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Abstract
In linear logic, the invertibility of a connective’s right-introduction rule is equivalent to the non-
invertibility of its left-introduction rule. This duality motivates the concept of polarity: a connective
is termed negative if its right-introduction rule is invertible, and positive otherwise. A two-sided
sequent calculus for first-order linear logic featuring only negative connectives exhibits a compelling
proof theory. Proof search in such a system unfolds through alternating phases of invertible
(right-introduction) rules and non-invertible (left-introduction) rules, mirroring the processes of
goal-reduction and backchaining, respectively. These phases are formalized here using the framework
of multifocused proofs. We analyze linear logic by dissecting it into three sublogics: L0 (first-order
intuitionistic logic with conjunction, implication, and universal quantification); L1 (an extension
of L0 incorporating linear implication which preserves its intuitionistic nature); and L2 (which
includes multiplicative falsity ⊥ and encompasses classical linear logic). It is worth noting that the
single-conclusion restriction on sequents, a constraint imposed by Gentzen, is not a prerequisite for
defining intuitionistic logic proofs within this framework, as it emerges naturally by restricting the
formulas to those of L0 and L1. While multifocused proofs of L2 sequents can accommodate parallel
applications of left-introduction rules, proofs of L0 and L1 sequents cannot leverage such parallel
rule applications. This notion of parallelism within proofs enables a novel approach to handling
disjunctions and existential quantifiers in the natural deduction system for intuitionistic logic.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Linear logic

Keywords and phrases Linear logic, multifocused proofs, sequent calculus

Digital Object Identifier 10.4230/LIPIcs.FSCD.2025.26

1 Introduction

Whether or not an inference rule is invertible is an important property to note. Although
Gentzen seemingly did not consider this property of his inference rules [33], Ketonen recognized
its importance shortly after Gentzen’s work. Indeed, Ketonen restructured Gentzen’s LK
calculus around invertible rules, which enabled him to establish certain decidability and
independence results for classical provability [18, 19]. Maximizing the presence of invertible
inference rules within a proof system stands as a central goal of the widely used G3 two-sided
sequent calculus proof system [38].

An intriguing property of linear logic is that the right introduction of a connective
is invertible if and only if the right introduction of its dual connective is not invertible.
(Note that linear negation is not considered a logical connective in this context.) This
observation naturally leads to the concept of polarity. Following Girard [13] and Andreoli [1],
a connective is defined as negative if its right-introduction rule is invertible, and positive
otherwise. Consequently, a non-atomic formula is defined as negative (positive) if its top-level
connective is negative (resp., positive). To extend this notion of polarity to all formulas, a
polarity must also be assigned to atomic formulas. While this assignment can be arbitrary,
we follow Andreoli’s convention [1] and assign all atomic formulas the negative polarity.

In linear logic, the logical connectives ⊤, &, ⊥,`, ∀, ? are negative and 0, ⊕, 1, ⊗, ∃, !
are positive. We follow [26] in presenting linear logic with both linear implication ⊸ and
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26:2 Linear logic using negative connectives: extended version

intuitionistic implication ⇒ as primitive. When ⇒ is not a primitive, it is usually defined so
that A ⇒ B is ! A ⊸ B. As a result of using ⇒, we will not take ! as a primitive. Since these
implications have invertible right-introduction rules, they are both negative connectives.

In this paper, we develop the proof theory for full linear logic by employing only negative
connectives. We slice full linear logic into the following three classes of connectives:

L0 captures the core of intuitionistic logic using the linear logic connectives {⊤, &, ⇒, ∀}.
L1 extends L0 by including ⊸ and corresponds to linear intuitionistic logic.
L2 extends L1 by including ⊥ and `, forming a complete set of connectives for linear
logic.

Thus, the sets of connectives are defined as follows: L0 = {⊤, &, ⇒, ∀}, L1 = L0 ∪ {⊸},
and L2 = L1 ∪ {⊥,`}. For i ∈ {0, 1, 2}, we define an Li-formula as a formula where all
connectives occurring in it are from Li. In this paper, ∀ denotes a first-order quantifier.

Proof systems that use only negative connectives are common in the literature on
intuitionistic logic. For instance, the connectives in L0 are primarily the ones discussed
in the first half of Girard’s textbook [14]. The positive connectives, such as disjunction,
falsehood, and existential quantification, are only briefly mentioned in Chapter 10. Similarly,
those studying the normalization procedure for natural deduction in Prawitz’s book [35]
will observe how straightforward the treatment of negative connectives is compared to the
complexity involved in handling positive connectives.

