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Abstract: We present a logical language which extends the syntax of positive Horn clauses by

permitting implications in goals and in the bodies of clauses. The operational meaning of a goal

which is an implication is given by the deduction theorem. That is, a goal D ⊃ G is satisfied

by a program P if the goal G is satisfied by the larger program P ∪ {D}. If the formula D is

the conjunction of a collection of universally quantified clauses, we interpret the goal D ⊃ G as a

request to load the code in D prior to attempting G, and then unload that code after G succeeds or

fails. This extended use of implication provides a logical explanation of parametric modules, some

uses of Prolog’s assert predicate, and certain kinds of abstract datatypes. Both a model-theory

and proof-theory are presented for this logical language. We show how to build a possible-worlds

(Kripke) model for programs by a fixed point construction and show that the operational meaning

of implication mentioned above is sound and complete for intuitionistic, but not classical, logic.

1. Implications as Goals

Let A be a syntactic variable which ranges over atomic formulas of first-order logic. Let G range

over a class of formulas, called goal formulas, to be specified shortly. We shall assume, however,

that this class always contains ⊤ (true) and all atomic formulas. The formulas represented by A

and G may contain free variables. Given these two classes, we define definite clauses, denoted by

the syntactic variable D, as follows:

D := G ⊃ A | ∀x D | D1 ∧ D2

A program is defined to be a finite set of closed definite clauses. P will be a syntactic variable for

programs. A clause of the form ⊤ ⊃ A will often be written as simply A.

Let P be a program. Define [P] to be the smallest set of formulas satisfying the following

recursive definitions.

(i) P ⊆ [P].

(ii) If D1 ∧ D2 ∈ [P] then D1 ∈ [P] and D2 ∈ [P].
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(iii) If ∀x D ∈ [P] then [x/t]D ∈ [P] for all closed terms t.

Here [x/t]D denotes the result of substituting t for free occurrences of x in D.

In the case that G is a closed goal formula and P a program, we shall use the expression

P ⊢O G to mean that G can be derived from P, or that G is an output of P. We use the symbol

O here to indicate that we are thinking about an operational definition of derivation, i.e., one that

captures an intuitive sense of computation. No a priori relation between ⊢O and other logical

senses of derivation or validity are assumed. We present six proof rules for ⊢O. The first two are

related to the structure of definite clauses.

(1) P ⊢O ⊤, and

(2) If A is a closed atomic formula, P ⊢O A if and only if there is a formula (G ⊃ A) ∈ [P] and

P ⊢O G.

These two proof rules provide the basic elements needed to define recursive procedures. A clause

of the form ∀x̄(G ⊃ A) is treated as a specification of how a procedure, the name of which is the

head of A, can nondeterministically call other code, i.e., the formula G.

These assumptions about ⊢O provide a general framework for looking at logic programs. A logic

programming language can be completely defined by describing both the class of goal formulas and

how non-atomic goals can be output from a program. For example, we can define a logic equivalent

to Horn clauses by letting goal formulas be defined as

G := ⊤ | A | G1 ∧ G2 | G1 ∨ G2 | ∃xG

and adding the following proof rules:

(3) P ⊢O G1 ∨ G2 if and only if P ⊢O G1 or P ⊢O G2.

(4) P ⊢O G1 ∧ G2 if and only if P ⊢O G1 and P ⊢O G2.

(5) P ⊢O ∃xG if and only if there is some closed term t such that P ⊢O [x/t]G.

In this context, the logical connectives ∧ and ∨ provide for the specification of non-deterministic

and and or branches in the search for a derivation (computation). The quantifier ∃ specifies an

infinite non-deterministic or branch where the disjuncts are parameterized by the set of closed

terms.

Notice that a program in this logic programming language is equivalent to a conjunction of

positive Horn clauses. For example, the definite clause

∀z∀y [(∃x R(x, y) ∧ P (y, z)) ∨ R(z, z) ⊃ P (z, y)]

is equivalent (both classically and intuitionistically) to the formula

∀z∀y∀x [(R(x, y) ∧ P (y, z)) ⊃ P (z, y)] ∧

∀z∀y [R(z, z) ⊃ P (z, y)]

Since this normal form exists for this version of definite clauses, the literature concerning the

theoretical nature of Horn clauses generally does not present the syntax of this logic in this more

general setting. The language we consider next, however, will not have such a simple normal form.

In the rest of this paper, we shall assume that goal formulas have the following syntax

G := ⊤ | A | G1 ∧ G2 | G1 ∨ G2 | ∃xG | D ⊃ G,

2



and that there is the additional proof rule

(6) P ⊢O D ⊃ G if and only if P ∪ {D} ⊢O G.

Notice that now the classes of goal formulas and definite clauses are defined by mutual recursion.

Technically, we define a ⊢O-derivation of G from P to be any list of the form

(P1, G1), . . . , (Pn, Gn)

where n ≥ 1, P1 = P, G1 = G, and for i = 1, . . . , n, Pi ⊢O Gi is derivable from from 0, 1, or 2

of the later members of this list by some proof rule (1) — (6). Notice that this forces Gn to be ⊤

since this is the only goal that does not require a justification.

