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The original axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems
for classical and intuitionistic logics?
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The original axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems
for classical and intuitionistic logics?

Gentzen: Add mathematical theories to first-order logic.

Consistency of the arithmetic without complete induction.

9 3,  APPLICATION OF THE sharpened Hauptsatz TO A CONSISTENCY PROOF 11 1 

The number 1, furthermore, will not be written as a symbol for a definite 
object, since we have only object variables in our logical formalism and no 
symbols for definite objects. We shall overcome this difficulty by saying that 
the predicate ‘One means informally the same as ‘x is the number 1’. 

The sentence ‘x+ 1 is the successor of for example, could be rendered 
thus in our formalism: 

All other natural numbers can be respresented by the predicates 
One x & xPry; One x & xPry & yPrz, etc. 

How are we now to integrate into our calculus the predicate symbols just 
introduced, having admitted only propositional variables? To do so we 
simply stipulate that the predicate symbols are to be treated in exactly the 
same way as propositional variables. More precisely: We regard expressions 
of the form 

One F 7  FPr97 F = 9 7  (F+9 = a), 
where any object variables stand for E ,  9, g, merely as more easily intelligible 
ways of writing the formulae 

In this sense the axiom formulae that follow are indeed formulae in accor- 
dance with our definition. 

(We cannot, of course, regard the number 1 as a way of writing an object 
variable, since in our calculus the object variables really function as variables, 
which is not so in the case of propositional variables.) 

As ‘axiom formulae’ of our arithmetic we shall initially take the following, 
and shall later, once the consistency proof has been carried out (cf. 3.3), 
statq general criteria for the formation of further admissible axiom formulae: 

Equality : 
vx (x = x) (reflexivity) 

VxVyVz((x = y & y  = z) 3 x  = 2) 

3x (One x) 
VxVy ((One x & Oney) 3 x = y) 

VxVy(x = y 3 y = x) (symmetry) 
(transitivity) 

(existence of 1) 
(uniqueness of 1) 

One: 

Predecessor: 
Vx 3y (xPry) (existence of successor) 

112 INVESTIGATIONS INTO LOGICAL DEDUCTION 

Vx Vy (xpry 3 One y) (1 has no predecessor) 
Vx Vy Vz Vu ((xpry & zPru & x = z) 3 y = u) (uniqueness of successor) 
Vx Vy Vz Vu ((xPry & zPru & y = u) 3 x = u) (uniqueness of predecessor). 

A formula 23 is called derivable in arithmetic without complete induction, 
if there is an LK-derivation for a sequent 

al, . . . y a# + 23 

in which gl, . . . Up are axiom formulae of arithmetic. 
The fact that this formal system does actually allow us to represent the 

types of proof customary in informal arithmetic (as long as they do not use 
complete induction) cannot be proved, since for considerations of an in- 
formal character no precisely delimited framework exists. We can merely 
verify this in the case of individual informal proofs by testing them. 
3.2. We shall now prove the consistency of the formal system just  presented. 
With the help of the sharpened Hauptsatz (2.1) our task is in fact quite 
simple. 
3.21. A ‘contradiction’ & 1 % is derivable in our system if and only if 
there exists an LK-derivation for a sequent with an empty succedent and 
with arithmetic axiom formulae in the antecedent, viz.: 

From r + % & % we obtain r + in the following way: 

7 - I A  % + %  

&-IA 
interchange 

contraction 
cut. 

&-IA 

r +  
The converse is obtained by carrying out a thinning in the succedent. 
Thus, if our arithmetic is inconsistent, there exists an LK-derivation 

with the endsequent 
a1 Y * - - 9 ap +, 

where . . . %p are arithmetic axiom formulae. 
3.22. We now apply the sharpened Hauptsatz (2.1). The arithmetic axiom 
formulae fulfil the requirement laid down for the S-formulae of the end- 
sequent. Hence there exists an LK-derivation with the same endsequent 
which has the following properties: 
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“If our arithmetic is inconsistent, there exists a [cut-free] LK derivation with endsequent

U1, . . .Un ⊢

where U1, . . .Un are arithmetic axiom formulae.”
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The original axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems
for classical and intuitionistic logics?

A naive attempt: Add non-logical axioms.

Assume ⊢ P ⊃ Q and ⊢ P. Then

⊢ P

⊢ P ⊃ Q

P ⊢ P Q ⊢ Q

P,P ⊃ Q ⊢ Q
⊃l

P ⊢ Q
cut

⊢ Q
cut
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Assume ⊢ P ⊃ Q and ⊢ P. Then

⊢ P

⊢ P ⊃ Q

P ⊢ P Q ⊢ Q

P,P ⊃ Q ⊢ Q
⊃l

P ⊢ Q
cut

⊢ Q
cut

The Hauptsatz fails for systems with proper axioms.
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The original axioms-as-rules problem

How to incorporate inference rules encoding axioms into existing proof systems
for classical and intuitionistic logics?