As the following equivalences reveal, the set L2 is a complete set of connectives. (Here,
A ≡ B is defined as the judgment that the formula (A ⊸ B) & (B ⊸ A) is provable.)

0 ≡ ⊤ ⊸ ⊥ ! B ≡ (B ⇒ ⊥) ⊸ ⊥ B ⊕ C ≡ ((B ⊸ ⊥) & (C ⊸ ⊥)) ⊸ ⊥
1 ≡ ⊥ ⊸ ⊥ ? B ≡ (B ⊸ ⊥) ⇒ ⊥. B ⊗ C ≡ (B ⊸ ⊥) ⊸ (C ⊸ ⊥) ⊸ ⊥

∃x.B ≡ (∀x.B ⊸ ⊥) ⊸ ⊥

The set L2 is redundant since B ` C is equivalent to both (B ⊸ ⊥) ⊸ (C ⊸ ⊥) ⊸ ⊥
and to (B ⊸ ⊥) ⊸ C. We shall find it convenient to keep ` in L2, particularly when we
discuss multiset rewriting in Section 3.1. When a positive connective appears on the left of
an implication, the curry/uncurry equivalences can be employed as below (hence, avoiding
the double-negation expressions above).

1 ⊸ H ≡ H (B ⊗ C) ⊸ H ≡ B ⊸ C ⊸ H (B ⊕ C) ⊸ H ≡ (B ⊸ H) & (C ⊸ H)
0 ⊸ H ≡ ⊤ (∃x.Bx) ⊸ H ≡ ∀x.(Bx ⊸ H)

The main theoretical tools used in this paper are the ⇓ L2 focused proof system and
its extension ⇓+L2 that includes (versions of) the cut rule. A sequent is an Li sequent
(i ∈ {0, 1, 2}) if all formulas occurring in it are Li formulas.

While this paper presents different ways to present several known results in structural
proof theory, it also contains the following novelties.
1. ⇓ L2 proofs of L0 and L1 formulas have the usual intuitionistic structure: i.e., they are

necessarily single-conclusion. Classical proof structure only appears once the ⊥ and `
connectives are admitted.

2. As we shall demonstrate, parallel rule application is captured through multifocusing.
Multifocused proofs based on L0 and L1 formulas are, in fact, single-focused. As a result,
such proofs do not permit the parallel application of rules. Non-single-focused proofs are
possible with L2-sequents.

3. Our proof of cut elimination in ⇓+L2 (Theorem 10) contains some technical novelties.
4. The admissibility of cut in ⇓ L2 provides a new proof of the completeness of ⇓ L2: earlier

completeness proofs relied on permutation arguments within cut-free proofs [2, 26].
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5. We provide an improved treatment of disjunction and existential quantification within
the LJT intuitionistic proof system of [15] and use it to motivate a parallel elimination
rule for ∨ and ∃ in natural deduction proofs for intuitionistic logic.

It is well known that while cut elimination can be challenging to prove given the many
cases that need to be considered, once it is proved many important results follow immediately
(witness the fact that Gentzen was able to prove the consistency of classical and intuitionistic
logic using a one-line proof that invoked his Hauptsatz). We have placed the cut-elimination
theorem for ⇓ L2 in the extended version of this paper [27] and in [28, Chapter 7]: as a result,
this paper focuses on consequences of cut elimination rather than on that result.

2 The focused proof systems ⇓ L2 and ⇓+L2

The inference rules in Figure 1 involve two kinds of sequents, namely, Σ: Ψ; Γ ⊢ ∆ and
Σ: Ψ; Γ ⇓ Θ ⊢ Θ′ ⇓ ∆. The signature of these sequents Σ is a binder of eigenvariables within
the scope of the sequent. Any variable free in any formula occurring in any zone of the
sequent must be explicitly bound (and typed) in Σ. The other components of sequents—the
left-unbounded zone Ψ, the left-bounded zone Γ, the right-bounded zone ∆, the left-focused
zone Θ, and the right-focused zone Θ′—are all multisets of formulas. We write multiset union
as ⊎.

