
Focusing Gentzen’s LK proof system

Dale Miller

Inria Saclay & LIX, École Polytechnique
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What is a good foundation for Computational Logic?

Computational logic covers many topics.

I Theorem proving: classical, intuitionistic, inductive

I Model checking

I Logic programming

I Type checking and inference

I Curry-Howard Correspondence

I SAT, SMTP, etc.

Claim: Proof theory can provide a strong foundation for all these
topics, but Gentzen’s original systems need to be updated.

This talk focuses on such an update for Gentzen’s LK.



Gentzen’s LK using two-sided sequents
Structural rules

Γ,B,B ` ∆

Γ,B ` ∆
cL

Γ ` ∆,B,B

Γ ` ∆,B
cR

Γ ` ∆
Γ,B ` ∆

wL
Γ ` ∆

Γ ` ∆,B
wR

Identity rules

B ` B
init

Γ ` ∆,B Γ,B ` ∆′

Γ, Γ′ ` ∆,∆′
cut

Introduction rules

Γ,Bi ` ∆

Γ,B1 ∧ B2 ` ∆

Γ ` ∆,B Γ ` ∆,C

Γ ` ∆,B ∧ C Γ ` ∆, t

Γ,B ` ∆ Γ,C ` ∆

Γ,B ∨ C ` ∆ Γ, f ` ∆

Γ ` ∆,Bi

Γ ` ∆,B1 ∨ B2

Γ ` ∆,B Γ,C ` ∆′

Γ, Γ′,B ⊃ C ` ∆,∆′
Γ,B ` ∆,C

Γ ` ∆,B ⊃ C

Γ,Bs ` ∆

Γ,∀x .Bx ` ∆

Γ ` ∆,By

Γ ` ∆, ∀x .Bx
Γ,By ` ∆

Γ,∃x .Bx ` ∆

Γ ` ∆,Bs

Γ ` ∆,∃x .Bx



Observations about LK

The structural rule of exchange is built into this presentation.

The additive variants of conjunction and disjunction are used, not
the multiplicative variants.

Implication is multiplicative (hence, a kind of multiplicative
disjunction).

Gentzen used negation ¬B while here we use B ⊃ f . As a result,
the LJ restriction on LK can be stated as either

I there is exactly one formula on the right, or

I the right is a linear context, the left is a classical context.

Thus, intuitionistic logic is a hybridization of linear and classical
logics. We shall seldom mention intuitionistic logic in this talk.



Four shortcomings of the LK sequent calculus

1. The collision of cut and the structural rules

2. Permutations of inference rules

3. Chose either the additive or multiplicative versions of binary
inference rules, but not both

4. No provision for synthetic inference rules



1: The collision of cut and the structural rules

Consider the following instance of the cut rule.

Γ ` C Γ′,C ` B

Γ, Γ′ ` B
cut



1: The collision of cut and the structural rules

Consider the following instance of the cut rule.

Γ ` C

Γ′,C ,C ` B

Γ′,C ` B

Γ, Γ′ ` B
cut

If the right premise is proved by a left-contraction rule from the
sequent Γ′,C ,C ` B, then permute the cut rule to the right:

Γ ` C

Γ ` C Γ′,C ,C ` B

Γ, Γ′,C ` B
cut

Γ, Γ, Γ′ ` B
cut

Γ, Γ′ ` B
cL.



1: The collision of cut and the structural rules

Consider the following instance of the cut rule.

Γ ` C ,C

Γ ` C Γ′,C ` B

Γ, Γ′ ` B
cut

If the left premise is proved by a right-contraction rule from the
sequent Γ ` C ,C , then permute the cut rule to the left:

Γ ` C ,C Γ′,C ` B

Γ, Γ′ ` C ,B
cut

Γ′,C ` B

Γ, Γ′, Γ′ ` B,B
cut

Γ, Γ′ ` B
cL, cR



1: The collision of cut and the structural rules

Consider the following instance of the cut rule.

Γ ` C ,C

Γ ` C

Γ′,C ,C ` B

Γ′,C ` B

Γ, Γ′ ` B
cut

What if both premises are contractions? Cut can
non-deterministically move to either premises.

In intuitionistic logic, this non-determinism is avoided since
contraction on the right is simply forbidden.



1: The collision of cut and the structural rules (continued)

Such nondeterminism in cut-elimination is even more pronounced
when we consider the collision of the cut rule with weakening.

Ξ1

` B

` C ,B
wR

Ξ2

` B

C ` B
wL

` B,B
cut

` B
cR

Cut-elimination can yield either Ξ1 or Ξ2.

This kind of example does not occur in the intuitionistic
(single-sided) version of the sequent calculus.

These are often called Lafont’s examples [Girard et al., 1989].

