
Communicating and trusting formal proofs

The ProofCert project

Dale Miller

Inria Saclay & LIX, École Polytechnique
Palaiseau, France

23 February 2017

An ERC funded project involving many people in the Parsifal team
for the last five years.



What can we trust?



In software correctness: Trust proofs

With software systems, there are so many things to trust.

compilers

printers and parsers

verification condition generators

type checkers, type inference, abstract interpretation

theorem provers

All this seems overwhelming. Our challenge here:

provide the framework so that we can at least trust proofs.

We restriction our of attention to formal proofs, generated and
checked by computer tools.



Security problems often result from programming errors

There are certainly cryptographic errors (eg, keys too short, poor
random number generation, side-channel attacks).

Most security problems result from programming errors.

Buffer overflows

Incorrect memory management

Typing errors: find a way convert, say, a string to a wallet.

An important application of proofs is to program correctness.



The current situation with formal proofs

Most proof production and checking is technology based.

If you change the version number of a prover, it may not
recognized its earlier proofs.

Some bridges are now being built between different provers, but
these are affected by two version numbers.



In them we can trust

de Bruijn, Huet, Paulson, Boyer, Moore

Obvious, this model of trust does not scale!



In them we can trust

de Bruijn, Huet, Paulson, Boyer, Moore

Obvious, this model of trust does not scale!



The vision: The network is the prover

Goal: Permit the formal methods community to become a network
of communicating provers.

Proof certificates: documents that circulate and denote proofs.

Approach: Provide formal definitions of “proof evidence” so that
proof certificates can be checked by trusted checkers.

But: There is a wide range of “proof evidence.”

• proof scripts for steering a theorem prover to a proof

• resolution refutations, natural deduction, tableaux, etc

• winning strategies, simulations



The need for frameworks

Three central questions:

How can we manage so many “proof languages”?

Will we need just as many proof checkers?

How does this improve trust?

Computer scientists have seen this kind of problem before.

We develop frameworks to address such questions.

lexical analysis: finite state machines / transducers

language syntax: grammars, parsers, attribute grammars,
parser generators

programming languages: denotational and operational
semantics



The need for frameworks

Three central questions:

How can we manage so many “proof languages”?

Will we need just as many proof checkers?

How does this improve trust?

Computer scientists have seen this kind of problem before.

We develop frameworks to address such questions.

lexical analysis: finite state machines / transducers

language syntax: grammars, parsers, attribute grammars,
parser generators

programming languages: denotational and operational
semantics



A note about logic programming

Prototype implementations of some of these frameworks are often
written using logic programming.

The first Prolog programs (by Colmerauer, 1972) were parsers.

The Centaur project (G. Kahn, et al, Centaur project, 1988)
provided a uniform implementation of Structured Operational
Semantics via a Prolog engine.

Specifying the operational semantics of the λ-calculus and the
π-calculus are strong points of λProlog.

Production systems are seldom written using logic programming.

The specifications get fixed (prototyping not needed).

Specifications are analyzed so that the flexible execution
model provided by unification and backtracking are not
needed.



A note about logic programming

Prototype implementations of some of these frameworks are often
written using logic programming.

The first Prolog programs (by Colmerauer, 1972) were parsers.

The Centaur project (G. Kahn, et al, Centaur project, 1988)
provided a uniform implementation of Structured Operational
Semantics via a Prolog engine.

Specifying the operational semantics of the λ-calculus and the
π-calculus are strong points of λProlog.

Production systems are seldom written using logic programming.

The specifications get fixed (prototyping not needed).

Specifications are analyzed so that the flexible execution
model provided by unification and backtracking are not
needed.



A framework for proof evidence: First pick the logic

Church’s 1940 Simple Theory of Types (STT) is a good choice for
the syntax of formulas.

Understood well for both classical and intuitionistic logics.

Propositional, first-order, and higher-order logics are easily
identifiable sublogics of STT.

Many other logics can adequately be encoded into STT: eg,
equational, modal, temporal, etc. Also type systems such as
dependently typed λ-terms.

STT is a popular choice in various implemented systems.

There is likely to always be a frontier of research that involves
logics that do not fit well into a fixed framework. C’est la vie.



Earliest notion of formal proof

Frege, Hilbert, Church, Gödel, etc, made extensive use of the
following notion of proof:

A proof is a list of formulas, each one of which is either
an axiom or the conclusion of an inference rule whose
premises come earlier in the list.

While granting us trust, there is little useful structure here.



