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Introduction

Logical foundations of arithmetic usually start with a
quantificational logic of relations.

For example: Gentzen’s proof of consistency of arithmetic;
Church’s STT [1940]; Andrews’s textbook [2002].

We want a treatment of functional computation based of relations.

Application: We wish to extended the Abella theorem prover to
have conventional notations, e.g. (3 ∗ x) + 2 ≤ 10, instead of

∃x1. times 3 x x1 ∧ ∃X2. plus x1 2 x2 ∧ lesseq x2 10

We are willing to change the parser and proof automation, but not
the logic.
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Earlier approaches
I Enhance the equality theory (e.g., Troelstra) : primitive

recursive functions are black-boxes and all computation
instances (e.g. 23 + 756 = 779) are added as ground
equations.

I Hybridize the logical calculus with terms and confluent
rewriting such as in the λΠ-calculus modulo framework used
in Dedukti (Cousineau & Dowek)

I Add choice operators such as Hilbert’s ε and Church’s ι to
coerce relations that encode functions into actual functions.

If R is an n + 1-ary predicate such that

∀x̄ .([∃y .R(x̄ , y)] ∧ ∀y∀z [R(x̄ , y) ⊃ R(x̄ , z) ⊃ y = z ])

then there exists a n-ary function fR s.t. fR(x̄) = y iff R(x̄ , y).
Church formally wrote this using the choice operator ι:

λx1 . . . λxn.ι(λy .R(x1, . . . , xn, y))
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A new design

We want a new ”rule” such that :�

�

�

�
` Q(5)

` Q(2 + 3)

We want to achieve this goal in a purely logical, proof-search
oriented setting. We use the following two ideas.

I A focused proof system to synthesize such rules

I A term representation that helps to translate arithmetic
expression into expressions involving predicate
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Focusing: a top-level perspective

I Proof-search in Gentzen’s sequent calculus suffer from a great
deal of non-determinancy and redundancy.

I A focused proof system guides proof construction by
distinguishing between invertible and non-invertible rules.

I Such proofs contain an alternation of two phases: the
negative / invertible / “don’t care” phase and the
positive / non-invertible / “don’t know” phase.

I Focused proof systems have two kinds of sequents to build
these two phases.



Road-map

1. We give a presentation of Heyting arithmetic in which fixed
points and term equality are logical connectives. The negative
phase in its focused proof system is determinate (reading it as
a mapping from its conclusion to its premises). Functional
computations are computed by such phases.

2. An ambiguity of polarity arises with singletons. If P(·) is a
singleton, then,

∀x [P(x) ⊃ Q(x)] ≡ ∃x [P(x) ∧ Q(x)] ≡ Q(εP)

It is then always possible to position P in the negative phase.

3. Ultimately: focusing in logic (not arithmetic) can define
administrative normal forms, a term representation which can
connect functions-as-constructors to functions-as-relations.
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The propositional fragment

Propositional intuitionistic logic formulas are given by the logical
connectives ∧, ∨, and ⊃, the logical constants t and f , and atomic
formulas.

A polarized formula P is positive if it is a positive atomic formula
or its top-level logical connective is either t+, f , ∧+, or ∨.

A polarized formula N is negative if it is a negative atomic formula
or its top-level logical connective is either t−, ∧−, or ⊃.
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The propositional fragment

Structural rules

Γ,N⇓N ` ·⇓E

Γ,N ⇑ · ` · ⇑ E
Dl

C , Γ ⇑Θ ` ∆1⇑∆2

Γ ⇑ C ,Θ ` ∆1⇑∆2
Sl

Γ ⇑ P ` · ⇑ E

Γ⇓P ` ·⇓E
Rl

Γ⇓· ` P⇓·
Γ ⇑ · ` · ⇑ P

Dr
Γ ⇑ · ` · ⇑ E

Γ ⇑ · ` E ⇑ · Sr
Γ ⇑ · ` N ⇑ ·
Γ⇓· ` N⇓· Rr

Negative Phase Introduction Rules

Γ ⇑Θ ` ∆1⇑∆2

Γ ⇑ t+,Θ ` ∆1⇑∆2

Γ ⇑ · ` B1 ⇑ · Γ ⇑ · ` B2 ⇑ ·
Γ ⇑ · ` B1 ∧− B2 ⇑ ·

Γ ⇑ B1 ` B2 ⇑ ·
Γ ⇑ · ` B1 ⊃ B2 ⇑ ·

Γ ⇑ B1,B2,Θ ` ∆1⇑∆2

Γ ⇑ B1 ∧+ B2,Θ ` ∆1⇑∆2

Γ ⇑ B1,Θ ` ∆1⇑∆2 Γ ⇑ B2,Θ ` ∆1⇑∆2

Γ ⇑ B1 ∨ B2,Θ ` ∆1⇑∆2

Positive Phase Introduction Rules

Γ⇓· ` B1⇓ · Γ⇓B2 ` ·⇓E

Γ⇓B1 ⊃ B2 ` ·⇓E

Γ⇓· ` B1⇓ · Γ⇓· ` B2⇓·
Γ⇓· ` B1 ∧+ B2⇓·

Γ⇓· ` Bi⇓·
Γ⇓· ` B1 ∨ B2⇓·

i ∈ {1, 2}
Γ⇓Bi ` ·⇓E

Γ⇓B1 ∧− B2 ` ·⇓E
i ∈ {1, 2}
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Interlude: Bipoles