Let P1 := {p(b) ⊃ r(b, a),∀x∀y [r(x, y) ⊃ q(f(x))]}. The following is a ⊢O-derivation of the

goal ∃x [(⊤ ⊃ p(x)) ⊃ q(f(x))] from P1:

P1 ⊢O ∃x [(⊤ ⊃ p(x)) ⊃ q(f(x))]

P1 ⊢O [(⊤ ⊃ p(b)) ⊃ q(f(b))]

P1, (⊤ ⊃ p(b)) ⊢O q(f(b))

P1, (⊤ ⊃ p(b)) ⊢O r(b, a)

P1, (⊤ ⊃ p(b)) ⊢O p(b)

P1, (⊤ ⊃ p(b)) ⊢O ⊤

In all further examples, we will drop references to the logical constant ⊤ and will replace expressions

of the form ⊤ ⊃ A with just A. The use of ⊤ as a goal will make some theorems simpler to state

and prove so this constant will reappear in the theorems and proofs in Section 4.

Although the operational notion of derivation is intuitive enough, it is natural to ask whether

it is, in some sense, logical. Thus consider the following example. Let P2 := {p(a) ∧ p(b) ⊃ q}. Is

there a ⊢O-derivation of ∃x (p(x) ⊃ q) from P2? Consider the following possible sequence:

P2 ⊢O ∃x (p(x) ⊃ q)

P2 ⊢O p(a) ⊃ q

P2, p(a) ⊢O q

P2, p(a) ⊢O p(a) ∧ p(b)

P2, p(a) ⊢O p(a)

P2, p(a) ⊢O p(b)

Regardless of the term used to instantiate the quantifier ∃x, there is no way to complete this

derivation. While it seems reasonable enough that there is no such derivation, it is important to

notice that the formula

(p(a) ∧ p(b) ⊃ q) ⊃ ∃x (p(x) ⊃ q)

is classically provable. Thus classical logic is not sound with respect to the our operational seman-

tics. This notion of definite clause includes non-Horn theories, but this is only problematic if we

think of deduction as being classical. For the meantime, we shall not be worried about the logical
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meaning of ⊢O but simply look at its use within programming. We return to the logical significance

of ⊢O in Section 5.

2. Modules for Logic Programs

Implication within this logic language can provide a semantics for some of the side-effect

mechanisms needed in a logic programming environment. We shall first consider how we might

reimplement Prolog’s consult predicate. Let classify, scanner, and misc be the names of files

containing Prolog code. When these names appear within formulas, assume that they refer to the

conjunction of universally quantified definite clauses contained in those files. Now consider the

following goal.

⊢O misc ⊃ ((classify ⊃ G1) ∧ (scanner ⊃ G2) ∧ G3)

This goal will cause each of the three goals G1, G2, and G3 to be attempted but each will be

attempted using different programs. In particular, this single goal will cause the following goals to

be attempted:
misc, classify ⊢O G1

misc, scanner ⊢O G2

misc ⊢O G3

Notice that implication can be used in this fashion to structure the runtime environment of a

program. For example, the code present in classify is essentially hidden during the evaluation

of goal G2. This is, of course, very desirable if it had been the case that classify and scanner

were written by different people. This mechanism ensures that there will be no conflict between

the predicates in these two files. Current implementations of logic programs generally require that

all code be loaded into one area before it can be used. Such a lack of modularity is certainly a

weakness of most logic programming implementations.

The previous discussion suggests that it would be possible to design a notion of modules

for logic programming which is based entirely on the logical meaning of embedded implications.

We will introduce a module as a named collection of clauses. For example, the following is a

module containing some list manipulation programs. Here we have used common Prolog syntax for

representing clauses [5].

module lists.

append([],X,X).

append([U|L],X,[U|M]) :- append(L,X,M).

member(X,[X|L]) :- !.

member(X,[Y|L]) :- member(X,L).

memb(X,[X|L]).

memb(X,[Y|L]) :- memb(X,L).

The theory of definite clauses we shall consider in this paper does not encompass the cut ! operation.

We shall assume, however, that in our examples it will play a similar role in controlling backtracking

in a depth-first interpreter of our extended logical language.

According to our definitions, a goal could be of the form ∃x [D⊃G], where the variable x is free

in either or both D and G. This suggests that the definite clauses defining a module could contain
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free variables. Thus a kind of parametric module is possible. Consider the following parametric

module:

module sort(Order).

bsort(L1,L2) :-

append(Sorted,[Big,Small|Rest],L1),

Order(Big,Small), !,

append(Sorted,[Small,Big|Rest],BetterL1),

bsort(BetterL1,L2).

bsort(L1,L1).

This example, as well as others presented later, is technically not first-order since we have a variable

which is acting as a predicate. This could be corrected in most Prolog implementations by replacing

the atom Order(Big,Small) with the two goals G =.. [Order,Big,Small], call(G). There is

also a more direct and logical way to provide Prolog with predicate variables by basing it on

higher-order logic [12]. Either approach could be used to make this a meaningful module.

Given these two modules, a very sensible way to bring them together is illustrated in the

following example. Consider sorting the list [2,3,1]. The following goal has a ⊢O-derivation, in

which the substitution found for x would then be the desired sorted list.

