
The Proof-Theoretic Foundations of Logic
Programming

Dale Miller

Inria Saclay & LIX, École Polytechnique
Palaiseau, France

Tease-LP, 28 May 2020

This talk is based on a paper that should be completed by the end
of June. If you are interested in providing feedback on a draft,
please contact me.



Roles of logic in computing

I Computation-as-model: Computation happens: registers
change, lights flash, etc. Logic is used to make statements
about what is happening.
I classical or intuitionistic logic (or arithmetic) is typically used
I also, various modal/temporal logics, Hoare triples

I Computation-as-deduction: Computation is based on bits of
logic: formulas, terms, proofs.
I Proof normalization, aka Curry-Howard correspondence.

Foundations for functional programming.
I Proof search. Foundations of logic programming, declarative

databases, model checking, theorem proving, type inference,
etc.

In this talk, I will focus on locating logic programming within this
large domain of proof search.



Frameworks for logic programming: Desiderata

A good framework should have some desirable properties.

1. It should provide multiple and broad avenues for reasoning
about programs. We don’t need new versions of Turing
machines: that is, we do not need another specification
language that obviously computes but is hard to reason about.

2. It should allow for the proper positioning of the logic
programming paradigm among other programming and
specification paradigms.

3. It should provide for a range of extensions, leading to logic
programming languages that go beyond the one acknowledged
example based on Horn clauses.



Frameworks for logic programming: A history

Resolution refutations

+ Incorporates unification with inference

- Refute, not prove. Skolemization. Restricted to classical logic.

Model theory

+ Mature mathematical basis

- Valid if true in an infinite number of infinite models.

Operational semantics (transition systems, π-calculus)

+ Detailed formalization of operational behavior.

- Complex metatheory, connection to logic distant.

Abstract machines

+ Possible to formalize mathematically.

- About an implementation, connection to logic distant.

Structural proof theory: we examine this framework instead.



Problems in logic programming addressed by proof theory

In the 1980s, major foci of the community was on the two topics
of control and negation-as-failure.

A few others were concerned with problems of accommodating
programming language abstractions: i.e., modules, abstract
datatypes, higher-order programming, etc.

With the work on λProlog during 1985-1994, the issues around
abstraction were given a good treatment, both in proof theory and
in implementations.

The topics of control and negation-as-failure were addressed later
by more recent advances in proof theory.



Proof search uses of intuitionistic logic

In the second half of the 1980s, several researchers found
important uses of intuitionistic logic within computation logic there
were not directly related to the Curry-Howard correspondence.
These discoveries were made nearly simultaneously and largely
independently.

I Gabbay and Reyle, hypothetical, N-Prolog [1984 & 1985]

I Paulson - Isabelle generic (natural deduction, term-level
binding) [1986 & 1989]

I M, Nadathur, Pfenning, & Scedrov - the λProlog effort,
hypothetical and generic reasoning, term-level binding
[1986-1989]

I Hallnäs and Schroeder-Heister - hypothetical reasoning,
definitions [1990 & 1991]

I Thorne McCarty - hypothetical reasoning, intuitionistic
negation [1988]



Proof theory

The term “proof theory” refers to different topics:

I ordinal analysis of proofs of consistency of a logic (via
cut-elimination).

I reverse mathematics (choosing weak mathematical
assumptions)

I analyzing the structure of proofs themselves.

This latter emphasis is often called “Structural Proof Theory”. See
such authors as

I Gentzen

I Gallier: “Logic for Computer Science” [1986]

I Girard, Taylor, & Lafont: “Proofs and Types” [1989]

I Negri and von Plato: “Structural Proof Theory” [2001]



The sequent calculus

Introduced by Gentzen as an explicit attempt to provide a unifying
framework for proofs in classical and intuitionistic logics.

Girard’s linear logic can be further unified with these logics via the
sequent calculus.

• Proofs without cuts are analytic (involving only subformulas):
there are no cut-free proofs of false.
• Introducing the cut rule meant that all of first-order logic was

captured. Cut-elimination was a kind of completeness result:
analytic proofs were sufficient.

A personal reflection.



Unity of logic

LJ proofs are LK proofs in which the right-hand side has at most
one formula.