A bipole is a derivation whose conclusion and premises are all
border sequents (of the form Γ ⇑ · ` · ⇑ E ):

Γ,N,N ⇑ · ` · ⇑ E
· · · Negative phase

Γ,N ⇑ P ` · ⇑ E

Γ,N⇓P ` ·⇓E
Rl

· · · Positive phase

Γ,N⇓N ` ·⇓E

Γ,N ⇑ · ` · ⇑ E
Dl

These are the synthetic inference rules.



Examples of fixed point definitions

Declare the primitive type i and constants z : i and s : i → i .
z , (s z), (s (s z)), (s (s (s z))) are abbreviated by 0, 1, 2 etc.

As a Horn clause theory

nat z.

nat (s X) :- nat X.

plus z X X.

plus (s X) Y (s Z) :- plus X Y Z.

As fixed point definitions

nat = µλNλn(n = 0 ∨ ∃n′(n = s n′ ∧+ N n′))

plus =µλPλnλmλp.(n = 0 ∧+ m = p) ∨
∃n′∃p′(n = s n′ ∧+ p = s p′ ∧+ P n′ m p′)
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Rules for quantification, term equality and fix-point

Typed first-order quantification rules

Σ ` t : τ Σ: Γ⇓[t/x ]B ` ·⇓E

Σ: Γ⇓∀xτ .B ` ·⇓E

y : τ,Σ : Γ ⇑ · ` [y/x ]B ⇑ ·
Σ: Γ ⇑ · ` ∀xτ .B ⇑ ·

y : τ,Σ : Γ ⇑ [y/x ]B,Θ ` ∆1⇑∆2

Σ: Γ ⇑ ∃xτ .B,Θ ` ∆1⇑∆2

Σ ` t : τ Σ: Γ⇓· ` [t/x ]B⇓·
Σ: Γ⇓· ` ∃xτ .B⇓·

Equality rules [Girard, Schroeder-Heister]

Σθ : Γθ ⇑Θθ ` ∆1θ⇑∆2θ

Σ : Γ ⇑ s = t,Θ ` ∆1⇑∆2
†

Σ : Γ ⇑ s = t,Θ ` ∆1⇑∆2
‡

Σ : Γ⇓· ` t = t⇓·

Provisos: (†) θ is the mgu of s and t. (‡) t and s are not unifiable.

Fixed point rules

Σ: Γ ⇑ B(µB)t̄,∆ ` · ⇑ E

Σ: Γ ⇑ µB t̄,∆ ` · ⇑ E
unfoldL

Σ: Γ⇓· ` B(µB)t̄⇓·
Σ: Γ⇓· ` µB t̄⇓· unfoldR
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The polarity ambiguity of singleton sets

Let P be a predicate of one argument such that

` (∃x .P(x)) ∧ (∀x∀y .P(x) ⊃ P(y) ⊃ x = y)

As a consequence ∃x .P(x) ∧ Q(x) ≡ ∀x .P(x) ⊃ Q(x).

Assume that P is a purely positive formula.

A proof of Σ: Γ⇓· ` ∃x .P(x) ∧ Q(x)⇓· guesses a term t and then
proves Σ: Γ⇓· ` P(t)⇓· and Σ: Γ⇓· ` Q(t)⇓·.

A proof of Σ: Γ ⇑ · ` ∀x .P(x) ⊃ Q(x) ⇑ · computes the value that
satisfies P, starting with proving y ,Σ : Γ ⇑ P(y) ` Q(y) ⇑ ·. The
completed phase has the premise Σ: Γ ⇑ · ` · ⇑ Q(t).
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Example

Consider a proof of x ,Σ : Γ ⇑ plus 2 3 x ` · ⇑ (Q x).

Using unfoldL yields

x ,Σ : Γ⇑((2 = 0∧+3 = x)∨∃n′∃x ′(2 = s n′∧+x = s x ′∧+plus n′ 3 x ′)) ` ·⇑(Q x).

The disjunction introduction rule yields two premises:
(1) x ,Σ : Γ ⇑ ((2 = 0 ∧+ 3 = x) ` · ⇑ (Q x) is proved .