The decidem rule contains the two schema variables Ψ2 and Ψ̂2: we require these two
variables to be instantiated with multisets of formulas in such a way that every formula
with a non-zero multiplicity in one of them also has a non-zero multiplicity (not necessarily
equal) in the other. The decidem rule is also constrained so that the multiset union Ψ̂2, Γ2
is non-empty. If we make no further restrictions on the decidem inference rule, we call the
proof system in Figure 1 the near-focused proof system for L2. The ⇓ L2 proof system is
the result of requiring that the schema variable ∆ in the decidem be a multiset of atomic
formulas. Given that restriction on the decidem rule, it is the case that all instances of the
left-phase rules are such that the right-bounded zone contains only atomic formulas. Thus,
in ⇓ L2 proofs, the init rule takes place between two occurrences of the same atomic formula.

Although this paper is limited to first-order quantification, it is worth noting that near-
focused proofs are stable under higher-order substitution. Specifically, if a predicate within a
near-focused proof is substituted with a λ-term that may contain logical connectives, the
resulting instantiation will also be a near-focused proof [28, Chapter 9]. In contrast, an
analogous statement does not hold for ⇓ L2 proofs since such substitutions can transform an
atomic formula into a non-atomic formula.

The ⇓+L2 proof system is the result of adding the following two cut rules to ⇓ L2.

Σ: Ψ; · ⊢ B Σ: Ψ, B; Γ ⊢ ∆

Σ: Ψ; Γ ⊢ ∆
cut !

Σ: Ψ; Γ1 ⊢ B, ∆1 Σ: Ψ; Γ2, B ⊢ ∆2

Σ: Ψ; Γ1, Γ2 ⊢ ∆1, ∆2
cutl

The formula B is the cut-formula in both of these rules. We say that a Σ-formula B has an
⇓ L2 proof if the sequent Σ: ·; · ⊢ B has an ⇓ L2 proof.

The site of an inference rule is a set of formula occurrences in the conclusion of that rule,
defined as follows: (i) the site for an introduction rule contains just the formula occurrence
being introduced, (ii) the site of an init rule contains the two formula occurrences labeled by
B in Figure 1, and (iii) the site of the rules release, decidem, cut !, and cutl are all empty.
An occurrence of a formula in the conclusion of an inference rule is a side-formula occurrence
if it is not in the site of that rule. For example, all formula occurrences in the conclusion of
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26:4 Linear logic using negative connectives: extended version