⊢O lists ∧ sort(<) ⊃ ∃x bsort([2, 3, 1], x)

The module lists is needed here since the definition of bsort requires using append. From the

point-of-view of organizing software, it is unfortunate that in order to use the sort module it was

necessary to explicitly reference the lists module which it needed to execute successfully. The

author of the sort module should be able to import those modules which were needed within the

sort module. Here, embedded implications can again be used to provide this importing mechanism.

For example, if we introduce the symbol => to represent implication (:- represents the converse of

=>), we could rewrite the sort module as:

module sort(Order).

bsort(L1,L2) :-

(lists =>

(append(Sorted,[Big,Small|Rest],L1),

Order(Big,Small), !,

append(Sorted,[Small,Big|Rest],BetterL1),

bsort(BetterL1,L2)

)).

bsort(L1,L1).

Now we would be able to sort our list with the simple goal

⊢O sort(<) ⊃ ∃x bsort([2, 3, 1], x)

When the body of bsort is attempted as a goal, it will come with the module list as a hypothesis.
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For a more general account of how the importing of modules works, consider the following.

Let the notation P(x̄) denote a finite set of definite clauses all of whose free variables are in the list

x̄. Let the symbols M, M1, M2, M3 be the names of modules. These symbols, just like function

symbols and predicates, have an arity and take arguments. The arguments of a module name are

used to designate the formal parameters of that module. For our purposes here, the meaning of

a module, say M(x̄), is some set of definite clauses P(x̄). This association is established by such

syntactic specifications as the following.

module M1 module M2(x) module M3(y, z)
import M1 M2(f(y))

P1 P2(x) P3(z)

In the first module, the clauses in P1 contain no free variables and that module is not parametric.

M1 is simply shorthand for the conjunction of the clauses in P1. The second module is parametric

and the clauses P2 can contain various free occurrences of the variable x. Finally the third module

is both parametric and explicitly imports module M1 and an instance of M2. The new syntax

for importing modules is only a shorthand for writing certain embedded implications. In the sort

module above, if bsort had required several clauses, each one of them may have required the lists

module as a hypothesis. To save writing this hypothesis for every clause, we introduce the notion

of imports. The intended meaning of module M3 is the following: For each clause of the form

∀w̄(G ⊃ A)

in P3 replace it with one of the form

∀w̄((M1 ∧ M2(f(y)) ⊃ G) ⊃ A),

that is, the body of all clauses in M3 are relativized by the imported modules. The resulting clauses

are then associated with the module name M3.

There are two facts that are important to point out about this development of modules. First,

this notion of modules is a by-product of this extended logic. It has not been added as a separate

syntactic feature that an interpreter for ⊢O-derivations would need to understand. The meaning

and use of modules could be reduced to uses of embedded implications. Of course, in practice this

reduction would not be done so literally. A structure-sharing mechanism for modules would need

to be considered. Secondly, the operational behavior of implications presented earlier is enough to

guarantee that whenever a module is imported into another module, the imported module is only

used privately. No additional safeguards need to be added to force private usage. In other words,

if a module does not explicitly import a given module, it does not have direct access to the code in

that module.

To illustrate this fact, consider the two modules M1, which contains just the definite clause

⊤ ⊃ p (or more simply p), and M2, which contains the definite clause q ⊃ p. Clearly, there is no

⊢O-derivation of M2 ⊃ p since there is no way to prove q within M2. Notice that if we imported

M1 into M2, there is still no proof of q in M2. Hence, if M2

′ is the module which contains q ⊃ p

and imports M1, there should be no ⊢O-derivation of p from M2

′. This is in fact the case. The
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formula represented by M2

′ is (p ⊃ q) ⊃ p, and it is easy to check that ((p ⊃ q) ⊃ p) ⊃ p has no ⊢O-

derivation. Thus, even though M2

′ imports a module which claims that p is true, it is not possible

to prove p from that module. That is, M1 is used privately within M2
′. It is worthwhile noting

that the formula ((p ⊃ q) ⊃ p) ⊃ p is often called Pierce’s formula and is well known as a classically

true but intuitionistically false formula. The restricted nature of implication in intuitionistic logic

is precisely the restriction needed to support private usage of modules when they are imported. In

Section 5, we will discuss more about the connections between intuitionistic logic and ⊢O.

3. Giving Side-effects a Scope

In this section we present two examples of how this programming language can utilize embedded

implications in order to provide a scoped side-effect mechanism. In a sense, it is possible to simulate

temporary asserts. We show two different applications of this. The first involves showing how to

memoize a recursive program. The other suggests a way to implement certain kinds of abstract

datatypes.

Notice that if A is atomic, P ⊢O A ∧ G if and only if P ⊢O A ∧ [A ⊃ G]. In the forward

direction, this is trivial. The reverse direction requires a proof reminiscent of the cut elimination

theorem for first-order logic [9]. This relation to cut elimination suggests that implications may be

used in logic programs to actually shorten computations. This feature can be used to “memoize” a

program’s execution, i.e., results of previous calls to a recursive program are stored for use in later

calls. Consider the following Prolog program for computing Fibonacci numbers.

fib(0,0).

fib(1,1).

fib(N,F) :- N1 is N-1, N2 is N-2, fib(N1,F1),

fib(N2,F2), F is F1+F2.

