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Historically speaking

Model checking was introduced in the early 1980’s as a way to
establish properties about (concurrent) computer programs that
were hard or impossible to do then using traditional, axiomatic
proof techniques of Floyd and Hoare.

If you cannot prove a property, at least you can get help looking
for counterexamples: e.g., a path to a state where two processes
are both in their critical section.

Model checking was a reaction against theorem proving.

| will argue that model checking can, in fact, be given an appealing
proof theoretical foundation.



Proof theoretical ingredients

Some historical high-points.
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Gentzen's sequent calculus [1935]
Girard's linear logic [1987]
Andreoli's focused proof system for linear logic [1991]

Schroeder-Heister's and Girard's treatment of equality and
fixed points [1992]

Baelde, McDowell, M, and Tiu developed proof theory for
least and greatest fixed points [1997-2012].

All these developments, except for the first, came after the start of
model checking.



Why promote a proof theoretic framework?

Proof theory can provide certificates for model checking.

It provides a framework for integrating inductive theorem prover
and model checking since they operate with the same (or similar)
logics and proofs structures.

Generalizations of model checking are natural to consider: proof
theory has no problem allowing states to be complex linguistic
expressions, even with bindings (e.g., m-calculus).

It has proved valuable to provide a proof-theoretic framework for
logic programming (going back to 1986). Maybe doing the same
with model checking will also be valuable.



Two ways to move beyond MALL

A quick synopsis for the expert in linear logic:

MALL is a propositional logic without contraction and weakening:
®,1,8,0,0, 1,&, T. Itis decidable.
1. Girard [1987] added the exponentials (!,7) to get linear logic.
2. Baelde and M [2007] added fixed points to get uMALL.

Goal: illustrate how (first-order) uMALL is better suited for model
checkingthan linear logic.



Two ways to move beyond MALL

A quick synopsis for the expert in linear logic:

MALL is a propositional logic without contraction and weakening:
®,1,8,0,0, 1,&, T. Itis decidable.

1. Girard [1987] added the exponentials (!,7) to get linear logic.
2. Baelde and M [2007] added fixed points to get uMALL.

Goal: illustrate how (first-order) uMALL is better suited for model
checkingthan linear logic.

Note:
» Fixed point unfolding resembles contraction: uBt = B(uB)t.

> If B is purely positive, then B = ! B. In MALL: no interesting
such formulas. In uMALL: a rich collection of such formulas.



What is an additive inference rule?

Truth is central to the way that model checking is understood. The
notion of additive inference rules seem to be a treatment of truth.

» Linear logic provides examples of additive inference rules.

» Hintikka games provide another treatment: two player use a
board containing one formula.

> No comma is needed in a sequent.
> etc

Instead of attempting a definition, we state four properties of a
class of additive connectives that seem desirable to maintain.



Additive connectives

Let A be the set of formulas built from the propositional
connectives {A, tt,V, ff} (no propositional constants included).
The unit of A is tt and the unit of V is ff.

Consider the proof system given by the following one-sided sequent
calculus inference rules.

FB,A FByA F B, A F By, A
FBiABy, A Fit,A FBiVB,A FBVB,A

Notice that V has two introduction rules while f has none.

The de Morgan duals are & / A with f / V. By =B we mean the
de Morgan dual of all connectives in B.

The multiset A is provable if and only if there is a proof of - A
using these inference rules.



Some properties of additive connectives

Let A, A’ be multisets of A-formulas and let B be an A-formula.

Theorem (Strengthening)
If = A has a proof, then there is a B € A such that - B.

Theorem (Weakening & contraction admissibility)
If A C A’ and &+ A is provable then = A’ is provable.

Theorem (Initial admissibility)
F B, —B is provable.

Theorem (Cut admissibility)
Ift B,A and = —B, A, then = A, A.



Truth-tables evaluation

These properties allow the following definition.

Define v(-) : A — {tt, ff} such that
» v(B) =t if - B is provable and
» v(B) = ff if - =B is provable.

Initial admissibility implies that v(-) is total.
Cut admissibility implies that v(-) is functional.

The introduction rules yield the truth-table definition for v(-):
e.g., V(A A B) is the truth-functional conjunction of v(A) and
v(B) (similarly for V).

Of course, the logic of A-formulas is essentially trivial. To
strengthen this logic, we add first-order terms and quantification.



Term equality and quantification

A ranked signature ¥ associates to every constructor a natural
number indicating that constructor’s arity.

