Collection Analysis for Horn Clause Programs
[Extended Abstract]

Dale Miller

INRIA & LIX, Ecole Polytechnique, Rue de Saclay
91128 Palaiseau, France

dale.miller [at] inria.fr

Abstract of the correctness of a sort program includes the fact that if the
atomic formulasort(t, s) is provable, thers is a permutation of
t that is in-order. The proof of such a property is likely to involve
'inductive arguments requiring the invention of invariants: in other
words, this is not likely to be a property that can be inferred stati-
cally during compile time. On the other hand, if the lisemds are
approximated by multisets (that is, if we forget the order of items
in lists), then it might be possible to establish that if the atomic
formula sort(t, s) is provable, then the multiset associated tis
equal to the multiset associateditdf that is so, then it is imme-
diate that the lists ands are, in fact, permutations of one another
(in other words, no elements were dropped, duplicated, or created
during sorting). As we shall see, such properties based on using
multisets to approximate lists can often be done statically.

This paper considers exclusively the static analysis of first-order
Horn clauses but it does so by making substitution instances of

We consider approximating data structures with collections of the
items that they contain. For examples, lists, binary trees, tuples, etc
can be approximated by sets or multisets of the items within them.
Such approximations can be used to provide partial correctness
properties of logic programs. For example, one might wish to
specify than whenever the atasart(¢, s) is proved then the two
lists t and s contain the same multiset of items (that isjs a
permutation oft). If sorting removes duplicates, then one would
like to infer that the sets of items underlyin@nds are the same.
Such results could be useful to have if they can be determined
statically and automatically. We present a scheme by which such
collection analysis can be structured and automated. Central to
this scheme is the use of linear logic as a computational logic
underlying the logic of Horn clauses.

Categories and Subject Descriptors.4.1 Mathematical Logit such Horn clauses that carry them into linear logic. Proofs for the
Computational logic; 1.2.3 eduction and Theorem Provihg resulting linear logic formulas are then attempted as part of static
Logic programming analysis.

General Terms Design, Theory, Verification 2. The undercurrents

Keywords proof search, static analysis, Horn clauses, linear logic There are various themes that underlie our approach to inferring
properties of Horn clause programs. We list them explicitly below.
1. Introduction The rest of the paper can be seen as a particular example of how

. these themes can be developed.
Static analysis of logic programs can provide useful information for

programmers and compilers. Typing systems, such ag’iolog 2.1 Iftyping is important, why use only one?
[23, 24], have proved valuable during the development of code:
type errors often represent program errors that are caught at com
pile time when they are easier to find and fix than at runtime when
they are much harder to repair. Static type information also pro-
vides valuable documentation of code since it provides a concise
approximation to what the code does.

In this paper we describe a method by which it is possible to
infer that certain relationships concerning collections underlying
structured data hold. We shall focus on relations that are also de-
cidable and can be done during compile time analysis of logic pro-
grams. We shall usmultisetsand setsto approximatemore com-
plicated structures as lists and binary trees. Consider, for example
a list sorting program that maintains duplicates of elements. Part

Types and other static properties of programming languages have
proved important on a number of levels. Typing can be useful for
programmers: they can offer important invariants and document for
code. Static analysis can also be used by compilers to uncover use-
ful structures that allow compilers to make choices that can improve
execution. While compilers might make use of multiple static anal-
ysis regimes, programmers do not usually have convenient access
to multiple static analyzes for the code that they are composing.
Sometimes, a programming language provides no static analysis,
as is the case with Lisp and Prolog. Other programming languages
offer exactly one typing discipline, such as the polymorphic typ-
'ing disciplines of Standard ML andProlog (SML also statically
determines if a given function defined over concrete data struc-
tures cover all possible input values). It seems clear, however, that
such analysis of code, if it can be done quickly and incrementally,
might have significant benefits for programmers during the process
Permission to make digital or hard copies of all or part of this work for personal or ~ of writing code. For example, a programmer might find it valuable
classroom use is granted without fee provided that copies are not made or distributedq L now that a recursive program that she has just written has linear
for profit or commercial advantage and that copies bear this notice and the full citation X . . ; . wer

on the first page. To copy otherwise, to republish, to post on servers or to redistribute or quadratic runtime complexity, or that a relation she just specified
to lists, requires prior specific permission and/or a fee. actually defines a function. The Ciao system preprocessor [14] pro-
PPDP’06 July 10-12, 2006, Venice, Italy. vides for such functionality by allowing a programmer to write var-
Copyright(© 2006 ACM 1-59593-388-3/06/0007. .. $5.00. ious properties about code that the preprocessor attempts to verify.

Having an open set of properties and analysis tools is an interestingfree first-order variable: of B becomes bound ivz.B by this
direction for the design of a programming language. The collection inference rule.

analysis we discuss here could be just one such analysis tool. Observe the following two things about this rule. First, if we
]] are in an untyped setting, then we can, in principle, quantify over
2.2 Logic programs as untypedi-expressions any variable in any expression, even those that play the role of

