof of the same endsequent. Since it is

possible to prove p ⋄ q ⊢ p ⋄ q from p ⊢ p, it is possible to eliminate non-atomic

initial rules in the presence of ⋄.

Solution to Exercise 4.8 (page 45). We provide a high-level outline of

the proof. For one direction, we show how to transform a C-proof with a

generalized restart rule to a C-proof without restart. Since I-proofs are C-

proofs, this establishes the forward implication. Restarts can be removed one

Solutions to selected problems 277

by one via the following transformation.

Ξ
Σ :: Γ ⊢ B,∆

Σ :: Γ ⊢ C,∆
Restart

...

Σ′ :: Γ′ ⊢ B,∆′

=⇒

Ξ
Σ :: Γ ⊢ B,∆

Σ :: Γ ⊢ C,B,∆
wR

...

Σ′ :: Γ′ ⊢ B,B,∆′ cR

Σ′ :: Γ′ ⊢ B,∆′

That is, the restart rule can be implemented using a contraction and a weak-

ening on the right. It is easy to confirm that the formula B can be added to

all possible inference rules below this occurrence of the restart rule.

For a sketch of the converse direction, consider a C-proof. Mark a formula

on the right-hand side of every sequent as follows. The single formula on the

right of the endsequent is marked (assuming that the endsequent has a single

formula on the right). If the last inference rule of the proof is a left-introduction

rule, then the marked occurrence of the formula in the conclusion is also

marked in all the premises. If the last inference rule is a right-introduction

rule, then we have two cases: If the introduced formula is already marked,

then mark its subformulas that appear in the right-hand side of any premise

(for example, if the marked formula is A ⇒ B then mark B in the premise;

if the marked formula is A ∧ B then mark A in one premise and B in the

other; and so forth). Otherwise, the right-hand formula introduced is not

marked, in which case, we have a marking break, and we mark in the premises

of the inference rules the subformulas of the right-hand formula introduced

and continue. The only other rules that might be applied are: cL, in which

case the marked formula on the right persists from conclusion to premise; cR,

in which case, if the marked formula is the one contracted then select one of

its copies to mark in the premise, otherwise, the marked formula persists in

the premise; and init, in which case, if the marked formula on the right is not

the same as the formula on the left, then this occurrence of the init rule is also

a marking break.

To illustrate this notion of marking formulas, consider the annotated C-

proof in Figure 13.13. Here, an asterisk is used to indicate marked formulas

and to indicate which inference rules correspond to marking gaps.

Now the I-proof with Restart is built as follows. For sequents that are

the conclusion of a rule that is not a marking break, delete all non-marked

formulas on the right. For sequents that are the conclusion of a rule that is

a marking break, then this one inference rule becomes two: an instance of

the Restart rule must be inserted, and then the version of the inference rule

corresponding to the marking break is put into the proof with the non-marked

right-hand formulas deleted.

278 Solutions to selected problems

p ⊢ p, q∗, p ⊃ q, p ∨ (p ⊃ q)
init∗

⊢ p, (p ⊃ q)∗, p ⊃ q, p ∨ (p ⊃ q)
⊃R

⊢ p, (p ⊃ q)∗, p ∨ (p ⊃ q)
cR

⊢ p∗, p ∨ (p ⊃ q), p ∨ (p ⊃ q)
∨R∗

⊢ p∗, p ∨ (p ⊃ q)
cR

⊢ p ∨ (p ⊃ q)∗, p ∨ (p ⊃ q)
∨R

⊢ p ∨ (p ⊃ q)∗
cR

Figure 13.13: An annotated C-proof

For example, performing this transformation on the C-proof yields the

following structure.

p ⊢ p
init

p ⊢ q
Restart

⊢ p ⊃ q
⊃R

⊢ p ⊃ q
cR

⊢ p ∨ (p ⊃ q)
∨R

⊢ p
Restart

⊢ p
cR

⊢ p ∨ (p ⊃ q)
∨R

⊢ p ∨ (p ⊃ q)
cR

This sequence of rules is not yet an I-proof: there are three occurrences of

cR that are not allowed in I-proofs: these can either be deleted or reclassified

as Restart rules. In the example above, all three occurrences of cR can be

deleted, yielding an I-proof with the restart rule.

Solution to Exercise 4.12 (page 50). Let Π1 and Π2 be the following proofs

of p ⊢ f and ⊢ p, respectively.

p ⊢ p
init

f ⊢ f
init

p, p ⊃ f ⊢ f
⊃L

p, p ⊢ f
defL

p ⊢ f
cL

Π1

p ⊢ f

⊢ p ⊃ f
⊃R

⊢ p
defR

Clearly, by defining p as ¬p (hence, the equivalence p ≡ ¬p is provable), one

Solutions to selected problems 279

is asking for trouble. (Compare this trouble with Curry’s paradox in Exer-

cise 2.5.) It turns out that if the ambient logic does not have the contraction

rules (such as in linear logic), then it has been pointed out in Girard [1992]

and Schroeder-Heister [1993] that it is not possible for such a problematic

definition to yield an inconsistency.

Solution to Exercise 4.15 (page 51). Let k ≥ 1 and Dk be the formula

∀x.(p x ⊃ p (f2kx).

Give a cut-free proof of Dk+1 from Dk. Show how these lemmas can be

organized into a short proof (with cuts) of, for example,

p a, ∀x.(p x ⊃ p (f x)) ⊢ p(f256a).

Solution to Exercise 4.18 (page 54). The following inference rules can

prove the invertibility of ∨L and ∀R. The remaining two cases can be proved

in a similar fashion.

B ⊢ B
init

B ⊢ B ∨ C
∨R Ξ

Γ, B ∨ C ⊢ ∆

Γ, B ⊢ ∆
cut

C ⊢ C
init

C ⊢ B ∨ C
∨R Ξ

Γ, B ∨ C ⊢ ∆

Γ, C ⊢ ∆
cut

Γ, B ∨ C ⊢ ∆
∨L

Ξ
Σ, c : τ :: Γ ⊢ ∀τx.B,∆

Σ, c : τ :: B[c/x] ⊢ B[c/x]
init

Σ, c : τ :: ∀τx.B ⊢ B[c/x]
∀L

Σ, c : τ :: Γ ⊢ B[c/x],∆
cut

Σ :: Γ ⊢ ∀τx.B,∆
∀R.

Here, c is not declared in Σ. Note that if we start with a proof Ξ of the

sequent Σ :: Γ ⊢ ∀τx.B,∆ then it is a simple matter to view Ξ as a proof of

Σ, c : τ :: Γ ⊢ ∀τx.B,∆.

Solution to Exercise 4.24 (page 57). The explode inference rules can be

derived using the following inference rules.

Γ ⊢ B ⊃ f

Γ ⊢ B

B ⊢ B
init

f ⊢ C
fL

B,B ⊃ f ⊢ C
⊃L

Γ, B ⊃ f ⊢ C
cut

Γ,Γ ⊢ C
cut

Γ ⊢ C
cL

280 Solutions to selected problems

In a similar fashion, the excluded middle inference rules can be derived using

the following inference rules.

B ⊢ B
init

B ⊢ B, f
wR

⊢ B,B ⊃ f
⊃R

Γ, B ⊢ C

Γ ⊢ B ⊃ f, C
cut

Γ, B ⊃ f ⊢ C

Γ,Γ ⊢ C,C
cut

Γ ⊢ C
cL, cR

Solution to Exercise 5.6 (page 66). Assume that there is a (cut-free) C-

proof Ξ of Σ :: P ⊢ f for a multiset of Horn clauses P. Consider the last

inference rule of Ξ. It cannot be either init or fL since f is not allowed as a

Horn clause. Assume that the last rule is ⊃L, namely,

Σ :: Γ1 ⊢ ∆1, G Σ :: D,Γ2 ⊢ ∆2

Σ :: G ⊃ D,Γ1,Γ2 ⊢ f
⊃L

where the multiset union of ∆1 and ∆2 is the multiset containing just one

occurrence of f. By Proposition 5.5, ∆2 must be nonempty so ∆1 is empty

and ∆2 contains just f. However, the right premise is a shorter proof of f from

Horn clauses, which is a contradiction. The only other possible candidates as

the last inference rule of Ξ (namely, ∧L, ∀L, or a structural rule on the left

or right) all would yield a premise that is a sequent with Horn clauses on the

left and f on the right. Since that premise has a shorter proof than Ξ, we have

again have a contradiction.

Solution to Exercise 5.8 (page 66). Let the Σ-formulas D0, . . . , Dn (n ≥ 0)

be Horn clauses using description (5.3). Thus, D0 is of the form

∀x̄1.(A1 ⊃ · · · ⊃ (∀x̄m.Am ⊃ ∀x̄0.A0))

where m ≥ 0 and x̄0, . . . x̄m are lists of variables, all of which are distinct. As

was proved in Proposition 4.17, both ⊃R and ∀R are invertible rules within

C-proofs. In particular, the sequent Σ ::D1, . . . , Dn ⊢ D0 has a C-proof if and

only if

Σ, x̄0, x̄1, . . . x̄m :: D1, . . . , Dn, A1, . . . , Am ⊢ A0

has a C-proof. Since all the formulas on the left-hand side of this sequent

are Horn clauses, the result follows directly from Proposition 5.5. This result

also holds when Horn clauses are defined using description (5.2). The result

that the classical entailment among Horn clauses implies their intuitionistic

Solutions to selected problems 281

entailment is a special case of a result often referred to as Barr’s Theorem (see

Negri [2016]).

Solution to Exercise 5.9 (page 67). Exercise 4.3(5) provides a C-proof of

((p ⊃ q) ⊃ p) ⊃ p. It is easy to see that this formula has no I-proof (and, hence,

no uniform proof). Now assume that there is another formula, say, A, which

only contains implications and is strictly smaller while having a C-proof but no

I-proof. Thus B contains 2 or fewer occurrences of implications. Thus, B is of

clausal order 2 or less and is of the form (A1 ⊃ (A2 ⊃ A3)) or ((A1 ⊃ A2) ⊃ A3)

where A1, A2, A3 are atomic formulas. Thus attempting a cut-free proof of B

leads to attempting proofs of either A1, A2 ⊢ A3 or A1 ⊃ A2 ⊢ A3. In

either case, we have a sequent involving only Horn clauses and, as a result of

Proposition 5.5, if it is classically provable, it is also intuitionistically provable.

This is a contradiction.

Solution to Exercise 5.14 (page 70). Assume that Σ::Γ ⊢ B has an I-proof,

where Γ is a multiset of Harrop formulas, and B is an arbitrary formula. By

Proposition 4.17, the inference rules ⊃R, ∧R, and ∀R are invertible. Hence, the

result follows immediately if B is an implication, a conjunction, or a universal

quantifier. Consider the case where B is B1 ∨ B2. We prove by induction on

the size of a cut-free I-proof Ξ of Σ::Γ ⊢ B1∨B2 that there is an i ∈ {1, 2} such

that Σ :: Γ ⊢ Bi has an I-proof. If the last inference rule of Ξ is ∨R, the result

is immediate. If the last inference rule of Ξ is either ∧L or ∀L, the conclusion

follows immediately from the inductive assumption. The only remaining case

is that the last inference rule of Ξ is ⊃L, as in the following derivation.

Ξ0

Γ ⊢ B′
Ξ1

Γ, H ⊢ B1 ∨B2

Γ, B′ ⊃ H ⊢ B1 ∨B2

⊃L

Since H is also a Harrop formula, then the inductive assumption applies to

the proof Ξ1: hence, there is a proof Ξ2 of Γ, H ⊢ Bi for some i. Thus, the

desired proof is
Ξ0

Γ ⊢ B′
Ξ2

Γ, H ⊢ Bi

Γ, B′ ⊃ H ⊢ Bi

⊃L

Γ, B′ ⊃ H ⊢ B1 ∨B2
∨R

The case for when B is existentially quantified is similar. Uniform proofs

are not complete for sequents that are constrained to contain only Harrop

formulas. For example, both sequents

· ⊢ (p ∨ q) ⊃ (q ∨ p) and ((p ∨ q) ⊃ (q ∨ p)) ⊃ a ⊢ a

have I-proofs but no uniform proofs.

282 Solutions to selected problems

Solution to Exercise 5.16 (page 74). Let P be the multiset {D0, . . . , Dn}
and let Γ be a multiset that contains P. Applying ⊃L in a focused manner

i times to the assumption Di in the sequent Γ ⊢ A yields a derivation of the

form
Γ ⊢ a0 · · · Γ ⊢ ai−1 Γ, ai ⊢ A

Γ ⊢ A

Backchaining, as in ⇓ fohh-proofs, requires that the initial rule proves the right-

most premise. In that case, A is ai, and this derivation justifies the following

backchaining inference rule.

