
Separating Functional Computation from
Relations

Ulysse Gérard and Dale Miller

Inria Saclay & LIX, Ecole Polytechnique
Palaiseau France

31 October 2018, TU Wien

Introduction

Logical foundations of arithmetic usually start with a
quantificational logic of relations.

For example: Gentzen’s proof of consistency of arithmetic;
Church’s STT [1940]; Andrews’s textbook [2002].

We want a treatment of functional computation based of relations.

Application: We wish to extended the Abella theorem prover to
have conventional notations, e.g. (3 ∗ x) + 2 ≤ 10, instead of

∃x1. times 3 x x1 ∧ ∃X2. plus x1 2 x2 ∧ lesseq x2 10

We are willing to change the parser and proof automation, but not
the logic.

Introduction

Logical foundations of arithmetic usually start with a
quantificational logic of relations.

For example: Gentzen’s proof of consistency of arithmetic;
Church’s STT [1940]; Andrews’s textbook [2002].

We want a treatment of functional computation based of relations.

Application: We wish to extended the Abella theorem prover to
have conventional notations, e.g. (3 ∗ x) + 2 ≤ 10, instead of

∃x1. times 3 x x1 ∧ ∃X2. plus x1 2 x2 ∧ lesseq x2 10

We are willing to change the parser and proof automation, but not
the logic.

Earlier approaches
I Enhance the equality theory (e.g., Troelstra) : primitive

recursive functions are black-boxes and all computation
instances (e.g. 23 + 756 = 779) are added as ground
equations.

I Hybridize the logical calculus with terms and confluent
rewriting such as in the λΠ-calculus modulo framework used
in Dedukti (Cousineau & Dowek)

I Add choice operators such as Hilbert’s ε and Church’s ι to
coerce relations that encode functions into actual functions.

If R is an n + 1-ary predicate such that

∀x̄ .([∃y .R(x̄ , y)] ∧ ∀y∀z [R(x̄ , y) ⊃ R(x̄ , z) ⊃ y = z])

then there exists a n-ary function fR s.t. fR(x̄) = y iff R(x̄ , y).
Church formally wrote this using the choice operator ι:

λx1 . . . λxn.ι(λy .R(x1, . . . , xn, y))

Earlier approaches
I Enhance the equality theory (e.g., Troelstra) : primitive

recursive functions are black-boxes and all computation
instances (e.g. 23 + 756 = 779) are added as ground
equations.

I Hybridize the logical calculus with terms and confluent
rewriting such as in the λΠ-calculus modulo framework used
in Dedukti (Cousineau & Dowek)

I Add choice operators such as Hilbert’s ε and Church’s ι to
coerce relations that encode functions into actual functions.

If R is an n + 1-ary predicate such that

∀x̄ .([∃y .R(x̄ , y)] ∧ ∀y∀z [R(x̄ , y) ⊃ R(x̄ , z) ⊃ y = z])

then there exists a n-ary function fR s.t. fR(x̄) = y iff R(x̄ , y).
Church formally wrote this using the choice operator ι:

λx1 . . . λxn.ι(λy .R(x1, . . . , xn, y))

Earlier approaches
I Enhance the equality theory (e.g., Troelstra) : primitive

recursive functions are black-boxes and all computation
instances (e.g. 23 + 756 = 779) are added as ground
equations.

I Hybridize the logical calculus with terms and confluent
rewriting such as in the λΠ-calculus modulo framework used
in Dedukti (Cousineau & Dowek)

I Add choice operators such as Hilbert’s ε and Church’s ι to
coerce relations that encode functions into actual functions.

If R is an n + 1-ary predicate such that

∀x̄ .([∃y .R(x̄ , y)] ∧ ∀y∀z [R(x̄ , y) ⊃ R(x̄ , z) ⊃ y = z])

then there exists a n-ary function fR s.t. fR(x̄) = y iff R(x̄ , y).
Church formally wrote this using the choice operator ι:

λx1 . . . λxn.ι(λy .R(x1, . . . , xn, y))

Earlier approaches
I Enhance the equality theory (e.g., Troelstra) : primitive

recursive functions are black-boxes and all computation
instances (e.g. 23 + 756 = 779) are added as ground
equations.

I Hybridize the logical calculus with terms and confluent
rewriting such as in the λΠ-calculus modulo framework used
in Dedukti (Cousineau & Dowek)

I Add choice operators such as Hilbert’s ε and Church’s ι to
coerce relations that encode functions into actual functions.

If R is an n + 1-ary predicate such that

∀x̄ .([∃y .R(x̄ , y)] ∧ ∀y∀z [R(x̄ , y) ⊃ R(x̄ , z) ⊃ y = z])

then there exists a n-ary function fR s.t. fR(x̄) = y iff R(x̄ , y).
Church formally wrote this using the choice operator ι:

λx1 . . . λxn.ι(λy .R(x1, . . . , xn, y))

A new design

We want a new ”rule” such that :�

�

�

�
` Q(5)

` Q(2 + 3)

We want to achieve this goal in a purely logical, proof-search
oriented setting. We use the following two ideas.

I A focused proof system to synthesize such rules

I A term representation that helps to translate arithmetic
expression into expressions involving predicate

A new design

We want a new ”rule” such that :�

�

�

�
` Q(5)

` Q(2 + 3)

We want to achieve this goal in a purely logical, proof-search
oriented setting. We use the following two ideas.

I A focused proof system to synthesize such rules

I A term representation that helps to translate arithmetic
expression into expressions involving predicate

Focusing: a top-level perspective

I Proof-search in Gentzen’s sequent calculus suffer from a great
deal of non-determinancy and redundancy.

I A focused proof system guides proof construction by
distinguishing between invertible and non-invertible rules.

I Such proofs contain an alternation of two phases: the
negative / invertible / “don’t care” phase and the
positive / non-invertible / “don’t know” phase.

I Focused proof systems have two kinds of sequents to build
these two phases.

Road-map

1. We give a presentation of Heyting arithmetic in which fixed
points and term equality are logical connectives. The negative
phase in its focused proof system is determinate (reading it as
a mapping from its conclusion to its premises). Functional
computations are computed by such phases.

2. An ambiguity of polarity arises with singletons. If P(·) is a
singleton, then,

∀x [P(x) ⊃ Q(x)] ≡ ∃x [P(x) ∧ Q(x)] ≡ Q(εP)

It is then always possible to position P in the negative phase.

3. Ultimately: focusing in logic (not arithmetic) can define
administrative normal forms, a term representation which can
connect functions-as-constructors to functions-as-relations.