Right phase rules

Σ: Ψ; Γ ⊢ ⊤, ∆
⊤R

Σ: Ψ; Γ ⊢ B, ∆ Σ: Ψ; Γ ⊢ C, ∆

Σ: Ψ; Γ ⊢ B & C, ∆
&R

Σ: Ψ; Γ ⊢ ∆

Σ: Ψ; Γ ⊢ ⊥, ∆
⊥R

Σ: Ψ; Γ ⊢ B, C, ∆

Σ: Ψ; Γ ⊢ B ` C, ∆
` R

Σ: Ψ; B, Γ ⊢ C, ∆

Σ: Ψ; Γ ⊢ B ⊸ C, ∆
⊸ R

Σ: B, Ψ; Γ ⊢ C, ∆

Σ: Ψ; Γ ⊢ B ⇒ C, ∆
⇒ R

y : τ, Σ: Ψ; Γ ⊢ B[y/x], ∆

Σ: Ψ; Γ ⊢ ∀τ x.B, ∆
∀R

Left phase rules

Σ: Ψ; · ⇓ ⊥ ⊢ · ⇓ ·
⊥L

Σ: Ψ; Γ1 ⇓ B, Θ1 ⊢ Θ3 ⇓ ∆1 Σ: Ψ; Γ2 ⇓ C, Θ2 ⊢ Θ4 ⇓ ∆2

Σ: Ψ; Γ1, Γ2 ⇓ B ` C, Θ1, Θ2 ⊢ Θ3, Θ4 ⇓ ∆1, ∆2
`L

Σ: Ψ; Γ ⇓ Bi, Θ ⊢ Θ′ ⇓ ∆

Σ: Ψ; Γ ⇓ B1 & B2, Θ ⊢ Θ′ ⇓ ∆
&Li, i ∈ {1, 2}

Σ: Ψ; Γ ⇓ B[t/x], Θ ⊢ Θ′ ⇓ ∆

Σ: Ψ; Γ ⇓ ∀τ x.B, Θ ⊢ Θ′ ⇓ ∆
∀L

Σ: Ψ; Γ1 ⇓ Θ1 ⊢ Θ3, B ⇓ ∆1 Σ: Ψ; Γ2 ⇓ C, Θ2 ⊢ Θ4 ⇓ ∆2

Σ: Ψ; Γ1, Γ2 ⇓ B ⊸ C, Θ1, Θ2 ⊢ Θ3, Θ4 ⇓ ∆1, ∆2
⊸L

Σ: Ψ; · ⊢ B Σ: Ψ; Γ ⇓ C, Θ ⊢ Θ′ ⇓ ∆

Σ: Ψ; Γ ⇓ B ⇒ C, Θ ⊢ Θ′ ⇓ ∆
⇒L

Σ: Ψ; · ⇓ B ⊢ · ⇓ B
init

Phase switching rules

Σ: Ψ1, Ψ2; Γ1 ⇓ Ψ̂2, Γ2 ⊢ · ⇓ ∆

Σ: Ψ1, Ψ2; Γ1, Γ2 ⊢ ∆
decidem

Σ: Ψ; Γ ⊢ Θ, ∆

Σ: Ψ; Γ ⇓ · ⊢ Θ ⇓ ∆
release

The decidem rule is restricted so that (i) the union Ψ̂2, Γ2 is non-empty, (ii) ∆ is a multiset
of atomic formulas, and (iii) Ψ2 and Ψ̂2 are instantiated with multisets of formulas so that
every formula with a non-zero multiplicity in one of them also has a non-zero multiplicity
(not necessarily equal) in the other. The quantifier rules have the usual provisos: y /∈ Σ in
∀R, and t is a Σ-term of type τ in ∀L.

Figure 1 The ⇓ L2 focused proof system.

release, decidem, cut !, and cutl are side-formula occurrences. Side-formula occurrences can
appear in any zone in the two different styles of sequents.

The inference rules of the ⇓ L2 proof system are classified as multiplicative and additive
depending on how the rule treats bounded side-formula occurrences. All inference rules
treat side-formula occurrences in the unbounded zone the same: formulas occurring in the
unbounded zone of the conclusion occur in the unbounded zone of every premise. An inference
rule is additive if every side-formula occurrence in a bounded zone in the rule’s conclusion
has an occurrence in the same bounded zone in every premise of the rule. An inference rule
is multiplicative if every side-formula occurrence in a bounded zone in the rule’s conclusion
has an occurrence in exactly one premise and that occurrence is within the same kind of
bounded zone. (Here, the left and right-focused zones are also considered to be bounded
zones.) Note that all right phase rules are additive, all left rules are multiplicative, and all
phase switching rules are additive and multiplicative.

Proofs in ⇓ L2 are multifocused proofs. If every occurrence of the decidem rule in a proof
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selects exactly one formula, we say that the proof is single-focused. Similarly, proofs in ⇓ L2
are multiple-conclusion proofs. If every sequent in a proof has exactly one formula on its
right-hand side, we say that the proof is a single-conclusion proof.

The focused proof system ⇓ L2 can be used to build large-scale inference rules by abstract-
ing away from some of the details in the exact order introductions are applied, as described
next. A border sequent is a sequent of the form Σ: Ψ; Γ ⊢ ∆ where ∆ is a multiset of atomic
formulas. Above a border sequent is a decidem rule and above that is a left phase. Open
premises of the left phase are either the left premise of ⇒L or the conclusion of a release
rule; above these are right phases. Open premises of these right phases must again be border
sequents. Such a collection of inference rules that have border sequents as (open) premises, a
border sequent as the conclusion, and exactly one instance of the decidem rule is called a
bipole. The synthetic rule justified by such a bipole is the result of deleting all the internal
inference rules of the left and right phases and simply maintaining the border sequents as
premises and conclusion.

▶ Example 1. Let a, b, c be propositional constants and assume that Ψ contains the formula
a ⊸ b ⊸ c. We have the following bipole and the synthetic inference rule it justifies.

Σ: Ψ; Γ1 ⊢ a, ∆1

Σ: Ψ; Γ1 ⇓ · ⊢ a ⇓ ∆1
release

Σ: Ψ; Γ2 ⊢ b, ∆2

Σ: Ψ; Γ2 ⇓ · ⊢ b ⇓ ∆2
release

Σ: Ψ; · ⇓ c ⊢ · ⇓ c
init

Σ: Ψ; Γ1, Γ2 ⇓ a ⊸ b ⊸ c ⊢ · ⇓ c, ∆1, ∆2
⊸ ×2

Σ: Ψ; Γ1, Γ2 ⊢ c, ∆1, ∆2
decidem

Σ: Ψ; Γ1 ⊢ a, ∆1 Σ: Ψ; Γ2 ⊢ b, ∆2

Σ: Ψ; Γ1, Γ2 ⊢ c, ∆1, ∆2

If instead we assume that Ψ contains the formula a ⇒ b ⇒ c then we have the following
bipole and the synthetic inference rule it justifies.