Γ ` ∆ (multiple conclusion) vs. Γ ` B (single conclusion)

Gentzen’s sequent calculus work was an early attempt at a “unity
of logic”. Making structural rules explicit—especially on the
right—is critical.

Girard’s linear logic makes structural rules also explicit on the left.

Sequent calculus is an appealing tool to study proof theory and
computational logic since it captures and relates these three logics.



Applications of sequent calculus

Sequent calculus has been used in:

Proof theory

I Consistency of logic and arithmetic

I Herbrand’s theorem

I Midsequent theorem

I Interpolation

I Negative translations

Computer Science

I foundations for logic programming:

I explicit substitutions in the λ-calculus

I syntactic correctness of Skolemization

I etc.



However: Sequent calculus proofs are chaotic, painful, etc

Sequent calculus proofs are formless.

Any structure they might contain about a proof needs to be pulled
out by extensive inference-rule permutation arguments.

It is common to say that
• a sequent calculus proof is a computation of a proof while
• a natural deduction proof is the actual proof.

We will be more sophisticated than that in this talk: we improve
on sequent calculus by moving to focused proofs (instead of
natural deduction).



Permutation of inference rules illustrated

Let Γ be a multiset of 998 formulas and consider searching for a
proof of the sequent Γ,B1 ∨ B2,C1 ∧ C2 ` A.

There are 1000 choices for the left introduction rule to attempt
this proof and the resulting premises can be attempted using 1000
left-introduction rules.

For example,

Γ,B1,C1,C2 ` A

Γ,B1,C1 ∧ C2 ` A
∧L

Γ,B2,C1,C2 ` A

Γ,B2,C1 ∧ C2 ` A
∧L

Γ,B1 ∨ B2,C1 ∧ C2 ` A
∨L

is one in about a million choices.
• Another choice switches the order of ∨L and ∧L: that switch is

not important.
• Also these two inference rules are invertible and can be applied

automatically; without needing to reconsider them.



Problems with the sequent calculus

Inference rules in the sequent calculus are
• too tiny,
• too independent from each other, and
• not the right inference rules is many settings.

To illustrate the last point, it is more common to need inference
rules such as one of the following pairs of rules.

Γ ` adj x y

Γ ` path x y

Γ ` path x z Γ ` path z y

Γ ` path x y

Γ, adj x y , path x y ` A

Γ, adj x y ` A

Γ, path x z , path z y , path x y ` A

Γ, path x z , path z y ` A

NB: these rules contain no occurrences of logical connectives.



LJF for only ⊃ and ∀

LJF is a focused version of Gentzen’s LJ proof system for
intuitionistic logic introduced by Liang & M [TCS 2009].

There are three kinds of sequents

1. unfocused sequents: Γ ` B

2. left focused sequent: Γ ⇓ B ` A, with focus B

3. right focused sequent: Γ ` A ⇓ , with focus A

Replacing ⇑ on the left with a comma yields a regular sequent.

Γ as a syntactic variable ranging over multisets of formulas.
A as a syntactic variable ranging over atomic formulas.



A subset of LJF: the introduction rules

The right introduction rules for ⊃ and ∀ are invertible.

Γ,B1 ` B2

Γ ` B1 ⊃ B2

Γ ` [y/x ]B

Γ ` ∀x .B
y not free in conclusion

The left introduction rules for ⊃ and ∀ are not invertible.

Γ ⇓ [t/x ]B ` A

Γ ⇓ ∀x .B ` A

Γ ` B1 ⇓ Γ ⇓ B2 ` A

Γ ⇓ B1 ⊃ B2 ` A



LJF: Polarity and the remaining inference rules

Polarity (simplified)

1. Formulas of the form B1 ⊃ B2 and ∀x .B are negative.

2. Atomic formulas can be given arbitrary polarity: all negative;
all positive; or a mixture of both.

Decide: Γ,N ⇓ N ` A

Γ,N ` A
Dl

Γ ` P ⇓
Γ ` P

Dr

Release: Γ,P ` A

Γ ⇓ P ` A
Rl

Γ ` N
Γ ` N ⇓ Rr

Initial: N atomic
Γ ⇓ N ` N

Il
P atomic

Γ,P ` P ⇓ Ir

Here, P is a positive (atomic) formula and N is a negative formula.



Formal results about LJF

Theorem: Let B be a first-order formula over ∀ and ⊃.