Let fn be the nth Fibonacci number. The length of the only proof in ⊢O of the goal fib(n, fn) is

exponential in n. Consider, however, the following slightly modified program.

fib(0,0).

fib(1,1).

fib(N,F) :- fib(U,V), fib(U,V) => fib(N,F).

fib(N,F) :- N1 is N-1, N2 is N-2, fib(N1,F1),

fib(N2,F2), F is F1+F2.

Notice that the third clause is a simple first-order theorem, and as such, adds nothing to the

extension of the fib predicate. Although this clause is far too non-deterministic to be of any real

use in an implementation, it does suggest the following more controlled program.

fib(N,M) :- memo(0,0) => memo(1,1) => fiba(N,M,2).

fiba(N,M,I) :- memo(N,M).

fiba(N,M,I) :- N1 is I-1, N2 is I-2, memo(N1,F1),

memo(N2,F2), F is F1+F2, I1 is I+1,

memo(I,F) => fiba(N,M,I1).
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In this last program, a proof of fib(n, fn) has a length proportional to n.

Our second example illustrates an approach to approximating the notion of abstract datatypes

found in several programming languages. This example is only intended to illustrate how this

might be accomplished. This particular subject is certainly more complex than one example can

illustrate.

Consider the problem of writing code which manipulates a labeled binary tree. We shall assume

that the tree’s labels are integers and that the integers labeling the nodes to the left of a given node

are smaller than the given node, and that the nodes to the right are larger than the given node.

Consider the following two modules:

module btree.

make_btree(TreeName,Goal) :-

btree(TreeName,T) => Goal.

insert(TreeName,N) :-

btree_internal => (btree(TreeName,T),

insert_btree(N,T)).

traverse(TreeName,L) :-

btree_internal => (btree(TreeName,T),

traverse_btree(T,L)).

module btree_internal.

import lists.

insert_btree(N,bt(N,T1,T2)).

insert_btree(N,bt(M,T,_)) :-

N < M, insert_btree(N,T).

insert_btree(N,bt(M,_,T)) :-

N > M, insert_btree(N,T).

traverse_btree(leaf,[]).

traverse_btree(bt(N,L,R), SortedList) :-

traverse_btree(L,Left), traverse_btree(R, Right),

append(Left,[N|Right],SortedList).

The module btree_internal contains the specific information concerning the actual imple-

mentation of binary trees. The code in module btree contains links into this other module. The

goal make_btree(TreeName,Goal) will call the goal Goal in an environment where TreeName is

associated to some unspecified binary tree. This tree starts as a logical variable. Successive calls to

insert can be used to add elements to this tree. Notice that the act of inserting does not produce

copies of the tree. The logical variables within the tree are simply specified further. In a sense,

this datatype represents monotone binary trees — they can grow at the leaves, but once a node is

labeled with a value, no change can be made to it. Notice also that when a binary tree is traversed,

all the logical variables in the tree are instantiated to the constant leaf and no further insertions

can be made.
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Now consider the following module.

module btree_sort.

import btree.

build(TreeName,[]).

build(TreeName,[X|L]) :-

insert(TreeName,X), build(TreeName,L).

binsort(L,K) :- make_btree(sort,(build(sort,L),

traverse(sort,K))).

This module shows how a binary sort algorithm could be rewritten using the btree data structure.

The name sort is the name of a binary tree, and all access to that tree is made through that name.

This example uses two aspects of implication. The first is that a temporary side-effect (the

binary tree) is stored in the program as the atom btree(sort,T). This tree will disappear, for

example, after completing the call to binsort. The second is the hiding mechanism of modules. If

a module does not import btree_internal it will not have access to the code which implements

binary trees. Notice that the module btree does not explicitly import the module btree_internal.

It was imported only locally in two of the three clauses. If btree_internal had been imported

over all three clauses, then the goal, Goal, in make_btree(TreeName,Goal) would have been given

access to the internal representation of binary trees. The import declaration must be used carefully.

Notice that it is possible for some module to reimplement the code within btree_internal and

thus gain access to the representation of binary trees. It would seem that supporting a greater

degree of security for abstract datatypes would require the implementation of control primitives

which are not formally part of the logic we are investigating. Such primitives are, of course, very

important for a full implementation of abstract datatypes.

4. A Model Theory

The main challenge to the construction of models for this language is capturing the fact that a

program may grow during its “execution.” That is, when trying to determine that P ⊢O G holds,

it might be necessary to determine that P ′ ⊢O G′ holds, where P ′ is some extension to P. Thus,

to understand a given program, P, it is necessary to understand all programs larger than P as

well. We shall do this by considering the set of all programs and attempt to supply a model for all

programs simultaneously.

We shall assume that we have chosen a fixed set of non-logical constants. Over this set of

non-logical constants, let U denote the set of all closed terms (the Herbrand universe) and let H

denote the set of all closed, atomic formulas (the Herbrand base). Let W be the set of all programs

and let any function I : W → powerset(H) such that ∀w1, w2 ∈ W[w1 ⊆ w2 ⊃ I(w1) ⊆ I(w2)] be

called an interpretation. An interpretation is simply a mapping which associates to every program

a set of “true” atomic formulas which is internally “monotone,” i.e., if a program gets larger, the

set of associated true atoms can not decrease.
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We now define each of the following for interpretations I1 and I2.