Σ: Ψ; · ⊢ a, · Σ: Ψ; · ⊢ b Σ: Ψ; · ⇓ c ⊢ · ⇓ c
init

Σ: Ψ; · ⇓ a ⇒ b ⇒ c ⊢ · ⇓ c
⇒ ×2

Σ: Ψ; · ⊢ c
decidem

Σ: Ψ; · ⊢ a Σ: Ψ; · ⊢ b

Σ: Ψ; · ⊢ c

The following soundness theorem is straightforward to prove since every inference rule in
⇓ L2 is derivable in linear logic: when translating the zoned sequents used in ⇓ L2 to linear
logic, simply place the exponential ! on all formulas in the unbounded zone and then replace
the semicolon and the two occurrences of ⇓ with commas.

▶ Theorem 2 (Soundness of ⇓ L2 proofs). If Σ: ·; · ⊢ B has a ⇓ L2 proof then B is a theorem
of linear logic.

2.1 Deriving ⇓ L0 and ⇓ L1 from ⇓ L2

One of the important features of the ⇓ L2 proof system is that if we are interested in proving
an L1 or an L0 formula, then various features of ⇓ L2 proofs are not used, and that proof
system can be greatly simplified when proving such formulas. The following propositions
will allow us to justify such simplifications of ⇓ L2.

▶ Lemma 3. There is no ⇓ L2 proof of an L1 sequent with an empty right side.

FSCD 2025



26:6 Linear logic using negative connectives: extended version

Proof. Assume that there is a ⇓ L2 proof of a sequent with an empty right side and with
only L1 formulas on the left side. Let Ξ be such a proof of minimal height. Consider the last
inference rule of Ξ. This last inference rule cannot be a right-introduction rule since these
require a non-empty right side. Similarly, the last rule is not decidem since that would yield
a premise with an empty right side and with a shorter proof. Thus, the endsequent of Ξ
must be of the form Σ: Ψ; Γ ⇓ Θ ⊢ · ⇓ · where Ψ, Γ, and Θ are multisets of L1 formulas over
Σ. However, a check of all possible left-introduction rules (⊥L and ` L are not possible)
and the release rule yields at least one premise with an empty right side which has a shorter
proof. This contradicts the choice of Ξ. ◀

▶ Proposition 4. If Ξ is a ⇓ L2 proof of a single-conclusion L1-sequent then Ξ is a single-
conclusion proof.

Proof. We proceed by induction on the structure of the ⇓ L2 proof Ξ. By considering all
the possible last inference rules of Ξ, we need to show that a single-conclusion sequent in
the conclusion will guarantee that all premises are also single-conclusion: the inductive
hypothesis then completes the proof. The only case that is not immediate is the case for the
⊸ L rule, namely,

Σ: Ψ; Γ1 ⇓ Θ1 ⊢ Θ3, B ⇓ ∆1 Σ: Ψ; Γ2 ⇓ C, Θ2 ⊢ Θ4 ⇓ ∆2

Σ: Ψ; Γ1, Γ2 ⇓ B ⊸ C, Θ1, Θ2 ⊢ Θ3, Θ4 ⇓ ∆1, ∆2
⊸L

and where Θ3 ⊎ Θ4 ⊎ ∆1 ⊎ ∆2 is a singleton multiset. By Lemma 3, we know that Θ4 ⊎ ∆2 is
not empty. As a result, Θ3 ⊎ ∆1 must be empty. Thus, both premises of this inference rule
are single-conclusion sequents. ◀

▶ Proposition 5. If Ξ is a ⇓ L2 proof of a single-conclusion L1 sequent then Ξ is single-
focused.