(2) x ′,Σ : Γ ⇑ plus 1 3 x ′ ` · ⇑ (Q (s x ′))

x , n′, x ′,Σ : Γ ⇑ (2 = s n′ ∧+ x = s x ′ ∧+ plus n′ 3 x ′) ` · ⇑ (Q x)

x ,Σ : Γ ⇑ (∃n′∃x ′(2 = s n′ ∧+ x = s x ′ ∧+ plus n′ 3 x ′)) ` · ⇑ (Q x)

The negative phase terminates with the border premise

Σ: Γ ⇑ · ` · ⇑ (Q 5)
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Abstracting away the negative phase, we obtain the following
synthetic inference rule :�
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�
` Q(5)

plus 2 3 x ` Q(x)
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Phases as abstractions

There are two challenges to making abstractions of negative
phases.

1. Since there may be many paths to compute the same
functional value, the premises of a negative phase may repeat
the same sequents many times. We can identify the premises
of a negative phase as set of border sequents.

2. There are many ways to build a negative phase but all
constructions yield the same border sequents. We will simply
ignore how a phase is constructed.

This latter challenge also holds in confluent rewriting systems:
after finding one path to a normal form, no other paths need to be
considered.
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Need for suspensions

Suspension allows some mixing of functional and symbolic
computation. For example, let times be

µλTλnλmλp((n = 0∧+p = 0)∨∃n′∃p′(n = s n′∧+T n′ m p′∧+plus p′ m p))

To prove (0× (x + 1)) + y = y , we prove the formula

∀u. times 0 (s x) u ⊃ ∀v . plus u y v ⊃ v = y

y , u, v ,Σ : · ⇑times 0 (s x) u, plus u y v ` v = y ⇑ ·

Schedule the times predicate before the plus predicate.

Treating the times predicate causes the instantiation of u.

Then schedule the plus predicate.

Then the negative phase ends with y ,Σ : · ⇑· ` · ⇑ y = y .

In general: Suspend plus and times if their first argument is an
eigenvariable.
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Suspension restrictions

S is defined at the mathematics level over the (µBt̄) expression.

Examples

1. The µ-expression contains more than 100 symbols

2. The first term in the list t̄ is an eigenvariable

We need a restriction to enforce determinancy

(∗) For all µ-expressions (µBt̄) and for all substitutions θ
defined on the eigenvariables free in that expression, if S
holds for (µBt̄)θ then S holds for (µBt̄).
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Suspensions during the positive phase

A suspension predicate S is defined only on µ-expressions.

If S
holds for (µBt̄), computation is suspended as the unfoldL rule will
not unfold a suspended fixed point.

Σ: Γ ⇑ B(µB)t̄,∆ ` · ⇑ E

Σ: Γ ⇑ µB t̄,∆ ` · ⇑ E
unfoldL†

⇓-sequents need a new multiset zone Ω.

Γ⇓Θ; Ω ` ∆1⇓∆2.

Formulas in Ω are not “stored” just “suspended”.

Only the decide, release, and initial rules deal with this context. It
only exists in the positive phase.
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Term representation using the λκ-calculus
(Brock-Nannestad, Guenot & Gustafsson)

Terms : t, u ::= λx .t | x k | ↑p
Values : p, q ::= x | ↓ t

Continuations : k ::= ε | p :: k | κx .t

Γ ⇑ · ` t : N ⇑ ·
RrΓ⇓· ` ↓ t : N⇓·

Γ ⇑ · ` · ⇑ t : E
SrΓ ⇑ · ` t : E ⇑ ·

Γ⇓· ` p : P ⇓·
DrΓ ⇑ · ` · ⇑ ↑p : P

Ir
Γ, x : a+⇓· ` x : a+⇓·

Γ, x : P ⇑ · ` · ⇑ t : E
Rl/Sl

Γ⇓P ` ·⇓ κx .t : E

Γ, x : N⇓N ` ·⇓k : E
DlΓ, x : N ⇑ · ` · ⇑ x k : E

Il
Γ⇓a− ` ·⇓ ε : a−

Γ, x : A ⇑ · ` t : B ⇑ · ⊃r /Sl
Γ ⇑ · ` λx .t : A ⊃ B ⇑ ·

Γ⇓· ` p : A⇓· Γ⇓B ` ·⇓ k : E ⊃l
Γ⇓A ⊃ B ` ·⇓ p :: k : E
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Two normal forms for simply typed terms

1. When atoms are given a negative polarity then the terms
annotating proofs are in βη-long normal form :

λx1 . . . λxn.h t1 . . . tm

Written in λκ-terms :

λx1 . . . λxnh. (↓[[t1]] :: · · · :: ↓[[tm]] :: ε)