I1 ⊑ I2 := ∀w ∈ W[I1(w) ⊆ I2(w)]

(I1 ⊔ I2)(w) := I1(w) ∪ I2(w)

(I1 ⊓ I2)(w) := I1(w) ∩ I2(w)

It follows quickly from the fact that the powerset of H is a complete lattice, that the set of all

interpretations is also a complete lattice under ⊑. In this lattice, ⊔ is the join operator and ⊓ is

the meet operator. The smallest interpretation, I⊥, is given by setting I⊥(w) := ∅ for all w ∈ W.

We next define a weak notion of satisfiability, I, w |=|= G, for closed goal formula G in an

interpretation I at a world w.

◦ I, w |=|= ⊤.

◦ I, w |=|= A if A ∈ I(w).

◦ I, w |=|= G1 ∧ G2 if I, w |=|= G1 and I, w |=|= G2.

◦ I, w |=|= G1 ∨ G2 if I, w |=|= G1 or I, w |=|= G2.

◦ I, w |=|= ∃x G if I, w |=|= [x/t]G for some t ∈ U .

◦ I, w |=|= D ⊃ G if I, w ∪ {D} |=|= G.

We now wish to build a single interpretation I such that P ⊢O G if and only if G is “true” in

I at P, i.e., I,P |=|= G. Such an interpretation will be the result of building a least fixed point. To

this end, let T be a function from interpretations to interpretations defined as follows:

T (I)(w) := {A | there is a G ⊃ A ∈ [w] such that I, w |=|= G}.

It is easy to show that T (I) is an interpretation whenever I is an interpretation.

We first prove two lemmas concerning the predicate |=|=. Both these lemmas are proved using

induction on the structure of goal formulas. We present the proof for only the second lemma. The

proof of the first is similar and simpler.

Lemma 1. If I1 ⊑ I2 then I1, w |=|= G implies I2, w |=|= G.

Lemma 2. Let I0 ⊑ I1 ⊑ I2 ⊑ . . . be a sequence of interpretations. If G is a goal, w ∈ W, and⊔
∞

i=0
Ii, w |=|= G then there exists a k ≥ 0 such that Ik, w |=|= G.

Proof. The proof is by induction on the structure of G. If G is ⊤ then set k = 0. If G is atomic,

then
⊔

∞

i=0
Ii, w |=|= G implies that G ∈ (

⊔
∞

i=0
Ii)(w) =

⋃
∞

i=0
Ii(w). Thus there is a k ≥ 0 such that

G ∈ Ik(w). Hence, Ik, w |=|= G. Now assume that for all non-decreasing sequences of interpretations

and all w ∈ W, the lemma is true for all goal formulas with a given bounded size. We need to

consider the following four inductive cases.

Case 1: G = G1 ∧G2. Since
⊔∞

i=0
Ii, w |=|= G1 ∧G2, we have

⊔∞

i=0
Ii, w |=|= G1 and

⊔∞

i=0
Ii, w |=|= G2.

By the inductive hypothesis, there are two non-negative integers l and j such that Il, w |=|= G1 and

Ij , w |=|= G2. Let k be the maximum of l and j. By Lemma 1, we have Ik, w |=|= G1 and Ik, w |=|= G2,

and therefore Ik, w |=|= G1 ∧ G2.

Case 2: G = G1 ∨ G2. Since
⊔

∞

i=0
Ii, w |=|= G1 ∨ G2, we have

⊔
∞

i=0
Ii, w |=|= Gj for some j = 1, 2.

By the inductive hypothesis, there is non-negative integer k such that Ik, w |=|= Gj . Thus Ik, w |=|=

G1 ∨ G2.
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Case 3: G = ∃x G′. Since
⊔∞

i=0
Ii, w |=|= ∃x G′, we have

⊔∞

i=0
Ii, w |=|= [x/t]G′ for some t ∈ U .

By the inductive hypothesis, there is non-negative integer k such that Ik, w |=|= [x/t]G′. Thus

Ik, w |=|= ∃x G′.

Case 4: G = D ⊃ G′. Since
⊔∞

i=0
Ii, w |=|= D ⊃ G′, we have

⊔∞

i=0
Ii, w ∪ {D} |=|= G′. By the

inductive hypothesis, there is a non-negative k such that Ik, w∪{D} |=|= G′. Thus Ik, w |=|= D ⊃ G′.

We now show that T is a monotone and continuous function on the lattice of interpretations.

Lemma 3. T is monotone; that is, if I1 ⊑ I2 then T (I1) ⊑ T (I2).

Proof. Assume that I1 ⊑ I2 and let w ∈ W and A ∈ T (I1)(w). Thus there is a G ⊃ A ∈ [w] such

that I1, w |=|= G. By Lemma 1, I2, w |=|= G so A ∈ T (I2)(w). Since w and A were arbitrary, we can

conclude that T (I1) ⊑ T (I2).

Lemma 4. T is continuous; that is, if I0 ⊑ I1 ⊑ I2 ⊑ . . . is a sequence of interpretations, then

∞⊔

i=0

T (Ii) = T (
∞⊔

i=0

Ii).

Proof. To prove this equality, we prove inclusion in two directions.

