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Arithmetic via equality and fixed points

We shall add

first-order term equality
following Girard [1992] and Schroeder-Heister [1993], and

fixed points (for recursive definitions)
following Baelde, McDowell, M, Tiu [1996-2008].

They will both be logical connectives: that is, they are defined by
introduction rules.
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Equality as logical connective

Introductions in an unfocused setting.

− Θ, t = t − Θ, s 6= t
‡ − Θσ

− Θ, s 6= t
†

‡ s and t are not unifiable.
† s and t to be unifiable and σ to be their mgu

Introductions in a focused setting.

` Θ ⇓ t = t ` Θ ⇑ Γ, s 6= t
‡ ` Θσ ⇑ Γσ

` Θ ⇑ Γ, s 6= t
†

N.B. Unification was used before to implement inference rules:
here, unification is in the definition of the rule.
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Some theorems about equality

Equality is an equivalence relation...

• ∀x [x = x ]
• ∀x , y [x = y ⊃ y = x ]
• ∀x , y , z [x = y ∧ y = z ⊃ x = z ]

and a congruence.

• ∀x , y [x = y ⊃ (f x) = (f y)]
• ∀x , y [x = y ⊃ (p x) ⊃ (p y)]

Let 0 denote zero and s denote successor.

• ∀x [0 6= (s x)]
• ∀x , y [(s x) = (s y) ⊃ x = y ]
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A hint of model checking

Encode a non-empty set of first order terms S = {s1, . . . , sn}
(n ≥ 1) as the one-place predicate

Ŝ = [λx . x = s1 ∨+ · · · ∨+ x = sn]

If S is empty, then define Ŝ to be [λx . f +]. Notice that

s ∈ S if and only if ` ` · ⇑ Ŝ s.

The statement

∀x ∈ {s1, . . . , sn}.P(x) becomes ` · ⇑ ∀x .[Ŝx ⊃ Px ].

` P(s1) ⇑ ·
` P(x) ⇑ x 6= s1 · · ·

` P(sn) ⇑ ·
` P(x) ⇑ x 6= sn

` · ⇑ ∀x .[x 6= s1 ∧− · · · ∧− x 6= sn] ∨− P(x)
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Fixed Points as connectives

The fixed points operators µ and ν are De Morgan duals and
simply unfold.

` Θ ⇑ Γ,B(νB)t̄

` Θ ⇑ Γ, νBt̄

` Θ ⇓ B(µB)t̄

` Θ ⇓ µBt̄

B is a formula with n ≥ 0 variables abstracted; t̄ is a list of n
terms.

Here, µ denotes neither the least nor the greatest fixed point.
That distinction arises if we add induction and co-induction.
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Examples of fixed points

Natural numbers: terms over 0 for zero and s for successor. Two
ways to define predicates over numbers.

nat 0 :- true.

nat (s X ) :- nat X .

leq 0 Y :- true.

leq (s X ) (s Y ) :- leq X Y .

These logic programs can be given as fixed point expressions.

nat = µ(λpλx .(x = 0) ∨+ ∃y .(s y) = x ∧+ p y)

leq = µ(λqλxλy .(x = 0)∨+∃u∃v .(s u) = x ∧+ (s v) = y ∧+ q u v).

Horn clauses can be made into fixed point specifications (mutual
recursions requires standard encoding techniques).
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Putting computation into an inference rule

Consider proving the positive focused sequent

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2),

where m, n are natural numbers and N1,N2 are negative formulas.
There are exactly two possible macro rules:

` Θ ⇓ N1

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for m ≤ n

` Θ ⇓ N2

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for n ≤ m

A macro inference rule can contain an entire Prolog-style
computation.
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One step transitions in CCS

As inference rules in SOS (structured operational semantics):

A.P
A−→ P

P
A−→ R

P + Q
A−→ R

Q
A−→ R

P + Q
A−→ R

P
A−→ P ′

P|Q A−→ P ′|Q
Q

A−→ Q ′

P|Q A−→ P|Q ′

These can easily be written as Prolog clauses and as a fixed point
definition.
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The engineering of proof systems (cont)

Consider proofs involving simulation.

sim P Q ≡ ∀P ′∀A[ P
A−→ P ′ ⊃ ∃Q ′ [Q

A−→ Q ′ ∧ sim P ′ Q ′]].

Typically, P
A−→ P ′ is given as a table or as a recursion on syntax

(e.g., CCS): hence, as a fixed point.
The body of this expression is exactly two “macro connectives”.

• ∀P ′∀A[P
A−→ P ′ ⊃ · ] is a negative “macro connective”. There

are no choices in expanding this macro rule.

• ∃Q ′[Q
A−→ Q ′ ∧+ · ] is a positive “macro connective”. There

can be choices for continuation Q ′.
These macro-rules now match exactly the sense of simulation.
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Future work: Broad spectrum proof certificates

Sequent calculus and focusing proof systems provide:
• The atoms of inference (the introduction rules)
• The structure of focusing provides us with the rules of

chemistry: which atoms stick together and which do not.
• Engineered proofs system made form the molecules of inference.

An approach to a general notion of proof certificate:
• The world’s provers print their proof evidence using

appropriately engineered molecules of inference.
• A universal proof checker implements only the atoms of

inference and the rules of chemistry.

See the two recent draft submissions:
• “Communicating and trusting proofs: The case for broad

spectrum proof certificates”
• “A proposal for broad spectrum proof certificates”
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