Proof. Assume that there is a ⇓ L2 proof of an L1 sequent that is not single-focused, and let
Ξ be chosen as such a proof of minimal height. The endsequent of Ξ must be a ⇓-sequent
with the focused zones containing at least two formulas. Consider the last inference rule
in Ξ. That rule is not init. By Proposition 4, it is not release. Because of the minimality
assumption, that rule is not ∀L, &L, or ⇒ L. The only remaining case is when that rule is
⊸ L. Thus, the last inference figure in Ξ is of the form

Σ: Ψ; Γ1 ⇓ Θ1 ⊢ Θ3, B ⇓ ∆1 Σ: Ψ; Γ2 ⇓ C, Θ2 ⊢ Θ4 ⇓ ∆2

Σ: Ψ; Γ1, Γ2 ⇓ B ⊸ C, Θ1, Θ2 ⊢ Θ3, Θ4 ⇓ ∆1, ∆2
⊸L,

where at least one of the multisets Θ1, . . . , Θ4 must be non-empty. Thus, one of the premises
must have a focused zone with two or more members, which contradicts the minimal height
assumption about Ξ. ◀

Let Ξ be a ⇓ L2 proof of the sequent Σ: ·; · ⊢ B, where B is an L1 Σ-formula. By
Proposition 4, all sequents in Ξ are single-conclusion and by Proposition 5, every ⇓ sequent
has a focus zone (combining the left and right parts) containing exactly one formula. The
proof system in Figure 2 can describe all such proofs; this proof system arises from ⇓ L2 by
taking the following steps:

Delete the inference rules that introduce ⊥ and `.
Simplify all sequents to have only one formula on the right side.
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Σ: Ψ; Γ ⊢ ⊤
⊤R

Σ: Ψ; Γ ⊢ B Σ: Ψ; Γ ⊢ C

Σ: Ψ; Γ ⊢ B & C
&R

Σ: Ψ; B, Γ ⊢ C

Σ: Ψ; Γ ⊢ B ⊸ C
⊸ R

Σ: B, Ψ; Γ ⊢ C

Σ: Ψ; Γ ⊢ B ⇒ C
⇒ R

y : τ, Σ: Ψ; Γ ⊢ B[y/x]

Σ: Ψ; Γ ⊢ ∀τ x.B
∀R

Σ: Ψ; Γ ⇓ Bi ⊢ A

Σ: Ψ; Γ ⇓ B1 & B2 ⊢ A
&Li

Σ: Ψ; Γ ⇓ B[t/x] ⊢ A

Σ: Ψ; Γ ⇓ ∀τ x.B ⊢ A
∀L

Σ: Ψ; · ⇓ A ⊢ A
init

Σ: Ψ; · ⊢ B Σ: Ψ; Γ ⇓ C ⊢ A

Σ: Ψ; Γ ⇓ B ⇒ C ⊢ A
⇒L

Σ: Ψ; Γ1 ⊢ B Σ: Ψ; Γ2 ⇓ C ⊢ A

Σ: Ψ; Γ1, Γ2 ⇓ B ⊸ C ⊢ A
⊸L

Σ: Ψ, B; Γ ⇓ B ⊢ A

Σ: Ψ, B; Γ ⊢ A
decide !

Σ: Ψ; Γ ⇓ B ⊢ A

Σ: Ψ; Γ, B ⊢ A
decidel

Figure 2 The ⇓ L1 proof system

Modify the decide rule to select exactly one formula by splitting it into decidel (to
select a formula from the left-bounded zone) and decide ! (to select a formula from the
left-unbounded zone).
Drop the release rule since it can be merged into the left premise of ⊸ L. As a result,
all ⇓ sequents no longer need their right-focused zone.

The resulting simplification of the ⇓ L2 proof system is the ⇓ L1 proof system in Figure 2.
It is simple to show that if B is an L1 formula then there is a ⇓ L2 proof of B if and only if
there is a ⇓ L1 proof of B. Thus, the multiple-conclusion and the multifocus features of ⇓ L2
proofs are not usable for L1 sequents. Note that in other presentations of proof systems for
intuitionistic linear logic, the use of single-conclusion sequents is a requirement [11, 21, 36, 39],
while in our setting, it is a consequence of the choice of connectives.

If we now turn our attention to proofs of L0 formulas, we find that an additional feature
of ⇓ L1 and ⇓ L2 proofs is not needed.

▶ Proposition 6. If B is an L0 Σ-formula and Ξ is a ⇓ L2-proof of Σ: ·; · ⊢ B, then Ξ is a
single-focused and single-conclusion proof in which all left-bounded zones are empty.