Since for any non-negative j, Ij ⊑
⊔

∞

i=0
Ii, we can apply Lemma 3 to get T (Ij) ⊑ T (

⊔
∞

i=0
Ii).

Since j was arbitrary, we have
⊔∞

i=0
T (Ii) ⊑ T (

⊔∞

i=0
Ii).

Let w ∈ W and A ∈ T (
⊔

∞

i=0
Ii)(w). Thus, there is a G ⊃ A ∈ [w] such that

⊔
∞

i=0
Ii, w |=|= G. By

Lemma 2, there is a non-negative k such that Ik, w |=|= G. Thus A ∈ T (Ik)(w) ⊆ (
⊔

∞

i=0
T (Ii))(w).

Since w and A are arbitrary, we conclude that T (
⊔∞

i=0
Ii) ⊑

⊔∞

i=0
T (Ii).

By the Knaster-Tarski theorem [1], the least fixed point of T is given by the equation

T∞(I⊥) := T (I⊥) ⊔ T 2(I⊥) ⊔ T 3(I⊥) ⊔ . . . .

The following theorem can now be proved.

Theorem 5. If P is a program and G is a closed goal formula, then P ⊢O G if and only if

T∞(I⊥),P |=|= G.

Proof. We shall only hint at the proof of this theorem. First, assume that P ⊢O G. Thus there

is a ⊢O-derivation of G from P, say (P1, G1), . . . , (Pn, Gn), where P1 = P and G1 = G. Prove by

induction on i < n that T∞(I⊥),Pn−i |=|= Gn−i. Setting i := n − 1, yields T∞(I⊥),P |=|= G.

Secondly, prove by induction on k ≥ 0 that if T k(I⊥),P |=|= G then there is a ⊢O-derivation

of G from P. Now assume that T∞(I⊥),P |=|= G. By Lemma 2, there is a k ≥ 0 such that

T k(I⊥),P |=|= G, and by the just mentioned fact, we have P ⊢O G.

A similar theorem for the classical theory of positive Horn clauses is given in [1]. The fixed point

result in that paper can be viewed as special case of this fixed point theorem. The interpretations

we have presented in this section are often referred to as Kripke models [15]. These models are

frequently used to explain the semantics of modal and intuitionistic logic. Since we shall show in

the next section that our logic is essentially a sublogic of intuitionistic logic, the presence of Kripke

models here is not surprising.
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5. Connections to Proof Theory

For the past several decades, logicians have developed and studied many different kinds of

logics, including classical, intuitionistic, minimal, modal, relevance, first-order, and higher-order,

to name only a fraction. It is a very natural question to ask whether our programming language

belongs to this list or if it is a new kind of logic. The purpose of this section is to address that

question.

It is worthwhile noting that our emphasis here is different than what is generally found in

theoretical discussions of logic programming. The more common approach starts with a specific

logic, namely classical first-order logic, and then examines the programming language significance

of that logic’s meta-theory. Our approach in this paper is the reverse, that is, we first fixed a natural

and interesting programming language and then looked for a logic whose meta-theory includes its

operational semantics. This step of looking for such a logic is not meant to justify the programming

language — it is justified to the extent that it has formal properties and implements important

programming features. We wish to make a connection to previously studied logics in order to make

connections to existing logic literature.

We have already mentioned that if ⊢O represents a provability relation in some logic, that

logic can not be classical logic. This is also apparent since the model of the last section has a

structure quite different from models of classical logic. As we showed in Section 1, classical logic

fails to represent our operational semantics since it is too strong, i.e., it proves more formulas than

our proposed interpreter would prove. Several weaker versions of classical logic which have been

studied, and we shall be concerned with two such logics, namely, minimal logic and intuitionistic

logic. We can not present these logics in very much detail. The interested reader is referred to [14]

or [16] for more information. Theorems in the rest of this paper will be stated without proof.

Let ⊢C ,⊢I ,⊢M represent provability in, respectively, classical C, intuitionistic I, and minimal

M logic. The difference between these provability relations can be summarized roughly as follows.

In M, negation and implication are rather weak connectives. In particular, it is not possible to

prove in M any formula of the form

(p ∧ ∼p) ⊃ q (Ax1),

where q is different from p and ∼p. Thus contradictions are, in a sense, local. If all instances of

(Ax1) are added to M, we would then have I. However, this logic is still weaker than C since

formulas of the form

p ∨ ∼p (Ax2)

are not provable in I. However, if we add all forms of (Ax2) to I, we would than have C.

Theorem 6. Let P be a program and G be a closed goal formula. If P ⊢O G, then P ⊢M G,

P ⊢I G, and P ⊢C G.

This theorem follows immediately from the fact that all the operational “proof rules” (1)

through (6) of Section 1 remain true if ⊢O is replaced with ⊢M , ⊢I , and ⊢C . That is, the operational

proof rules we have used are weak enough to be contained in all of these logics.

These three systems of logic, of course, have more proof rules than just (1) through (6). For

example, they each contain a rule for arguing from cases; that is, to show that a formula A follows

from B ∨ C, show that A follows from B and A follows from C. The syntax of our programming
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language is so restrictive, however, that no proof from a disjunctive statement is ever attempted. If

we focus on just our restricted syntax, the additional rules of inference may not be relevant. This

is the case for both M and I but not for C. In particular, we can show the following.