A better approach: Add non-logical rules of inference

Γ,Q ⊢ C

Γ,P ⊢ C
P ⊃ Q

Γ,P ⊢ C

Γ ⊢ C
P
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Γ,Q ⊢ C

Γ,P ⊢ C
P ⊃ Q

Γ,P ⊢ C

Γ ⊢ C
P

The sequent ⊢ Q now has the (cut-free) proof

Q ⊢ Q

P ⊢ Q
P ⊃ Q

⊢ Q
P

Miller, Pimentel Higher-level rules for sequent calculus 12 September 2024 2 / 15



Polarities of connectives

Polarization is a feature of linear logic: ⊗, &, ⊕, `
• If the right-introduction rule is invertible, the connective is negative.

• If the left-introduction rule is invertible, the connective is positive.

• De Morgan duality flips polarity. Polarity for atoms is assigned arbitrarily.

First-order classical and intuitionistic language:

A ::= P(x) | A ∧ A | t | A ∨ A | f | A ⊃ A | ∃x A | ∀x A

Polarized connectives:
• In classical logic

▶ positive and negative versions of the logical connectives and constants:

∧−,∧+, t−, t+,∨−,∨+, f −, f +

• In intuitionistic logic
▶ polarized classical connectives and constants where f −,∨− do not occur;
▶ negative implication: ⊃.

• First-order quantifiers: ∀ negative and ∃ positive.

• A formula is positive if it is a positive atom or has a top-level positive connective.

• A formula is negative if it is a negative atom or has a top-level negative connective.
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A fresh view to an old problem

Combining the polarities’ hierarchy [Ciabattoni et al., 2008] with a

P0

N0 N1 N2 N3

P1 P2 P3

e.g., if B is in P0 then ∀x∃y∀z .B is in N3.

(∀xP1 ∧− P2) ∧− (∀yB(y) ∧− P3)

∧−

∧−

∀

P1

P2

∧−

∀

B(y)
P3

→
neg

P1 P2

B(y)
P3

Bipolar = N2

(polarities flip at most twice)
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A fresh view to an old problem

Combining the polarities’ hierarchy [Ciabattoni et al., 2008] with a

systematic construction of synthetic rules from axioms using focusing [Andreoli, 1992],
justifies the introduction of the class of bipolar axioms. Here, B ∈ N2.

Γ,B, Γ1 ⇑ · ⊢ · ⇑∆1 · · · Γ,B, Γn ⇑ · ⊢ · ⇑∆n

Γ,B ⇓ B ⊢ ∆

Γ,B ⇑ · ⊢ · ⇑∆
Dl

Non-invertible phase (B is Nn)
Focusing persists

Invertible phase (formulas in Pn−1)
Invertible rules are applied eagerly

Γ ⊢ Bi ⇓ ∆

Γ ⇓ B1 ∧− B2 ⊢ ∆
∧+l

Γ ⇑B1, B2 ⊢ · ⇑∆

Γ ⇑B1 ∧+ B2 ⊢ ⇑∆
∧+l

Store: C ∈ Nn−2. Thus, ∀i, Γi ⊆ Nn−2

C,Γ ⇑Θ ⊢ · ⇑∆

Γ ⇑ C,Θ ⊢ · ⇑∆
sl

If Γ ⊆ Nn then Γi ⊆ Nn−2, for all i = 1, . . . , n.
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Corresponding synthetic rule

(in LK or LJ)

Γ, Γ1 ⊢ ∆1 . . . Γ, Γn ⊢ ∆n

Γ ⊢ ∆
B

If Γ ⊆ Nn then Γi ⊆ Nn−2, for all i = 1, . . . , n.
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The main results [Marin, Miller, Pimentel & Volpe, 2022]

Theorem 1. Synthetic rules built from bipolar (N2) axioms involve only atomic formulas.

Theorem 2. The cut rule is admissible in the extension of LK/LJ with synthetic rules
corresponding to bipolar axioms.
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Example: Various clauses as bipoles

∀z(P+
1 ∧+ . . .∧+P+

m ⊃Q+)
P,Q, Γ ⊢ ∆

P, Γ′ ⊢ ∆
FC

Forward-chaining [Simpson, Negri, Ciabattoni]

∀z(P−
1 ∧− . . .∧−P−

m ⊃Q−)
Γ ⊢ P1,∆ . . . Γ ⊢ Pm,∆

Γ ⊢ Q,∆′ BC

Back-chaining [Viganò]

Other examples: Geometric, co-geometric, universal axioms, . . .