Γ ⊢ a0 · · · Γ ⊢ ai−1

Γ ⊢ ai
BCi

As this exercise suggests, forward chaining requires that all the premises except

for the right-most premise are the initial rule. In that case, Γ is of the form

Γ′ ∪{a0, . . . , ai−1}, and this derivation justifies the following forward-chaining

inference rule.
Γ′, a0, . . . , ai ⊢ A

Γ′, a0, . . . , ai−1 ⊢ A
FCi

There is one proof using the BCi inference rules of the sequent P ⊢ an, and

that proof contains 2n occurrences of backchaining inference rules (and init).

In contrast, there are many proofs using the FCi inference rules of the sequent

P ⊢ an and the shortest one contains n occurrences of the forward-chaining

inference rules.

Solution to Exercise 5.43 (page 99). Assume that there is a fohh pro-

gram P that satisfies the following specification: for every nonempty set

N = {n1, . . . , nk}, we have A(N),P ⊢I maxa n if and only if n is the maximum

of the set {n1, . . . , nk}. Let N be the set containing the numerals for 0 and

1. Thus, A(N) is the set of atoms {a z, a (s z)}. Let A′ be the set of atoms

{a z, a (s z), a (s (s z))}. Thus, it must be the case that A(N),P ⊢I maxa (s z).

By the monotonicity property of intuitionistic provability, A′,P ⊢I maxa (s z),

but this is a contradiction to the choice of P, since (s z) is not the maximum

of the set of numbers encoded in A′.

Solution to Exercise 5.44 (page 100). Assume that a logic program defines

the notconnected predicate. Using the graph described in Figure 5.5, it must

be the case that notconnected a e is provable. But if we add adj a e to

the logic program, the monotonicity property must force notconnected a e

to be provable in that extended program. But this contradicts the assumption

about notconnected.

Solutions to selected problems 283

Solution to Exercise 5.46 (page 101). Assume there is a fohh-logic speci-

fications P over the signature ΣP . Also, assume that this signature contains

the constants a : i and f : i → i → i, and that the constants d : i and e : i are

not declared in ΣP . By the specification of subAll, it is the case that

d : i, e : i,ΣS ⊢I subAll d a (f d e) (f a e).

By Proposition 5.25 and using the substitution of e for d, we know that

e : i,ΣS ⊢I subAll e a (f e e) (f a e).

But this contradicts the specification for subAll.

Solution to Exercise 6.2 (page 113). Assume there is a cut-free proof of

⊢ p⊗ q, p⊥ ⊗ q, p⊗ q⊥, p⊥ ⊗ q⊥

Because of the symmetry of replacing p with p⊥ and q with q⊥, we can as-

sume, without loss of generality, that this sequent is proved by the following

occurrence of the ⊗R rule.

⊢ p,∆ ⊢ q,∆′

⊢ p⊗ q, p⊥ ⊗ q, p⊗ q⊥, p⊥ ⊗ q⊥
⊗R

Here, ∆ and ∆′ are multisets whose union is the three-element multiset p⊥ ⊗
q, p⊗ q⊥, p⊥ ⊗ q⊥. Note first that neither ∆ nor ∆′ can be empty. Note also

that neither ∆ nor ∆′ can be a singleton: a simple case analysis shows that

if one of these multisets is a singleton, then the corresponding premise is not

provable. We have reached a contradiction when we note that every possible

partition of 3 elements must contain either an empty or singleton partition.

Solution to Exercise 6.4 (page 114). Let prefix π be one of the following

seven prefixes: empty, !, ?, ! ?, ? !, ! ? !, and ? ! ?. It is easy to show the

equivalence ππB ≡ πB for all formulas B. For example, the case for π = ? !

leads to proving the following two entailments.

? !B ⊢ ? !B
init

! ? !B ⊢ ? !B
!D

? ! ? !B ⊢ ? !B
?L

!B ⊢ !B
init

!B ⊢ ? !B
?D

!B ⊢ ! ? !B
!R

!B ⊢ ? ! ? !B
?D

? !B ⊢ ? ! ? !B
?L

In the case that π = ! ? !, similar proofs can be given, although the following

chain of equivalences

! ? ! ! ? !B ≡ ! ? ! ? ! B ≡ ! ? !B.

284 Solutions to selected problems

is more convincing (rewriting subformulas by logically equivalent subformulas

is justified using the cut-elimination result: see Section 4.3.3) Assuming that

the equivalences associated with !, ?, ! ?, and ? ! have already been proved, we

can now prove that any prefix π that has length 4 or more must be equivalence

to one of shorter length. Thus π can be written as b1b2b3b4π
′ where the bi’s are

either ! or ?. These first four positions must alternate between these two flavors

of exponentials since otherwise they must contain either ! ! or ? ? (which can

be shortened). Thus, π must be either ! ? ! ?π′ or ? ! ? !π′. In the first case, we

repeat ! ?, and in the second case, we repeat ? !. In either case, these repeated

patterns can be shortened.

Solution to Exercise 6.20 (page 130). We use the six linear logic connectives

{⊤,&,⊥,⊸,⇒, ∀} to define the remaining connectives.

B⊥ ≡ B ⊸ ⊥ 0 ≡ ⊤ ⊸ ⊥ 1 ≡ ⊥ ⊸ ⊥ B ` C ≡ (B ⊸ ⊥) ⊸ C

B ⊕ C ≡ ((B ⊸ ⊥) & (C ⊸ ⊥)) ⊸ ⊥ B ⊗ C ≡ (B ⊸ C ⊸ ⊥) ⊸ ⊥

∃x.B ≡ (∀x.(B ⊸ ⊥)) ⊸ ⊥

!B ≡ (B ⇒ ⊥) ⊸ ⊥ ?B ≡ (B ⊸ ⊥) ⇒ ⊥

Solution to Exercise 6.26 (page 133). Assume that there is a ⇓L2 proof of

a sequent with an empty right side and with only L1 formulas on the left side.

Let Ξ be such a proof of minimal height. Consider the last inference rule of Ξ.

This last inference rule cannot be a right-introduction rule since these require

a non-empty right side. Similarly, the last rule is not the decidel or the decide !

rule since these would yield a premise with an empty right side with a shorter

proof. Thus, the endsequent of Ξ must be of the form Σ :: Ψ; Γ ⇓ B ⊢ ·; ·.
However, a check of all possible left-introduction rules (⊥L, ` L, and ?L are

not possible) yields at least one premise with an empty right side and shorter

proof. This contradicts the choice of Ξ.

Solution to Exercise 6.27 (page 133). We proceed by induction on the

structure of the ⇓L2 proof Ξ. By considering all the possible last inference

rules of Ξ, we need to show that a single-conclusion sequent in the conclusion

will guarantee that all premises are also single conclusion: the inductive hy-

pothesis then completes the proof. The only case that is not immediate is the

case for the ⊸ L rule, namely,

Σ :: Ψ; Γ1 ⊢ A1, B; Υ Σ :: Ψ; Γ2 ⇓ C ⊢ A2; Υ

Σ :: Ψ; Γ1,Γ2 ⇓ B ⊸ C ⊢ A1,A2; Υ
⊸L

and where A1 ∪ A2 is a singleton multiset. By Exercise 6.26, we know that

A2 is not empty. As a result, A1 must be empty. Thus, both premises of this

inference rule are single-conclusion sequents.

Solutions to selected problems 285

Solution to Exercise 8.1 (page 167). Let Γ be the multiset of atoms

{A1, . . . , An} (n ≥ 0), and let P be B1 ` · · · ` Bm where B1, . . . , Bm (m ≥ 0)

are also atomic formulas. We can prove by induction on n that P ⊢ Γ is prov-

able in linear logic if and only if n = m and the two multisets {A1, . . . , An}
and {B1, . . . , Bm} are equal. If n = 0, this case is immediate since P is ⊥
and the provability of the sequent ⊥ ⊢ Γ implies that Γ is empty. If n = 1,

this case reduces to simply showing that the sequent B1 ` · · · ` Bm ⊢ A1

is provable if and only if m = 1 and A1 and B1 are equal. Now, assume

that n > 1 and that P is (A1 ` · · · ` Ai) ` (Ai+1 ` · · · ` An). If P ⊢ Γ

is provable then there is a multiset partition of Γ into Γ1 and Γ2 such that

both sequents A1 ` · · · ` Ai ⊢ Γ1 and Ai+1 ` · · · ` An ⊢ Γ2 are provable.

By induction, we have that Γ1 is {A1, . . . , Ai} and Γ2 is {Ai+1, . . . , An} and,

hence, Γ is {A1, . . . , An}. For the converse, it is easy to construct a proof of

A1 ` · · · ` An ⊢ A1, . . . , An.

Solution to Exercise 8.4 (page 172). Let the program P be the result of

adding the declarations and clauses for leq from Figure 5.3 to the following

declarations and clauses.

type maxa nat -> o.

maxa M :- a M.

maxa M :- a N, a P, leq N P, (a P -o maxa M).

Solution to Exercise 8.5 (page 172). Let the program P be the result of

adding the declarations and clauses for sum from Figure 5.3 to the following

declarations and clauses.

type sumall nat -> o.

sumall M :- a M.

sumall M :- a N, a P, sum N P S, (a S -o sumall M).

Solution to Exercise 9.1 (page 183). Below are two Iω-proofs that show

that ∀op.p is logically equivalent to f in intuitionistic logic.

f ⊢ f
fL

∀op.p ⊢ f
∀L

f ⊢ ∀op.p
fL

Solution to Exercise 9.3 (page 184). The proofs of cases related to reflec-

tivity and transitivity are straightforward. In the proof related to symmetry, if

the ∀R rule introduces the eigenvariable p:i → o, then use the term λx.px ⊃ pt

in the ∀L rule.

286 Solutions to selected problems

Solution to Exercise 9.15 (page 195). The proof of Σ :: E2; · ⊢ E1; · is

straightforward since the instantiation needed for the ∀L rule is simple.

Σ, p :: E2, pt; · ⇓ pt ⊢ pt; ·
init

Σ, p :: E2, pt; · ⊢ pt; ·
decide !

Σ, p :: E2, pt; · ⇓ ps ⊢ ps; ·
init

Σ, p :: E2, pt; · ⇓ pt ⊸ ps ⊢ ps; ·
⊸L

Σ, p :: E2, pt; · ⇓ ∀P.(Pt ⊸ Ps) ⊢ ps; ·
∀L

Σ, p :: E2, pt; · ⊢ ps; ·
decide !

Σ :: E2; · ⊢ ∀P.(Pt ⇒ Ps); ·
∀L,⇒R

The proof of the converse requires using the ∀L rule with the slightly more

complex term λw.pt ⊸ pw. Most of this proof is below.

Σ, p :: E1; · ⊢ pt ⊸ pt; · Σ, p :: E1; pt ⊢ pt; · Σ, p :: E1; · ⇓ ps ⊢ ps; ·
init

Σ, p :: E1; pt ⇓ (pt ⊸ pt) ⇒ pt ⊸ ps ⊢ ps; ·
⇒L,⊸L

Σ, p :: E1; pt ⇓ ∀P.(Pt ⇒ Ps) ⊢ ps; ·
∀L

Σ, p :: E1; pt ⊢ ps; ·
decide !

Σ :: E1; · ⊢ ∀P.(Pt ⊸ Ps); ·
∀L,⊸R

Solution to Exercise 10.1 (page 210). Let ⋆ : o be a non-logical constant,

let Γ be the context containing ∀x.(x ⊸ ⋆ ` x), and let Γ′ be the context

containing ⊥ ⊸ ⋆. The required two proofs are below.

· :: Γ; · ⇓ ⊥ ⊢ ·; ·
· :: Γ;⊥ ⊢ ·; ·
· :: Γ;⊥ ⊢ ⊥; ·

· :: Γ; · ⇓ ⋆ ⊢ ⋆; · · :: Γ; · ⇓ ⊥ ⊢ ·; ·
· :: Γ; · ⇓ ⋆ ` ⊥ ⊢ ⋆; ·

· :: Γ;⊥ ⇓ ⊥ ⊸ ⋆ ` ⊥ ⊢ ⋆; ·
· :: Γ;⊥ ⇓ ∀x.(x ⊸ ⋆ ` x) ⊢ ⋆; ·

· :: Γ;⊥ ⊢ ⋆; ·
· :: Γ; · ⊢ ⊥ ⊸ ⋆; ·

x :: Γ′; · ⇓ x ⊢ x; ·
x :: Γ′;x ⊢ x; ·

x :: Γ′;x ⊢ ⊥, x; · x :: Γ′; · ⇓ ⋆ ⊢ ⋆; ·
x :: Γ′;x ⇓ ⊥ ⊸ ⋆ ⊢ ⋆, x; ·

x :: Γ′;x ⊢ ⋆, x; ·

· :: Γ′; · ⊢ ∀x.(x ⊸ ⋆ ` x); ·

Solutions to selected problems 287

Solution to Exercise 11.2 (page 228). Applying the mapping

nil 7→ ⊥
:: 7→ λxλy. item x ` y

rev 7→ λxλyλz. (x ` y) ˛ z

reverse 7→ λxλy. x ˛ y

to the three Horn clauses in this exercise yields the following linear logic for-

mulas, all of which are easily seen as provable in linear logic.