Proof. Let B be an L0 Σ-formula, and let Ξ be a ⇓ L2-proof of Σ: ·; · ⊢ B. By the two
preceding propositions, Ξ can be viewed as a ⇓ L1 proof. An easy induction on the structure
of such proofs reveals that if B does not contain ⊸, then the left-bounded zone for all
sequents in Ξ is empty. ◀

This proposition justifies introducing the ⇓ L0 proof system in Figure 3, where the
inference rules introducing ⊸ are dropped, and the left-bounded zone is removed (since it
will always be empty). The ⇓ L0 proof system is also known as LJT [15, 16] and as uniform
proofs with backchaining [29]. We will return to ⇓ L0 when we discuss the LJT− proof system
in Section 5.

It is worth noting here that while ⇓ L2 is a multiple-conclusion proof system, both ⇓ L0
and ⇓ L1 are single-conclusion proof systems. This characteristic of ⇓ L0 and ⇓ L1 is not
an imposition on the more general multiple-conclusion proof system (as Gentzen needed to
impose on LK to get the LJ proof system [11]) but rather it is simply a consequence of using
fewer logical connectives.

FSCD 2025
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Σ: Ψ ⊢ ⊤
⊤R

Σ: Ψ ⊢ B Σ: Ψ ⊢ C

Σ: Ψ ⊢ B & C
&R

Σ: B, Ψ ⊢ C

Σ: Ψ ⊢ B ⇒ C
⇒R

y : τ, Σ: Ψ ⊢ B[y/x]

Σ: Ψ ⊢ ∀τ x.B
∀R

Σ: Ψ ⇓ Bi ⊢ A

Σ: Ψ ⇓ B1 & B2 ⊢ A
&Li

Σ: Ψ ⇓ B[t/x] ⊢ A

Σ: Ψ ⇓ ∀τ x.B ⊢ A
∀L

Σ: Ψ ⊢ B Σ: Ψ ⇓ C ⊢ A

Σ: Ψ ⇓ B ⇒ C ⊢ A
⇒L

Σ: Ψ ⇓ A ⊢ A
init

Σ: Ψ, B ⇓ B ⊢ A

Σ: Ψ, B ⊢ A
decide !

Figure 3 The rules that result from restricting ⇓ L2 to L0 sequents.

2.2 Paths in formulas
Given a sequent of the form Σ: Ψ; Γ ⊢ ∆ there is a unique right phase with that conclusion:
the right phase can be seen as a function that takes such a sequent and returns a multiset of
sequents of the form Σ, Σ′ : Ψ, Ψ′; Γ, Γ′ ⊢ A (where A is a multiset of atomic formulas), which
forms the premises of that right-introduction phase. On the other hand, the left-introduction
phase yields a nondeterministic relation between its endsequent, say, Σ: Ψ; Γ ⇓ Θ ⊢ · ⇓ A,
and the multiset of sequents of the form Σ: Ψ; Γ′ ⇓ · ⊢ Θ′ ⇓ ∆′ that are the premises of a
left-introduction phase. As Propositions 7 and 8 will show, the following notion of paths in
L2 formulas can be used to calculate those functions and relations.

Let B be an L2-formula. The paths in B are those formulas P for which the following
two-place relation B ↑ P is provable.

A ↑ A
A is atomic

B1 ↑ P

B1 & B2 ↑ P

B2 ↑ P

B1 & B2 ↑ P

B ↑ P

∀τ x.B ↑ ∀τ x.P

B ↑ P

C ⇒ B ↑ C ⇒ P

B ↑ P

C ⊸ B ↑ C ⊸ P ⊥ ↑ ⊥

B1 ↑ P1 B2 ↑ P2

B1 ` B2 ↑ P1 ` P2

It is easy to prove B ≡
˘

B↑P
P by using the following distributivity properties and quantifier

movement rules:

C ⊸ (B1 & B2) ≡ (C ⊸ B1) & (C ⊸ B2) C ` (B1 & B2) ≡ (C ` B1) & (C ` B2)
C ⇒ (B1 & B2) ≡ (C ⇒ B1) & (C ⇒ B2) ∀x. (B1 & B2) ≡ (∀x. B1) & (∀x. B2)

Paths have a simple normal form. Using the equivalences (where x is not free in B)