If we do not commit to just one typing discipline, then it seems _predicates or functio_ns. Mi)_(ing such rich abstractions with Iog_ic
sensible to use a completely untyped setting for encoding programsis Well known to be inconsistent so when we propose such rich
and declarations. Given that untypaeerms provide for arbitrary ~ abstractions in logic, we must accompany it with some discipline
applications and arbitrary abstractions, such terms can provide an(such as typing) that will yield consistency.
appealing setting for the encoding of program expressions, type ex- Secqnd, we need to observe that differences between constants
pressions, assertions, invariants, etc. Via the well developed theoryand variables can be seen as one of “scope”, at least from a syntac-
of A-conversion, such abstractions can be instantiated with a vari- tic, proof theoretic, and computational point of view. For example,
ety of other objects. Abstractions can be used to encode quantifiersvariables are intended as syntactic objects that can “vary”. During
within formulas as well as binding declarations surrounding entire the computation of, say, the relation of appending lists, universal
programs. quantified variables surrounding Horn clauses change via substitu-
In logic programming, proofs can be viewed as computation tion (via backchaining and unification) but the constructors for the
traces and such proof objects can also be encoded as uniyped €mpty and non-empty lists as well as the symbol denoting the ap-
terms. Instantiations into proofs is also well understood since it is Pend relation do not change and, hence, can be seen as constants.
closely related to the elimination of cut in sequent calculus or to But from a compiling and linking point-of-view, the append pred-
normalization in natural deduction proofs. The fact that proofs and icate might be considered something that varies: if append is in a
programs can be related simply in a setting where substitution into module of Prolog that is separately compiled, the append symbol
both has well understood properties is certainly one of the strengthsmMight denote a particular object in the compiled code that is later
of the proof theoretic foundations of logic programming (see, for changed when the code is loaded and linked. In a similar fashion,

example, [22]). we shall allow ourselves to instantiate constants with expression
during static analysis.
2.3 What good are atomic formulas? Substituting for constants allows us to “split the atom”: that is,

by substituting for the predicate in the atomp(ti,...,t,), we
replace that atom with a formula, which, in this paper, will be a
linear logic formula.

In proof theory, there is interesting problem of duality involving
atomic formulas. Thénitial rule and thecut rulegiven as

. F1FO,A1 FQ,OFAQ
Initial Cut
CwC 1, T2 = A, A 2.5 Linear logic underlies computational logic

can be seen as being dual to each other [13]. In particular, the inear logic [10] is able to explain the proof theory of usual Horn
initial rule states that an occurrence of a formula on the left is ¢jayse logic programming (and even richer logic programming
stronger than the same occurrence on the right, whereas the cujanguages [15]). It is also able to provide means to reason about
rule states the dual: an occurrence of a formula on the right is resources, such as items in multisets and sets. Thus, linear logic
strong enough to remove the same occurrence from the left. In mostyji| allow us to sit within one declarative framework to describe
well designed proof systems, all occurrence of the cut-rule can be poth ysual logic programming as well as “sub-atomic” reasoning
eliminated (whether or nat' is an atomic formula) whereas only apoyt the resources implicit in the arguments of predicates.
non-atomic initial rules (wher€' is non-atomic) can be eliminated.
Atoms seem to spoil the elegant duality of the meta-theory of these
inference rules. ' _ 3. Aprimer for linear logic

While the logic programming world is most comfortable with) .) . . .
the existence of atomic formulas, there have been a couple of recent-inéar logic connectives can be divided into the following groups:
proof theoretic approaches that try to eliminate them entirely. For the multiplicatives®, L, ®, 1; the additivess, 0, &, T; the
example, in the work odefinitionsandfixed pointsby Schroeder- expoilentlalsl, 7; the implications— (where B —o C IS defined
Heister [26], Girard [11], and McDowell & Miller [17], atoms are @SB~ 3 C) and= (whereB = C'is defined ag! B)~ % C);
defined to be other formulas. In this approach, the only primitive and the quantifiers and3 (higher-order quantification is allowed).
judgment involving terms is that of equality. In that setting, if def- The equivalence of formulas in linear logiB,c— C, is defined as
initions arestratified (no recursion through negations) anoethe- the formula(B —o C') & (C' — B). .
rian (no infinite descent in recursion), then all instances of cutand First-order Horn clauses can be described as formulas of the
initial can be removed. The settinglatlicsof Girard [12] is a more form
radical presentation of logic in which atomic formulas do not exist:
formulas can be probed to arbitrary depth to uncover “subformu-

las”.])) where A and D are intuitionistic or classical logic conjunction
Another approach to atoms is to considéirconstants as being and implication. There are at least two natural mappings of Horn
variables. On one hand this is a trivial position: if there are no con- ¢jauses into linear logic. The “multiplicative” mapping uses the
stants (thus, no predicate constants) there are no atomic formulasand — for the conjunction and implication: this encoding is used
(which are defined as formulas V_/ith non-_logical constants at their jp, say, the linear logic programming settings, such as Lolli [15],
head). On the other hand, adopting a point-of-view that constants where Horn clause programming can interact with the surrounding
can vary has some appeal. We describe this next. linear aspects of the full programming language. Here, we are not
- . interested in linear logic programming per se but with using linear
2.4 Viewing constants and variables as one logic to help establish invariants about Horn clauses when these
The inference rule of-generalization states that B is provable are interpreted in the usual, classical setting. As a result, we shall
thenVz. B is provable (with appropriate provisos if the proofBf encode Horn clauses into linear logic using the conjuncticend
depends on hypotheses). If we are in a first-order logic, then the implication=-: that is, we take Horn clauses to be formulas of the

Vor ... Ve,[Ar AL A A, D A (n,m > 0)

form and of the sequent

Var .. Ven[A1 & ... & Ay = Aol (n,m > 0) 31 D10,1 D20, T = S[ti/x1, .. tm/Tm].
The usual proof search behavior of first-order Horn clauses in As this example illustrates, it is possible to instantiate a predicate
classical (and intuitionistic) logic is captured precisely when this (herep) with an abstraction of a formula (hergz: ... Az.,. S).
style of linear logic encoding is used. Such instantiation carries a provable sequent to a provable sequent.
4.3 Substituting for assumptions
An instance of the cut-rule (mentioned earlier) is the following:

4. A primer for proof theory ST B S BLue O
;11— y D, la +—

A sequent is a triple of the for: " — A were, the signature,

is a list of non-logical constants and eigenvariables paired with a 5T, = C
simple type, and where bofhandA are multisets of-formulas This inference rule (especially when associated with the cut-
(i.e., formulas all of whose non-logical symbols aré&in The rules elimination procedure) provides a way to merge (substitution) the

for linear logic are the standard ones [10], except here signaturesproof of a formula (hereB) with a use of that formula as an as-
have been added to sequents. The rules for quantifier introductionsumption. For example, consider the following situation. Given the
are the only rules that require the signature and they are reproducedexample in the Section 4.2, assume that we can prove

here: ST v 1D and X;!T v ! Dy,

Y, y:7; Bly/z], T ~ A Skt:r 50w Bt/z], A

3L 3 i i
S 327.B.T = A ST e 327 .B,A R Using two instances of the cut rule and the proofs of these sequent,
it is possible to obtain a proof of the sequent
Skt E;B[t/x},F-—AVL E,y:T;F-—B[y/x],AVR ST = S[tr /a1, b /T

¥ Vem.B,I'~ A ¥ T'wVam.B,A
The premiseX F ¢:7 is the judgment that the term has the
(simple) typer given the typing declaration contained3h
We now outline three ways to instantiate things within the
sequent calculus. S, 07! D1, Do, ' T = p(ta, ..., tm)

(contraction on the left fo¥ed formulas must be applied).
Thus, by a series of instantiations of proofs, it is possible to
move from a proof of, say,

4.1 Substituting for types to a proof of

Although we think of formulas and proofs as untyped expressions, S = Sl /oy, -t/ Tm]-

we shall use simple typing within sequents to control the kind of \ve shall see this style of reasoning about proofs several times be-
formulas that are present. A signature is used to bind and declare|gy, This allows us to “split an atomp(ti,. .. ,tm) into a for-
typing for (eigen)variables and non-logical constants within a se- mula S[t1/z1, . .., tm/Tm] and to transform proofs of the atom
quent. Simple types are, formally speaking, also a simple class ofjnt proofs of that formula. In what follows, the formugawill be
untyped)-terms: the type is used to denote formulas (following 4 jinear logic formula that provides an encoding of some judgment
Church [7]). In a sequent calculus proof, simple type expressions ghoyt the data structures encoded in the tems . , .

are global and admit no bindings. As a result, it is an easy matterto a few simple examples of using higher-order instantiations of

show that if one takes a proof with a type constaréind replaces |qgjc programs in order to help reasoning about them appear in
everywherer with some type, say;, one gets another valid proof. [20].

We shall do this later when we replace a list by a multiset that ap-
proximates it: since we are using linear logic, we shall use formulas . .
to encode multisets and so we shall replace the type coristant 5. Encoding multisets as formulas

with o. We wish to encode multisets and sets and simple judgments about
them (such as inclusion and equality) as linear logic formulas. We
4.2 Substituting for non-logical constants consider multisets first. Let tokeirem be a linear logic predicate
Consider the sequent of one argument: the linear logic atomic formitem will denote
the multiset containing just the one elementoccurring once.
8,07 D1, Do, T = p(ta, - -« tm) There are two natural encoding of multisets into formulas using this
where the typer is a predicate type (that is, it is of the form predicate. Th@omuncﬂvee_ncodmg used for the empty multiset
7L — -+ — Tm — 0) and wherep appears in, say; and D and® to combine two multisets. For example, the multiggt2, 2}

and in no formula of". The linear logic exponentidlis used here IS encoded by the linear logic formutem 1 @ item 2 @ item 2.

to encode the fact that the formula and D- are available for Proofs search using th_ls style enc0(_:i|ng places multlset_on t_h_e Ie_ft _of
arbitrary reuse within a proof (the usual case for program clauses). the Sequent arrow. This approach is favored when an intuitionistic
Using the right introduction rules for implication and the universal Subset of linear logic is used, such as in Lolli [15], LinearLF

quantifier, it follows that the sequent [6], and MSR [5]. The dur_:ll encoding, thﬁsjynctiveencoding,
uses_L for the empty multiset an@ to combine two multisets.
ST w V¥p[D1 = Dy = p(t1,...,tm)] Proofs search using this style encoding places multisets on the

right of the sequent arrow. Multiple conclusion sequents are now
required. Systems such as LO [2] and Forum [19] use this style
of encoding. If negation is available, then the choice of which
encoding one chooses is mostly a matter of style. We pick the
disjunctive encoding for the rather shallow reason that the inclusion
judgment for multisets and sets is encoded as an implication instead
;00 v+ D10 = D26 = S[t1/z1, ... tm/Tm] of a reverse implication, as we shall now see.

is also provable. Since this is a universal quantifier, there must be
proofs for all instances of this quantifier. Léte the substitution

[p — Azi...Azn,.S], whereS is a term over the signatute U
{z1,...,xm} Of type o. A consequence of the proof theory of
linear logic is that there is a proof also of

VK.(append nil K K)
VX.VL.VK.VM.(append L K M) = (append (cons X L) K (cons X M))
VX.(split Xnilnil nil)
VX.VA.VB.VR.VS.(1leq A X)&(split XR S B) = (split X (cons AR) (cons A S) B)
VX.VA.VB.VR.VS.(gr A X)&(split XRSB) = (split X (cons AR) S (cons A B))
(sort nil nil)
VF.VR.VS.VSm.VB.VSS.VBS.(split F R Sm B)&(sort Sm SS)&(sort B BS)&(append SS (cons F BS) S) = (sort (cons FR) S)

Figure 1. Some Horn clauses for specifying a sorting relation.