∀L,K(L`⊥ ˛ K) ⇒ (L ˛ K)

∀L(⊥`L ˛ L)

∀X,L,M,N(M`(itemX`N) ˛ L) ⇒ ((itemX`M)`N ˛ L)

Solution to Exercise 12.3 (page 247). A proof that the first implies the

second contains a subproof of the sequent

∀k.N (k m′) ⊢ ∀k.N (k m),

and this is proved by introducing an eigenvariable, say c, on the right and the

term λw.(c m) on the left.

Bibliography 289

Bibliography

Samson Abramsky. Computational interpretations of linear logic. Theoretical

Computer Science, 111:3–57, 1993. (Cited on page 5.)

Alexander Aiken. Set constraints: results, applications, and future directions.

In PPCP94: Principles and Practice of Constraint Programming, number

874 in LNCS, pages 171–179, 1994. (Cited on page 235.)

J. M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in

inheritance. New Generation Computing, 9(3-4):445–473, 1991a. (Cited on

page 180.)

J.-M. Andreoli and R. Pareschi. Communication as fair distribution of knowl-

edge. In Proceedings of OOPSLA 91, pages 212–229, 1991b. (Cited on page

180.)

Jean-Marc Andreoli. Proposal for a Synthesis of Logic and Object-Oriented

Programming Paradigms. PhD thesis, University of Paris VI, 1990. (Cited

on page 136.)

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J.

of Logic and Computation, 2(3):297–347, 1992. doi:10.1093/logcom/2.3.297.

(Cited on pages 34, 102, 116, 136, 163, and 251.)

Peter B. Andrews. Resolution in type theory. J. of Symbolic Logic, 36:414–432,

1971. (Cited on page 207.)

Peter B. Andrews. General models and extensionality. Journal of Symbolic

Logic, 37:395–397, 1972. (Cited on page 207.)

Peter B. Andrews. Provability in elementary type theory. Zeitschrift fur

Mathematische Logic und Grundlagen der Mathematik, 20:411–418, 1974.

(Cited on page 11.)

https://doi.org/10.1093/logcom/2.3.297

290 Bibliography

Peter B. Andrews. An Introduction to Mathematical Logic and Type The-

ory: To Truth Through Proof. Academic Press, 1986. (Cited on pages 20

and 206.)

Peter B. Andrews, Frank Pfenning, Sunil Issar, and C. P. Klapper. The TPS

theorem proving system. In Jörg H. Siekmann, editor, Eighth International

Conference on Automated Deduction, volume 230 of LNCS, pages 663–664.

Springer, July 1986. (Cited on page 206.)

Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfen-

ning, and Hongwei Xi. TPS: A theorem proving system for classical type

theory. Journal of Automated Reasoning, 16(3):321–353, 1996. (Cited on

page 206.)

Peter B. Andrews, Matthew Bishop, and Chad E. Brown. TPS: A theorem

proving system for type theory. In David McAllester, editor, Proceedings of

the 17th International Conference on Automated Deduction, number 1831

in LNAI, pages 164–169, Pittsburgh, USA, 2000. Springer. (Cited on page

206.)

Andrew W. Appel and Amy P. Felty. Polymorphic lemmas and definitions

in λProlog and Twelf. Theory and Practice of Logic Programming, 4(1-2):

1–39, 2004. doi:10.1017/S1471068403001698. (Cited on page 20.)

K. R. Apt and M. H. van Emden. Contributions to the theory of logic pro-

gramming. J. of the ACM, 29(3):841–862, 1982. (Cited on pages 9 and 102.)

A. Asperti, G.-L. Ferrari, and R. Gorrieri. Implicative formulae in the ‘proof as

computations’ analogy. In 17th ACM Symp. on Principles of Programming

Languages, pages 59–71. ACM, January 1990. (Cited on page 180.)

Matthias Baaz and Alexander Leitsch. Cut-elimination and Redundancy-

elimination by Resolution. Journal of Symbolic Computation, 29(2):149–

176, 2000. (Cited on page 206.)

David Baelde. Least and greatest fixed points in linear logic.

ACM Trans. on Computational Logic, 13(1):2:1–2:44, April 2012.

doi:10.1145/2071368.2071370. (Cited on page 137.)

David Baelde and Dale Miller. Least and greatest fixed points in linear logic.

In N. Dershowitz and A. Voronkov, editors, International Conference on

Logic for Programming and Automated Reasoning (LPAR), volume 4790

of LNCS, pages 92–106, 2007. doi:10.1007/978-3-540-75560-9 9. (Cited on

page 137.)

https://doi.org/10.1017/S1471068403001698
https://doi.org/10.1145/2071368.2071370
https://doi.org/10.1007/978-3-540-75560-9_9

Bibliography 291

David Baelde, Dale Miller, and Zachary Snow. Focused inductive theorem

proving. In J. Giesl and R. Hähnle, editors, Fifth International Joint Con-

ference on Automated Reasoning, number 6173 in LNCS, pages 278–292,

2010. doi:10.1007/978-3-642-14203-1 24. (Cited on page 60.)

David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Na-

dathur, Alwen Tiu, and Yuting Wang. Abella: A system for reasoning

about relational specifications. J. of Formalized Reasoning, 7(2):1–89, 2014.

doi:10.6092/issn.1972-5787/4650. (Cited on pages 20 and 270.)

Jean-Pierre Banâtre and Daniel Le Métayer. Programming by Multiset Trans-

formation. Communications of the ACM, 36(1):98–111, January 1993.

(Cited on pages 180 and 254.)

Jean-Pierre Banâtre and Daniel Le Métayer. Gamma and the chemical reaction

model: ten years after. In Coordination programming: Mechanisms, models

and semantics, pages 3–41. World Scientific Publishing, IC Press, 1996.

(Cited on page 180.)

Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume

103 of Studies in Logic and the Foundations of Mathematics. Elsevier, New

York, revised edition, 1984. (Cited on page 20.)

Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with

Types. Perspectives in Logic. Cambridge University Press, 2013. (Cited on

page 20.)

C. Benzmüller, C. E. Brown, and M. Kohlhase. Cut-simulation and im-

predicativity. Logical Methods in Computer Science, 5(1):1–21, 2009.

doi:10.2168/LMCS-5(1:6)2009. (Cited on page 206.)

Christoph Benzmüller and Peter Andrews. Church’s Type Theory. In Ed-

ward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Meta-

physics Research Lab, Stanford University, summer 2019 edition, 2019.

(Cited on page 9.)

Christoph Benzmüller and Dale Miller. Automation of higher-order logic. In

J. Siekmann, editor, Computational Logic, volume 9 of Handbook of the

History of Logic, pages 215–254. North Holland, 2014. ISBN 978-0-444-

51624-4. doi:10.1016/B978-0-444-51624-4.50005-8. (Cited on page 206.)

Christoph Benzmüller, Chad Brown, and Michael Kohlhase. Higher-order

semantics and extensionality. Journal of Symbolic Logic, 69(4):1027–1088,

2004. doi:10.2178/jsl/1102022211. (Cited on page 207.)

https://doi.org/10.1007/978-3-642-14203-1_24
https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.2168/LMCS-5(1:6)2009
https://doi.org/10.1016/B978-0-444-51624-4.50005-8
https://doi.org/10.2178/jsl/1102022211

292 Bibliography

G. Berry and G. Boudol. The chemical abstract machine. Theoretical Com-

puter Science, 96:217–248, 1992. (Cited on pages 180 and 254.)

Katalin Bimbó. Proof Theory: Sequent Calculi and Related Formalisms. CRC

Press, 2015. (Cited on pages 38 and 59.)

Stefano Bistarelli, Iliano Cervesato, Gabriele Lenzini, and Fabio Martinelli.

Relating multiset rewriting and process algebras for security protocol anal-

ysis. Journal of Computer Security, 13(1):3–47, 2005. (Cited on page 254.)

W. W. Bledsoe. A maximal method for set variables in automatic theorem-

proving. In J. E. Hayes, Donald Michie, and L. I. Mikulich, editors, Machine

Intelligence 9, pages 53–100. John Wiley & Sons, 1979. (Cited on page 206.)

W. W. Bledsoe and Guohui Feng. SET-VAR. Journal of Automated Reasoning,

11:293–314, 1993. (Cited on page 206.)

Paola Bruscoli and Alessio Guglielmi. On structuring proof search for first

order linear logic. Theoretical Computer Science, 360(1-3):42–76, 2006.

doi:10.1016/j.tcs.2005.11.047. (Cited on page 163.)

M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming.

Journal of Logic Programming, 19/20:443–502, 1994. doi:10.1016/0743-

1066(94)90032-9. (Cited on page 103.)

Lúıs Caires and Luis Monteiro. Higher-order polymorphic unification for logic

programming. In P. Van Hentenryck, editor, Logic Programming, 11th In-

ternational Conference, S. Margherita Ligure, Italy, pages 419–433. MIT

Press, 1994. (Cited on page 20.)

Iliano Cervesato and Mark-Oliver Stehr. Representing the MSR crypto-

protocol specification language in an extension of rewriting logic with

dependent types. Higher-Order Symbolic Computation, 20:3–35, 2007.

doi:10.1007/s10990-007-9003-3. (Cited on page 251.)

Iliano Cervesato, Joshua Hodas, and Frank Pfenning. Efficient resource man-

agement for linear logic proof search. In Roy Dyckhoff, Heinrich Herre, and

Peter Schroeder-Heister, editors, 7th Workshop on Extensions to Logic Pro-

gramming, LNAI, pages 28–30, Leipzig, Germany, March 1996. Springer.

(Cited on page 137.)

Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and

Andre Scedrov. A meta-notation for protocol analysis. In R. Gorrieri, editor,

Proceedings of the 12th IEEE Computer Security Foundations Workshop —

CSFW’99, pages 55–69, Mordano, Italy, 28–30 June 1999. IEEE Computer

Society Press. (Cited on pages 243, 251, and 254.)

https://doi.org/10.1016/j.tcs.2005.11.047
https://doi.org/10.1016/0743-1066(94)90032-9
https://doi.org/10.1016/0743-1066(94)90032-9
https://doi.org/10.1007/s10990-007-9003-3

Bibliography 293

Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell,

and Andre Scedrov. Relating strands and multiset rewriting for security

protocol analysis. In P. Syverson, editor, 13th IEEE Computer Security

Foundations Workshop — CSFW’00, pages 35–51, Cambridge, UK, 3–5

July 2000a. IEEE Computer Society Press. (Cited on page 251.)

Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource

management for linear logic proof search. Theoretical Computer Science,

232(1-2):133–163, 2000b. (Cited on page 137.)

Kaustuv Chaudhuri. The Focused Inverse Method for Linear Logic. PhD

thesis, Carnegie Mellon University, December 2006. Technical report CMU-

CS-06-162. (Cited on page 163.)

Kaustuv Chaudhuri. Encoding additives using multiplicatives and subex-

ponentials. Math. Structures in Computer Science, 28(5):651–666, 2018.

doi:10.1017/S0960129516000293. (Cited on page 136.)

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent

proofs via multi-focusing. In G. Ausiello, J. Karhumäki, G. Mauri, and

L. Ong, editors, Fifth International Conference on Theoretical Computer

Science, volume 273 of IFIP, pages 383–396. Springer, September 2008a.

doi:10.1007/978-0-387-09680-3 26. (Cited on page 136.)

Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical characteriza-

tion of forward and backward chaining in the inverse method. J. of Auto-

mated Reasoning, 40(2-3):133–177, 2008b. doi:10.1007/s10817-007-9091-0.

(Cited on page 163.)

Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller. A multi-focused proof

system isomorphic to expansion proofs. J. of Logic and Computation, 26

(2):577–603, 2016. doi:10.1093/logcom/exu030. (Cited on page 136.)

Jawahar Chirimar. Proof Theoretic Approach to Specification Languages. PhD

thesis, University of Pennsylvania, February 1995. URL https://www.

lix.polytechnique.fr/Labo/Dale.Miller/chirimar/phd.pdf. (Cited

on pages 267 and 270.)