Road-map

1. We give a presentation of Heyting arithmetic in which fixed
points and term equality are logical connectives. The negative
phase in its focused proof system is determinate (reading it as
a mapping from its conclusion to its premises). Functional
computations are computed by such phases.

2. An ambiguity of polarity arises with singletons. If P(·) is a
singleton, then,

∀x [P(x) ⊃ Q(x)] ≡ ∃x [P(x) ∧ Q(x)] ≡ Q(εP)

It is then always possible to position P in the negative phase.

3. Ultimately: focusing in logic (not arithmetic) can define
administrative normal forms, a term representation which can
connect functions-as-constructors to functions-as-relations.

Road-map

1. We give a presentation of Heyting arithmetic in which fixed
points and term equality are logical connectives. The negative
phase in its focused proof system is determinate (reading it as
a mapping from its conclusion to its premises). Functional
computations are computed by such phases.

2. An ambiguity of polarity arises with singletons. If P(·) is a
singleton, then,

∀x [P(x) ⊃ Q(x)] ≡ ∃x [P(x) ∧ Q(x)] ≡ Q(εP)

It is then always possible to position P in the negative phase.

3. Ultimately: focusing in logic (not arithmetic) can define
administrative normal forms, a term representation which can
connect functions-as-constructors to functions-as-relations.

The propositional fragment

Propositional intuitionistic logic formulas are given by the logical
connectives ∧, ∨, and ⊃, the logical constants t and f , and atomic
formulas.

A polarized formula P is positive if it is a positive atomic formula
or its top-level logical connective is either t+, f , ∧+, or ∨.

A polarized formula N is negative if it is a negative atomic formula
or its top-level logical connective is either t−, ∧−, or ⊃.

The propositional fragment

Propositional intuitionistic logic formulas are given by the logical
connectives ∧, ∨, and ⊃, the logical constants t and f , and atomic
formulas.

A polarized formula P is positive if it is a positive atomic formula
or its top-level logical connective is either t+, f , ∧+, or ∨.

A polarized formula N is negative if it is a negative atomic formula
or its top-level logical connective is either t−, ∧−, or ⊃.