VK.(L BKo—oK)
VX.VL.VK.VM.(L 8K oo M) = (itemX B L ® K o—o itemX B M)
VX(L % Lool)
VX.VA.YB.VR.YS.(S BBo—oR) = 1 = (itemA ® S ¥ B o—o itemA B R)
VX.VA.VB.VR.VS.(S®Bo—oR) = 1= (S BitemA BB o—oitemA BR)
(Lool)
VF.VR.VS.VSm.VBg.VSS.VBS.(Sm 2 B oo R)&(Sm 0—o SS)& (B 0o BS)&(SS % itemF % BS oo S) = (ittmMF B R o—o S)

Figure 2. The result of instantiating various non-logical constants in the above Horn clauses.

Let S andT be the two formulagems; % --- ® items,, and If S andT are closed multiset expressions, then we witg
itemt; ® --- R itemt,,, respectively ¢, m > 0). Notice that S C T whenever the multiset (of closed first-order terms) denoted
F S —o T ifand only if - T — S if and only if the two multisets by S is contained in the multiset denoted &Yy, and we write
{s1,...,8n} @and{ts,...,t:n} are equal. Consider now, however, = S Z T whenever the multisets denoted ByandT are equal.
the following two ways for encoding the multiset inclusiSric T'. Similarly, we write

e S B 0 — T. This formula mixes multiplicative connectives Em VZ[S1 p1 T1 & -+ & Sh, pn Ty = So po To)

with the additive connectivé: the latter allows items that are . _
not matched betweesi andT to be deleted. if for all closed substitution$ such that=,, S;6 p; T;0 for all
i=1,...,n,itis the case that,, So0 po Tob.

* 3¢(S B ¢ — T). This formula mixes multiplicative connec- The following Proposition is central to our use of linear logic to

tives with a highel’-ordel’ quantiﬁer. While we can consider the establish multiset statements for Horn clause programs.
instantiation forq to be the multiset difference & from T,

there is no easy way in the logic to enforce that interpretation PROPOSITIONL. Let Sy, T, ..., Sn, Tn (n > 0) be multiset ex-
of the quantifier. pressions all of whose free variables are in the list of variables
For each judgment p ¢ we writes p t to denotedq(s B g —o t) if

pisC andt oo s if pis =. If
Vf[sl [)1 Th&... &S, ﬁ,L T, = So [)0 To]
is provable in linear logic, then

As it turns out, these two approaches are equivalent in linear logic:
in particular,- 0 o—o Vp.p (linear logic absurdity) and

FVSVT[(S 80 —T)o-o03g(S®qg—oT).

Thus, below we can choose either one of these encodings for
multiset inclusion. Ems VZ2[S1 p1 T1 & - & Sn pn Tro = So po To]

. . . This Proposition shows that linear logic can be used in a sound
6. Multisets approximations way to inferpvalid multiset statement. Og the other hand, the con-
A multiset expressiofs a formula in linear logic built from the verse (completeness) does not hold: the statement
predicate symboitem (denoting the singleton multiset), the linear m
logic multiplicative disjunctior#s (for multiset union), and the unit Vavy.(z Cy) & (yCz) = (2 =y)
L for 3 (used to denote the empty multiset). We shall also allow s valid but its translation into linear logic is not provable.
a predicate variable (a variable of typg to be used to denote To illustrate how deduction in linear logic can be used to es-
a (necessarily open) multiset expression. An example of an opentaplish the validity of a multiset statement, consider the first-order
multiset expression isem f(.X) ® L %Y, whereY is a variable Horn clause program in Figure 1. The signature for this collection
of typeo, X is a first-order variable, anflis some first-order term of clauses can be given as follows:
constructor.

Let S and T be two multiset expressions. The twaultiset nil ¢ list
judgmentghat we wish to capture are multiset inclusion, written as ¢ons ¢ int => list -> list
S C T, and equality, written a§ = T'. We shall use the syntactic ~ 2Ppend : list —> list —> list -> o

variablep to range over these two judgments, which are formally sPlit il}tt’lli?tt’:li“ -> list => o
binary relations of typ@ — o — o. A multiset statemeris a i°r P ots N 15_> o
formula of the form eq : }nt }nt o

gr : int -> int -> o

Va[Sup1 T & & S pn T = o po To) The first two declarations provide constructors for empty and non-
where the quantified variables are either first-order or of type empty lists, the next three are predicates whose Horn clause defi-
o and formulasSy, Ty, . . ., Sn, T are possibly open multiset ex- nition is presented in Figure 1, and the last two are order relations
pressions. that are apparently defined elsewhere.

VX.(split Xnilnil nil)
VX.VB.VR.VS.(split XR S B) = (split X (cons XR) S B)
VX.VA.VB.VR.VS.(1t A X)&(split XR S B) = (split X (cons AR) (cons A S) B)
VX.VA.VB.VR.VS.(gr A X)&(split XR S B) = (split X (cons AR) S (cons A B))

Figure 3. A change in the specification of splitting lists to drop duplicates.

VX.(70—o7?

VX.VB.VR.VS.(?R —o ?(itemX © S & B
VX.VA.VB.VR.VS.1&(?R —o 7(itemX & S @ B)
VX.VA.VB.VR.VS.1&(?R —o ?(itemX & S @ B)

—~~

itemX © 0 @ 0))
) = (?(itemX & R) —o ?(itemX & S ¢ B))
(?(itemA & R) —o ?(itemX & itemA & S & B))

=
= (?(itemA @ R) —o ?(itemX @ S @ itemA @ B))

——

Figure 4. The result of substituting set approximations into ¢gp@it program.

If we think of lists as collections of items, then we might want 7. Formalizing the method
to check that the sort program as written does not drop, duplicate
or create any elements. That is, if the atésoert s t) is provable
then the multiset of items in the list denoted bys equal to the
multiset of items in the list denoted bylf this property holds then
t ands are lists that are permutations of each other: of course, this Let
does not say that it is the correct permutation but this more simple
fact is one that, as we show, can be inferred automatically.

Computing this property of our example logic programming
follows the following three steps.