∀z(P±
1 ∧± . . . ∧± P±

m ⊃∃x1M̂1 ∨± . . . ∨± ∃xnM̂n)

∀z(∀x1M̂1 ∧± . . . ∧± ∀xnM̂n ⊃P−
1 ∨− . . .∨−P−

m )

∀z(P±
1 ∧± . . . ∧± P±

m ⊃Q±
1 ∨± . . . ∨± Q±

n )
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Recapitulation

• Polarity of connectives: invertibility vs non-invertibility of introduction rules

• Focusing: uses polarity to organize proofs into a two-phase structure.

These features of proofs arose within linear logic. The LKF and LJF proof systems
apply these features to classical and intuitionistic logics. [Liang & Miller, 2009]

• Synthetic inference rules:
▶ Bipoles: A flexible means exists to translate bipoles (N2) to inference rules involving

only atomic formulas: see [Marin, Miller, Pimentel, & Volpe, 2022].

▶ Non-bipoles: The topic of the rest of this talk. Two approaches:
Transform non-bipoles into bipoles.
Use a higher-level system of rules.
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One approach to treating non-bipoles: Remove them

Transform non-bipolar formulas into bipolar formulas by introducing new predicate
symbols.

• Tseitin [1960’s], Mints et al. [1982].

• Andreoli: skolemization [1992], bipolarization [2001].

• Dyckhoff & Negri: geometrisation [2015]

• See Dyckhoff & Negri for many other names and references.

With higher-order quantification, provability can be maintained.

u ⊃ ((p ⊃ q) ⊃ r) ⊃ s ⊣⊢ ∃x .

 (u ⊃ (x ⊃ r) ⊃ s) ∧
(x ⊃ (p ⊃ q)) ∧
((p ⊃ q) ⊃ x)


If you drop ∃x for a new predicate symbol, the expressions are equisatisfiable.

u ⊃ ((p ⊃ q) ⊃ r) ⊃ s =||=

 (u ⊃ (x ⊃ r) ⊃ s)∧
(x ⊃ (p ⊃ q))∧
((p ⊃ q) ⊃ x)


N.B.: With only implications, B is of order n if and only if B ∈ Nn.
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Another approach to treating non-bipoles: Higher-level of rules

Let C denote u ⊃ ((p ⊃ q) ⊃ r) ⊃ s. (Assume that s has negative polarity.)

Γ,C ⇑ · ⊢ · ⇑ u

Γ,C ⇑ · ⊢ u ⇑ ·
sl

Γ,C ⊢ u ⇓ Rr

Γ,C , p ⊃ q ⇑ · ⊢ · ⇑ r

Γ,C ⇑ p ⊃ q ⊢ r ⇑ ·
Γ,C ⇑ · ⊢ (p ⊃ q) ⊃ r ⇑ ·
Γ,C ⊢ (p ⊃ q) ⊃ r ⇓

Rl
Γ,C ⇓ s ⊢ s

Il

Γ,C ⇓ u ⊃ ((p ⊃ q) ⊃ r) ⊃ s ⊢ s

Γ,C ⇑ · ⊢ · ⇑ s

This justifies the synthetic inference rule

Γ ⊢ u Γ, p ⊃ q ⊢ r

Γ ⊢ s
C

Unfortunately, this contains an occurrence of a logical connective.

The N1 formula p ⊃ q formula can be replaced by an inference rule: which rule depends
on polarity.
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Higher-level of rules: an example
The synthetic rule for C = u ⊃ ((p ⊃ q) ⊃ r) ⊃ s (where s has negative polarity).

Γ ⊢ u

(Rule based on p ⊃ q)
...

Γ ⊢ r
Γ ⊢ s

C


The second premise has an inference rule that is available to prove that premise.

The
shape of that rule depends on the polarity of p and q. There are four possibilities.

Ψ ⊢ p

Ψ ⊢ q
(p−, q−)

Ψ ⊢ p Ψ, q ⊢ E

Ψ ⊢ E
(p−, q+)

Ψ, p ⊢ q
(p+, q−)

Ψ, p, q ⊢ E

Ψ, p ⊢ E
(p+, q+)

For example, 
Γ ⊢ u

(
Ψ, p, q ⊢ E

Ψ, p ⊢ E

)
...

Γ ⊢ r
Γ ⊢ s

C


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Γ ⊢ u

(Rule based on p ⊃ q)
...

Γ ⊢ r
Γ ⊢ s

C


The second premise has an inference rule that is available to prove that premise.The
shape of that rule depends on the polarity of p and q. There are four possibilities.