Polarization will allow us to say something more general.



2. Permutations of inference rules

The following two deviations differ by permuting an inference rule.

Γ,Bi ,Cj ` ∆

Γ,Bi ,C1 ∧ C2 ` ∆

Γ,B1 ∧ B2,C1 ∧ C2 ` ∆

Γ,Bi ,Cj ` ∆

Γ,B1 ∧ B2,Cj ` ∆

Γ,B1 ∧ B2,C1 ∧ C2 ` ∆

These two derivations are different but should be considered equal.

Permutation of inference rules is a huge issue in trying to see
structure in the sequent calculus.

The existence of such permutations is probably the main reason for
the revolt again sequent calculus, giving rise to natural
deduction/typed λ-calculi, expansion trees, proof nets, etc.



3. Choose only one among additive or multiplicative rules

Gentzen used the additive versions of conjunction and disjunction.

People in theorem proving usually use the invertible rules for
conjunction and disjunction (which is multiplicative). Things can
then be arranged so that the only non-invertible rule is the ∃R rule.

Why not allow both the additive and multiplicative versions of
these rules?



4. No provision for synthetic inference rules

Inference rules in LK are too small. Consider the axiom stating
that the predicate path is transitive.

∀x∀y∀z (path x y ⊃ path y z ⊃ path x z).

Using this axiom involves at least five LK introduction rules. It is
more natural to view that formula as yielding an inference rule.

Γ ` ∆, path x y Γ ` ∆, path y z

Γ ` ∆, path x z

path x y , path y z , path x z , Γ ` ∆

path x y , path y z , Γ ` ∆

One of these synthetic rules would be a more appropriate way to
invoke the transitivity axiom.

How can we build such synthetic rules? Can we guarantee
cut-elimination holds when we add them?



LKF: polarized formulas

Positive connectives are f +, ∨+, t+, ∧+, and ∃.
Negative connectives are t−, ∧−, f −, ∨−, and ∀.
Literals are atomic formulas and negated atomic formulas.

An atomic bias assignment is a function δ(·) that maps atomic
formulas to the set {+,−}.

We extended δ(·) to literals by setting δ(¬A) to the opposite
polarity of δ(A).

A polarized formula is positive if its top-level connective is positive
or its a literal L and δ(L) = +.
A polarized formula is negative if its top-level connective is
negative or its a literal L and δ(L) = −.

We require that δ(·) is stable under substitution: δ(A) = δ(θA).
Thus, δ(A) is determined by the predicate symbol of A.



LKF: polarized formulas (continued)

Linear logic has other names for the polarized connectives.

conjunction true disjunction false

multiplicative ∧+, ⊗ t+, 1 ∨−, ` f −, ⊥
additive ∧−, & t−, > ∨+, ⊕ f +, 0

Logical connectives have four attributes:
arity, additive/multiplicative, polarity, conjunction/disjunction.

De Morgan duality flips the last two but leaves the first two
unchanged.



LKF: negation normal form

Polarized formulas are in negation normal form (nnf), meaning
that there is no occurrences of implication ⊃ and that the negation
symbol ¬ has only atomic scope.

The negation symbol ¬ is extended also to non-atomic polarized
formulas.

I ¬¬A = A for atomic formula A

I ¬(A ∧+ B) = ¬A ∨− ¬B, ¬(A ∨− B) = ¬A ∧+ ¬B
I ¬(A ∨+ B) = ¬A ∧− ¬B, ¬(A ∧− B) = ¬A ∨+ ¬B
I ¬∃x .A = ∀x .¬A, ¬∀x .A = ∃x .¬A

Let B be an unpolarized formula (in nnf) and let B̂ result from
annotating the propositional connectives in B with a + or −. Let
δ(·) be an atomic bias assignment for the predicates in B. The
pair 〈δ(·), B̂〉 is a polarization of B.



LKF: sequent

LKF uses one-sided sequents of two varieties, namely,

` Γ ⇑ Θ and ` A ⇓ Θ,

where Γ is a multiset of formulas, Θ is a set of formulas, and A is a
single formula.

I will call the Θ context storage.

Introductions take place on formulas between ` and the ⇑ or ⇓.