First, we provide an approximation of lists as being, in fact,
multiset: more precisely, @srmulasdenoting multisets. The first
step, therefore, must be to substitutéor 1ist in the signature
above. Now we can now interpret the constructors for lists using

' The formal correctness of this three stage approach is easily justi-
fied given the substitution properties we presented in Section 4 for
the sequent calculus presentation of linear logic.

Let " denote a set of formulas that contains those in Figure 1.
0 denote the substitution described above for the Wpe:, for

the constructorail andcons, and for the predicates in Figure 1.

If ¥ is the signature fof" then splitY into the two signatureX;

and X, so thatX; is the domain of the substitutiohand letX;
be the signature of the range @&{in this case, it just contains the

constantitem). Thus,I'd is the set of formula in Figure 2.

Assume now thaE, Xo; ' + sort(t, s) is provable. Given the
discussion in Sections 4.1 and 4.2, we know that

the substitution 21, X3; 10 + 10 o0 s6
. is provable. Since the formulas ¢ are provable, we can use
nil— L1 comns+— Azdy. itemz R y. substitution into proofs (Section 4.3) to conclude that Xs; —
t6 o—o s. Given Proposition 1, we can conclude that, ¢0 = s6;
Under such a mapping, the listdns 1 (cons 3 (cons 2nil))) is that is, thatt¢ ands# encode the same multiset.
mapped to the multiset expressiogm1 % item3 Zitem2 % L. Consider the following model theoretic argument for establish-

Second, we associate with each predicate in Figure 1 a multiseting similar properties of Horn clauses. Latl be the Herbrand
judgment that encodes an invariant concerning the multisets de-model that captures the invariants that we have in mind. In par-

noted by the predicate’s arguments. For exampl@gpend r s t) ticular, M contains the atom&@ppend r s ¢) and(split u t r s)

or (split u t r s) is provable then the multiset union of the items if the items in the listr added to the items in list are the same
in r with those ins is equal to the multiset of items i and if as the items int. Furthermore M contains all closed atoms of the
(sort s t) is provable then the multisets of items in listandt form (1eq t s) and(gr t s), and closed atom&ort s t) wheres

are equal. This association of multiset judgments to atomic formu- and¢ are lists that are permutations of one another. One can now
las can be achieved formally using the following substitutions for show thatM satisfies all the Horn clauses in Figure 1. As a con-

constants: sequence of the soundness of first-order classical logic, any atom
provable from the clauses in Figure 1, must be truainBy con-
append — AzAyAz. (z By) oo z struction of M, this means that the desired invariant holds for all
split — AudzAyAz. (y Bz) oox atoms proved from the program.
sort — Ax\y. x ooy The approach suggested here using linear logic and deduction

remains syntactic and proof theoretic: in particular, showing that
The predicatesieq and gr (for the least-than-or-equal-to and @ model satisfies a Horn clause is replaced by a deduction within
greater-than relations) make no statement about collections oflinear logic.
items, so that they can be mapped to a trivial tautology via the])
substitution 8. Sets approximations

It is rather easy to encode sets and the equality and subset judg-
leq— AzAdy. 1 gr — Aziy. 1 ments on sets into linear logic. In fact, the transition to set from
multiset is provided by the use of the linear logic exponential: since
Figure 2 presents the result of applying these mappings to Figure 1.we are using disjunctive encoding of collections (see the discussion
Third, we must now attempt to prove each of the resulting in Section 5), we use theexponential (if we were using the con-
formulas. In the case of Figure 2, all the displayed formulas are junctive encoding, we would use thexponential).
trivial theorems of linear logic. The expressioftitem¢ can be seen as describing the presence
Having taken these three steps, we now claim that we have of an item for which the exact multiplicity does not matter: this
proved the intended collection judgments associate to each of theformula represents the capacity to be used any number of times.
logic programming predicates above: in particular, we have now Thus, the se{z1,...,n,} can be encoded astemz; ® --- ®
shown that our particular sort program computes a permutation. 7 itema,,. Using logical equivalences of linear logic, this formula is

also equivalent to the formulitemz, ®- - -®itema,,). This latter
encoding is the one that we shall use for building our encoding of
sets.

A set expressions a formula in linear logic built from the
predicate symboltem (denoting the the singleton set), the linear
logic additive disjunction® (for set union), and the un@ for &
(used to denote the empty set). We shall also allow a predicate
variable (a variable of type) to be used to denote a (necessarily
open) set expression. An example of an open multiset expression
isitem f(X) ® 0 @ Y, whereY is a variable of type, X is a
first-order variable, and is some first-order term constructor.

Let S andT be two set expressions. The twget judgments
that we wish to capture are set inclusion, writtenSas. T, and
equality, written asS = 7. We shall use the syntactic variable
p to range over these two judgments, which are formally binary
relations of typeo — o — o. A set statemeris a formula of the
form

vf[51plTl&"'&SnpnTnﬁsopOTO}

where the quantified variablesare either first-order or of type
and formulaglp, So, . . ., Tn, S are possibly open set expressions.

If S andT are closed set expressions, then we weteS C T
whenever the set (of closed first-order terms) denotedShig
contained in the set denoted Hy, and we write|=, S =T
whenever the sets denoted Byand T are equal. Similarly, we
write

s VZ[S1 p1 Th & - - - & Sn pn T = So po To)

if for all closed substitution® such that=, S;0 p; T;6 for all
1 =1,...,n,itis the case that, Sof po Tob.

The following Proposition is central to our use of linear logic to
establish set statements for Horn clause programs.

PROPOSITION2. Let So, To, ..., Sn, Tn (n > 0) be set expres-
sions all of whose free variables are in the list of variahtegor
each judgment p t we writes p ¢ to denote? s —o ? ¢ if pis C and

(75 o07t) & (7t - ?5)if pis=. If
VZE[S1 p1 Th & ... & Sp p,, T = So Py To)
is provable in linear logic, then
E.VZ[S1p1r Th & -+ & Sy pn T = So po To)

Lists can be approximated by sets by using the following sub-
stitution:

nil— 0 cons — Az\y. itemz @ y.