A Y -term is a (closed) term built from only constructors in X and
obeying the rank restrictions.

For example, if X is {a/0, b/0,f/1,g/2}, then a, (f a), and
(g (f a) b) are all X-terms.

m m t and s differ

Here, t and s are X-terms for some ranked signature X.

F B[t/x],A { FB[t/x],A | X-term t }
F9x.B,A FVx.B,A v-ext

These rules are additive but at the cost of being infinitary.



There is no algorithm here

Let X contain the ranked symbols z/0 and s/1. Abbreviate z,
(sz2),(s(s2), (s(s(sz))) etcby0, 1,2 3, etc.

Let A and B be the set of terms {0,1} and {0, 1,2}, respectively.
These sets can be encoded as the predicate expressions

MX.x=0Vx=1 and MXx.x=0Vx=1Vx=2.

The fact that A C B can be denoted by the formula
Vx.—(Ax) V B x or, equivalently, as

Vx(x#O0Ax#1)Vx=0Vx=1Vx=2

Proving this formula requires an infinite number of premises of the
fom (t#0ANt#1)Vt=0Vvit=1Vvit=2.



Outline of the rest of this talk

» Introduce multiplicative inference rules and connectives.

» Introduce focusing proof systems as a formal mechanism to
define synthetic inference rules.

» Define additive synthetic inference rules
» Define switchable formulas

» Theorem: Synthetic inference rules based on switchable
formulas are additive synthetic inference rules.

» Conclusion: The proof theory of switchable formulas in linear
logic provides a foundation for model checking.



Two treatments for implication

The additive treatment of implication: material implication.

- —A A - B,A
FAS>B,A FAOB,A

Gentzen introduced (two-sided) sequents in order to provide a
different and more familiar form of inference rule for implications.

The multiplicative treatment of implication: hypothetical

reasoning.
NNAFBA

-A>B,A

Contexts are essential: the strengthening theorem does not hold
anymore.
prap
FpDa,p



Multiplicative connectives: implication and conjunction

MEA2A 2, BF Ag NAFBA
M,My,AD BF A1, Ay rN-A>B,A

Currying AD BD C = (A A B) D C yields a multiplicative
conjunction.
A BEFA MEA A M+ B, A,
AATBEA M,Ma-AAY B, A1, As

For symmetry, we rename A as A~ and tt to t~.
In linear logic, one writes &, T, ®, 1 for A=, #t—, AT, #tT.

Similar, D corresponds to —o in linear logic. The multiplicative
disjunction plays no central role here. The multiplicative false #f~
exists as t # t (for closed term t).



Multiplicative connectives: quantifiers and eigenvariables

The multiplicative treatment of quantifiers employs eigenvariables.
Let the set X denote first-order variables.

Let X(X) denote all terms built from constructors in ¥ and from
the variables X’: variables act as constructors of arity 0.

Sequents are now written as X' ; ' = A: the variables in X" are
bound over the formulas in I and A: formulas in I and A are
Y (&X)-formulas.

X, TEB[t/x],A X,y; T Bly/x],A
X;+3x.B,A X; TFVYx.B,A

where t is a X(X)-term and y ¢ X. Dually, for the left
introduction rules.



Equality with open terms

When t and s are not unifiable,

X;T,t=sFA X;TEt#s A
Otherwise, set § = mgu(t,s):

O ; OT - OA OX; OT - OA
X;Tt=sFA X:TFt#£sA

Here, X is the result of removing from X variables in the domain
of @ and then adding the variables free in the codomain of 6.

This treatment of equality was developed independently by
Schroeder-Heister and Girard in [1991/92]. Unification is a black
box attached to sequent calculus.

This treatment has been extended to simply typed A-terms and
this has been implemented in Bedwyr and Abella.



Return to the subset example

Let ¥ = {z/0,s/1} and let the sets A and B be
MX.x=0Vx=1 and M. x=0Vvx=1Vx=2.
We now have a finite proof of A C B.

- F0=0v0=1v0=2 o F1=0Vv1=1Vv1=2
X x=0Fx=0Vx=1Vx=2 x;x=1Fkx=0Vx=1Vvx=2
X x=0Vx=1Fkx=0Vx=1Vx=2
o FEVx(x=0vx=1)D(x=0vx=1Vvx=2)

This proof accounts for reachability: we only consider checking
membership in set B for those elements “reached” in A.