Theorem 7. Let P be a program and let G be a closed goal formula. P ⊢O G if and only if

P ⊢M G if and only if P ⊢I G. On the other hand, there exist goal formulas, for example,

(p(a) ∧ p(b) ⊃ q) ⊃ ∃x (p(x) ⊃ q) and

((p ⊃ q) ⊃ p) ⊃ p

which are provable in C but not in our programming system, and hence, not in M or I.

It is important to notice that if we restrict programs and goals to the language we described in

Section 1 which was equivalent to Horn clause logic, then there is no separation between provability

operationally, minimally, intuitionistically, or classically. Only when we strengthen our program-

ming language to include embedded implications do we manage to make some distinctions between

these logical languages. In Section 6, we will extend our programming language again slightly. In

that extension, both C and I are too strong, while M correctly represents its operational behavior.

Since classical logic is too strong to capture our operational semantics, resolution theorem

proving is clearly an inappropriate paradigm for building an actual interpreter for our programming

language. Instead, many of the techniques used within natural deduction theorem provers would

need to be used. Actually, the description of ⊢O comes close to describing a complete theorem

proving procedure. The only problems occur with rules (2) and (5). Here, a search procedure

would need to guess at a closed term, thereby causing potentially infinite branching. The cure for

this problem is, of course, to introduce unification to compute most general unifiers and to delay the

determination of substitution terms. The approach taken in many implementations of Prolog to the

role of unification could be used within this setting. A main difference with this approach, however,

is that free variables might appear within program clauses. Hence, the variables within program

clauses would need to be marked as being either bound or free. This one difference would, in fact,

cause several other changes to the way one looks at Prolog implementations. More discussion of

this can be found in [7]. A simplified version of the tableau proof procedure presented by McCarty

in [11] could also be used to implement an interpreter for this language.

6. Minimal Logic Negation

Let us now introduce a new logical constant ⊥ to denote false. Formulas of the form B ⊃ ⊥

will be abbreviated as ∼B. Notice that the negation of a goal formula is a definite clause and that

the negation of a definite clause is a goal formula. It is very easy to show that p ∧ ∼p ⊢O ⊥ while

it is not the case that p ∧ ∼p ⊢O q. That is, this view of negation is that of minimal logic and

not that of intuitionistic logic. More precisely, let ⊢O′ be the relation between programs P and

closed goal formulas G which satisfies all the proof rules of Section 1, except that (2) is modified as

follows: If A is a closed atomic formula, P ⊢O′ A if and only if either P ⊢O′ ⊥ or there is a formula

G ⊃ A ∈ [P] and P ⊢O′ G. Derivations using ⊢O′ are more costly that those using ⊢O since the

former requires repeatly checking to see if the current program is “inconsistent,” i.e., if the current

program proves ⊥. We have the following theorem:
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Theorem 8. P ⊢O G if and only if P ⊢M G. P ⊢O′ G if and only if P ⊢I G.

One way to model negation in a logic programming system is through a meta-logical principle

called negation-by-failure. This principle states that a closed atom can be taken as being false if

there is no proof of it. While the negation-by-failure principle is much stronger than the negation

we have just introduced, we can make a useful partial connection between them. A program P

will be called consistent if there is no proof of ⊥ from P, or equivalently, that ⊥ /∈ T∞(I⊥)(P).

Notice that if P is consistent and P ⊢O ∼A then there is no proof of A from P. This suggests the

possibility of replacing certain forms of negation-by-failure with the search for proofs of negations.

This strategy is illustrated in the following example.

Let us consider a very simple database program. Facts within our database will be simple,

closed atomic formulas. Definite clauses of the form G ⊃ ⊥ will be used to represent constraints.

For example, consider the following few clauses.

enrolled(jane,102).

enrolled(bill,100).

⊥ :- enrolled(X,101),enrolled(X,102).

This tiny database asserts that Jane and Bill are/have been enrolled in 102 and 100, respectively.

There is also a constraint that states that it is inconsistent for the same person to be enrolled in

both 101 and 102. Now consider the following simple database program.

db :- read(Command), do(Command), db.

do(enter(F)) :- F => db.

do(retract) :- fail.

do(commit) :- repeat.

do(check(F)) :-

(F, write(yes),nl,!;

F => ⊥, write(no),nl,!;

write(’no, but it could be true’),nl).

do(consis) :- (not ⊥, write(yes),!; write(no)), nl.

Here, db represents an infinitely looping database query and updating program. Providing the

command enter(F) to db makes an update to the current database by calling db after it has made

F an hypothesis. It is possible to retract such updates by using the retract command. This

command simply fails. All updates will be undone unless a commit command had been issued at

some previous point. Notice that the commit command will always re-succeed (given a depth-first

interpreter).

It is the check command which is most interesting here. It has a three-valued behavior.

Assume for the time being that the database is consistent. The command check(F) will first look

for a proof of F, and if one is found, prints yes. Otherwise, a proof for the negation of F, i.e., F =>

⊥ is searched for. If a proof is found, then no is printed. If neither the positive nor negative form of

F can be proved, then the database does not contain F although it is consistent for F to be a fact in

some extension of that database. If the current database is not consistent, the conclusions drawn
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by the check command could be wrong. With respect to the above database, the three commands

check(enrolled(jane,102))

check(enrolled(jane,101))

check(enrolled(bill,101))

would print the answers “yes,” “no,” and “no, but it could be true,” respectively.