LKF: proof rules
Negative introduction rules

` t−, Γ ⇑ Θ

` A, Γ ⇑ Θ ` B, Γ ⇑ Θ

` A ∧− B, Γ ⇑ Θ

` Γ ⇑ Θ

` f −, Γ ⇑ Θ

` A,B, Γ ⇑ Θ

` A ∨− B, Γ ⇑ Θ

` [y/x ]B, Γ ⇑ Θ

` ∀x .B, Γ ⇑ Θ

Positive introduction rules

` t+ ⇓ Θ

` A ⇓ Θ ` B ⇓ Θ

` A ∧+ B ⇓ Θ

` Bi ⇓ Θ

` B1 ∨+ B2 ⇓ Θ

` [s/x ]B ⇓ Θ

` ∃x .B ⇓ Θ

Non-introduction rules

` p ⇓ ¬p,Θ init
` Γ ⇑ Q,Θ

` Q, Γ ⇑ Θ
store

` N ⇑ Θ

` N ⇓ Θ
release

` P ⇓ P,Θ

` · ⇑ P,Θ
decide

Here: p is a positive literal, P is positive, N is negative, Q is
positive or a literal.



Observations about LKF proof rules
We say that the polarized formula B has an LKF proof if the
sequent ` B ⇑ · has an LKF proof

Storage (the Θ context) is non-decreasing as we move from
conclusion to premise.

Key observations:

1. Contraction occurs only in the decide rule and only for
positive formulas. A negative formula is never contracted.

2. Weakening occurs only at the leaves (in the init and t+ rules)
and only on positive formulas and negative literals.

Theorem (Completeness of LKF)

Let B be an unpolarized formula and a theorem of LK. If B̂ is any
polarization of B then B̂ has an LKF proof.

[Liang and Miller, 2009] proves this using translations into
intuitionistic and linear logics. [Liang and Miller, 2021] gives a
direct proof.



The structure of (cut-free) focused proofs

A sequent of the form ` · ⇑ Θ is called a border sequent.

Such sequents can only be proved by using the decide rule.

A synthetic inference rule is defined as these two phases, with
border sequents as the conclusion and the premises.

· · ·
· · ·

· · · ` · ⇑ Θ′ · · ·
` N ⇑ · · · neg phase

` N ⇓ · · · release · · ·
` · · · ⇓ · · · pos phase· · ·
` P ⇓ Θ

` · ⇑ Θ
decide P ∈ Θ



The cut rule for LKF

The cut rule operates on ⇑ sequents.

` B ⇑ Θ ` ¬B ⇑ Θ′

` · ⇑ Θ,Θ′
cut

During the proof of cut-elimination, the following four variants of
the cut rule need to be considered and eliminated as well.

` A, Γ ⇑ Θ ` ¬A, Γ′ ⇑ Θ′

` Γ, Γ′ ⇑ Θ,Θ′
cutu

` A ⇓ Θ ` ¬A, Γ′ ⇑ Θ′

` Γ′ ⇑ Θ,Θ′
cut f

` Γ ⇑ Θ,P ` ¬P, Γ′ ⇑ Θ′

` Γ, Γ′ ⇑ Θ,Θ′
dcutu

` B ⇓ Θ,P ` ¬P ⇑ Θ′

` B ⇓ Θ,Θ′
dcut f

Here, A and B are arbitrary polarized formulas and P is a positive
polarized formula.



Outline of completeness proof

1. Prove that all four cuts are admissible.

2. Prove the admissibility of the general init rule, sometimes
called init expansion.

3. Prove some generalized invertibility lemmas.

4. Embed Gentzen’s LK into LKF by choosing an appropriate
polarization.

5. Prove that all LK rules are admissible in LKF.



Applications of LKF: Admissibility of cut in LK

Theorem
The cut rule for LK is admissible in the cut-free fragment of LK.

Follows immediately from the meta-theory of LKF.



Applications of LKF: Lafont’s examples disappear

In all occurrences of the cut rule in LKF,

` B ⇑ Θ ` ¬B ⇑ Θ′

` · ⇑ Θ,Θ′
cut

exactly one of B and ¬B is negative and one is positive. Hence,
contraction is available only for one of these (the positive one) and
not both.



Application of LKF: Synthetic inference rules

Let Θ contain the negated and polarized transitivity axiom:

∃x∃y∃z .(path x y ∧+ path y z ∧+ ¬path x z)

Ξ1
` path r s ⇓ Θ

Ξ2
` path s t ⇓ Θ

Ξ3
` ¬path r t ⇓ Θ

` path r s ∧+ path s t ∧+ ¬path r t ⇓ Θ
∧+ × 2

` ∃x∃y∃z .(path x y ∧+ path y z ∧+ ¬path x z) ⇓ Θ
∃ × 3

` · ⇑ Θ
decide

The shape of Ξ1, Ξ2, and Ξ3 depends on the polarity of the path
predicate.