Under such a mapping, the listqns 1 (cons 2 (cons 2 nil))) is
mapped to the set expressitem 1 @ item2 @ item2 @ 0. This
expression is equivalent{o) to the set expressidtem1 & item?2.

For a simple example of using set approximates, consider mod-
ifying the sorting program provided before so that duplicates are
not kept in the sorted list. Do this modification by replacing the
previous definition for splitting a list with the clauses in Figure 3.
That figure contains a new definition of splitting that contains three
clauses for deciding whether or not the “pivot” for the splittihs
equal to, less than (using the predicate), or greater than the first
member of the list being split. Using the following substitutions for
predicates

append — AzAyAz. ?(x D y)oo?z
split — AudzAydz. 7z —o ?(itemu Dy P z)
sort — Axdy. Txoo?y

(as well as the trivial substitution fart andge), we can show that
sort relates two lists only if those lists are approximated by the same
set.

R
LA -4 6 - 0A, "

A - C A, — C
F;A1EB~~~EBAn'—C
F;Bl@...@Bm — B

A C
Here,n,m > 0 and in the BC (backchaining) inference rule, the

formula?(A1 @ - @ An) —©?(B1®- - -® By) must be amember
of"andA € {A4,,..., An}.

oL

c

Figure 5. Specialized proof rules for proving set statements.

In the case of determining the validity of a set statement, the
use of linear logic here appears to be rather weak when compared
to the large body of results for solving set-based constraint systems
[1, 25].

9. Automation of deduction

We describe how automation of proof for the linear logic transla-
tions of set and multiset statements given in Propositions 1 and 2
can be performed.

In order to understand how to automatically prove the required
formulas, we first provide a normal form theorem for the fragment
of linear logic for which we are interested. The key result of linear
logic surrounding the search for cut-free proofs is given by the
completeness diocused proof$3]. Focused proofs are a normal
form that significantly generalizes standard completeness results in
logic programming, including the completeness of SLD-resolution
and uniform proofs as well as various forms of bottom-up and top-
down reasoning.

We first analyze the nature of proof search for the linear logic
translation of set statements. Note that when considering provabil-
ity of set statements, there is no loss of generality if the only set
judgment it contains is the subset judgment since set equality can
be expressed as two inclusions. We now prove that the proof system
in Figure 5 is sound and complete for proving set statements.

PrROPOSITIONS. Let So, To, ..., Sn, Tn (n > 0) be set expres-
sions all of whose free variables are in the list of variahieShe
formula

VZ[(?7S1 o) & ... & (7S, < 7T,) = (7S50 — ?To)]
is provable in linear logic if and only if the sequent
(781 = ?T1),..., (7S, = 7T,); S0 — Tp
is provable using the proof system in Figure 5.

Proof The soundness part of this proposition (“if”) is easy to
show. For completeness (“only if”), we use the completeness of
focused proofs in [3]. In order to use this result of focused proofs,
we need to give a polarity to all atomic formulas. We do this by
assigning all atomic formulas (those of the foitemn (-) and those
symbols inz of type o) negative polarity. Second, we need to
translation the two sided sequdntS — T toI'~; T 1 S+ when
S is not atomic (that is, its top-level logical connectivedi$ and
toTL,T; S 1 - whenS is a atom. Completeness then follows
directly from the structure of focused proofs. [|

Notice that the resulting proofs are essentially bottom-up: one
reasons from formulas on the left of the sequent arrow to formulas
on the right.

We can now conclude that it is decidable to determine whether
or not the linear logic translation of a set statement is provable.
Notice that in a proof built using the inference rules in Figure 5, if

9L commutative. (Notice that botl? and® are commutative.) Linear
A RB---BA, — Ay,..., Ay implication provides a good candidate for encoding the order used
in lists. For example, consider proof search with the formula
F; S~ Tl, TQ, A

[;Sw—Ti 3T, A ®R itema o— (p o— (itemb o— (p o— 1)))
S A, A A on the right. (This formula is equivalentitema % (p* @ (itemb %

’ - BC 1)).) Such a formula can be seen as describing a process that is
IS+ Bi,...,Bm, A p

willing to output the itema then go into input mode waiting for
the atomic formula to appear. If that formula appears, then item
b is output and again it goes into input waiting mode looking for
(A1 ®---%A,) o (B B8---%B,,) p. If another occurrence gf appears, this process becomes the
inactive process. Clearly, is output prior to wherb is output: this
ordering is faithfully captured by proof search in linear logic. Such
Figure 6. Specialized proof rules for proving multiset statements. an encoding of asynchronous process calculi into linear logic has
been explored in a number of papers: see, for example, [16, 21].
The example above suggests that lists and list equality can be
the endsequent i8; S — T then all sequents in the proof have the captured directly in linear logic using the following encoding:
formI'; S’ — T, for someS’. Thus, the search for a proof ejther nil i M. L cons s AzARAL. itemz o— (I o— (R 1))
succeeds (proof search ends by plachB on top), or fails to find
a proof, or it cycles, a case we can always detect since there is onlyThe encoding of the list, safcons a (cons b nil)), is given by

Here,n,m > 0 and in the BC (backchaining) inference rule, it
must be the case that the formula

is a member of".

a finite number of atomic formulas that can $e the A-abstraction
The proof system in Figure 6 can be used to characterize the Aitema o— (1 o— (itemb o— (I o— 1))).
structure of proofs of the linear logic encoding of multiset state- _ . : _
ments. Let The following proposition can be proved by induction on the

length of the list.