The propositional fragment

Structural rules

Γ,N⇓N ` ·⇓E

Γ,N ⇑ · ` · ⇑ E
Dl

C , Γ ⇑Θ ` ∆1⇑∆2

Γ ⇑ C ,Θ ` ∆1⇑∆2
Sl

Γ ⇑ P ` · ⇑ E

Γ⇓P ` ·⇓E
Rl

Γ⇓· ` P⇓·
Γ ⇑ · ` · ⇑ P

Dr
Γ ⇑ · ` · ⇑ E

Γ ⇑ · ` E ⇑ · Sr
Γ ⇑ · ` N ⇑ ·
Γ⇓· ` N⇓· Rr

Negative Phase Introduction Rules

Γ ⇑Θ ` ∆1⇑∆2

Γ ⇑ t+,Θ ` ∆1⇑∆2

Γ ⇑ · ` B1 ⇑ · Γ ⇑ · ` B2 ⇑ ·
Γ ⇑ · ` B1 ∧− B2 ⇑ ·

Γ ⇑ B1 ` B2 ⇑ ·
Γ ⇑ · ` B1 ⊃ B2 ⇑ ·

Γ ⇑ B1,B2,Θ ` ∆1⇑∆2

Γ ⇑ B1 ∧+ B2,Θ ` ∆1⇑∆2

Γ ⇑ B1,Θ ` ∆1⇑∆2 Γ ⇑ B2,Θ ` ∆1⇑∆2

Γ ⇑ B1 ∨ B2,Θ ` ∆1⇑∆2

Positive Phase Introduction Rules

Γ⇓· ` B1⇓ · Γ⇓B2 ` ·⇓E

Γ⇓B1 ⊃ B2 ` ·⇓E

Γ⇓· ` B1⇓ · Γ⇓· ` B2⇓·
Γ⇓· ` B1 ∧+ B2⇓·

Γ⇓· ` Bi⇓·
Γ⇓· ` B1 ∨ B2⇓·

i ∈ {1, 2}
Γ⇓Bi ` ·⇓E

Γ⇓B1 ∧− B2 ` ·⇓E
i ∈ {1, 2}

The propositional fragment

Structural rules

Γ,N⇓N ` ·⇓E

Γ,N ⇑ · ` · ⇑ E
Dl

C , Γ ⇑Θ ` ∆1⇑∆2

Γ ⇑ C ,Θ ` ∆1⇑∆2
Sl

Γ ⇑ P ` · ⇑ E

Γ⇓P ` ·⇓E
Rl

Γ⇓· ` P⇓·
Γ ⇑ · ` · ⇑ P

Dr
Γ ⇑ · ` · ⇑ E

Γ ⇑ · ` E ⇑ · Sr
Γ ⇑ · ` N ⇑ ·
Γ⇓· ` N⇓· Rr

Negative Phase Introduction Rules

Γ ⇑Θ ` ∆1⇑∆2

Γ ⇑ t+,Θ ` ∆1⇑∆2

Γ ⇑ · ` B1 ⇑ · Γ ⇑ · ` B2 ⇑ ·
Γ ⇑ · ` B1 ∧− B2 ⇑ ·

Γ ⇑ B1 ` B2 ⇑ ·
Γ ⇑ · ` B1 ⊃ B2 ⇑ ·

Γ ⇑ B1,B2,Θ ` ∆1⇑∆2

Γ ⇑ B1 ∧+ B2,Θ ` ∆1⇑∆2

Γ ⇑ B1,Θ ` ∆1⇑∆2 Γ ⇑ B2,Θ ` ∆1⇑∆2

Γ ⇑ B1 ∨ B2,Θ ` ∆1⇑∆2

Positive Phase Introduction Rules

Γ⇓· ` B1⇓ · Γ⇓B2 ` ·⇓E

Γ⇓B1 ⊃ B2 ` ·⇓E

Γ⇓· ` B1⇓ · Γ⇓· ` B2⇓·
Γ⇓· ` B1 ∧+ B2⇓·

Γ⇓· ` Bi⇓·
Γ⇓· ` B1 ∨ B2⇓·

i ∈ {1, 2}
Γ⇓Bi ` ·⇓E

Γ⇓B1 ∧− B2 ` ·⇓E
i ∈ {1, 2}

The propositional fragment
Structural rules

Γ,N⇓N ` ·⇓E

Γ,N ⇑ · ` · ⇑ E
Dl

C , Γ ⇑Θ ` ∆1⇑∆2

Γ ⇑ C ,Θ ` ∆1⇑∆2
Sl

Γ ⇑ P ` · ⇑ E

Γ⇓P ` ·⇓E
Rl

Γ⇓· ` P⇓·
Γ ⇑ · ` · ⇑ P

Dr
Γ ⇑ · ` · ⇑ E

Γ ⇑ · ` E ⇑ · Sr
Γ ⇑ · ` N ⇑ ·
Γ⇓· ` N⇓· Rr

Negative Phase Introduction Rules

Γ ⇑Θ ` ∆1⇑∆2

Γ ⇑ t+,Θ ` ∆1⇑∆2

Γ ⇑ · ` B1 ⇑ · Γ ⇑ · ` B2 ⇑ ·
Γ ⇑ · ` B1 ∧− B2 ⇑ ·

Γ ⇑ B1 ` B2 ⇑ ·
Γ ⇑ · ` B1 ⊃ B2 ⇑ ·

Γ ⇑ B1,B2,Θ ` ∆1⇑∆2

Γ ⇑ B1 ∧+ B2,Θ ` ∆1⇑∆2

Γ ⇑ B1,Θ ` ∆1⇑∆2 Γ ⇑ B2,Θ ` ∆1⇑∆2

Γ ⇑ B1 ∨ B2,Θ ` ∆1⇑∆2

Positive Phase Introduction Rules

Γ⇓· ` B1⇓ · Γ⇓B2 ` ·⇓E

Γ⇓B1 ⊃ B2 ` ·⇓E

Γ⇓· ` B1⇓ · Γ⇓· ` B2⇓·
Γ⇓· ` B1 ∧+ B2⇓·

Γ⇓· ` Bi⇓·
Γ⇓· ` B1 ∨ B2⇓·

i ∈ {1, 2}
Γ⇓Bi ` ·⇓E

Γ⇓B1 ∧− B2 ` ·⇓E
i ∈ {1, 2}

Interlude: Bipoles

A bipole is a derivation whose conclusion and premises are all
border sequents (of the form Γ ⇑ · ` · ⇑ E):

Γ,N,N ⇑ · ` · ⇑ E
· · · Negative phase

Γ,N ⇑ P ` · ⇑ E

Γ,N⇓P ` ·⇓E
Rl

· · · Positive phase

Γ,N⇓N ` ·⇓E

Γ,N ⇑ · ` · ⇑ E
Dl

These are the synthetic inference rules.

Examples of fixed point definitions

Declare the primitive type i and constants z : i and s : i → i .
z , (s z), (s (s z)), (s (s (s z))) are abbreviated by 0, 1, 2 etc.

As a Horn clause theory

nat z.

nat (s X) :- nat X.

plus z X X.

plus (s X) Y (s Z) :- plus X Y Z.

As fixed point definitions

nat = µλNλn(n = 0 ∨ ∃n′(n = s n′ ∧+ N n′))

plus =µλPλnλmλp.(n = 0 ∧+ m = p) ∨
∃n′∃p′(n = s n′ ∧+ p = s p′ ∧+ P n′ m p′)

Examples of fixed point definitions

Declare the primitive type i and constants z : i and s : i → i .
z , (s z), (s (s z)), (s (s (s z))) are abbreviated by 0, 1, 2 etc.

As a Horn clause theory

nat z.

nat (s X) :- nat X.

plus z X X.

plus (s X) Y (s Z) :- plus X Y Z.

As fixed point definitions

nat = µλNλn(n = 0 ∨ ∃n′(n = s n′ ∧+ N n′))

plus =µλPλnλmλp.(n = 0 ∧+ m = p) ∨
∃n′∃p′(n = s n′ ∧+ p = s p′ ∧+ P n′ m p′)

Rules for quantification, term equality and fix-point

Typed first-order quantification rules

Σ ` t : τ Σ: Γ⇓[t/x]B ` ·⇓E

Σ: Γ⇓∀xτ .B ` ·⇓E

y : τ,Σ : Γ ⇑ · ` [y/x]B ⇑ ·
Σ: Γ ⇑ · ` ∀xτ .B ⇑ ·

y : τ,Σ : Γ ⇑ [y/x]B,Θ ` ∆1⇑∆2

Σ: Γ ⇑ ∃xτ .B,Θ ` ∆1⇑∆2

Σ ` t : τ Σ: Γ⇓· ` [t/x]B⇓·
Σ: Γ⇓· ` ∃xτ .B⇓·

Equality rules [Girard, Schroeder-Heister]

Σθ : Γθ ⇑Θθ ` ∆1θ⇑∆2θ

Σ : Γ ⇑ s = t,Θ ` ∆1⇑∆2
†

Σ : Γ ⇑ s = t,Θ ` ∆1⇑∆2
‡

Σ : Γ⇓· ` t = t⇓·

Provisos: (†) θ is the mgu of s and t. (‡) t and s are not unifiable.

Fixed point rules

Σ: Γ ⇑ B(µB)t̄,∆ ` · ⇑ E

Σ: Γ ⇑ µB t̄,∆ ` · ⇑ E
unfoldL

Σ: Γ⇓· ` B(µB)t̄⇓·
Σ: Γ⇓· ` µB t̄⇓· unfoldR

Rules for quantification, term equality and fix-point
Typed first-order quantification rules

Σ ` t : τ Σ: Γ⇓[t/x]B ` ·⇓E

Σ: Γ⇓∀xτ .B ` ·⇓E

y : τ,Σ : Γ ⇑ · ` [y/x]B ⇑ ·
Σ: Γ ⇑ · ` ∀xτ .B ⇑ ·

y : τ,Σ : Γ ⇑ [y/x]B,Θ ` ∆1⇑∆2

Σ: Γ ⇑ ∃xτ .B,Θ ` ∆1⇑∆2

Σ ` t : τ Σ: Γ⇓· ` [t/x]B⇓·
Σ: Γ⇓· ` ∃xτ .B⇓·

Equality rules [Girard, Schroeder-Heister]

Σθ : Γθ ⇑Θθ ` ∆1θ⇑∆2θ

Σ : Γ ⇑ s = t,Θ ` ∆1⇑∆2
†

Σ : Γ ⇑ s = t,Θ ` ∆1⇑∆2
‡

Σ : Γ⇓· ` t = t⇓·

Provisos: (†) θ is the mgu of s and t. (‡) t and s are not unifiable.