I If ` B is provable in LJ then for every polarization of atomic
formulas, the sequent ` B is provable in LJF.

I If atoms are given some polarization and ` B is provable in
LJF, then ` B is provable in LJ.

Proof: Follows from a result in Liang & M [TCS 2009].

Polarization of atoms does not affect provability but can make a
big impact on the structure of proofs.

Uniform proofs correspond to the case where all atomic formulas
are polarized negatively. The notion of “uniform proof” should
now be replaced with the richer notion of “focused proof”.



Characterizing forward and backward-chaining

Ξ1

Γ ` Rab ⇓

Ξ2

Γ ` Rbc ⇓
Ξ3

Γ ⇓ Rac ` A

Γ ⇓ Rbc ⊃ Rac ` A
⊃ L

Γ ⇓ Rab ⊃ Rbc ⊃ Rac ` A
⊃ L

Γ ⇓ ∀x∀y∀z(Rxy ⊃ Ryz ⊃ Rxz) ` A
∀L× 3

If atoms have neg polarity, then Ξ3 is initial and A is Rac. Also,
Ξ1 and Ξ2 are release. The synthetic rule is backward-chaining.

Γ ` Rab Γ ` Rbc
Γ ` Rac

If atoms have pos polarity, then Ξ3 is release and Ξ1, Ξ2 are initial
and Γ is Rab,Rbc, Γ′. The synthetic rule is forward-chaining.

Γ′,Rab,Rbc,Rac ` A

Γ′,Rab,Rbc ` A

See Chaudhuri, Pfenning, and Price [JAR 2008].



Another example: Fibonacci numbers

Let Γ contain fib(0, 0), fib(1, 1), and

∀n∀f ∀f ′[fib(n, f ) ⊃ fib(n + 1, f ′) ⊃ fib(n + 2, f + f ′)].

The nth Fibonacci number is F iff Γ ` fib(n,F ).

backward-chaining:
Γ ` fib(n, f ) Γ ` fib(n + 1, f ′)

Γ ` fib(n + 2, f + f ′)

forward-chaining:
Γ, fib(n, f ), fib(n + 1, f ′), fib(n + 2, f + f ′) ` A

Γ, fib(n, f ), fib(n + 1, f ′) ` A

If the polarity of atoms is

I negative, the unique proof is exponential in n.

I positive, the shortest proof is linear in n.



Synthetic inference rules

In Kowalski’s paper [CACM 1979] Algorithm = Logic + Control ,
two control regimes were described, corresponding to
forward-chaining and backward-chaining. We can now explain
them proof theoretically using focused proof systems.

Negri’s result [AML 2003] concerning converting axioms to
inference rules can also be explained and generalized.

More generally, synthetic rules built using focusing automatically
satisfy cut-elimination. See Marin, M, Pimentel, & Volpe [2020].



Synthetic inference rules: another example

In set theory, the following implication relates the subset and
membership predicates:

∀yz .(∀x(x ∈ y ⊃ x ∈ z) ⊃ y ⊆ z).

If these predicates are polarized positively, the synthetic inference
rule is

x ∈ y , Γ ` x ∈ z y ⊆ z , Γ ` E

Γ ` E
.

If these predicates are polarized negatively, the synthetic inference
rule is

x ∈ y , Γ ` x ∈ z

Γ ` y ⊆ z
.

In both cases, x is an eigenvariable for that rule.



Another success of proof theory: computing with bindings

Encode untyped lambda-terms sending bindings to bindings:

dλx .Be = (abs (λx .dBe)).

The following formula specifies the typing of a λ-abstraction.

∀B∀τ∀τ ′[∀x(of x τ ⊃ of (Bx) τ ′) ⊃ of (abs B) (τ → τ ′)].

Now consider the following combination of inference rules.

Σ, x : ∆, of dxe τ ` of dBe τ ′

Σ : ∆ ` ∀x (of dxe τ ⊃ of dBe τ ′)
∀R, ⊃ R

Σ : ∆ ` of dλx .Be (τ → τ ′)
backchaining

The binding for x moves from the term-level, to the formula-level
(as a quantifier), to the proof-level (as an eigenvariable).

A binding is not converted to a “free variable”: it simply moves.