Vf[slﬁ1T1&...&SnﬁnTn:>S()ﬁ0Tg} . . .
])])) ~ PrROPOSITIONS. Let s and ¢t be two lists (built usingnil and
be the translation of a multiset statement into linear logic. Provabil- ¢ons) and letS and T be the translation of those lists into expres-

ity of this formula can be reduced to attempting to prévep, To sions of type — o via the substitution above. Thafi.(S1) o—o

from assumptions of the form (T1) is provable in linear logic if and only it andt are the same
(A1 8.8 A,) - (B 3-8 B,,), list.

whereA:, ..., An, By, ..., By, are atomic formulas. Such formu- This presentation of lists can be “degraded” to multisets simply

las can be calledhultiset rewriting clausesince backchaining on by @pplying the translation of a list to the formula For example,
such clauses amounts to rewriting the right-hand-side multiset of a @PPlying the translation dfcons a (cons b nil)) to L yields the
sequent (see rule BC in Figure 6). Such rewriting clauses are par-formulas

ticularly simple since they do not involve quantification. itema o— (L o— (itemb o— (L o— 1)))

PROPOSITION4. Let S; and Th be multiset expressions all of ~ Wwhich s linear logically equivalent tilema % itemb.

whose free variables are in the list of variablesand letI" be a Given this presentation of lists, there appears to be no simple
set of multiset rewriting rules. The formulsy —o Ty is a linear combinator for, say, list concatenation and, as a result, there is no
logic consequence df if and only if the sequent; S — Ty is direct way to express the judgments of prefix, suffix, sublist, etc.
provable using the inference rules in Figure 6. Thus, beyond equality of lists (by virtual of Proposition 5) there

are few natural judgments that can be stated for list. More can be
Proof The soundness part of this proposition (“if”) is easy to done, however, by considering difference lists.
show. Completeness (“only if”) is proved elsewhere, for example,
in [18, Proposition 2]. It is also an easy consequence of the the 11. Difference list approximations
completeness of focused proofs in [3]: fix the polarity to all atomic Since our framework includels-abstractions, it is natural to repre-

formul itive. . . . : ; . :
ormulas to be positive sent difference lists as a particular kind of list abstraction over a list.

Notice that the proofs using the rules in Figure 6 are straight line F le. in\Prol diff listi turall ted
proofs (no branching) and that they are top-down (or goal-directed). ag\r-tee):ﬁwmo?‘ ?ﬁé form 0g a difierence list1s naturally represented as

Given these observation, it follows that determiningif—o Tj is
provable from a set of multiset rewriting clauses is decidable, since AL.cons z1 (cons 2 (... (cons zp, L)...)).
this problem is contained within the reachability problem of Petri
Nets [9]. Proving a multiset inclusion judgmey(Sy 8 g — Tp)
involves first instantiating this higher-order quantifier. In principle,
this instantiation can be delayed until attempting to apply the sole
instance of the3 L rule (Figure 6).

Such abstracted lists are appealing since the simple operation of
composition encodes the concatenation of two lists. Given concate-
nation, it is then easy to encode the judgments of prefix and suffix.
To see other example of computing on difference lists described in
fashion, see [4].

. . . Lists can be encoded using the difference list notion with the
10. List approximations following mapping into linear logic formulas.

We now consider using lists as approximations. Since lists have nil— ALAL. L1
more structure than sets and multisets, it is more involved to encode cons — AZARALA. itemz o— (I o— (R L 1))
and reason with them. We only illustrate their use and do not follow
a full formal treatment for them.

Since the order of elements in a list is important, the encoding
of lists into linear logic must involve a connective that is not ALMl.itema o— (I o— (itemb o— (I o— L 1))).

The encoding of the list, safcons a (cons b nil)), is given by
the A-abstraction

(traverse emp null)
VN.VR.VS. (traverse R 8) = (traverse (bt N empR) (cons N 8))
VN.VM.VR.VS.VL1.VL2. (traverse (bt ML1 (bt NL2R)) S) = (traverse (bt N (bt ML1L2)R) S)

Figure 7. Traversing a binary tree to produce a list.

YW Nw.Ww oo Wuw
VN.VYRNYSVYWNw.itemN o— (w o— RW w) o—o (itemN o— (w o— S W w)) o= VWNVw.RW woo S W w
VNNMVL1.YLy VRNSYWNw.
Li(Ak.itemM o— (k o— La(M.itemN o— (l o= RW I))k))woo S W w o—
VYW.Nw.Li(Ak.itemM o— (k o— La(AlitemN o— (lo— RW 1))k))wooSW w

Figure 8. Linear logic formulas arising from a difference list approximation.

In Figure 7, a predicate for traversing a binary tree is given. be to see to what extent the general methodology described here —
Binary trees are encoded using the typeee and are constructed the substitution into proofs (computation traces) and use of linear
using the constructorsmp, for the empty tree, anét of type logic — can be related to the very general methodology of abstract
int — btree — btree — btree, for building non-empty interpretation.
trees. A useful invariant of this program is that the list of items
approximating the binary tree structure in the first argument of
traverse is equal to the list of items in the second argument. Acknowledgments
Linear logic formulas for computing that approximation can be

generated using the following approximating substitution. I am grateful to the anonymous reviewers for their helpful com-

ments on an earlier draft of this paper. This work was funded in

btree — o part by the Information Society Technologies programme of the
emp — ALAL. L1 European Commission, Future and Emerging Technologies under
bt = AZARASALAL (R (Al.itemz o— (I o— (S L1))) 1)) the IST-2005-015905 MOBIUS project. This paper reflects only

the author’s views and the Community is not liable for any use that

The result of applying that substitution (as well as the one above for may be made of the information contained therein.

nil andcons) is displayed in Figure 8. While these formulas ap-
pear rather complex, they are all, rather simple theorems of higher-
order linear logic: these theorems are essentially trivial since the
A-conversions used to build the formulas from the data structures References

has done all the essential work in organizing the items into a list. [1] A. Aiken. Set constraints: results, applications, and future directions.