Fixed points

The least fixed point p and greatest fixed point v are actually a
series of operators depending on the arity of the relationship they
define. We leave this arity implicit. Unfolding uBt; ... t, and
vBt; ... t, yields

B(uB)ty...t, and B(vB)ty...t,, respectively.

X Tk B(uB), A X B(uB)E,TFA
v r-uBia "R Tx uBiTrA
X; BBtk A X, A BvB)t
X:T,wBtFA Y5 X T A vBE

1%

Rules for p-unfolding on the left and v-unfolding on the right are
admissible.

Induction and coinduction rules (using invariants) are not displayed
here.



Horn clauses yield least fixed points

Prolog specification of a (tiny) graph and its transitive closure:

step a b. step b c. step c b.
path X Z :- step X Z.
path X Z :- step X Y, path Y Z.

step as a least fixed point expression:
pAAMNY. (x =aAt y =b)V(x=bATy =c)V(x=c A"y =b))
path as a fixed point expression:

p(AAXxAz. step x zV (Jy.step x y AT Ay 2)).

Focusing terminology: =, AT, V, 3, and p are positive connectives.
Horn clause definitions correspond to purely positive expressions.



Reachability proof

There is no proof that there is a step from a to c.

fail

F(a=aANtc=b)V(a=bATc=c)V(a=cAt c=0b)

Fstepac

There is a proof that there is a path from a to c.

Fstepab F pathbc
Fstep a bAT pathbc
Fdy.step a y AT pathy c

- step a cV (Jy.step a y At pathy c)
- path(a, c)




Non-reachability proof

Below is a proof that the node a is not adjacent to c.

a=ac=bt- a=b,c=ct- a=c,c=bt-
a=aANc=bl- a=bANc=ck- a=cANc=bF-
(a=antc=b)V(a=bATc=c)V(a=cAtc=b)F-
stepachk-

In general, proofs by negation-as-finite-failure yield sequent
calculus proofs in this setting.

If the underlying graph has cycles, then we need to strengthen the
proof rules to contain induction.



More examples

Definitions of relations for natural numbers, addition, less-than.

nat =pANAn(n =z VvV 3In'(n=s n AT N n'))
plus =pAPAnAmAp ((n = z At m = p)v
I3 (n=sn ANt p=sp At Pn mp))
It =p LAy ((x = z AT Y’y = sy/)Vv
A3y x=sx' ATy =sy/ AT L X' y))

The following formula requires induction to be proved.
VnVmVp(nat n > nat m O plus n m p D plus m n p)
The following formula can be proved by a model checker.

VnVYm¥p(It n 10 D It m 10 D plus n m p D plus m n p)



Synthetic inference rules via focusing

Negative connectives have invertible right-introduction rules.
Positive connectives have (generally) non-invertible
right-introduction rules.

Sequents in the focused proof system come in three styles.
» wup-arrow sequents: X: N 1 TH A { P.
» eft-down-arrow sequent: X: N |l BF P.
» right-down-arrow sequent: X: N'F B || P.

B is the focus of these |}-sequents.

Storage on left: N is a multiset of negative formulas
Storage on right: P is a multiset of positive formulas

Both A and I can be either lists or multisets of formulas.

X is a variable signature as we have seen before.



A focused proof system: the 1} rules

YO: NONTOF AG 1 PO YO:NOA -+ -1 PO
X NAs=t,TEANP XN -bFs#ttP X:N{s=t,TEAQP

NATFAQP Ni-FAQRP
Ni F (sZtAP NIt . TFAIP NOI-FF.ALP
NAALTFANP  NAOALTFAQNP
NYAVATEANP
N -FA QP N{-FANP
N -FAANANP
N A ALALTEARP NP AFEA, AP
NPANATEANP N4 FADAANP NAF . TEANP
X,y N Cy,TEA{P X,y: NO-FCy, AP
Nt -Ft T, AP X:NAHIx.Cx,TEANP XN -EVx.Cx,A P
N4 BUB)ETFALYP N4 -FBwB)ELANP
NOuBETEA(P N1 -FuvBEANP

1 1

Proviso f: 8 = mgu(s, t) and {: s and t not unifiable.