The consis command uses negation-by-failure to determine if the current database is con-

sistent. The use of not here is meta-logical also and not accounted for by the theory we have

presented.

Notice that the model presented in Section 4 is rich enough to model this three valued behavior.

Let P be a consistent program and let A be a closed atom. Clearly we have either A ∈ T∞(I⊥)(P)

or A /∈ T∞(I⊥)(P) (the meta-logic of this paper is very classical). The first case is true when

check(A) prints “yes.” The later case, however, can be broken into two additional cases. Clearly,

there is some program larger than P in which A is true (P ∪ {A}, for example). Given our

classification of worlds into consistent and inconsistent, we can make further distinctions: Either

the only extensions of the world P which contain A are inconsistent, or this is not so. The first

case is true when check(A) prints “no,” and the later case is true when check(A) prints “no, but

it could be true.”

7. Related Work

Gabbay and Reyle in [7] have presented a logical language very similar to the one presented

here. Their motivation for selecting this logic was largely based on the observation that this

language captures more of its own metatheory. For example, the demo predicate of [2] could be

encoded directly using implication. That is, the goal, demo(D,G), which should succeed if the goal

G is provable from D, is equivalent to the goal D ⊃ G.

A stronger logical language, which includes full intuitionistic negation and goals which are

universally quantified, is investigated by McCarty in [11]. McCarty uses this logic not in a pro-

gramming language context but as the basis for building knowledge representation and common

sense reasoning programs. He also presents a fixed point construction and a tableau proof procedure

for his logic.

Warren in [17] investigated a simpler version of this logic as a basis of a “pure” implementa-

tion of a database updating program, such as the one in Section 6. He essentially used implica-

tions within goals only when the hypothesis of that implication is atomic. His “modal” operator

assume(A)@G notation could be implemented within our language as A ⊃ G. Warren also provides

a partial semantics for this operator using possible worlds semantics.

Several papers have dealt with designing modules for logic programming languages. For exam-

ple, Bowen and Weinberg in [3] have extend the work of Bowen and Kowalski in [2] and presented

several very interesting programs using a notion similar to modules. Chomicki and Minsky in

[4] have shown the importance of introducing modularity into Prolog programs and developed a

rule-based security system for controlling access among various fragments of code. Neither of these

papers, however, provided a logical analysis of their respective notions of modules. The theoretical

analysis in this paper should provide a basis for such an analysis.
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The paper by O’Keefe [13] presents a formal approach to developing modules for Prolog.

Much of what he presents in that paper can be captured by the theory presented in this paper. For

example, let M1 be a module containing the definitions (axioms) for the binary predicates p, r,

and s. Say we wish to use in module M2 the predicate p but not the predicate s, and we wish to

define a new binary relation q which is the converse of the relation r. In our theory, this is possible

by having M2 import a third module M3, defined below, instead of importing M1.

module M3.

import M1.

p(X,Y) :- p(X,Y).

q(X,Y) :- r(Y,X).

Such a module roughly corresponds to one of O’Keefe’s breeze bricks.

Goguen and Messequer in [10] presented a notion of module for a sorted theory of Horn

clauses with equality. Their modules had associated with them Horn clauses and they provided a

mechanism of module importing called enriching. Their notion of importing is one of accumulation;

that is, if module M1 imports M2, the clauses associated with M2 are part of the meaning of M1.

Hence, modules are not imported for simply private use. Instead, modules form a use hierarchy

which shows which modules are parts of other modules. With the accumulation approach, searching

for a clause whose head matches a given atomic goal requires searching through all modules which

are reachable in the use hierarchy from the current module no matter how remote such modules

are. Using the more restrictive approach of this paper, only those explicitly imported modules are

searched. Such a search can be much smaller.

Several researchers have investigated extensions of positive Horn theories in an entirely classical

logic setting. The resulting operational and model-theoretic semantics are quite different than those

investigated here. For example, the HORNLOG system of Gallier and Raatz [8] permits programs

to be general Horn clauses; that is, programs can contain any number of negative clauses. As

such, the database constraints described in Section 6 can be written directly as negative Horn

clauses. Queries asked of such a system, however, may have “disjunctive” answer substitutions.

For example, if HORNLOG were given the query

(∼p(a) ∨∼p(b)) ⊃ ∃x ∼p(x),

it would succeed and provide the disjunctive answer substitution claiming that x would get either

a or b. The corresponding query in the logic presented here would be written as

(p(a) ∧ p(b) ⊃ ⊥) ⊃ ∃x (p(x) ⊃ ⊥)

and would not be provable. Fitting in [6] used classical logic to investigated an extension of Horn

clauses which contained negations within the body of clauses. His model theory for such clauses

used partial models (also attributed to Kripke). The operator used in building partial models as

fixed points, however, was not continuous. Weakening logic from classical to intuitionistic is one

way to preserve both simple answer substitutions and continuous fixed point operators in extensions

to Horn clause logic.
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