Fixed point rules

Σ: Γ ⇑ B(µB)t̄,∆ ` · ⇑ E

Σ: Γ ⇑ µB t̄,∆ ` · ⇑ E
unfoldL

Σ: Γ⇓· ` B(µB)t̄⇓·
Σ: Γ⇓· ` µB t̄⇓· unfoldR

The polarity ambiguity of singleton sets

Let P be a predicate of one argument such that

` (∃x .P(x)) ∧ (∀x∀y .P(x) ⊃ P(y) ⊃ x = y)

As a consequence ∃x .P(x) ∧ Q(x) ≡ ∀x .P(x) ⊃ Q(x).

Assume that P is a purely positive formula.

A proof of Σ: Γ⇓· ` ∃x .P(x) ∧ Q(x)⇓· guesses a term t and then
proves Σ: Γ⇓· ` P(t)⇓· and Σ: Γ⇓· ` Q(t)⇓·.

A proof of Σ: Γ ⇑ · ` ∀x .P(x) ⊃ Q(x) ⇑ · computes the value that
satisfies P, starting with proving y ,Σ : Γ ⇑ P(y) ` Q(y) ⇑ ·. The
completed phase has the premise Σ: Γ ⇑ · ` · ⇑ Q(t).

The polarity ambiguity of singleton sets

Let P be a predicate of one argument such that

` (∃x .P(x)) ∧ (∀x∀y .P(x) ⊃ P(y) ⊃ x = y)

As a consequence ∃x .P(x) ∧ Q(x) ≡ ∀x .P(x) ⊃ Q(x).

Assume that P is a purely positive formula.

A proof of Σ: Γ⇓· ` ∃x .P(x) ∧ Q(x)⇓· guesses a term t and then
proves Σ: Γ⇓· ` P(t)⇓· and Σ: Γ⇓· ` Q(t)⇓·.

A proof of Σ: Γ ⇑ · ` ∀x .P(x) ⊃ Q(x) ⇑ · computes the value that
satisfies P, starting with proving y ,Σ : Γ ⇑ P(y) ` Q(y) ⇑ ·. The
completed phase has the premise Σ: Γ ⇑ · ` · ⇑ Q(t).

The polarity ambiguity of singleton sets

Let P be a predicate of one argument such that

` (∃x .P(x)) ∧ (∀x∀y .P(x) ⊃ P(y) ⊃ x = y)

As a consequence ∃x .P(x) ∧ Q(x) ≡ ∀x .P(x) ⊃ Q(x).

Assume that P is a purely positive formula.

A proof of Σ: Γ⇓· ` ∃x .P(x) ∧ Q(x)⇓· guesses a term t and then
proves Σ: Γ⇓· ` P(t)⇓· and Σ: Γ⇓· ` Q(t)⇓·.

A proof of Σ: Γ ⇑ · ` ∀x .P(x) ⊃ Q(x) ⇑ · computes the value that
satisfies P, starting with proving y ,Σ : Γ ⇑ P(y) ` Q(y) ⇑ ·. The
completed phase has the premise Σ: Γ ⇑ · ` · ⇑ Q(t).

The polarity ambiguity of singleton sets

Let P be a predicate of one argument such that

` (∃x .P(x)) ∧ (∀x∀y .P(x) ⊃ P(y) ⊃ x = y)

As a consequence ∃x .P(x) ∧ Q(x) ≡ ∀x .P(x) ⊃ Q(x).

Assume that P is a purely positive formula.

A proof of Σ: Γ⇓· ` ∃x .P(x) ∧ Q(x)⇓· guesses a term t and then
proves Σ: Γ⇓· ` P(t)⇓· and Σ: Γ⇓· ` Q(t)⇓·.

A proof of Σ: Γ ⇑ · ` ∀x .P(x) ⊃ Q(x) ⇑ · computes the value that
satisfies P, starting with proving y ,Σ : Γ ⇑ P(y) ` Q(y) ⇑ ·. The
completed phase has the premise Σ: Γ ⇑ · ` · ⇑ Q(t).

Example

Consider a proof of x ,Σ : Γ ⇑ plus 2 3 x ` · ⇑ (Q x).

Using unfoldL yields

x ,Σ : Γ⇑((2 = 0∧+3 = x)∨∃n′∃x ′(2 = s n′∧+x = s x ′∧+plus n′ 3 x ′)) ` ·⇑(Q x).

The disjunction introduction rule yields two premises:
(1) x ,Σ : Γ ⇑ ((2 = 0 ∧+ 3 = x) ` · ⇑ (Q x) is proved .

(2) x ′,Σ : Γ ⇑ plus 1 3 x ′ ` · ⇑ (Q (s x ′))

x , n′, x ′,Σ : Γ ⇑ (2 = s n′ ∧+ x = s x ′ ∧+ plus n′ 3 x ′) ` · ⇑ (Q x)

x ,Σ : Γ ⇑ (∃n′∃x ′(2 = s n′ ∧+ x = s x ′ ∧+ plus n′ 3 x ′)) ` · ⇑ (Q x)

The negative phase terminates with the border premise

Σ: Γ ⇑ · ` · ⇑ (Q 5)

Example

Consider a proof of x ,Σ : Γ ⇑ plus 2 3 x ` · ⇑ (Q x).
Using unfoldL yields

x ,Σ : Γ⇑((2 = 0∧+3 = x)∨∃n′∃x ′(2 = s n′∧+x = s x ′∧+plus n′ 3 x ′)) ` ·⇑(Q x).

The disjunction introduction rule yields two premises:
(1) x ,Σ : Γ ⇑ ((2 = 0 ∧+ 3 = x) ` · ⇑ (Q x) is proved .

(2) x ′,Σ : Γ ⇑ plus 1 3 x ′ ` · ⇑ (Q (s x ′))

x , n′, x ′,Σ : Γ ⇑ (2 = s n′ ∧+ x = s x ′ ∧+ plus n′ 3 x ′) ` · ⇑ (Q x)

x ,Σ : Γ ⇑ (∃n′∃x ′(2 = s n′ ∧+ x = s x ′ ∧+ plus n′ 3 x ′)) ` · ⇑ (Q x)

The negative phase terminates with the border premise

Σ: Γ ⇑ · ` · ⇑ (Q 5)

Example

Consider a proof of x ,Σ : Γ ⇑ plus 2 3 x ` · ⇑ (Q x).
Using unfoldL yields

x ,Σ : Γ⇑((2 = 0∧+3 = x)∨∃n′∃x ′(2 = s n′∧+x = s x ′∧+plus n′ 3 x ′)) ` ·⇑(Q x).