A focused proof system: | and structural rules

NIt#£tEP NEt=t|P
M-EALPL N AP,

NIF P NEtT P
NiFA UP1 Aok A |l P

Ni,N2 L A1 D As k- P1, P2

N1, Na b Ay AT A || P, Po

NUIAEP NEA P
NIAAN AFP  NFAVA P
NUCt+P NECt|P
NUIVx.CxkP NEIx.Cx|P
N B(vB)t+P NFEBuB)t | P
NIJvBtHP NEuBt| P

store release decide
N, NHTHFANP NAYPE-HP NUNEFP

NONTEAQNP NUIPFP N,N{-F- P
Nt-FAGPP  NA-ENGP NEPLP

NO-FPAGP  NENLIP  N{-F-(PP



Synthetic inference rules

Sequents of the form X: N 1} - - ) P are border sequents.

Synthetic inference rules have border sequents as conclusion and as
premises.

A border sequent X: N 1 - F - {} P where PUN is a singleton
multiset is called a singleton border sequent.

Such a sequent is of the form
X:NO-F-f- or X:-{-F-0P

These sequent represent proving =N (for a negative formula N) or
proving P (for a positive formula P).

Only the decide rules can have such a sequent as its conclusion
and there is only one choice for the focus.



Synthetic inference rules: purely positive formulas

P=tt|t=s|pu AXZ.P|PA"P|PVP|3x.P

Consider a border sequent with a purely positive P on the right

X:-FP{-
X: kP

If a complete proof = exists, it is entirely one |}-phase.

An entire Prolog-like computations can be forced into one phase.



Additive synthetic connectives

In order to build on additive synthetic connectives, we need to
restrict occurrence of the multiplicative connectives O and AT.

A uMALL™ formula is switchable if

» whenever a subformula C AT D occurs negatively (under an
odd number of implications), either C or D is purely positive;

» whenever a subformula C D D occurs positively (under an
even number of implications), either C is purely positive or D
is purely negative.

Note: purely positive formulas and purely negative formulas are
switchable.

An occurrence of a formula B in a sequent is switchable if it
appears on the right-hand side (resp. left-hand side) and B (resp.
B D ff~) is switchable.



Example: simulation

A .
Let P — @ be a labeled transition system between processes and
actions. Assume it is defined as a purely positive expression.

If p,q € P and a € A then both P 25 Q and (P -2 Q) > ff~
are switchable formulas.

The following fixed point expressions define simulation and
bisimulation.

v(ASApAG.VaVp'.p —5 p' 53¢ .q =5 ¢ AT Sp' ()
v(ABApAg. (Vavp'.p -2 p'D3¢.q 25 ¢ AT Bp q)
AN (Va¥q'.q =5 ¢ D3p.p - p AT B4 p'))

These are switchable formulas. Note that bisimulation has both
conjunctions.



Switchable formulas yield additive synthetic rules

The following theorem is proved by a simple induction on the
structure of uMALL™ proofs.

Theorem
A uMALLF~ derivation of either

AN R or A,

where the occurrence of A is switchable, is composed of only
additive synthetic inference rules.



An example of a synthetic inference rules

A b sim(pi, gi) -
ook sim(pi, qi) | -
ok 3Q g0 25 QAT sim(pi, Q) |-
ek 3Q g0 =5 QAT sim(pi, @)
R 3Qg0 5 QAT sim(pi, @) 1) -

P A: 1 po 25 P+ 3Q.q0 25 Q' AT sim(P!, Q') 1 -
- sim(po, o) 1 -

A contain introduction rules for unfolding, V, and D.
B consists of 1} rules that generate all a;, p; such that py N pi.
C is a sequence of |} rules that prove that qg SN qg;.

Finally, the top-most inference rule is a release rule.



Some applications

The model checker Bedwyr implements proof search in yMALL.

The interactive theorem prover Abella is based an intuitionistic
extension containing also induction and coinduction.

We have used this proof theory to design the following proof
certificates for model checking queries.

» A path in a graph can be proof certificate for reachability.

> A connected component can be a proof certificate for
non-reachability.

» A bisimulation can be a proof certificate for bisimilarity.

» A Hennessy-Milner modal formula can be a proof certificate
for non-bisimilarity.



Conclusion

Multiplicative Additive Linear Logic (MALL) plus connectives for
first-order terms (V, =, u, v) provides a natural setting for many
model checking queries.

Additive connectives has a clear relationship to model theory.

To be more expressive and finitary, we allow multiplicative rules
but limit their use to the construction of additive synthetic
inference rules.

The proof theory of switchable formulas in linear logic provides a
foundation for model checking.