Ψ ⊢ p

Ψ ⊢ q
(p−, q−)

Ψ ⊢ p Ψ, q ⊢ E

Ψ ⊢ E
(p−, q+)

Ψ, p ⊢ q
(p+, q−)

Ψ, p, q ⊢ E

Ψ, p ⊢ E
(p+, q+)

For example, 
Γ ⊢ u

(
Ψ, p, q ⊢ E

Ψ, p ⊢ E

)
...

Γ ⊢ r
Γ ⊢ s

C


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Higher-level of rules: An example with quantifiers

The (polarized) formula stating the existence of least upper bounds.

∀x∀y∃z(x ≤ z ∧+ y ≤ z ∧+ ∀w(x ≤ w ∧+ y ≤ w ⊃ z ≤ w)),

Focusing on this formula yields the derivation.

Σ, z :∀w(x ≤ w ∧+ y ≤ w ⊃ z ≤ w), x ≤ z , y ≤ z , Γ ⊢ ∆

Σ : Γ ⊢ ∆

Sequents are prefixed with a list of eigenvariables Σ which are bound over the sequent.

The assumption ∀w(x ≤ w ∧+ y ≤ w ⊃ z ≤ w) can be converted to an inference rule
(depending on the polarity of the ≤ predicate). For example,(

Σ, z : Γ ⊢ x ≤ w Σ, z : Γ ⊢ y ≤ w

Σ, z : Γ ⊢ z ≤ w

)
...

Σ, z : Γ, x ≤ z , y ≤ z ⊢ ∆

Σ : Γ ⊢ ∆

There are no logical constants. The scope of variables is getting complicated.
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Higher-level of rules: Continued

The N3 formula

∀x∀y∃z(x ≤ z ∧+ y ≤ z ∧+ ∀w(x ≤ w ∧+ y ≤ w ⊃ z ≤ w)),

can be bipolarized by introducing a new predicate lub so that the atomic formula
(lub x y z) denotes the fact that z is the least upper bound of x and y .

∀x∀y∃z .[(x ≤ z ∧+ y ≤ z ∧+ lub x y z)]∧−

∀x∀y∀z .[lub x y z ≡ ∀w .(x ≤ w ∧+ y ≤ w ⊃ z ≤ w)]

Focusing on this formula yields the derivation.

Σ, z : lub x y z , x ≤ z , y ≤ z , Γ ⊢ ∆

Σ : Γ ⊢ ∆

It seems more natural to use this formulation with a new predicate than the rule with a
new scoped inference rule.

Note: If the order relation is also known to be antisymmetric, then the lub predicate
actually defines a function. Moving from relations to functions is another topic.
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Higher-level of rules in natural deduction

If we limit ourselves to

• negative connectives (⊃, ∧−, ∀) and
• negative polarized atoms,

then the sequent calculus is essentially natural deduction: [Herbelin 1994],
[Esṕırito Santo 2007].

Systems of higher-level rules in natural deduction have been considered long ago.

• Schroeder-Heister, A Natural Extension of Natural Deduction, 1984.

• Avron, Gentzenizing Schroeder-Heister’s Natural Extension of Natural Deduction,
1990.

• Harper, Honsell, Gordon Plotkin, ”A Framework for Defining Logics”, 1993.
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Higher-level of rules in sequent calculus

Using the papers [Marin, Miller, Pimentel, & Volpe, 2022] and [Miller & Pimentel, 2013],
we should be able to describe systems of higher-level rules for the sequent calculus that
accounts for

• intuitionistic, classical, linear proof systems,

• additive and multiplicative connectives,

• forward-chaining and back-chaining polarities, and

• first-order quantification and eigenvariables.

However: Capturing these features without using logical connectives seems a
questionable pursuit since logical formulas have evolved to capture all these features
(except for the polarity of atoms).

• The implications ⊸, ⇒ do not have natural counterparts in inference rules.

• The nesting of scopes for quantifiers (∀, ∃) is natural in logical formulas, while
writing explicit binders in inference rules is eschewed.
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Future plans

• We plan to consider how higher-level rules can be organized to capture the richness
of inference in the sequent calculus for (at least) classical, intuitionistic, and linear
logics.

• We will need to understand the trade-offs between bipolarizing formulas (with the
introduction of new predicates) or not.

▶ Developing these approaches in an interactive theorem prover (such as Abella) might
provide an interesting setting to explore these trade-offs in various simple
mathematical theories.

• We also hope to understand the relations between higher-level rules and more
“exotic” proof systems: hypersequents [Ciabattoni & Genco, 2018].
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