The disjunction introduction rule yields two premises:
(1) x ,Σ : Γ ⇑ ((2 = 0 ∧+ 3 = x) ` · ⇑ (Q x) is proved immediately.

(2) x ′,Σ : Γ ⇑ plus 1 3 x ′ ` · ⇑ (Q (s x ′))

x , n′, x ′,Σ : Γ ⇑ (2 = s n′ ∧+ x = s x ′ ∧+ plus n′ 3 x ′) ` · ⇑ (Q x)

x ,Σ : Γ ⇑ (∃n′∃x ′(2 = s n′ ∧+ x = s x ′ ∧+ plus n′ 3 x ′)) ` · ⇑ (Q x)

The negative phase terminates with the border premise

Σ: Γ ⇑ · ` · ⇑ (Q 5)

Example

Consider a proof of x ,Σ : Γ ⇑ plus 2 3 x ` · ⇑ (Q x).
Using unfoldL yields

x ,Σ : Γ⇑((2 = 0∧+3 = x)∨∃n′∃x ′(2 = s n′∧+x = s x ′∧+plus n′ 3 x ′)) ` ·⇑(Q x).

The disjunction introduction rule yields two premises:
(1) x ,Σ : Γ ⇑ ((2 = 0 ∧+ 3 = x) ` · ⇑ (Q x) is proved immediately.

(2) x ′,Σ : Γ ⇑ plus 1 3 x ′ ` · ⇑ (Q (s x ′))

x , n′, x ′,Σ : Γ ⇑ (2 = s n′ ∧+ x = s x ′ ∧+ plus n′ 3 x ′) ` · ⇑ (Q x)

x ,Σ : Γ ⇑ (∃n′∃x ′(2 = s n′ ∧+ x = s x ′ ∧+ plus n′ 3 x ′)) ` · ⇑ (Q x)

The negative phase terminates with the border premise

Σ: Γ ⇑ · ` · ⇑ (Q 5)

Example

Consider a proof of x ,Σ : Γ ⇑ plus 2 3 x ` · ⇑ (Q x).
Using unfoldL yields

x ,Σ : Γ⇑((2 = 0∧+3 = x)∨∃n′∃x ′(2 = s n′∧+x = s x ′∧+plus n′ 3 x ′)) ` ·⇑(Q x).

The disjunction introduction rule yields two premises:
(1) x ,Σ : Γ ⇑ ((2 = 0 ∧+ 3 = x) ` · ⇑ (Q x) is proved immediately.

(2) x ′,Σ : Γ ⇑ plus 1 3 x ′ ` · ⇑ (Q (s x ′))

x , n′, x ′,Σ : Γ ⇑ (2 = s n′ ∧+ x = s x ′ ∧+ plus n′ 3 x ′) ` · ⇑ (Q x)

x ,Σ : Γ ⇑ (∃n′∃x ′(2 = s n′ ∧+ x = s x ′ ∧+ plus n′ 3 x ′)) ` · ⇑ (Q x)

The negative phase terminates with the border premise

Σ: Γ ⇑ · ` · ⇑ (Q 5)

Abstracting away the negative phase, we obtain the following
synthetic inference rule :�

�

�

�
` Q(5)

plus 2 3 x ` Q(x)

Abstracting away the negative phase, we obtain the following
synthetic inference rule :�

�

�

�
` Q(5)

plus 2 3 x ` Q(x)

�

�

�

�
` Q(5)

` Q(2 + 3)

Phases as abstractions

There are two challenges to making abstractions of negative
phases.

1. Since there may be many paths to compute the same
functional value, the premises of a negative phase may repeat
the same sequents many times. We can identify the premises
of a negative phase as set of border sequents.

2. There are many ways to build a negative phase but all
constructions yield the same border sequents. We will simply
ignore how a phase is constructed.

This latter challenge also holds in confluent rewriting systems:
after finding one path to a normal form, no other paths need to be
considered.

Phases as abstractions

There are two challenges to making abstractions of negative
phases.

1. Since there may be many paths to compute the same
functional value, the premises of a negative phase may repeat
the same sequents many times. We can identify the premises
of a negative phase as set of border sequents.

2. There are many ways to build a negative phase but all
constructions yield the same border sequents. We will simply
ignore how a phase is constructed.

This latter challenge also holds in confluent rewriting systems:
after finding one path to a normal form, no other paths need to be
considered.

Phases as abstractions

There are two challenges to making abstractions of negative
phases.

1. Since there may be many paths to compute the same
functional value, the premises of a negative phase may repeat
the same sequents many times. We can identify the premises
of a negative phase as set of border sequents.

2. There are many ways to build a negative phase but all
constructions yield the same border sequents. We will simply
ignore how a phase is constructed.

This latter challenge also holds in confluent rewriting systems:
after finding one path to a normal form, no other paths need to be
considered.

Need for suspensions

Suspension allows some mixing of functional and symbolic
computation. For example, let times be

µλTλnλmλp((n = 0∧+p = 0)∨∃n′∃p′(n = s n′∧+T n′ m p′∧+plus p′ m p))

To prove (0× (x + 1)) + y = y , we prove the formula

∀u. times 0 (s x) u ⊃ ∀v . plus u y v ⊃ v = y

y , u, v ,Σ : · ⇑times 0 (s x) u, plus u y v ` v = y ⇑ ·

Schedule the times predicate before the plus predicate.

Treating the times predicate causes the instantiation of u.

Then schedule the plus predicate.

Then the negative phase ends with y ,Σ : · ⇑· ` · ⇑ y = y .

In general: Suspend plus and times if their first argument is an
eigenvariable.

Need for suspensions

Suspension allows some mixing of functional and symbolic
computation. For example, let times be

µλTλnλmλp((n = 0∧+p = 0)∨∃n′∃p′(n = s n′∧+T n′ m p′∧+plus p′ m p))

To prove (0× (x + 1)) + y = y , we prove the formula

∀u. times 0 (s x) u ⊃ ∀v . plus u y v ⊃ v = y

y , u, v ,Σ : · ⇑times 0 (s x) u, plus u y v ` v = y ⇑ ·

Schedule the times predicate before the plus predicate.

Treating the times predicate causes the instantiation of u.

Then schedule the plus predicate.

Then the negative phase ends with y ,Σ : · ⇑· ` · ⇑ y = y .

In general: Suspend plus and times if their first argument is an
eigenvariable.

Suspension restrictions

S is defined at the mathematics level over the (µBt̄) expression.