Alonzo Church. An unsolvable problem of elementary number theory. Amer-

ican Journal of Mathematics, 58:354–363, 1936. (Cited on page 60.)

Alonzo Church. A formulation of the Simple Theory of Types. J. of Symbolic

Logic, 5:56–68, 1940. doi:10.2307/2266170. (Cited on pages 3, 4, 11, 14, 16,

and 206.)

https://doi.org/10.1017/S0960129516000293
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1007/s10817-007-9091-0
https://doi.org/10.1093/logcom/exu030
https://www.lix.polytechnique.fr/Labo/Dale.Miller/chirimar/phd.pdf
https://www.lix.polytechnique.fr/Labo/Dale.Miller/chirimar/phd.pdf
https://doi.org/10.2307/2266170

294 Bibliography

K. L. Clark. Negation as failure. In J. Gallaire and J. Minker, editors,

Logic and Data Bases, pages 293–322. Plenum Press, New York, 1978.

doi:10.1007/978-1-4684-3384-5 11. (Cited on page 103.)

D. Clement, J. Despeyroux, T. Despeyroux, L. Hascoet, and G. Kahn. Natural

semantics on the computer. In K. Fuchi and M. Nivat, editors, proceedings

of the France-Japan AI and CS Symposium, ICOT, Japan, pages 49–89,

1986. Also Technical Memorandum PL-86-6 Information Processing Society

of Japan and Rapport de recherche #0416, INRIA. (Cited on page 270.)

Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propo-

sitional proof systems. J. of Symbolic Logic, 44(1):36–50, 1979. (Cited on

page 60.)

P.-L. Curien. An abstract framework for environment machines. Theoretical

Computer Science, 82(2):389–402, 1991. doi:https://doi.org/10.1016/0304-

3975(91)90230-Y. (Cited on page 263.)

Haskell Curry. The inconsistency of certain formal logics. Journal of Symbolic

Logic, 7:115–117, 1942. (Cited on pages 13 and 14.)

Wojciech Czerwiński, S lawomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip

Mazowiecki. The reachability problem for Petri nets is not elementary. J.

ACM, 68(1), December 2020. doi:10.1145/3422822. (Cited on page 234.)

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The structure

of exponentials: Uncovering the dynamics of linear logic proofs. In Georg

Gottlob, Alexander Leitsch, and Daniele Mundici, editors, Kurt Gödel Col-

loquium, volume 713 of LNCS, pages 159–171. Springer, 1993. (Cited on

page 136.)

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new decon-

structive logic: Linear logic. Journal of Symbolic Logic, 62(3):755–807, 1997.

doi:10.2307/2275572. (Cited on page 136.)

Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dum-

mies, a tool for automatic formula manipulation, with an application to the

Church-Rosser theorem. Indagationes Mathematicae, 34(5):381–392, 1972.

doi:10.1016/1385-7258(72)90034-0. (Cited on page 263.)

Olivier Delande and Dale Miller. A neutral approach to proof and refu-

tation in MALL. In F. Pfenning, editor, 23th Symp. on Logic in

Computer Science, pages 498–508. IEEE Computer Society Press, 2008.

doi:10.1016/j.apal.2009.07.017. (Cited on page 136.)

https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/https://doi.org/10.1016/0304-3975(91)90230-Y
https://doi.org/https://doi.org/10.1016/0304-3975(91)90230-Y
https://doi.org/10.1145/3422822
https://doi.org/10.2307/2275572
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/j.apal.2009.07.017

Bibliography 295

Giorgio Delzanno. An overview of MSR(C): A CLP-based framework for the

symbolic verification of parameterized concurrent systems. Electron. Notes

Theor. Comput. Sci, 76:65–82, 2002. doi:10.1016/S1571-0661(04)80786-2.

(Cited on page 180.)

Marc Denecker, Maurice Bruynooghe, and Victor Marek. Logic programming

revisited: Logic programs as inductive definitions. ACM Trans. on Com-

putational Logic, 2(4):623–654, October 2001. doi:10.1145/383779.383789.

(Cited on page 103.)

Joëlle Despeyroux. Proof of translation in natural semantics. In 1st Symp. on

Logic in Computer Science, pages 193–205, Cambridge, Mass, June 1986.

IEEE. (Cited on page 270.)

Roberto Di Cosmo and Dale Miller. Linear logic. In Edward N. Zalta, edi-

tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,

Stanford University, summer 2019 edition, 2019. (Cited on page 9.)

Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi.

ELPI: fast, embeddable, λProlog interpreter. In Martin Davis, Ansgar

Fehnker, Annabelle McIver, and Andrei Voronkov, editors, Logic for Pro-

gramming, Artificial Intelligence, and Reasoning, LPAR-20, volume 9450

of LNCS, pages 460–468. Springer, 2015. doi:10.1007/978-3-662-48899-7 32.

(Cited on page 102.)

Nancy A. Durgin, Patrick Lincoln, John C. Mitchell, and Andre Scedrov. Mul-

tiset rewriting and the complexity of bounded security protocols. J. Com-

puter Security, 12(2):247–311, 2004. doi:10.3233/JCS-2004-12203. (Cited

on pages 251 and 254.)

Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. J.

of Symbolic Logic, 57(3):795–807, September 1992. doi:10.2307/2275431.

(Cited on page 175.)

Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate

logic as a programming language. J. of the ACM, 23(4):733–742, 1976.

(Cited on pages 9 and 102.)

U. Engberg and G. Winskel. Petri nets and models of linear logic. In A. Arnold,

editor, CAAP’90, volume 431 of LNCS, pages 147–161. Springer, 1990.

(Cited on page 180.)

Javier Esparza and Mogens Nielsen. Decidability issues for Petri Nets - a

survey. Bulletin of the EATCS, 52:244–262, 1994. (Cited on page 234.)

https://doi.org/10.1016/S1571-0661(04)80786-2
https://doi.org/10.1145/383779.383789
https://doi.org/10.1007/978-3-662-48899-7_32
https://doi.org/10.3233/JCS-2004-12203
https://doi.org/10.2307/2275431

296 Bibliography

William M. Farmer. Simple Type Theory: A Practical Logic for Expressing

and Reasoning About Mathematical Ideas. Springer Nature, 2023. (Cited on

pages 20 and 206.)

Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order

Logic Programming Language. PhD thesis, University of Pennsylvania, Au-

gust 1989. (Cited on page 197.)

Amy Felty. Implementing tactics and tacticals in a higher-order logic pro-

gramming language. Journal of Automated Reasoning, 11(1):43–81, August

1993. doi:10.1007/BF00881900. (Cited on pages 197 and 198.)

Amy Felty. The calculus of constructions as a framework for proof search with

set variable instantiation. Theoretical Computer Science, 232(1-2):187–229,

February 2000. (Cited on page 206.)

Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic

programming language. In Ewing Lusk and Ross Overbeck, editors, Ninth

International Conference on Automated Deduction, number 310 in LNCS,

pages 61–80, Argonne, IL, May 1988. Springer. doi:10.1007/BFb0012823.

(Cited on page 197.)

Amy Felty, Carlos Olarte, and Bruno Xavier. A focused linear logical frame-

work and its application to metatheory of object logics. Mathematical Struc-

tures in Computer Science, 2021. doi:10.1017/S0960129521000323. (Cited

on pages 165 and 180.)

Melvin C. Fitting. Intuitionistic Logic Model Theory and Forcing. North-

Holland, 1969. (Cited on page 44.)

Dov M. Gabbay. N-Prolog: An extension of Prolog with hypothetical im-

plication II—logical foundations, and negation as failure. Journal of Logic

Programming, 2(4):251–283, December 1985. (Cited on page 45.)

Dov M. Gabbay and Nicola Olivetti. Goal-Directed Proof Theory, volume 21

of Applied Logic Series. Kluwer Academic Publishers, August 2000. (Cited

on page 102.)

Jean H. Gallier. Logic for Computer Science: Foundations of Automatic The-

orem Proving. Harper & Row, 1986. (Cited on pages 9, 38, 59, and 102.)

Jean H. Gallier. On Girard’s “candidats de reductibilité”. In P. Odifreddi,

editor, Logic and Computer Science, volume 31 of APIC Studies in Data

Processing, pages 91–122. Academic Press, London, 1990. (Cited on page

182.)

https://doi.org/10.1007/BF00881900
https://doi.org/10.1007/BFb0012823
https://doi.org/10.1017/S0960129521000323

Bibliography 297

Vijay Gehlot and Carl Gunter. Normal process representatives. In 5th Symp.

on Logic in Computer Science, pages 200–207, Philadelphia, Pennsylvania,

June 1990. IEEE Computer Society Press. doi:10.1109/LICS.1990.113746.

(Cited on page 180.)

Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor,

The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland,

Amsterdam, 1935. doi:10.1007/BF01201353. Translation of articles that

appeared in 1934-35. Collected papers appeared in 1969. (Cited on pages 4,

18, 20, 29, 38, 40, 44, 50, 59, 106, and 177.)

Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures

dans l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII,

1972. (Cited on pages 182 and 193.)

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–

102, 1987. doi:10.1016/0304-3975(87)90045-4. (Cited on pages 4, 34, 123,

and 136.)

Jean-Yves Girard. A fixpoint theorem in linear logic. An email post-

ing to linear@cs.stanford.edu archived at https://www.seas.upenn.edu/

~sweirich/types/archive/1992/msg00030.html, February 1992. (Cited

on pages 103, 137, and 279.)

Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic,

59:201–217, 1993. doi:10.1016/0168-0072(93)90093-S. (Cited on page 136.)

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge

University Press, 1989. (Cited on pages 38, 59, 136, and 182.)

Kurt Gödel. Zur intuitionistischen arithmetik und zahlentheorie. Ergebnisse

eines Mathematischen Kolloquiums, pages 34–38, 1932. English translation

in The Undecidable (M. Davis, ed.) 1965, 75-81. (Cited on page 60.)

Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Ed-

inburgh LCF: A Mechanised Logic of Computation, volume 78 of LNCS.

Springer, 1979. doi:10.1007/3-540-09724-4. (Cited on page 197.)

Mike Gordon. From LCF to HOL: a short history. In Gordon D. Plotkin,

Colin Stirling, and Mads Tofte, editors, Proof, Language, and Interaction:

Essays in Honour of Robin Milner, pages 169–186. MIT Press, 2000. (Cited

on page 20.)

Vyacheslav Nikolaevich Grishin. Predicate and set-theoretic calculi based

on logic without contractions. Izvestiya Rossiiskoi Akademii Nauk. Seriya

Matematicheskaya, 45(1):47–68, 1981. (Cited on page 137.)

https://doi.org/10.1109/LICS.1990.113746
https://doi.org/10.1007/BF01201353
https://doi.org/10.1016/0304-3975(87)90045-4
https://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00030.html
https://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00030.html
https://doi.org/10.1016/0168-0072(93)90093-S
https://doi.org/10.1007/3-540-09724-4

298 Bibliography

Alessio Guglielmi. Abstract Logic Programming in Linear Logic—Independence

and Causality in a First Order Calculus. PhD thesis, Università di Pisa,

1996. (Cited on page 163.)

Alessio Guglielmi. A system of interaction and structure. ACM

Trans. on Computational Logic, 8(1):1–64, January 2007.

doi:10.1145/1182613.1182614. (Cited on pages 59 and 117.)

Lars Hallnäs and Peter Schroeder-Heister. A proof-theoretic approach to logic

programming. II. Programs as definitions. J. of Logic and Computation,

1(5):635–660, October 1991. doi:10.1093/logcom/1.5.635. (Cited on page

60.)

John Hannan. Extended natural semantics. J. of Functional Programming, 3

(2):123–152, April 1993. doi:10.1017/S0956796800000666. (Cited on page

270.)

John Hannan and Dale Miller. A meta-logic for functional programming.

In Harvey Abramson and M. H. Rogers, editors, Meta-Programming in

Logic Programming, Computer Science and Intelligent Systems, chapter 24,

pages 453–476. MIT Press, 1989. ISBN 0-262-51047-2. Proceedings of the

1988 Workshop on Meta-Programming in Logic Programming, Bristol, UK.

(Cited on page 270.)

John Hannan and Dale Miller. From operational semantics to abstract ma-

chines. Mathematical Structures in Computer Science, 2(4):415–459, 1992.

doi:10.1017/S0960129500001559. (Cited on pages 262 and 270.)

John Hannan and Frank Pfenning. Compiler verification in LF. In 7th Symp.

on Logic in Computer Science, Santa Cruz, California, June 1992. IEEE

Computer Society Press. (Cited on page 270.)