The first programmable proof checker

LCF/ML (1979) viewed proofs as
slight generalizations of such lists.

ML provided types, abstract
datatypes, and higher-order
programming in order to increase
confidence in proof checking.

Many provers today (HOL, Coq,
Isabelle) follow LCF principles.



More recent advances: Atoms and molecules of inference

Atoms of inference

• Gentzen’s sequent calculus (1935) first provided these:
introduction, identity, and structural rules.

• Girard’s linear logic refined our understanding of these further.

• To account for first-order structure, we also need fixed points
and equality. (eg. Baelde, Gacek, McDowell, M, Tiu)

Rules of Chemistry

• Focused proof systems show us that some atoms stick
together while other atoms form boundaries.

Molecules of inference

• Collections of atomic inference rules that stick together form
synthetic inference rules.



Features enabled for proof certificates

Simple checkers can be implemented.
Only the atoms of inference and the rules of chemistry (both
small and closed sets) need to be implemented in a checker of
certificates.

Certificates support a wide range of proof systems.
The molecules of inference can be engineered into a wide range
of inference rules.

Certificates are based (ultimately) on proof theory.
Immediate by design.

Proof details can be elided.
Search using atoms will match search in the space of molecules:
that is, the checker will not invent new molecules.



An analogy between two frameworks: SOS and FPC

Structural Operational Semantics (SOS)

1 There are many programming languages.

2 SOS can define the semantics of many of them.

3 Logic programming can provide prototype interpreters.

4 Compliant compilers can be built based on the semantics.



An analogy between two frameworks: SOS and FPC

Structural Operational Semantics (SOS)

1 There are many programming languages.

2 SOS can define the semantics of many of them.

3 Logic programming can provide prototype interpreters.

4 Compliant compilers can be built based on the semantics.



An analogy between two frameworks: SOS and FPC

Structural Operational Semantics (SOS)

1 There are many programming languages.

2 SOS can define the semantics of many of them.

3 Logic programming can provide prototype interpreters.

4 Compliant compilers can be built based on the semantics.

Foundational Proof Certificates (FPC)

1 There are many forms of proof evidence.

2 FPC can define the semantics of many of them.

3 Logic programming can provide prototype checkers.

4 Compliant checkers can be built based on the semantics.



Clerks and experts: the office workflow analogy

Imagine an accounting office that needs to check if a certain
mound of financial documents (provided by a client) represents a
legal tax transaction (as judged by the kernel).

Experts look into the mound and extract information and

• decide which transactions to dig into and

• release their findings for storage and later reconsideration.

Clerks take information released by the experts and perform some
computations on them, including their indexing and storing.

Focused proofs alternate between two phases: positive (experts are
active) and negative (clerks are active).

The terms decide, store, and release come from proof theory.

A proof certificate format defines workflow and the duties of the
clerks and experts.



Proof checking and proof reconstruction

The clerks can perform (determinate) computation.

Proof reconstruction might be needed when invoking not-so-expert
experts (or ambiguous tax forms).

Non-deterministic computation is part of the mix: non-determinism
is an important resource that is useful for proof-compression.



The LKneg proof system

Use invertible rules where possible.

` ·; B
` B

start
` ∆, L; Γ

` ∆; L, Γ
store ` ∆,A,¬A; · init

` ∆; Γ
` ∆; false, Γ

` ∆; B,C , Γ

` ∆; B ∨ C , Γ ` ∆; true, Γ

` ∆; B, Γ ` ∆; C , Γ

` ∆; B ∧ C , Γ

Here, A is an atom, L a literal, ∆ a multiset of literals, and Γ a list
of formulas. Sequents have two zones.

This proof system provides a decision procedure (resembling
conjunctive normal forms).

A small (constant sized) certificate is possible.

Consider proving (p ∨ C ) ∨ ¬p for large C .



The LKneg proof system

Use invertible rules where possible.

` ·; B
` B

start
` ∆, L; Γ

` ∆; L, Γ
store ` ∆,A,¬A; · init

` ∆; Γ
` ∆; false, Γ

` ∆; B,C , Γ

` ∆; B ∨ C , Γ ` ∆; true, Γ

` ∆; B, Γ ` ∆; C , Γ

` ∆; B ∧ C , Γ

Here, A is an atom, L a literal, ∆ a multiset of literals, and Γ a list
of formulas. Sequents have two zones.

This proof system provides a decision procedure (resembling
conjunctive normal forms).

A small (constant sized) certificate is possible.

Consider proving (p ∨ C ) ∨ ¬p for large C .