Examples

1. The µ-expression contains more than 100 symbols

2. The first term in the list t̄ is an eigenvariable

We need a restriction to enforce determinancy

(∗) For all µ-expressions (µBt̄) and for all substitutions θ
defined on the eigenvariables free in that expression, if S
holds for (µBt̄)θ then S holds for (µBt̄).

Suspension restrictions

S is defined at the mathematics level over the (µBt̄) expression.

Examples

1. The µ-expression contains more than 100 symbols

2. The first term in the list t̄ is an eigenvariable

We need a restriction to enforce determinancy

(∗) For all µ-expressions (µBt̄) and for all substitutions θ
defined on the eigenvariables free in that expression, if S
holds for (µBt̄)θ then S holds for (µBt̄).

Suspensions during the positive phase

A suspension predicate S is defined only on µ-expressions.

If S
holds for (µBt̄), computation is suspended as the unfoldL rule will
not unfold a suspended fixed point.

Σ: Γ ⇑ B(µB)t̄,∆ ` · ⇑ E

Σ: Γ ⇑ µB t̄,∆ ` · ⇑ E
unfoldL†

⇓-sequents need a new multiset zone Ω.

Γ⇓Θ; Ω ` ∆1⇓∆2.

Formulas in Ω are not “stored” just “suspended”.

Only the decide, release, and initial rules deal with this context. It
only exists in the positive phase.

Suspensions during the positive phase

A suspension predicate S is defined only on µ-expressions. If S
holds for (µBt̄), computation is suspended as the unfoldL rule will
not unfold a suspended fixed point.

Σ: Γ ⇑ B(µB)t̄,∆ ` · ⇑ E

Σ: Γ ⇑ µB t̄,∆ ` · ⇑ E
unfoldL†

⇓-sequents need a new multiset zone Ω.

Γ⇓Θ; Ω ` ∆1⇓∆2.

Formulas in Ω are not “stored” just “suspended”.

Only the decide, release, and initial rules deal with this context. It
only exists in the positive phase.

Suspensions during the positive phase

A suspension predicate S is defined only on µ-expressions. If S
holds for (µBt̄), computation is suspended as the unfoldL rule will
not unfold a suspended fixed point.

Σ: Γ ⇑ B(µB)t̄,∆ ` · ⇑ E

Σ: Γ ⇑ µB t̄,∆ ` · ⇑ E
unfoldL†

⇓-sequents need a new multiset zone Ω.

Γ⇓Θ; Ω ` ∆1⇓∆2.

Formulas in Ω are not “stored” just “suspended”.

Only the decide, release, and initial rules deal with this context. It
only exists in the positive phase.

Suspensions during the positive phase

A suspension predicate S is defined only on µ-expressions. If S
holds for (µBt̄), computation is suspended as the unfoldL rule will
not unfold a suspended fixed point.

Σ: Γ ⇑ B(µB)t̄,∆ ` · ⇑ E

Σ: Γ ⇑ µB t̄,∆ ` · ⇑ E
unfoldL†

⇓-sequents need a new multiset zone Ω.

Γ⇓Θ; Ω ` ∆1⇓∆2.

Formulas in Ω are not “stored” just “suspended”.

Only the decide, release, and initial rules deal with this context. It
only exists in the positive phase.

Term representation using the λκ-calculus
(Brock-Nannestad, Guenot & Gustafsson)

Terms : t, u ::= λx .t | x k | ↑p
Values : p, q ::= x | ↓ t

Continuations : k ::= ε | p :: k | κx .t

Γ ⇑ · ` t : N ⇑ ·
RrΓ⇓· ` ↓ t : N⇓·

Γ ⇑ · ` · ⇑ t : E
SrΓ ⇑ · ` t : E ⇑ ·

Γ⇓· ` p : P ⇓·
DrΓ ⇑ · ` · ⇑ ↑p : P

Ir
Γ, x : a+⇓· ` x : a+⇓·

Γ, x : P ⇑ · ` · ⇑ t : E
Rl/Sl

Γ⇓P ` ·⇓ κx .t : E

Γ, x : N⇓N ` ·⇓k : E
DlΓ, x : N ⇑ · ` · ⇑ x k : E

Il
Γ⇓a− ` ·⇓ ε : a−

Γ, x : A ⇑ · ` t : B ⇑ · ⊃r /Sl
Γ ⇑ · ` λx .t : A ⊃ B ⇑ ·

Γ⇓· ` p : A⇓· Γ⇓B ` ·⇓ k : E ⊃l
Γ⇓A ⊃ B ` ·⇓ p :: k : E

Term representation using the λκ-calculus
(Brock-Nannestad, Guenot & Gustafsson)

Terms : t, u ::= λx .t | x k | ↑p
Values : p, q ::= x | ↓ t

Continuations : k ::= ε | p :: k | κx .t

Γ ⇑ · ` t : N ⇑ ·
RrΓ⇓· ` ↓ t : N⇓·

Γ ⇑ · ` · ⇑ t : E
SrΓ ⇑ · ` t : E ⇑ ·

Γ⇓· ` p : P ⇓·
DrΓ ⇑ · ` · ⇑ ↑p : P

Ir
Γ, x : a+⇓· ` x : a+⇓·

Γ, x : P ⇑ · ` · ⇑ t : E
Rl/Sl

Γ⇓P ` ·⇓ κx .t : E

Γ, x : N⇓N ` ·⇓k : E
DlΓ, x : N ⇑ · ` · ⇑ x k : E

Il
Γ⇓a− ` ·⇓ ε : a−

Γ, x : A ⇑ · ` t : B ⇑ · ⊃r /Sl
Γ ⇑ · ` λx .t : A ⊃ B ⇑ ·

Γ⇓· ` p : A⇓· Γ⇓B ` ·⇓ k : E ⊃l
Γ⇓A ⊃ B ` ·⇓ p :: k : E

Term representation using the λκ-calculus
(Brock-Nannestad, Guenot & Gustafsson)