James Harland, David Pym, and Michael Winikoff. Programming in Lygon:

An overview. In Martin Wirsing and Maurice Nivat, editors, Proceedings of

the Fifth International Conference on Algebraic Methodology and Software

Technology, number 1101 in LNCS, pages 391–405. Springer, July 1996.

(Cited on page 180.)

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework

for defining logics. Journal of the ACM, 40(1):143–184, 1993.

doi:10.1145/138027.138060. (Cited on pages 20 and 206.)

R. Harrop. Concerning formulas of the types A → B ∨ C, A → (Ex)B(x) in

intuitionistic formal systems. J. of Symbolic Logic, 25:27–32, 1960. (Cited

on page 103.)

https://doi.org/10.1145/1182613.1182614
https://doi.org/10.1093/logcom/1.5.635
https://doi.org/10.1017/S0956796800000666
https://doi.org/10.1017/S0960129500001559
https://doi.org/10.1145/138027.138060

Bibliography 299

Quentin Heath and Dale Miller. A proof theory for model checking. J. of

Automated Reasoning, 63(4):857–885, 2019. doi:10.1007/s10817-018-9475-3.

(Cited on pages 97, 104, and 137.)

Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro López-

Garćıa. Integrated program debugging, verification, and optimization using

abstract interpretation (and the Ciao system preprocessor). Sci. Comput.

Program., 58(1-2):115–140, 2005. (Cited on page 235.)

R. Hindley. The principal type-scheme of an object in combinatory logic.

Transactions of the American Mathematical Society, 146:29–60, 1969. (Cited

on page 270.)

Joshua Hodas and Dale Miller. Logic programming in a fragment of intuition-

istic linear logic: Extended abstract. In G. Kahn, editor, 6th Symp. on Logic

in Computer Science, pages 32–42, Amsterdam, July 1991. IEEE. (Cited

on page 137.)

Joshua Hodas and Dale Miller. Logic programming in a fragment of intu-

itionistic linear logic. Information and Computation, 110(2):327–365, 1994.

doi:10.1006/inco.1994.1036. (Cited on pages 137, 165, and 180.)

Joshua Hodas, Kevin Watkins, Naoyuki Tamura, and Kyoung-Sun Kang. Ef-

ficient implementation of a linear logic programming language. In Joxan

Jaffar, editor, Proceedings of the 1998 Joint International Conference and

Symposium on Logic Programming, pages 145–159, 1998. (Cited on page

137.)

Joshua S. Hodas. Logic Programming in Intuitionistic Linear Logic: Theory,

Design, and Implementation. PhD thesis, University of Pennsylvania, De-

partment of Computer and Information Science, May 1994. (Cited on page

180.)

Joshua S. Hodas. A linear logic treatment of phrase structure grammars for

unbounded dependencies. In Alain Lecomte, Françoise Lamarche, and Guy

Perrier, editors, Proceedings of the 2nd International Conference on Logical

Aspects of Computational Linguistics (LACL-97), volume 1582 of LNAI,

pages 160–179, Berlin, September 1999. Springer. (Cited on page 180.)

Joshua S. Hodas and Naoyuki Tamura. lolliCop — A linear logic implemen-

tation of a lean connection-method theorem prover for first-order classical

logic. In R. Goré, A. Leitsch, and T. Nipkow, editors, Proceedings of IJCAR:

International Joint Conference on Automated Reasoning, number 2083 in

LNCS, pages 670–684. Springer, 2001. (Cited on page 137.)

https://doi.org/10.1007/s10817-018-9475-3
https://doi.org/10.1006/inco.1994.1036

300 Bibliography

Jörg Hudelmaier. Bounds on cut-elimination in intuitionistic propositional

logic. Archive for Mathematical Logic, 31:331–353, 1992. (Cited on page

175.)

Gérard Huet. The undecidability of unification in third order logic. Informa-

tion and Control, 22:257–267, 1973a. (Cited on page 219.)

Gérard P. Huet. A mechanization of type theory. In Proceedings of the 3rd

International Joint Conference on Artificial Intelligence, pages 139–146.

William Kaufmann, 1973b. (Cited on page 206.)

Gérard P. Huet. A unification algorithm for typed λ-calculus. Theoreti-

cal Computer Science, 1:27–57, 1975. doi:10.1016/0304-3975(75)90011-0.

(Cited on page 206.)

Dominic J. D. Hughes. Proofs without syntax. Annals of Mathematics, 143

(3):1065–1076, November 2006. (Cited on page 24.)

Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-

Naquet, and Martin Wirsing, editors, Proceedings of the Symposium on

Theoretical Aspects of Computer Science, volume 247 of LNCS, pages 22–39.

Springer, March 1987. doi:10.1007/BFb0039592. (Cited on page 254.)

Norihiro Kamide. Rules of explosion and excluded middle: Constructing a

unified single-succedent gentzen-style framework for classical, paradefinite,

paraconsistent, and paracomplete logics. Journal of Logic, Language and

Information, 2024. doi:10.1007/s10849-024-09416-6. (Cited on page 57.)

Max I. Kanovich. Petri Nets, Horn programs, Linear Logic and vec-

tor games. Annals of Pure and Applied Logic, 75(1–2):107–135, 1995.

doi:10.1017/S0960129500001328. (Cited on page 180.)

Max I. Kanovich. Linear logic automata. Annals of Pure and Applied Logic,

78:147–188, 1996. doi:10.1016/0168-0072(95)00035-6. (Cited on page 219.)

Max I. Kanovich. Multiset rewriting over Fibonacci and Tribonacci num-

bers. Journal of Computer and System Sciences, 80:1138–1151, 2014.

doi:10.1016/j.jcss.2014.04.006. (Cited on page 219.)

Oiva Ketonen. Untersuchungen zum Prädikatenkalkul. Annales Academiae

Scientiarum Fennicae, series A, I. Mathematica-physica 23, 1944. (Cited

on page 60.)

Oiva Ketonen. Investigations into the Predicate Calculus. College Publica-

tions, 2022. Ed. by S. Negri and J. von Plato. (Cited on page 60.)

https://doi.org/10.1016/0304-3975(75)90011-0
https://doi.org/10.1007/BFb0039592
https://doi.org/10.1007/s10849-024-09416-6
https://doi.org/10.1017/S0960129500001328
https://doi.org/10.1016/0168-0072(95)00035-6
https://doi.org/10.1016/j.jcss.2014.04.006

Bibliography 301

Stephen Cole Kleene. Permutability of inferences in Gentzen’s calculi LK and

LJ. Memoirs of the American Mathematical Society, 10:1–26, 1952. (Cited

on page 38.)

N. Kobayashi, T. Shimizu, and A. Yonezawa. Distributed concurrent linear

logic programming. Theoretical Computer Science, 227(1-2):185–220, 1999.

(Cited on page 180.)

Naoki Kobayashi and Akinori Yonezawa. Asynchronous communication model

based on linear logic. Formal Aspects of Computing, 7(2):113–149, 1995.

doi:10.1007/BF01211602. (Cited on page 180.)

R. A. Kowalski. Algorithm = Logic + Control. Communications of the Asso-

ciation for Computing Machinery, 22:424–436, 1979. (Cited on page 6.)

S. Kripke. A completeness theorem in modal logic. J. of Symbolic Logic, 24

(1):1–14, 1959. (Cited on page 103.)

S. A. Kripke. Semantical analysis of intuitionistic logic I. In J. N. Crossley

and M. Dummett, editors, Formal Systems and Recursive Functions, pages

92–130. (Proc. 8th Logic Colloq. Oxford 1963) North-Holland, Amsterdam,

1965. (Cited on pages 39 and 103.)

Jean-Louis Krivine. Lambda-Calcul : Types et Modèles. Etudes et Recherches

en Informatique. Masson, 1990. (Cited on page 20.)

R. Kuzmin. Sur une nouvelle classe de nombres transcendants. Bulletin de

l’Académie des Sciences de l’URSS, pages 585–597, 1930. (Cited on page

275.)

Keehang Kwon, Gopalan Nadathur, and Debra Sue Wilson. Implementing a

notion of modules in the logic programming language λProlog. In Evelina

Lamma and Paola Mello, editors, 4th Workshop on Extensions to Logic

Programming, volume 660 of LNAI, pages 359–393. Springer, 1993. (Cited

on page 103.)

J. Lambek. The mathematics of sentence structure. American Mathematical

Monthly, 65:154–169, 1958. (Cited on page 219.)

Joachim Lambek. Categorial grammars and natural language structures. In

Richard T. Oehrle, Emmon Bach and Deirdre Wheeler, editors, Categorial

and categorical grammars, volume 32, pages 297–317. D. Reidel, Dordrecht,

1988. (Cited on page 219.)

P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6

(5):308–320, 1964. (Cited on pages 254 and 263.)

https://doi.org/10.1007/BF01211602

302 Bibliography

Olivier Laurent. Around classical and intuitionistic linear logics. In LICS

’18: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in

Computer Science, pages 629–638, July 2018. doi:10.1145/3209108.3209132.

(Cited on page 137.)

Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems

is primitive-recursive in fixed dimension. In 34th Annual ACM/IEEE Sym-

posium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada,

June 24-27, 2019, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785796.

(Cited on page 234.)

Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionis-

tic, and classical logics. Theoretical Computer Science, 410(46):4747–4768,

2009. doi:10.1016/j.tcs.2009.07.041. Abstract Interpretation and Logic Pro-

gramming: A Special Issue in honor of professor Giorgio Levi. (Cited on

page 102.)

Chuck Liang and Dale Miller. A focused approach to combining

logics. Annals of Pure and Applied Logic, 162(9):679–697, 2011.

doi:10.1016/j.apal.2011.01.012. (Cited on page 163.)

Chuck Liang and Dale Miller. On subexponentials, synthetic connectives, and

multi-level delimited control. In Martin Davis, Ansgar Fehnker, Annabelle

McIver, and Andrei Voronkov, editors, Logic for Programming, Artificial In-

telligence, and Reasoning (LPAR), number 9450 in LNCS, November 2015.

doi:10.1007/978-3-662-48899-7 21. (Cited on page 136.)

Chuck Liang and Dale Miller. Focusing Gentzen’s LK proof system. In

Thomas Piecha and Kai Wehmeier, editors, Peter Schroeder-Heister on

Proof-Theoretic Semantics, Outstanding Contributions to Logic, pages 275–

313. Springer, February 2024. doi:10.1007/978-3-031-50981-0 9. (Cited on

pages 136 and 163.)

P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for

propositional linear logic. Annals of Pure and Applied Logic, 56:239–311,

1992. (Cited on page 113.)

James Lipton and Susana Nieva. Kripke semantics for higher-order type theory

applied to constraint logic programming languages. Theoretical Computer

Science, 712:1–37, 2018. (Cited on page 207.)

John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 2

edition, 1987. ISBN 3-540-18199-7. (Cited on pages 9 and 102.)

Pablo López and Ernesto Pimentel. The UMA Forum linear logic programming

language. An implementation, January 1998. (Cited on page 137.)

https://doi.org/10.1145/3209108.3209132
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1016/j.tcs.2009.07.041
https://doi.org/10.1016/j.apal.2011.01.012
https://doi.org/10.1007/978-3-662-48899-7_21
https://doi.org/10.1007/978-3-031-50981-0_9

Bibliography 303

Ian Mackie. Lilac: A functional programming language based

on linear logic. Journal of Funct. Program, 4(4):395–433, 1994.

doi:10.1017/S0956796800001131. (Cited on page 137.)

Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms

to synthetic inference rules via focusing. Annals of Pure and Applied Logic,

173(5):1–32, 2022. doi:10.1016/j.apal.2022.103091. (Cited on page 103.)

N. Marti-Oliet and José Meseguer. From Petri nets to linear logic. Mathe-

matical Structures in Computer Science, 1(1):69–101, March 1991. (Cited

on page 180.)

Per Martin-Löf. Constructive mathematics and computer programming. In

Sixth International Congress for Logic, Methodology, and Philosophy of Sci-

ence, pages 153–175, Amsterdam, 1982. North-Holland. (Cited on page 5.)

John McCarthy. Artificial intelligence, logic and formalizing common sense. In

Richmond Thomason, editor, Philosophical Logic and Artificial Intelligence.

Kluwer Academic, 1989. URL https://www-formal.stanford.edu/jmc/

ailogic.dvi. (Cited on page 96.)

Raymond McDowell and Dale Miller. Reasoning with higher-order abstract

syntax in a logical framework. ACM Trans. on Computational Logic, 3(1):

80–136, 2002. doi:10.1145/504077.504080. (Cited on page 270.)

Raymond McDowell, Dale Miller, and Catuscia Palamidessi. Encoding tran-

sition systems in sequent calculus. Theoretical Computer Science, 294(3):

411–437, 2003. doi:10.1016/S0304-3975(01)00168-2. (Cited on page 104.)