The LKpos proof system

Non-invertible rules are used here.

` B; ·; B
` B

start
` B;N ,¬A; B

` B;N ;¬A
restart ` B;N ,¬A; A

init

` B;N ; Bi

` B;N ; B1 ∨ B2 ` B;N ; true
` B;N ; B1 ` B;N ; B2

` B;N ; B1 ∧ B2

Here, A is an atom and N is a multiset of negated atoms.
Sequents have three zones.

The ∨ rule consumes some external information or some
non-determinism.

An oracle string, a series of bits used to indicate whether to go left
or right, can be a proof certificate.



A proof in LKpos

Let C have several alternations of conjunction and disjunction.

Let B = (p ∨ C ) ∨ ¬p.

` B;¬p; p
init

` B;¬p; p ∨ C
∗

` B;¬p; (p ∨ C ) ∨ ¬p
∗

` B; · ;¬p
restart

` B; · ; (p ∨ C ) ∨ ¬p
∗

` B
start

The subformula C is avoided. Clever choices ∗ are injected at
these points: right, left, left. We have a small certificate and small
checking time. In general, these certificates may grow large.



Combining the LKneg and LKpos proof systems

Introduce two versions of conjunction, disjunction, and their units.

t−, t+, f −, f +,∨−,∨+,∧−,∧+

The inference rules for negative connectives are invertible.

These polarized connectives also exist in linear logic.

Introduce the two kinds of sequent, namely,

` Θ ⇑ Γ: for invertible (negative) rules (Γ a list of formulas)

` Θ ⇓ B: for non-invertible (positive) rules (B a formula)



LKF : a focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,B ` Θ ⇑ Γ,B ′

` Θ ⇑ Γ,B ∧−B ′
` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,B,B ′

` Θ ⇑ Γ,B ∨−B ′

` Θ ⇓ t+
` Θ ⇓ B1 ` Θ ⇓ B2

` Θ ⇓ B1 ∧+ B2

` Θ ⇓ Bi

` Θ ⇓ B1 ∨+ B2

Init

` ¬A,Θ ⇓ A

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N

` Θ ⇓ N

Decide

` P,Θ ⇓ P

` P,Θ ⇑ ·

P is a positive formula; N is a negative formula;
A is an atom; C positive formula or negative literal



Results about LKF

Let B be a propositional logic formula and let B̂ result from B by
placing + or − on t, f , ∧, and ∨ (there are exponentially many
such placements).

Theorem. [Liang & M, TCS 2009]

If B is a tautology then every polarization B̂ has an LKF
proof.
If some polarization B̂ has an LKF proof, then B is a
tautology.

The different polarizations do not change provability but can
radically change the proofs.

Also:

• Negative (non-atomic) formulas are treated linearly (never
weakened nor contracted).

• Only positive formulas are contracted (in the Decide rule).



Example: deciding on a simple clause

Assume that Θ contains the formula a ∧+ b ∧+ ¬c and that we
have a derivation that Decides on this formula.

` Θ ⇓ a
Init ` Θ ⇓ b

Init

` Θ,¬c ⇑ ·
` Θ ⇑ ¬c

Store

` Θ ⇓ ¬c
Release

` Θ ⇓ a ∧+ b ∧+ ¬c
∧+

` Θ ⇑ · Decide

This derivation is possible iff Θ is of the form ¬a,¬b,Θ′. Thus,
the “macro-rule” is

` ¬a,¬b,¬c ,Θ′ ⇑ ·
` ¬a,¬b,Θ′ ⇑ ·



Example: Resolution as a proof certificate

• A clause: ∀x1 . . . ∀xn[L1 ∨ · · · ∨ Lm]

• C3 is a resolution of C1 and C2 if we chose the mgu of two
complementary literals, one from each of C1 and C2, etc.

• If C3 is a resolvent of C1 and C2 then ` ¬C1,¬C2 ⇑ C3 has a
short proof (decide depth 2 or less).

Translate a refutation of C1, . . . ,Cn into a (focused) sequent proof
with small holes:

Ξ
` ¬C1,¬C2 ⇑ Cn+1

...
` ¬C1, . . . ,¬Cn,¬Cn+1 ⇑ ·
` ¬C1, . . . ,¬Cn ⇑ ¬Cn+1

Store

` ¬C1, . . . ,¬Cn ⇑ · Cut

Here, Ξ can be replaced with a “hole” bounded by depth 2.



Reference proof checking in λProlog

Logic programming can check proofs in
sequent calculus.