Terms : t, u ::= λx .t | x k | ↑p
Values : p, q ::= x | ↓ t

Continuations : k ::= ε | p :: k | κx .t

Γ ⇑ · ` t : N ⇑ ·
RrΓ⇓· ` ↓ t : N⇓·

Γ ⇑ · ` · ⇑ t : E
SrΓ ⇑ · ` t : E ⇑ ·

Γ⇓· ` p : P ⇓·
DrΓ ⇑ · ` · ⇑ ↑p : P

Ir
Γ, x : a+⇓· ` x : a+⇓·

Γ, x : P ⇑ · ` · ⇑ t : E
Rl/Sl

Γ⇓P ` ·⇓ κx .t : E

Γ, x : N⇓N ` ·⇓k : E
DlΓ, x : N ⇑ · ` · ⇑ x k : E

Il
Γ⇓a− ` ·⇓ ε : a−

Γ, x : A ⇑ · ` t : B ⇑ · ⊃r /Sl
Γ ⇑ · ` λx .t : A ⊃ B ⇑ ·

Γ⇓· ` p : A⇓· Γ⇓B ` ·⇓ k : E ⊃l
Γ⇓A ⊃ B ` ·⇓ p :: k : E

Term representation using the λκ-calculus
(Brock-Nannestad, Guenot & Gustafsson)

Terms : t, u ::= λx .t | x k | ↑p
Values : p, q ::= x | ↓ t

Continuations : k ::= ε | p :: k | κx .t

Γ ⇑ · ` t : N ⇑ ·
RrΓ⇓· ` ↓ t : N⇓·

Γ ⇑ · ` · ⇑ t : E
SrΓ ⇑ · ` t : E ⇑ ·

Γ⇓· ` p : P ⇓·
DrΓ ⇑ · ` · ⇑ ↑p : P

Ir
Γ, x : a+⇓· ` x : a+⇓·

Γ, x : P ⇑ · ` · ⇑ t : E
Rl/Sl

Γ⇓P ` ·⇓ κx .t : E

Γ, x : N⇓N ` ·⇓k : E
DlΓ, x : N ⇑ · ` · ⇑ x k : E

Il
Γ⇓a− ` ·⇓ ε : a−

Γ, x : A ⇑ · ` t : B ⇑ · ⊃r /Sl
Γ ⇑ · ` λx .t : A ⊃ B ⇑ ·

Γ⇓· ` p : A⇓· Γ⇓B ` ·⇓ k : E ⊃l
Γ⇓A ⊃ B ` ·⇓ p :: k : E

Term representation using the λκ-calculus
(Brock-Nannestad, Guenot & Gustafsson)

Terms : t, u ::= λx .t | x k | ↑p
Values : p, q ::= x | ↓ t

Continuations : k ::= ε | p :: k | κx .t

Γ ⇑ · ` t : N ⇑ ·
RrΓ⇓· ` ↓ t : N⇓·

Γ ⇑ · ` · ⇑ t : E
SrΓ ⇑ · ` t : E ⇑ ·

Γ⇓· ` p : P ⇓·
DrΓ ⇑ · ` · ⇑ ↑p : P

Ir
Γ, x : a+⇓· ` x : a+⇓·

Γ, x : P ⇑ · ` · ⇑ t : E
Rl/Sl

Γ⇓P ` ·⇓ κx .t : E

Γ, x : N⇓N ` ·⇓k : E
DlΓ, x : N ⇑ · ` · ⇑ x k : E

Il
Γ⇓a− ` ·⇓ ε : a−

Γ, x : A ⇑ · ` t : B ⇑ · ⊃r /Sl
Γ ⇑ · ` λx .t : A ⊃ B ⇑ ·

Γ⇓· ` p : A⇓· Γ⇓B ` ·⇓ k : E ⊃l
Γ⇓A ⊃ B ` ·⇓ p :: k : E

Two normal forms for simply typed terms

1. When atoms are given a negative polarity then the terms
annotating proofs are in βη-long normal form :

λx1 . . . λxn.h t1 . . . tm

Written in λκ-terms :

λx1 . . . λxnh. (↓[[t1]] :: · · · :: ↓[[tm]] :: ε)

2. When atoms are given a positive polarity the terms annotating
proofs are in administrative normal form (ANF):

λx1 . . . λxn.h (p1::· · ·::pm::κy .t) (with t a term in ANF form)

With some syntactic sugar :

λx1 . . . λxn. name y = h (p1, . . . , pm) in t

Two normal forms for simply typed terms

1. When atoms are given a negative polarity then the terms
annotating proofs are in βη-long normal form :

λx1 . . . λxn.h t1 . . . tm

Written in λκ-terms :

λx1 . . . λxnh. (↓[[t1]] :: · · · :: ↓[[tm]] :: ε)

2. When atoms are given a positive polarity the terms annotating
proofs are in administrative normal form (ANF):

λx1 . . . λxn.h (p1::· · ·::pm::κy .t) (with t a term in ANF form)

With some syntactic sugar :

λx1 . . . λxn. name y = h (p1, . . . , pm) in t

Two normal forms for simply typed terms

1. When atoms are given a negative polarity then the terms
annotating proofs are in βη-long normal form :

λx1 . . . λxn.h t1 . . . tm

Written in λκ-terms :

λx1 . . . λxnh. (↓[[t1]] :: · · · :: ↓[[tm]] :: ε)

2. When atoms are given a positive polarity the terms annotating
proofs are in administrative normal form (ANF):

λx1 . . . λxn.h (p1::· · ·::pm::κy .t) (with t a term in ANF form)

With some syntactic sugar :

λx1 . . . λxn. name y = h (p1, . . . , pm) in t

Two normal forms for simply typed terms

1. When atoms are given a negative polarity then the terms
annotating proofs are in βη-long normal form :

λx1 . . . λxn.h t1 . . . tm

Written in λκ-terms :

λx1 . . . λxnh. (↓[[t1]] :: · · · :: ↓[[tm]] :: ε)

2. When atoms are given a positive polarity the terms annotating
proofs are in administrative normal form (ANF):

λx1 . . . λxn.h (p1::· · ·::pm::κy .t) (with t a term in ANF form)

With some syntactic sugar :

λx1 . . . λxn. name y = h (p1, . . . , pm) in t

Example: ANF and sharing

x x x x x

f f f

ff

y1

y2

f : i → i → i and x : i

When i is negative:

f (↓(f (↓(xε) :: ↓(xε) :: ε)) :: ↓(f (↓(xε) :: ↓(xε) :: ε)) :: ε)

f (f (x , x), f (x , x))

When i is positive:

f x :: x :: κy1.(f y1 :: y1 :: κy2.y2)

name y1 = (f x x) in name y2 = (f y1 y1) in y2

Example: ANF and sharing

x x x x x

f f f

ff

y1

y2

f : i → i → i and x : i
When i is negative:

f (↓(f (↓(xε) :: ↓(xε) :: ε)) :: ↓(f (↓(xε) :: ↓(xε) :: ε)) :: ε)

f (f (x , x), f (x , x))

When i is positive:

f x :: x :: κy1.(f y1 :: y1 :: κy2.y2)

name y1 = (f x x) in name y2 = (f y1 y1) in y2

Example: ANF and sharing

x x x x x

f f f

ff

y1

y2

f : i → i → i and x : i
When i is negative:

f (↓(f (↓(xε) :: ↓(xε) :: ε)) :: ↓(f (↓(xε) :: ↓(xε) :: ε)) :: ε)

f (f (x , x), f (x , x))

When i is positive:

f x :: x :: κy1.(f y1 :: y1 :: κy2.y2)

name y1 = (f x x) in name y2 = (f y1 y1) in y2

Mixed term representations

Add the binary infix term constructor + of type i → i → i .