Dale Miller. A theory of modules for logic programming. In Robert M. Keller,

editor, Third Annual IEEE Symposium on Logic Programming, pages 106–

114, Salt Lake City, Utah, September 1986. (Cited on page 102.)

Dale Miller. Lexical scoping as universal quantification. In G. Levi

and M. Martelli, editors, Sixth International Logic Programming Con-

ference, pages 268–283, Lisbon, Portugal, June 1989a. MIT Press.

URL https://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/

iclp89.pdf. (Cited on page 207.)

Dale Miller. A logical analysis of modules in logic programming. Journal

of Logic Programming, 6(1-2):79–108, January 1989b. doi:10.1016/0743-

1066(89)90031-9. (Cited on page 103.)

Dale Miller. Unification of simply typed lambda-terms as logic programming.

In Koichi Furukawa, editor, Eighth International Logic Programming Con-

ference, pages 255–269, Paris, France, June 1991a. MIT Press. (Cited on

page 103.)

https://doi.org/10.1017/S0956796800001131
https://doi.org/10.1016/j.apal.2022.103091
https://www-formal.stanford.edu/jmc/ailogic.dvi
https://www-formal.stanford.edu/jmc/ailogic.dvi
https://doi.org/10.1145/504077.504080
https://doi.org/10.1016/S0304-3975(01)00168-2
https://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp89.pdf
https://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp89.pdf
https://doi.org/10.1016/0743-1066(89)90031-9
https://doi.org/10.1016/0743-1066(89)90031-9

304 Bibliography

Dale Miller. A logic programming language with lambda-abstraction, function

variables, and simple unification. J. of Logic and Computation, 1(4):497–

536, 1991b. doi:10.1093/logcom/1.4.497. (Cited on page 206.)

Dale Miller. Abstract syntax and logic programming. In Logic Programming:

Proceedings of the First Russian Conference on Logic Programming, 14-18

September 1990, number 592 in LNAI, pages 322–337. Springer, 1992. (Cited

on page 103.)

Dale Miller. The π-calculus as a theory in linear logic: Preliminary results.

In E. Lamma and P. Mello, editors, 3rd Workshop on Extensions to Logic

Programming, number 660 in LNCS, pages 242–265, Bologna, Italy, 1993.

Springer. doi:10.1007/3-540-56454-3 13. (Cited on pages 180, 251, and 270.)

Dale Miller. A proposal for modules in λProlog. In R. Dyckhoff, editor, 4th

Workshop on Extensions to Logic Programming, number 798 in LNCS, pages

206–221. Springer, 1994. (Cited on page 103.)

Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical

Computer Science, 165(1):201–232, 1996. doi:10.1016/0304-3975(96)00045-

X. (Cited on pages 129, 163, 180, and 267.)

Dale Miller. Logic programming and meta-logic. In Helmut Schwichtenberg,

editor, Logic of Computation, volume 157 of Nato ASI Series, pages 265–

308. Springer, 1997. doi:10.1007/978-3-642-58622-4 11. (Cited on page 207.)

Dale Miller. Encryption as an abstract data-type: An extended ab-

stract. In Iliano Cervesato, editor, Proceedings of FCS’03: Foundations

of Computer Security, volume 84 of ENTCS, pages 18–29. Elsevier, 2003.

doi:10.1016/S1571-0661(04)80841-7. (Cited on page 251.)

Dale Miller. Overview of linear logic programming. In Thomas Ehrhard, Jean-

Yves Girard, Paul Ruet, and Phil Scott, editors, Linear Logic in Computer

Science, volume 316 of London Mathematical Society Lecture Note, pages

119–150. Cambridge University Press, 2004. (Cited on page 180.)

Dale Miller. Collection analysis for Horn clause programs. In Proceedings

of PPDP 2006: 8th International ACM SIGPLAN Conference on Princi-

ples and Practice of Declarative Programming, pages 179–188, July 2006.

doi:10.1145/1140335.1140357. (Cited on page 235.)

Dale Miller. A proof-theoretic approach to the static analysis of logic programs.

In Christoph Benzmüller, Chad E. Brown, Jörg Siekmann, and Richard

Statman, editors, Reasoning in Simple Type Theory: Festschrift in Honor

of Peter B. Andrews on His 70th Birthday, number 17 in Studies in Logic,

pages 423–442. College Publications, 2008a. (Cited on page 235.)

https://doi.org/10.1093/logcom/1.4.497
https://doi.org/10.1007/3-540-56454-3_13
https://doi.org/10.1016/0304-3975(96)00045-X
https://doi.org/10.1016/0304-3975(96)00045-X
https://doi.org/10.1007/978-3-642-58622-4_11
https://doi.org/10.1016/S1571-0661(04)80841-7
https://doi.org/10.1145/1140335.1140357

Bibliography 305

Dale Miller. Formalizing operational semantic specifications in logic. Concur-

rency Column of the Bulletin of the EATCS, October 2008b. (Cited on page

271.)

Dale Miller. Mechanized metatheory revisited. Journal of Automated Reason-

ing, 63(3):625–665, October 2019. doi:10.1007/s10817-018-9483-3. (Cited

on page 270.)

Dale Miller. Reciprocal influences between logic programming and

proof theory. Philosophy & Technology, 34(1):75–104, March 2021.

doi:10.1007/s13347-019-00370-x. (Cited on page 9.)

Dale Miller. LK vs LJ: An origin story for linear logic. Proof The-

ory Blog, July 2022a. URL https://prooftheory.blog/2022/07/06/

lk-vs-lj-an-origin-story-for-linear-logic/. (Cited on page 136.)

Dale Miller. A survey of the proof-theoretic foundations of logic programming.

Theory and Practice of Logic Programming, 22(6):859–904, October 2022b.

doi:10.1017/S1471068421000533. Published online November 2021. (Cited

on page 9.)

Dale Miller. A system of inference based on proof search: an extended

abstract. In Igor Walukiewicz, editor, Thirty-Eighth Annual ACM/IEEE

Symposium on Logic in Computer Science (LICS 2023), pages 1–11, 2023.

doi:10.1109/LICS56636.2023.10175827. (Cited on page 180.)

Dale Miller and Gopalan Nadathur. Higher-order logic programming. In

Ehud Shapiro, editor, Proceedings of the Third International Logic Program-

ming Conference, volume 225 of LNCS, pages 448–462, London, June 1986.

Springer. doi:10.1007/3-540-16492-8 94. (Cited on pages 102 and 205.)

Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic.

Cambridge University Press, June 2012. doi:10.1017/CBO9781139021326.

(Cited on pages 20, 102, 103, 198, 206, and 207.)

Dale Miller and Catuscia Palamidessi. Foundational aspects of syntax. ACM

Computing Surveys, 31, September 1999. doi:10.1145/333580.333590. (Cited

on page 270.)

Dale Miller and Elaine Pimentel. Linear logic as a framework for specifying

sequent calculus. In Jan van Eijck, Vincent van Oostrom, and Albert Visser,

editors, Logic Colloquium ’99: Proceedings of the Annual European Summer

Meeting of the Association for Symbolic Logic, Lecture Notes in Logic, pages

111–135. A K Peters Ltd, 2004. (Cited on pages 38, 60, and 180.)

https://doi.org/10.1007/s10817-018-9483-3
https://doi.org/10.1007/s13347-019-00370-x
https://prooftheory.blog/2022/07/06/lk-vs-lj-an-origin-story-for-linear-logic/
https://prooftheory.blog/2022/07/06/lk-vs-lj-an-origin-story-for-linear-logic/
https://doi.org/10.1017/S1471068421000533
https://doi.org/10.1109/LICS56636.2023.10175827
https://doi.org/10.1007/3-540-16492-8_94
https://doi.org/10.1017/CBO9781139021326
https://doi.org/10.1145/333580.333590

306 Bibliography

Dale Miller and Elaine Pimentel. A formal framework for specifying sequent

calculus proof systems. Theoretical Computer Science, 474:98–116, 2013.

doi:10.1016/j.tcs.2012.12.008. (Cited on pages 38, 60, and 180.)

Dale Miller, Gopalan Nadathur, and Andre Scedrov. Hereditary Harrop for-

mulas and uniform proof systems. In David Gries, editor, 2nd Symp. on

Logic in Computer Science, pages 98–105, Ithaca, NY, June 1987. (Cited

on page 34.)

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform

proofs as a foundation for logic programming. Annals of Pure and Applied

Logic, 51(1–2):125–157, 1991. doi:10.1016/0168-0072(91)90068-W. (Cited

on pages 34 and 205.)

Dale A. Miller, Eve Longini Cohen, and Peter B. Andrews. A look at TPS.

In Donald W. Loveland, editor, Sixth Conference on Automated Deduction,

volume 138 of LNCS, pages 50–69, New York, 1982. Springer. (Cited on

page 206.)

Robin Milner. A theory of type polymorphism in programming. J. of Computer

and System Sciences, 17(3):348–375, 1978. (Cited on page 270.)

Robin Milner. LCF: A way of doing proofs with a machine. In International

Symposium on Mathematical Foundations of Computer Science, pages 146–

159. Springer, 1979. (Cited on page 197.)

Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS.

Springer, New York, NY, 1980. (Cited on page 254.)

Robin Milner. Communication and Concurrency. Prentice-Hall International,

1989. ISBN 978-0-13-115007-2. (Cited on page 269.)

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard

ML. MIT Press, 1990. (Cited on page 270.)

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes, Part I. Information and Computation, 100(1):1–40, September

1992a. doi:10.1016/0890-5401(92)90008-4. (Cited on pages 238 and 270.)

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes, Part II. Information and Computation, 100(1):41–77, 1992b.

doi:10.1016/0890-5401(92)90009-5. (Cited on pages 257 and 258.)

Grigorii E. Mints. Finite investigations of transfinite derivations. In Selected

papers in proof theory, pages 17–71. Bibliopolis, 1992. (Cited on pages 148

and 204.)

https://doi.org/10.1016/j.tcs.2012.12.008
https://doi.org/10.1016/0168-0072(91)90068-W
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5

Bibliography 307

John C. Mitchell and Eugenio Moggi. Kripke-style models for typed lambda

calculus. Annals of Pure and Applied Logic, 51(1-2):99–124, 1991. (Cited

on page 103.)

Michael Moortgat. Categorial type logics. In Johan van Benthem and Alice ter

Meulen, editors, Handbook of Logic and Language, pages 93–177. Elsevier,

Amsterdam, 1996. (Cited on page 219.)

Joan Moschovakis. Intuitionistic Logic. In Edward N. Zalta and Uri Nodelman,

editors, The Stanford Encyclopedia of Philosophy. Metaphysics Research

Lab, Stanford University, Summer 2024 edition, 2024. (Cited on page 9.)

Gopalan Nadathur. A Higher-Order Logic as the Basis for Logic Programming.

PhD thesis, University of Pennsylvania, May 1987. (Cited on page 206.)

Gopalan Nadathur and Dale Miller. An Overview of λProlog. In Ken-

neth A. Bowen and Robert A. Kowalski, editors, Fifth International

Logic Programming Conference, pages 810–827, Seattle, August 1988. MIT

Press. URL https://www.lix.polytechnique.fr/Labo/Dale.Miller/

papers/iclp88.pdf. (Cited on pages 206 and 235.)

Gopalan Nadathur and Dale Miller. Higher-order Horn clauses. Journal of

the ACM, 37(4):777–814, October 1990. doi:10.1145/96559.96570. (Cited

on pages 205 and 206.)

Gopalan Nadathur and Dustin J. Mitchell. System description: Teyjus —

A compiler and abstract machine based implementation of λProlog. In

H. Ganzinger, editor, 16th Conf. on Automated Deduction (CADE), number

1632 in LNAI, pages 287–291, Trento, 1999. Springer. doi:10.1007/3-540-

48660-7 25. (Cited on page 102.)

Gopalan Nadathur and Frank Pfenning. The type system of a higher-order

logic programming language. In Frank Pfenning, editor, Types in Logic

Programming, pages 245–283. MIT Press, 1992. (Cited on pages 20 and 235.)

Sara Negri. Proof analysis beyond geometric theories: from rule systems to

systems of rules. Journal of Logic and Computation, 26(2):513–537, 2016.

doi:10.1093/LOGCOM/EXU037. (Cited on page 281.)

Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge University

Press, 2001. (Cited on pages 38, 59, and 103.)

Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic

with subexponentials. In António Porto and Francisco Javier López-

Fraguas, editors, ACM SIGPLAN Conference on Principles and Prac-

tice of Declarative Programming (PPDP), pages 129–140. ACM, 2009.

doi:10.1145/1599410.1599427. (Cited on page 136.)

https://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf
https://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf
https://doi.org/10.1145/96559.96570
https://doi.org/10.1007/3-540-48660-7_25
https://doi.org/10.1007/3-540-48660-7_25
https://doi.org/10.1093/LOGCOM/EXU037
https://doi.org/10.1145/1599410.1599427

308 Bibliography

Vivek Nigam, Elaine Pimentel, and Giselle Reis. An extended framework for

specifying and reasoning about proof systems. J. of Logic and Computation,

2014. doi:10.1093/logcom/exu029. (Cited on page 180.)

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —

A Proof Assistant for Higher-Order Logic. Number 2283 in LNCS. Springer,

2002. doi:10.1007/3-540-45949-9. (Cited on page 206.)

Mitsuhiro Okada. An introduction to linear logic: Expressiveness and phase

semantics. Mathematical Society of Japan Memoirs, 2:255–295, 1998.

doi:10.2969/msjmemoirs/00201C070. (Cited on page 136.)

Carlos Olarte, Vivek Nigam, and Elaine Pimentel. Subexponential concur-

rent constraint programming. Theoretical Computer Science, 606:98–120,

November 2015. doi:10.1016/j.tcs.2015.06.031. (Cited on page 136.)

Leszek Pacholski and Andreas Podelski. Set constraints: A pearl in research on

constraints. In Principles and Practice of Constraint Programming - CP97,

number 1330 in LNCS, pages 549–562. Springer, 1997. (Cited on page 235.)

Remo Pareschi and Dale Miller. Extending definite clause grammars with

scoping constructs. In David H. D. Warren and Peter Szeredi, editors, 1990

International Conference in Logic Programming, pages 373–389. MIT Press,

June 1990. (Cited on page 180.)

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in

LNCS. Springer, 1994. doi:10.1007/BFb0030541. (Cited on page 20.)

Frank Pfenning. Elf: A language for logic definition and verified metapro-

gramming. In 4th Symp. on Logic in Computer Science, pages 313–321,

Monterey, CA, June 1989. IEEE. (Cited on page 20.)

Frank Pfenning. Logic programming in the LF logical framework. In Gérard

Huet and Gordon Plotkin, editors, Logical Frameworks, pages 149–181.

Cambridge University Press, 1991. (Cited on page 206.)

Frank Pfenning, editor. Types in Logic Programming. MIT Press, 1992. (Cited

on page 235.)

Frank Pfenning. Structural cut elimination I. intuitionistic and classical logic.

Information and Computation, 157(1/2):84–141, March 2000. (Cited on

page 38.)

Frank Pfenning. Church and Curry: Combining intrinsic and extrinsic typing.

In Christoph Benzmüller, Chad E. Brown, Jörg Siekmann, and Richard

Statman, editors, Reasoning in Simple Type Theory: Festschrift in Honor

https://doi.org/10.1093/logcom/exu029
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.2969/msjmemoirs/00201C070
https://doi.org/10.1016/j.tcs.2015.06.031
https://doi.org/10.1007/BFb0030541

Bibliography 309

of Peter B. Andrews on His 70th Birthday, number 17 in Studies in Logic,

pages 303–338. College Publications, 2008. (Cited on page 20.)

Frank Pfenning and Carsten Schürmann. System description: Twelf — A

meta-logical framework for deductive systems. In H. Ganzinger, editor,

16th Conf. on Automated Deduction (CADE), number 1632 in LNAI, pages

202–206, Trento, 1999. Springer. doi:10.1007/3-540-48660-7 14. (Cited on

pages 20 and 270.)

Jan von Plato. Gentzen’s proof of normalization for natural de-

duction. Bulletin of Symbolic Logic, 14(2):240–257, June 2008.

doi:10.2178/bsl/1208442829. (Cited on page 59.)

Jan von Plato. The development of proof theory. In Edward N. Zalta, edi-

tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,

Stanford University, winter 2018 edition, 2018. (Cited on page 9.)

Gordon D. Plotkin. A structural approach to operational semantics. DAIMI

FN-19, Aarhus University, Aarhus, Denmark, September 1981. (Cited on

page 254.)

Gordon D. Plotkin. A structural approach to operational semantics. J. of Logic

and Algebraic Programming, 60-61:17–139, 2004. (Cited on page 254.)

Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965. (Cited

on page 44.)

A. N. Prior. The runabout inference-ticket. Analysis, 21(2):38–39, December

1960. (Cited on page 49.)

David Pym and James Harland. The uniform proof-theoretic foundation of

linear logic programming. J. of Logic and Computation, 4(2):175–207, 1994.

doi:10.1093/logcom/4.2.175. (Cited on page 180.)

Michael Rathjen and Wilfried Sieg. Proof theory. In Edward N. Zalta, edi-

tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,

Stanford University, fall 2020 edition, 2020. (Cited on page 9.)

John H. Reppy. CML: A higher-order concurrent language. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages

293–305, June 1991. (Cited on page 268.)

J. A. Robinson. A machine-oriented logic based on the resolution principle.

JACM, 12:23–41, January 1965. (Cited on pages 6 and 63.)

https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.2178/bsl/1208442829
https://doi.org/10.1093/logcom/4.2.175

310 Bibliography

Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor,

8th Symp. on Logic in Computer Science, pages 222–232. IEEE Computer

Society Press, IEEE, June 1993. doi:10.1109/LICS.1993.287585. (Cited on

pages 103, 137, and 279.)

Robert J. Simmons. Structural focalization. ACM Trans. on Computational

Logic, 15(3):21, 2014. doi:10.1145/2629678. (Cited on page 165.)

Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard

Isomorphism, volume 149 of Studies in Logic. Elsevier, 2006. (Cited on page

21.)

Richard Statman. Bounds for proof-search and speed-up in the predicate

calculus. Annals of Mathematical Logic, 15:225–287, 1978. (Cited on page

38.)

Richard Statman. Intuitionistic propositional logic is polynomial-space com-

plete. Theoretical Computer Science, 9:67–72, 1979. (Cited on page 60.)

Paul Tarau. Program transformations and WAM-support for the compilation

of definite metaprograms. In Proceedings of the First and Second Russian

Conference on Logic Programming, number 592 in LNAI, pages 462–473.

Springer, 1992. (Cited on page 259.)

Sten-Ake Tärnlund. Horn Clause Computability. BIT, 17:215–226, 1977.

doi:10.1007/BF01932293. (Cited on page 103.)

Enrico Tassi. Elpi: rule-based meta-languge for Rocq. In Proceedings of CoqPL

2025. ACM, January 2025. (Cited on page 102.)

Alwen Tiu. A Logical Framework for Reasoning about Logical Specifica-

tions. PhD thesis, Pennsylvania State University, May 2004. URL https:

//etda.libraries.psu.edu/files/final_submissions/119. (Cited on

page 259.)

Alwen Tiu and Dale Miller. Proof search specifications of bisimulation and

modal logics for the π-calculus. ACM Trans. on Computational Logic, 11

(2):13:1–13:35, 2010. doi:10.1145/1656242.1656248. (Cited on page 259.)

Alwen Tiu, Gopalan Nadathur, and Dale Miller. Mixing finite success and

finite failure in an automated prover. In Empirically Successful Automated

Reasoning in Higher-Order Logics (ESHOL’05), pages 79–98, December

2005. (Cited on page 104.)

Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cam-

bridge University Press, 1996. (Cited on page 180.)

https://doi.org/10.1109/LICS.1993.287585
https://doi.org/10.1145/2629678
https://doi.org/10.1007/BF01932293
https://etda.libraries.psu.edu/files/final_submissions/119
https://etda.libraries.psu.edu/files/final_submissions/119
https://doi.org/10.1145/1656242.1656248

Bibliography 311

Anne Sjerp Troelstra, editor. Metamathematical Investigation of Intuitionis-

tic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics.

Springer, 1973. (Cited on page 44.)

Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics,

volume 1. North-Holland, 1988. (Cited on page 39.)

Christian Urban. Forum and its implementations. Master’s thesis, University

of St. Andrews, December 1997. (Cited on page 137.)