2. When atoms are given a positive polarity the terms annotating
proofs are in administrative normal form (ANF):

λx1 . . . λxn.h (p1::· · ·::pm::κy .t) (with t a term in ANF form)

With some syntactic sugar :

λx1 . . . λxn. name y = h (p1, . . . , pm) in t
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Example: ANF and sharing

x x x x x

f f f

ff

y1

y2

f : i → i → i and x : i

When i is negative:

f (↓(f (↓(xε) :: ↓(xε) :: ε)) :: ↓(f (↓(xε) :: ↓(xε) :: ε)) :: ε)

f (f (x , x), f (x , x))

When i is positive:

f x :: x :: κy1.(f y1 :: y1 :: κy2.y2)

name y1 = (f x x) in name y2 = (f y1 y1) in y2
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Mixed term representations

Add the binary infix term constructor + of type i → i → i .

The expression P(2 + 2) can be presented as :

name u = (s z) in name v = (s u) in name x = v + v in P(x)

We now have a mix of

I uninterpreted term constructors (e.g., z and s) and

I interpreted term constructors (+) which will be interpreted by
predicates.



Interpreting term constructors

The formal introduction of a new interpreted binary term
constructor such as + : i → i → i must be tied to a 3-ary
µ-expression R and a formal proof that R encodes a function:

∀x , y([∃z .R(x , y , z)] ∧ ∀z∀z ′[R(x , y , z) ⊃ R(x , y , z ′) ⊃ z = z ′]).

Then the formula (name z = x + y in B) is interpreted as either
∀z(R x y z ⊃ B) or ∃z(R x y z ∧+ B).

Σ: Γ ⇑ Rf x̄ y ,B,Θ ` ∆1⇑∆2

Σ: Γ ⇑ name z = f x̄ in B,Θ ` ∆1⇑∆2

Σ: Γ ⇑ Rf x̄ y ,Θ ` B ⇑ ·
Σ: Γ ⇑Θ ` name z = f x̄ in B ⇑ ·
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Conclusion

'

&

$

%

` Q(5)
Negative Phase

plus 2 3 x ` Q(x)
Interpret

` name x = 2 + 3 in Q(x)
Parse/Translate

` Q(2 + 3)



Conclusion

We have presented a treatment of functional computation based
on relations providing:

I a method for moving expressions denoting embedded
computation into naming-combinators of the logic (ANF
normal form)

I a mean of organizing introduction rules so that functional
computations can be identified as one specific phase of
computation (the negative phase).

Possible future work:

I Treat more datatypes than numerals; also higher-order
expressions.

I Extend this project to include “functional-up-to-equivalence”.

I Design this into Abella. See: LFMTP 2018 paper by
Chaudhuri, Gérard, and M.



Thank you



y ,Σ: Γ ⇑ Rf x̄ y ,B,Θ ` ∆1⇑∆2

Σ: Γ ⇑ name y = f x̄ in B,Θ ` ∆1⇑∆2

y ,Σ: Γ ⇑ Rf x̄ y ,Θ ` B ⇑ ·
Σ: Γ ⇑Θ ` name y = f x̄ in B ⇑ ·

Σ: Γ ⇑ · ` name x = f x̄ in B ⇑ ·
Σ: Γ⇓· ` name x = f x̄ in B⇓·

Σ: Γ ⇑ name x = t in B ` · ⇑∆

Σ: Γ⇓name x = t in B ` ·⇓∆

Figure : Introduction rules for interpreted constructors



The incorporation of the naming context Ψ.

Name binding rules: the variable x is not bound in Σ nor in Ψ.

Σ : x := t,Ψ; Γ ⇑ B,Θ ` ∆1⇑∆2

Σ: Ψ; Γ ⇑ name x = t in B,Θ ` ∆1⇑∆2

Σ : x := t,Ψ; Γ ⇑ · ` B ⇑ ·
Σ: Ψ; Γ ⇑ · ` name x = t in B ⇑ ·

Σ : x := t,Ψ; Γ⇓· ` B⇓·
Σ: Ψ; Γ⇓· ` name x = t in B⇓·

Σ : x := t,Ψ; Γ⇓B ` ·⇓E

Σ: Ψ; Γ⇓name x = t in B ` ·⇓E

Positive phase quantifier rules

Σ,Σ(Ψ) ⇑·` t : τ ⇑ · Σ: Ψ; Γ⇓[t/x ]B ` ·⇓E

Σ: Ψ; Γ⇓∀xτ .B ` ·⇓E

Σ,Σ(Ψ) ⇑·` t : τ ⇑ · Σ: Ψ; Γ⇓· ` [t/x ]B⇓·
Σ: Ψ; Γ⇓· ` ∃xτ .B⇓·
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