The expression P(2 + 2) can be presented as :

name u = (s z) in name v = (s u) in name x = v + v in P(x)

We now have a mix of

I uninterpreted term constructors (e.g., z and s) and

I interpreted term constructors (+) which will be interpreted by
predicates.

Interpreting term constructors

The formal introduction of a new interpreted binary term
constructor such as + : i → i → i must be tied to a 3-ary
µ-expression R and a formal proof that R encodes a function:

∀x , y([∃z .R(x , y , z)] ∧ ∀z∀z ′[R(x , y , z) ⊃ R(x , y , z ′) ⊃ z = z ′]).

Then the formula (name z = x + y in B) is interpreted as either
∀z(R x y z ⊃ B) or ∃z(R x y z ∧+ B).

Σ: Γ ⇑ Rf x̄ y ,B,Θ ` ∆1⇑∆2

Σ: Γ ⇑ name z = f x̄ in B,Θ ` ∆1⇑∆2

Σ: Γ ⇑ Rf x̄ y ,Θ ` B ⇑ ·
Σ: Γ ⇑Θ ` name z = f x̄ in B ⇑ ·

Interpreting term constructors

The formal introduction of a new interpreted binary term
constructor such as + : i → i → i must be tied to a 3-ary
µ-expression R and a formal proof that R encodes a function:

∀x , y([∃z .R(x , y , z)] ∧ ∀z∀z ′[R(x , y , z) ⊃ R(x , y , z ′) ⊃ z = z ′]).

Then the formula (name z = x + y in B) is interpreted as either
∀z(R x y z ⊃ B) or ∃z(R x y z ∧+ B).

Σ: Γ ⇑ Rf x̄ y ,B,Θ ` ∆1⇑∆2

Σ: Γ ⇑ name z = f x̄ in B,Θ ` ∆1⇑∆2

Σ: Γ ⇑ Rf x̄ y ,Θ ` B ⇑ ·
Σ: Γ ⇑Θ ` name z = f x̄ in B ⇑ ·

Interpreting term constructors

The formal introduction of a new interpreted binary term
constructor such as + : i → i → i must be tied to a 3-ary
µ-expression R and a formal proof that R encodes a function:

∀x , y([∃z .R(x , y , z)] ∧ ∀z∀z ′[R(x , y , z) ⊃ R(x , y , z ′) ⊃ z = z ′]).

Then the formula (name z = x + y in B) is interpreted as either
∀z(R x y z ⊃ B) or ∃z(R x y z ∧+ B).

Σ: Γ ⇑ Rf x̄ y ,B,Θ ` ∆1⇑∆2

Σ: Γ ⇑ name z = f x̄ in B,Θ ` ∆1⇑∆2

Σ: Γ ⇑ Rf x̄ y ,Θ ` B ⇑ ·
Σ: Γ ⇑Θ ` name z = f x̄ in B ⇑ ·

Conclusion

'

&

$

%

` Q(5)
Negative Phase

plus 2 3 x ` Q(x)
Interpret

` name x = 2 + 3 in Q(x)
Parse/Translate

` Q(2 + 3)

Conclusion

We have presented a treatment of functional computation based
on relations providing:

I a method for moving expressions denoting embedded
computation into naming-combinators of the logic (ANF
normal form)

I a mean of organizing introduction rules so that functional
computations can be identified as one specific phase of
computation (the negative phase).

Possible future work:

I Treat more datatypes than numerals; also higher-order
expressions.

I Extend this project to include “functional-up-to-equivalence”.

I Design this into Abella. See: LFMTP 2018 paper by
Chaudhuri, Gérard, and M.

Thank you

y ,Σ: Γ ⇑ Rf x̄ y ,B,Θ ` ∆1⇑∆2

Σ: Γ ⇑ name y = f x̄ in B,Θ ` ∆1⇑∆2

y ,Σ: Γ ⇑ Rf x̄ y ,Θ ` B ⇑ ·
Σ: Γ ⇑Θ ` name y = f x̄ in B ⇑ ·

Σ: Γ ⇑ · ` name x = f x̄ in B ⇑ ·
Σ: Γ⇓· ` name x = f x̄ in B⇓·

Σ: Γ ⇑ name x = t in B ` · ⇑∆

Σ: Γ⇓name x = t in B ` ·⇓∆

Figure : Introduction rules for interpreted constructors

The incorporation of the naming context Ψ.

Name binding rules: the variable x is not bound in Σ nor in Ψ.

Σ : x := t,Ψ; Γ ⇑ B,Θ ` ∆1⇑∆2

Σ: Ψ; Γ ⇑ name x = t in B,Θ ` ∆1⇑∆2

Σ : x := t,Ψ; Γ ⇑ · ` B ⇑ ·
Σ: Ψ; Γ ⇑ · ` name x = t in B ⇑ ·

Σ : x := t,Ψ; Γ⇓· ` B⇓·
Σ: Ψ; Γ⇓· ` name x = t in B⇓·

Σ : x := t,Ψ; Γ⇓B ` ·⇓E

Σ: Ψ; Γ⇓name x = t in B ` ·⇓E

Positive phase quantifier rules

Σ,Σ(Ψ) ⇑·` t : τ ⇑ · Σ: Ψ; Γ⇓[t/x]B ` ·⇓E

Σ: Ψ; Γ⇓∀xτ .B ` ·⇓E

Σ,Σ(Ψ) ⇑·` t : τ ⇑ · Σ: Ψ; Γ⇓· ` [t/x]B⇓·
Σ: Ψ; Γ⇓· ` ∃xτ .B⇓·

	From relations to functions
	Focusing, term equality and fixed points in quantificational intuitionistic logic
	From relations to functions
	Phases as abstractions
	Suspensions
	Term representation: turning formulas inside-out