Index

!, bang exponential, 109

?, question mark exponential, 109

||, symbol denoting `, 136

:: signature declaration for sequents,

19

:: nonempty list constructor, 94

˛, linear equivalence, 118, 168

(‡), 2

Abella, proof assistant, 20, 270

absorb inference rule, 121, 148

abstract data types, 94, 207, 244

abstract evaluation system (AES), 262

abstract logic programming language,

62, 130

abstract machines, 254, 262

additive connective, 106

additive inference rule, 29

admissible rule, 54

agents

formulas, 249

identifier, 245

state atom, 245

state predicate, 245

theory, 246

α-conversion, 12

alphabet, 211

alternating finite automata, 218

Andreoli, Jean-Marc, 35, 163, 251

answer-set programming, 2

append, appending two lists, 95

application of substitution θ to t, 12

argument types, 15

associated sequent, 75, 141

asynchronous phase, 163

atomic cutk rule, 147

atomic formula, 17

atomic initial rule, 46, 185

atomic key cut, 147

atomically closed proof, 46, 62

axioms, 23, 27

backchaining, 72, 88, 103, 282

backchaining inference rule, 282

backchaining phase, 34

bang !, 109

Barr’s Theorem, 281

β-conversion, 12

β-normal form, 12, 182

βη-long normal form, 15

big-step semantic specification, 254, 256

binary clauses, 215, 254, 259

binder mobility, 29

border cut, 145

border sequent, 134

for L0 proofs, 90

for ⇓L2-proofs, 134

C-proof, 42

call-by-name evaluation, 5

call-by-value evaluation, 5, 256

candidats de réductibilité, 182, 193

chemical abstract machine, 254

Church numerals, 13

Index 313

Church, Alonzo, 3, 11, 206, 255

classical linear logic, 137

classical logic, 4

classical provability, Σ :: ∆ ⊢C B, 42

clausal order, order(·), 18

clause, 68

collection analysis, 221

list approximations, 234

multiset approximations, 225

set approximations, 229

completeness, 45, 85, 182

computation-as-deduction, 5

computation-as-model, 5

concurrency primitives, 268

Concurrent ML (CML), 268

conjunction ∧, 3

conjunctive normal form, 6

conservativity of ⇓L2 over ⇓L1 and

⇓L0, 134

consistency, 36

constraint programming, 2

context occurrence of a formula, 30

continuation-passing style (CPS), 259

contraction, structural rule, 26

contrapositive of ⊸, 133

CPS transformation, 259

Curry’s paradox, 14, 137, 274, 279

Curry, Haskell, 14

Curry-Howard correspondence, 2, 21

curry/uncurry equivalences, 64, 118

cut elimination procedure, 59

cut rule, 27

atomic cutk, 147

exponential cuts, cut !, cut?, 145

for ⇓+L0, 80

for ⇓+L2, 145

key cut, cutk, 145

linear cut, cutl, 145

cut-admissibility theorem for ⇓L1, 139

cut-elimination theorem, 35

for ⇓+L0, 83

for ⇓+L2, 154

for ⇓N+, 193

cut-free proof, 35, 50

cut-simulation, 183, 206

D1, fohc clauses, 64

D2, fohh clauses, 67

De Bruijn notation, 264

definite clauses, 63

degree of a formula, 146

dependently type λ-terms, 20

dereliction rules, 113

derivable rule, 54

derivation, as partial proof, 32

diamond translation

(·)⋄, removing implications, 121

disjunction ∨, 3

disjunction property, 63, 103

don’t-care nondeterminism, 59

don’t-know nondeterminism, 59

dynamic semantics, 270

dynamics of proof search

⇓L1, 123

⇓L2, 133

fohc, 94

fohh, 99

eigenvariables, 19, 20, 29

Elementary Theory of Types, 11

Elf, logic programming language, 20

Elpi, implementation of λProlog, 102

embedding fohh into linear logic, 124

endsequent, 31, 32

ϵ, empty word, 211

ϵ-transition, 212

equivalence ≡, 51

equivalent in linear logic, ⊣⊢, 114

η-conversion, 12

ex falso quodlibet, 24, 56, 57

exchange, structural rule, 26

excluded middle, 39, 43

excluded middle inference rule, 57

existence property, 63, 103

existential quantifier, ∃τ , 17

314 Index

explode inference rule, 57

exponential prefixes, 114, 284

exponentials !, ?, 43, 114

Fibonacci numbers, 7, 211, 219

finite automata, 212

first-order Horn clauses, 1, 64

first-order logic, 4, 17

flexible atomic formula, 204

focused proofs, 34, 54, 121

fohc, first-order Horn clauses, 64

fohh, first-order hereditary Harrop for-

mulas, 68

⇓ fohh-proof, 72, 91

Forum presentation of linear logic, 1,

129, 237

forward chaining, 74, 103, 282

forward-chaining inference rule, 282

Frege proofs, 23, 27, 37

function symbol of arity n, 17

G1, fohc goals, 64

G2, fohh goals, 67

G-proof, 56

G3ip and G4ip proof systems, 180

Gamma programming language, 254

Gentzen, Gerhard, 1, 4, 18, 38, 40, 55,

106

Girard, Jean-Yves, 4, 35, 60, 123, 136

goal reduction, 72

goal-directed proof search, 62, 102

goal-reduction phase, 34

Harrop formulas, 70, 103, 281

hereditary Harrop formulas, 68

higher-order hereditary Harrop formu-

las, 1, 205

higher-order Horn clauses, 91, 205

higher-order logic, 17

higher-order pattern unification, 206

higher-order programming, 183, 195

Hindley-Milner type inference, 270

HOL proof assistant, 20

Horn clauses, 63

hyperexponential function, 38

I-proof, 42

identity rules, 26

implication

classical and intuitionistic ⊃, 3,

17

intuitionistic in linear logic ⇒, 117

linear ⊸, 117

incompleteness theorems, 182

inductive definitions, 103

inference rule permutabilities, 130

inference rules

identity, 26

introduction, 26

structural, 26

infixr, λProlog infix declaration, 94,

174

initial rule, 27

instan inference rule, 55, 85

interpretation, 86

introduction rules, 26

intuitionistic implication in linear logic

⇒, 117

intuitionistic linear logic, 137

intuitionistic logic, 4

intuitionistic provability, Σ :: ∆ ⊢I B,

42

invertible inference rule, 34, 35, 53, 59,

106, 116

IO-proof system, 127

Isabelle proof assistant, 20

Ketonen, Oiva, 60

key-cut rule, 80, 145

for ⇓+L0, 80

for ⇓+L2, 145

Kowalski, Robert, 6

Kripke models, 39, 85, 165

canonical model, 85

Krivine machine, 264

Index 315

L, proof system for linear logic, 110

L-formulas, 110

L0 = {t,∧,⊃, ∀}, 68, 75

L0-formula, 75

⇓L0-proof system, 68, 75

⇓L′
0 system, 89

L0-sequent, 134

L1 = {⊤,&,⊸,⇒,∀}, 119

L1-formula, 119

⇓L1-proof system, 121

L1-sequent, 133

L2 = {⊤,&,⊸,⇒,∀,⊥,`, ?}, 129

L2-formula, 129

L2-proof system, 131, 132

⇓aL2-proof system, 148

⇓+L2-proof system, 146

λProlog, 1, 2, 20, 93

λProlog implementations

Elpi, 102

Teyjus, 102

λ-calculus, 11, 253

λ-term, simply typed, 15

λ-term, untyped, 11, 255

Lambek, Joachim, 219

least fixed points, 103

left-bounded zone, 119, 131

left-introduction phase, 72

left-unbounded zone, 119, 131

Leibniz equality, 184, 195, 204

LF, logical framework, 20

linear equivalence ˛, 118, 168

linear implication ⊸, 109, 117

linear logic, 4, 43, 109

linear logic negation, B⊥, 118

linear logic programming, 167

list constructors, 94

:: nonempty list constructor, 94

nil empty list constructor, 94

literals, 63

LJ proof system, 40, 55, 106

LJF proof system, 103

LK proof system, 40, 55, 106

logic variables, 58

logical constants, 16

Lolli, 1, 123, 168

M-proof, 56, 66

MALL, multiplicative additive linear

logic, 112, 137

measure |Ξ|, 146

medial entailment, 117

memb, membership in list, 95, 199

metalogic, 172

minimal logic provability, 56

mix entailment, 117

mobility of binders, 29

modus ponens, 24

monotonicity property, 99

most general unifiers, 6

multifocusing proof system, 136

multiple-conclusion proof system, 42

multiple-conclusion sequent, 26

multiple-conclusion uniform proofs, 130

multiplicative connective, 106

multiplicative inference rule, 29

multiset expression, 225

multiset rewriting, 209, 254

on the left, 171

on the right, 176

multiset rewriting system, 170

n-way synchronization, 247

natural deduction, 59, 172

near-focused proof system, 184–186

Needham-Schroeder Shared Key Pro-

tocol, 241

negation ¬, 3, 17

negation defined using ⊃ and f, 43

negation in sequent calculus, 55

negation normal form, 115

negation-as-failure, 2, 7, 104

negative subformula occurrence, 18

nil empty list constructor, 94

non-atomic formula, 17

non-invertible inference rule, 35

316 Index

nondeterminism, don’t know vs don’t

care, 59

o, the Greek letter omicron, 3, 16

the type of formulas, 16

object logic, 172

oplus, ⊕, 113

ord(τ), order of type τ , 15

order(B), clausal order of formula B,

18

P-proof system, 119, 120

par, `, 113

paths in a formula, B ↑ P , 75, 140

permutation of inference rules, 32

π-calculus, 238, 253, 255, 257

polarity, 116, 136

polymorphic typing, 14, 20, 94, 127,

235

positive subformula occurrence, 18

possible world semantics, 39

Post correspondence problem, 219

predicate symbol of arity n, 17

primitive types, 14

Prior, A. N., 49

Prolog, 1

Prolog’s cut (!), 7

promotion rule, 112, 114

proof search, 1

proof system, 32

proof systems, focused, 34

IO, variant of ⇓L1, 127

⇓L0, 68

⇓+L0, 80

⇓L′
0, 89

⇓L1, 121

L2, 131

⇓+L2, 146

⇓Lω
2 , 185

proof systems, near focused

⇓N , 185

⇓N+, 192

proof systems, unfocused, 34

C (classical), 42

I (intuitionistic), 42

L (linear), 110

M (minimal), 66

P (for L1), 119, 120

proof-nets, 136

proof-normalization, 5

proof-search, 5

propositional constants, 16

propositional logic, 4, 17

pumping lemmas, 99

pushdown automaton, 218

quantificational logic, 4

question mark ?, 109

rank, 146

redex, in cut-elimination proof, 148

relational composition, 198

Rep, repetition rule, 148

replacing subformulas, Σ :: C ▷◁ D, 52

resolution refutations, 6, 9, 102

resource-indexed model, 165

restart rule, 45

restaurant semantics, 136

reverse a list

in fohc and fohh, 97, 228

in linear logic, 200, 202

proof of symmetry, 200, 207

right-bounded zone, 119, 131

right-introduction phase, 72

right-unbounded zone, 131

rigid atomic formula, 204

Robinson, J. A., 63

S, the set of sorts, 14

scope extrusion, 98, 238, 245

scoped constant, 222

search semantics, 61

SECD machine, 264

security protocol, 237

sequent calculus, 1, 4

sequent calculus proofs, 31

Index 317

sequents, 18

left-hand side, 19

one-sided, ⊢ ∆, 19

right-hand side, 19

two-sided, Γ ⊢ ∆, 19

with signature, Σ :: Γ ⊢ ∆, 32

zones, 19

Σ inhabits primitive type, 44

Σ0, signature of non-logical constants,

17

Σ−1, signature of logical connectives,

16, 19, 223

Σ-formula, 17

Σ-term of type τ , 15

signature over S, 15

Simple Theory of Types, 3, 11, 20

simple types, 14

simultaneous rule application, 130

single-conclusion proof system, 40

single-conclusion sequents, 40, 133

size of a formula, |B|, 81

Skolem functions, 6

Skolem normal form, 6

SLD resolution, 6, 9, 102

small-step semantic specification, 254

sorts, a.k.a. primitive types, 14

soundness, 45, 85, 182

stable models, 2

static semantics, 270

sterile jar specification, 97, 100

strengthening, 55, 79, 147

structural operational semantics, 254

structural rules, 26

subexponentials, 136

subformula property, 36, 183

subject occurrence of a formula, 30

substitution, M [N/x], 12

substitution, tθ, 12

switch entailment, 117

synchronous phase, 163

syntactic categories, 14, 255

syntactic types, 14

synthetic inference rules, 54, 90, 103,

134, 204

tacticals, 197

tactics, 197

target type, 15

tensor, ⊗, 110

term rewriting system, 262

Teyjus, implementation of λProlog, 102

third-order unification, 219

thread in a ⇓L2-proof, 146

tonk, 49, 276

typing judgment, Σ ⊩ t : τ , 15, 29

unfocused proofs, 34

unification, 6, 58, 219

unification of simply typed λ-terms,

206

uniform proofs, 34, 62

multi-conclusion version, 130

single-conclusion version, 62

universal quantifier, ∀τ , 17

untyped λ-terms, 255

weakening, structural rule, 26

with, &, 110

word, 211

world, in a Kripke model, 86

	Preface
	Introduction
	A spectrum of logics
	Logic and the specification of computations
	Proof search and logic programming
	Designing logic programming languages
	Why use logic to write programs?
	The structure of this book
	Bibliographic notes

	Terms, formulas, and sequents
	Untyped -terms
	Types
	Signatures and typed terms
	Formulas
	Sequents
	Bibliographic notes

	Sequent calculus proof rules
	Sequent calculus and proof search
	Inference rules
	Structural rules
	Identity rules
	Introduction rules

	Additive and multiplicative inference rules
	Sequent calculus proofs
	Permutations of inference rules
	Focused and unfocused proof systems
	Cut-elimination and its consequences
	Bibliographic notes

	Classical and intuitionistic logics
	Classical and intuitionistic inference rules
	The identity rules and their elimination
	Cut elimination and its consequences
	The duality of cut and initial
	Eliminating cuts can cause a size explosion
	Logical equivalence
	Invertible introduction rules

	Derivable and admissible rules
	Negation, false, and minimal logic
	Choices to consider during the search for proofs
	Bibliographic notes

	Two abstract logic programming languages
	Goal-directed proof search
	Horn clauses
	Hereditary Harrop formulas
	Backchaining as focused rule application
	Completeness of focused proofs
	A canonical Kripke model
	Synthetic inference rules
	Disjunctive and existential goals
	Examples of fohc logic programs
	Dynamics of proof search for fohc
	Examples of fohh logic programs
	Dynamics of proof search for fohh
	Limitations to fohc and fohh logic programs
	Bibliographic notes

	Linear logic
	Reflections on the structural inference rules
	LK vs LJ: An origin story for linear logic
	Sequent calculus proof systems for linear logic
	An informal semantics for some of linear logic
	Multiplicative additive linear logic
	Linear logic as MALL plus exponentials
	Duality and polarity
	Introducing implications

	Introducing zones into sequents
	Embedding fohh into linear logic
	A model of resource consumption
	Multiple-conclusion uniform proofs
	Conservativity results
	Generalizing synthetic inference rules
	Bibliographic notes

	Formal properties of linear logic focused proofs
	Generalized paths and introduction phases
	Admissibility of the general initial rule
	Cut rules and cut elimination
	The focused proof system is sound and complete
	Bibliographic notes

	Linear logic programming
	Encoding multisets as formulas
	A syntax for Lolli programs
	Permuting a list
	Multiset rewriting on the left
	Context management in a theorem prover
	Multiset rewriting on the right
	Specification of sequent calculus proof systems
	Bibliographic notes

	Higher-order quantification
	Introduction
	Higher-order quantification
	Near-focused proofs
	The proof theory of higher-order quantification
	Examples using quantification of type o
	Higher-order programming
	Proving that reverse is symmetric
	Exploiting the hiding of specification details
	Synthetic rules and higher-order logic
	Bibliographic notes

	Specifying computations using multisets
	Numerals as multisets
	Letters and words
	Encoding finite automata
	Properties about finite automata
	Encoding pushdown automata
	Bibliographic notes

	Collection analysis for Horn clauses
	Introduction
	The undercurrents
	Abstraction and substitution in proof theory
	Multiset approximations
	Formalizing the method
	Set approximations
	Automation of analysis
	List approximations
	Bibliographic notes

	Encoding security protocols
	Communicating processes
	Specifying communication protocols
	Communicating on a public network
	Static distribution of keys
	Dynamic creation of new symbols
	Mapping the new notation into linear logic
	Encrypted data as an abstract data type

	Protocols as theories in linear logic
	Abstracting internal states
	Agents as nested implications
	Bibliographic notes

	Formalizing operational semantics
	Three frameworks for operational semantics
	The abstract syntax of programs-as-terms
	Big-step semantics: call-by-value evaluation
	Small-step semantics: -calculus transitions
	Binary clauses
	Continuation passing in logic programming
	Abstract machines

	Linear logic
	Adding a counter to evaluation
	Specifying concurrency primitives

	Bibliographic notes

	Solutions to Selected Exercises
	Bibliography
	Index