Binder mobility

Binder mobility does not exist in higher-order Horn clauses.
λProlog was extended with hypothetical and generic (∀) goals.

The Abella theorem prover [Baelde et al. 2014] enhances binder
mobility by providing new binding sites: the ∇-quantifier at the
formula-level and nominal contexts at the proof-level.

Incorporating binder mobility into unification avoids the need for
Skolemization to simplify quantifier alternations.

∀x∃y∀z [(f z y) = (f z x)]

∀x∃y [λz(f z y) = λz(f z x)] (ξ)

∃h∀x [λz(f z (h x)) = λz(f z x)] (raising)

∃h [λxλz(f z (h x)) = λxλz(f z x)] (ξ)

See unification under a mixed prefix [M, 1992].



Negation-as-failure

The proof-theoretic solution arose from simultaneous and
independent results

I Hallnäs & Schroeder-Heister [JLC 1991], definitions

I Girard [1992], fixpoints

These results show that finite failure can be formalized into an
inference rule for negation.

Their work has been generalize to a new approach to checking
simulation/bisimulation and induction/coinduction in proof theory
[McDowell 1997; Tiu 2004; Gacek 2009; Baelde 2012].

It provides a proof theory foundation for model checking [Heath &
M, 2019].



Linear Logic

We owe the notions of polarization and focusing to linear logic
[Andreoli 1992]. The depth of these ideas would not have been
clear from studying intuitionistic and classical logics alone.

Many linear logic programming languages have been developed to
support

I state changes,

I concurrency, and

I multiset rewriting.

Linear logic programming, especially when exploiting
subexponentials, has successes as a logical framework for
specifying other proof systems [Nigam, Olarte, Pimentel, Reis, etc]



Some near-term prospects for logic programming

Automating Operational Semantics
Bring back the early project by Gilles Kahn and his team from the
late 1980s to automate interpreters, debuggers, compilers, static
checkers, etc based on big step operational semantics. See the
Makam implementation of λProlog [Stampoulis & Chlipala, 2018].

Proof checking
Logic programs can do some degree of proof reconstruction and
proof elaboration when checking proof certificates.

Proof refinement in interactive theorem provers
Use logic programming engines to power the tactic (proof
refinement). Some development work has started with the ELPI
implementation of λProlog and its integration into the Coq prover
[Tassi 2020].

Formalized reasoning about logic programs
A team of us are just getting started with using Abella to reason
about logic programs and logical specifications.



Bibliography: selected references

• J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and Computation,
2(3):297–347, 1992.

• D. Baelde, K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu, and Y. Wang. Abella: A system for
reasoning about relational specifications. Journal of Formalized Reasoning, 7(2):1–89, 2014.

• K. Chaudhuri, F. Pfenning, and G. Price. A logical characterization of forward and backward chaining in the
inverse method. J. of Automated Reasoning, 40(2-3):133–177, Mar. 2008.

• D. Clément, J. Despeyroux, T. Despeyroux, L. Hascoët, and G. Kahn. Natural semantics on the computer.
Research Report 416, INRIA, Rocquencourt, France, June 1985.

• A. Gacek, D. Miller, and G. Nadathur. A two-level logic approach to reasoning about computations. J. of
Automated Reasoning, 49(2):241–273, 2012.

• Q. Heath and D. Miller. A proof theory for model checking. J. of Automated Reasoning, 63(4):857–885,
2019.

• C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and classical logics. Theoretical
Computer Science, 410(46):4747–4768, 2009.

• D. Miller. Unification under a mixed prefix. Journal of Symbolic Computation, 14(4):321–358, 1992.

• D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic programming.
Annals of Pure and Applied Logic, 51(1–2):125–157, 1991.

• S. Negri. Contraction-free sequent calculi for geometric theories with an application to Barr’s theorem.
Archive for Mathematical Logic, 42:389–401, 2003.

• V. Nigam, E. Pimentel, and G. Reis. An extended framework for specifying and reasoning about proof
systems. J. of Logic and Computation, 2014.

• P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, 8th Symp. on Logic in Computer
Science, pages 222–232. IEEE Computer Society Press, IEEE, June 1993.

• E. Tassi. ELPI: an extension language for Coq. CoqPL 2018: The Fourth International Workshop on Coq for
Programming Languages, Jan. 2018.