Application of LKF: Synthetic inference rules (continued)

If path-atoms are negative, then Ξ1 and Ξ2 end with the release
and store rules while the proof Ξ3 is trivial. This synthetic rule is

` · ⇑ path r s,Θ ` · ⇑ path s t,Θ

` · ⇑ path r t,Θ

If path atoms are positive, then Ξ3 end with the release and store
rules while the proof Ξ1 and Ξ2 are trivial. This synthetic rule is

` · ⇑ ¬path r s,¬path s t,¬path r t,Θ

` · ⇑ ¬path r s,¬path s t,Θ

These synthetic inference rules are the one-sided version of the
back-chaining and forward-chaining rules displayed earlier (see
[Chaudhuri et al., 2008]).

Cut-elimination holds when synthetic inference rules are added
[Marin et al., 2020].



Application of LKF: Herbrand’s theorem

The formula ∃x̄ .B is provable if and only if there are substitutions
θ1, . . . , θm (m ≥ 1) such that Bθ1 ∨ · · · ∨ Bθm is provable.

Let B̂ be a polarized version of B in which all logical connectives
in B are polarized negatively. Since ∃x̄ .B is provable, the sequent
` ∃x̄ .B̂ ⇑ · and ` · ⇑ ∃x̄ .B̂ must have LKF proofs.

Let C be the formula B̂θ1 ∨+ . . . ∨+ B̂θm where θi is the i th

instantiate of ∃x̄ .B in that LKF proof.

` B̂θi ⇑ ∃x̄ .B̂,L
` B̂θi ⇓ ∃x̄ .B̂,L

release

` ∃x̄ .B̂ ⇓ ∃x̄ .B̂,L
∃ × n

=⇒
` B̂θi ⇑ C ,L
` B̂θi ⇓ C ,L

release

` B̂θ1 ∨+ . . . ∨+ B̂θm ⇓ C ,L
∨+

Except for the details inside the ⇓-phase, these proofs are identical.



Application of LKF: Hosting other proof systems - Delays

Delays ∂−(·) and ∂+(·) can be inserted into formulas in order to
break collections of connectives of the same polarity up into
smaller blocks of connectives.

Delays can be defined in one of two ways.

I Define ∂−(B) as f − ∨− B, t− ∧− B, or ∀xB and define ∂+(B)
as f + ∨+ B, t+ ∧+ B, or ∃xB (vacuous binder in both cases).

I Define ∂−(B) as a 1-ary ∧− or 1-ary ∨− and define ∂+(B) as a
1-ary ∨+ or 1-ary ∧+.

While B, ∂−(B), and ∂+(B) are logically equivalent, ∂−(B) is
always negative and ∂+(B) is always positive.



Application of LKF: Hosting other proof systems

The LKQ and LKT proof systems of [Danos et al., 1995] can be
seen as LKF proofs in which the following polarization functions
are used. Here, A ranges over atomic formulas.

LKT LKQ

Atoms are negative Atoms are positive
(A)l = ¬A (A)l = ¬A
(A)r = A (A)r = A

(B ⊃ C )l = (B)r ∧+ (C )l (B ⊃ C )l = (B)r ∧+ ∂−((C )l)
(B ⊃ C )r = (B)l ∨− ∂+((C )r ) (B ⊃ C )r = ∂+((B)l ∨− (C )r )

Cut-free proofs in LKT (resp, LKQ) of B correspond to LKF proofs
of (B)r using the LKT (resp, LKQ) definition.

Gentzen’s LK proof system can also be hosted inside LKF by using
lots of delays.



Variants for focusing in classical logic: multifocusing

Positive introduction rules

` t+ ⇓ Γ

` B1,Θ1 ⇓ Γ ` B2,Θ2 ⇓ Γ

` B1 ∧+ B2,Θ1,Θ2 ⇓ Γ

` Bi ,Θ ⇓ Γ

` B1 ∨+ B2,Θ ⇓ Γ
i ∈ {1, 2} ` [s/x ]B,Θ ⇓ Γ

` ∃x .B,Θ ⇓ Γ

Release and decide rules

` ∆ ⇑ Γ

` ∆ ⇓ Γ release†
` ∆ ⇓ ∆̄, Γ

` · ⇑ ∆̄, Γ
decide‡

The proviso †: ∆ consists of only negative formulas.
The proviso ‡: ∆ is a non-empty multiset of positive formulas and
∆̄ is its underlying set.

Simple changes to LKF (to init, decide, and the introduction rules
for ⊗ and 1) yields MALLF, a focused proof system for the MALL
fragment of linear logic, first proposed in [Andreoli, 1992].



Conclusion

The LKF proof system is proposed as an improvement on LK,
especially for computer scientists interested in computational logic.

The LKF proof system is flexible and can mimic a range of proof
systems and supports the inclusion of synthetic inference rules.

The proof theory of LKF can be applied to unpolarized proof
systems as well (e.g., Herbrand’s theorem).

Intuitionistic logic can similarly be given a focused proof system
LJF [Liang and Miller, 2009].
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