Establishing these formulas proves that the order and multiplicity In PPCP94: Principles and Practice of Constraint Programming

of elements in the binary tree and in the list in a provable traverse number 874 in LNCS, pages 171 - 179, 1994.

computation are the same. [2] J. Andreoli and R. Pareschi. Linear objects: Logical processes with
built-in inheritance. New Generation Computing(3-4):445-473,

12. Future work 1991.

. . . . [3] J.-M. Andreoli. Logic programming with focusing proofs in linear
Various extensions of the basic scheme described here are naturalto "~ |ogic. 3. of Logic and Computatior2(3):297—347, 1992.
consider. In particular, it should be easy to consider approximating 41 P. Bri d4 0. Rid Nee be i Biahth
data structures that contain items of differing types: each of these 41 P- Brisset and O. Ridoux. N reverse can be linear. Eight
types could be mapped into differeintm () predicates, one for International Logic Programming Conferencearis, France, June
g;ch ypen o , 1991. MIT Press.

It should also be simple to construct approximating mappings

given thepolymorphictyping of a given constructor’s type. For

[5] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and
A. Scedrov. A meta-notation for protocol analysis. In R. Gorrieri,
editor, Proceedings of the 12th IEEE Computer Security Foundations

exqmple, if we are given the following declaration for binary tree Workshop — CSFW'9®ages 55-69, Mordano, ltaly, 28-30 June
(written here inAProlog syntax), 1999. IEEE Computer Society Press.

kind btree type -> type. [6] I. Cervesato and F. Pfenning. A linear logic framework. In
type emp btree A. Proceedings, Eleventh Annual IEEE Symposium on Logic in
type bt A -> btree A -> btree A -> btree A. Computer Sciencepages 264-275, New Brunswick, New Jersey,

July 1996. IEEE Computer Society Press.

it should be possible to automatically construct the mapping [7] A. Church. A formulation of the simple theory of typekof Symbolic

btree — Az.o Logic, 5:56—68, 1940.
emp — L [8] P. Cousot and R. Cousot. Abstract interpretation: A unified
bt — AzAyAz.itema(z) Bz By lattice model for static analysis of programs by construction or

. . . . approximation of fixpoints. 1f?OPL, pages 238-252, 1977.

that can, for example, approximate a binary tree with the multiset) T }

of the labels for internal nodes. [9] J. Esparza and M. Nielsen. Decidability issues for petri nets - a
Abstract interpretation [8] can associate to a program an ap- survey. Bulletin of the EATC%2:244-262, 1994.

proximation to its semantics. Such approximations can help to de- [10] J.-Y. Girard. Linear logicTheoretical Computer Sciencg0:1-102,

termine various kinds of properties of programs. It will be inter- 1987.

esting to see how well the particular notions of collection analysis [11] J.-Y. Girard. A fixpoint theorem in linear logic. An email posting to

can be related to abstract interpretation. More challenging would the mailing list linear@cs.stanford.edu, February 1992.

[12] J.-Y. Girard. Locus solumMathematical Structures in Computer
Science11(3):301-506, June 2001.

[13] J.-Y. Girard, P. Taylor, and Y. Lafon®roofs and TypesCambridge
University Press, 1989.

[14] M. V. Hermenegildo, G. Puebla, F. Bueno, and Bpkz-Gart.
Integrated program debugging, verification, and optimization using
abstract interpretation (and the ciao system preprocesssc).
Comput. Program.58(1-2):115-140, 2005.

[15] J. Hodas and D. Miller. Logic programming in a fragment of
intuitionistic linear logic.Information and Computatiqri10(2):327—
365, 1994.

[16] N. Kobayashi and A. Yonezawa. Asynchronous communication
model based on linear logidzormal Aspects of Computing:279—
294, 1994.

[17] R. McDowell and D. Miller. Cut-elimination for a logic with
definitions and induction.Theoretical Computer Scienc232:91—
119, 2000.

[18] D. Miller. The w-calculus as a theory in linear logic: Preliminary
results. In E. Lamma and P. Mello, editod Workshop on
Extensions to Logic Programmingumber 660 in LNCS, pages
242-265, Bologna, Italy, 1993. Springer-Verlag.

[19] D. Miller. Forum: A multiple-conclusion specification language.
Theoretical Computer Sciencd65(1):201-232, Sept. 1996.

[20] D. Miller. Higher-order quantification and proof search. In
H. Kirchner and C. Ringeissen, editoRjoceedings of AMAST
2002 number 2422 in LNCS, pages 60-74, 2002.

[21] D. Miller. Encryption as an abstract data-type: An extended abstract.
In I. Cervesato, editorProceedings of FCS'03: Foundations of
Computer Securitypages 3-14, 2003.

[22] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs
as a foundation for logic programmingnnals of Pure and Applied
Logic, 51:125-157, 1991.

[23] G. Nadathur and D. Miller. An Overview ofProlog. InFifth
International Logic Programming Conferencpages 810-827,
Seattle, August 1988. MIT Press.

[24] G. Nadathur and F. Pfenning. The type system of a higher-order
logic programming language. In F. Pfenning, edifiypes in Logic
Programming pages 245-283. MIT Press, 1992.

[25] L. Pacholski and A. Podelski. Set constraints: A pearl in research on
constraints. IrPrinciples and Practice of Constraint Programming -
CP97 number 1330 in LNCS, pages 549-562. Springer, 1997.

[26] P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi,
editor, Eighth Annual Symposium on Logic in Computer Science
pages 222-232. IEEE Computer Society Press, IEEE, June 1993.