Proof reconstruction requires
unification and (bounded) proof search.

The λProlog programming language
[M & Nadathur, 1986, 2012] also
include types, abstract datatypes, and
higher-order programming.



From inference rules to λProlog clauses

We first “instrument” the inference rules with terms denoting proof
certificates and add premises that invoke “clerks” and “experts”.

Ξ1 ` Θ ⇑ Γ,A Ξ2 ` Θ ⇑ Γ,B ∧clerk(Ξ0,Ξ1,Ξ2)

Ξ0 ` Θ ⇑ Γ,A ∧− B

Ξ1 ` Θ ⇓ Bi ∨expert(Ξ0,Ξ1, i)

Ξ0 ` Θ ⇓ B1 ∨+ B2

Turning inference rules sideways yields logic programs.
Soundness of checking is reduced to soundness of the logic
programming implementation.
The formal definition of “proof evidence” involves

• describing the structure of the certificate terms Ξ and

• providing the definition of the clerk and expert predicates.



An FPC: Checking by conjunctive normal form

type lit index.

type cnf cert.

andNeg_kc cnf cnf cnf.

orNeg_kc cnf cnf.

false_kc cnf cnf.

release_ke cnf cnf.

initial_ke cnf lit.

decide_ke cnf cnf lit.

store_kc cnf cnf lit.

The token cnf is just passed around during the checking. The only
items that are stored are literals and they are all indexed the same,
using lit.



An FPC: Checking binary resolution

type idx int -> index.

type lit index.

kind resol type.

type resol int -> int -> int -> resol.

type dl list int -> cert.

type ddone cert.

type rdone cert.

type rlist list resol -> cert.

type rlisti int -> list resol -> cert.

orNeg_kc (dl L) _ (dl L).

false_kc (dl L) (dl L).

store_kc (dl L) C lit (dl L).

decide_ke (dl [I]) (idx I) (dl []).

decide_ke (dl [I,J]) (idx I) (dl [J]).

decide_ke (dl [J,I]) (idx I) (dl [J])

all_kc (dl L) (x\ dl L).

true_ke (dl L).

some_ke (dl L) _ (dl L).

andPos_ke (dl L) _ (dl L) (dl L).

release_ke (dl L) (dl L).

initial_ke (dl L) _.

decide_ke (dl L) _ ddone.

initial_ke ddone _.

false_kc (rlist R) (rlist R).

store_kc (rlisti K R) _ (idx K) (rlist R).

true_ke rdone.

decide_ke (rlist []) (idx I) rdone.

cut_ke (rlist [(resol I J K) |R]) CutForm (dl [I,J]) (rlisti K R).



The ProofCert project: recent results

The FPC framework for first-order (classical and intuitionistic)
logics.

Defined various proof certificate formats:

• Classical: resolution, expansion trees, matings, CNF, etc.

• Intuitionistic: natural deduction, various typed λ-calculi.

• Also: Frege systems, equality reasoning, etc.

• Also: proof systems for modal logics.

Implemented a reference kernel in λProlog (Teyjus / ELPI)

The intuitionistic checker can “host” the classical kernel.

Automated elaboration of proof certificates (and proof outlines)
into maximally explicit certificates. These are checkable by a very
simple (OCaml) checker.



The ProofCert project: next steps

Move from logic to arithmetic: include induction and coinduction.

Provide certificates for model checking.

Develop certificates for various modal and temporal logics.

Treat parallelism in proof structures.

Standards and adoption. Theorem proving competitions.

Performant checkers



The ProofCert project: still further ahead

Design of libraries and marketplaces of theorems and proofs

Develop an approach to theories: set theories, type theories, etc.

Integrating counter-examples / counter-models

Once proofs are checked, how can we read / browse them?

Interdisciplinary effort: Can we lift the underlying issues of
reputation, reproducibility, and trust from the (easy) domain of
proof to support social media and journalism?



Thank you. Questions?



What about LF, LFSC, Dedukti?

LF: The logical framework of Harper, Honsell, and Plotkin [1987,
1993] (a.k.a. λΠ and dependently typed λ-calculus).

It seems straightforward to provide FPC definitions of LF, LFSC
(LF with side conditions), and LF modulo (Dedukti).

Alone LF does not seem to have the right “atoms of inference.”

• Canonical normal forms provide only one structuring of proofs.

• These lack an analytic notion of classical reasoning and sharing.

• Also lacking is a natural treatment of parallel proof steps.

Dedukti has serious implementations and can check output from
several serious provers. No FPC checker can claim that (yet).