B ` ∀x.C ≡ ∀x.(B ` C), B ⊸ ∀x.C ≡ ∀x.(B ⊸ C), and B ⇒ ∀x.C ≡ ∀x.(B ⇒ C),

a path can be written in the form ∀x1 . . . ∀xn.P ′ where n ≥ 0, and every occurrence of ∀ in
P ′ occurs to the left of either ⊸ or ⇒. Similarly, using the equivalences

(B ⊸ C1) ` C2 ≡ B ⊸ (C1 ` C2), B ⊸ C ⇒ D ≡ C ⇒ B ⊸ D,

(B ⇒ C1) ` C2 ≡ B ⇒ (C1 ` C2), ⊥ ` B ≡ B ` ⊥ ≡ B

and the commutativity of `, paths can be put into the normal form

∀x̄[C1 ⇒ . . . ⇒ Cn ⇒ B1 ⊸ . . . ⊸ Bm ⊸ A1 ` . . . ` Ap],



Dale Miller 26:9

where ∀x̄ is a list of universal quantifiers, n, m, p are non-negative integers, A1, . . . , Ap are
atomic formulas, and B1, . . . , Bm, C1, . . . , Cn are L2 formulas. If a path P has the normal
form above, then we say that the multiset {C1, . . . , Cn} is its intuitionistic arguments, the
multiset {B1, . . . , Bm} is its linear arguments, and the multiset {A1, . . . , Ap} is its targets.
Finally, x̄ is the list of bound variables of P (we assume that all these bound variables are
distinct and subject to α-conversion). Since these various components of the normal form
of a path are multisets, this decomposition of a path is unique. We shall also display this
normal form as the associated sequent x̄ : C1, . . . , Cn; B1, . . . , Bm ⊢ A1, . . . , Ap. Paths can
be used to describe both left and right phases in a more abstract setting than by appealing
to introduction rules.

▶ Proposition 7. Consider a ⇓ L2-proof Ξ of the sequent Σ: Ψ; Γ ⊢ G, ∆. There is a ⇓ L2-
proof Ξ′ of this same sequent that differs only in permutations of right-introduction rules
such that the formula G is decomposed first. More specifically, that right-introduction phase
can be written as( Ξi

Σ, Σi : Ψ, Ψi; Γ, Γi ⊢ Ai, ∆
)

G↑Pi

Σ: Ψ; Γ ⊢ G, ∆
,

where the path Pi is associated with the sequent
Σi : Ψi; Γi ⊢ Ai and where Ξi is the right phase of
the ith premise.

Concerning left phases in single-focused proofs with endsequent Σ: Ψ; Γ ⇓ B ⊢ · ⇓ A we
note that in every left rule application, the signature and the left-unbounded zone in the
conclusion is the same in every premise.

▶ Proposition 8. Let Ξ be a ⇓ L2-proof of the sequent Σ: Ψ; Γ ⇓ B ⊢ · ⇓ A. The left-
introduction phase at the bottom of Ξ, which has a multiset of premises M, can be described
as follows. There is a path P in B with the associated sequent Σ′ : C1, . . . , Cn; B1, . . . , Bm ⊢
A1, . . . , Ap and there is a substitution θ that maps the variables in Σ′ to Σ-terms such that
1. A is equal to the multiset union {A1θ, . . . , Apθ} ⊎ A1 ⊎ · · · ⊎ Am;
2. Γ is the multiset union Γ1 ⊎ · · · ⊎ Γm; and
3. M is the multiset union {Σ: Ψ; · ⊢ Ciθ}n

i=1 ⊎ {Σ: Ψ; Γi ⊢ Biθ, Ai}m
i=1.

This use of paths to characterize the two focusing phases is a generalization of the use of
game moves in [30] and patterns in [43].

2.3 Cut elimination and completeness for ⇓ L2

One method for proving the (relative) completeness of ⇓ L2 is to first prove that the general
form of the initial rule and the cut rule are admissible. These two admissibility results are
more formally stated as the following two theorems.

▶ Theorem 9 (Admissibility of the generalized initial rule). Let B be an L2 Σ-formula. The
sequent Σ: ·; B ⊢ B has a ⇓ L2 proof.

▶ Theorem 10 (Cut elimination for ⇓+L2). Let B be an L2 Σ-formula. If the sequent
Σ: ·; · ⊢ B has an ⇓+L2 proof then it has a ⇓ L2 proof.

A proof of Theorem 9 is in Appendix A.1 and a proof of Theorem 10 is in the extended
version of this paper [27] and in [28, Chapter 7]. Below, we highlight the main novelty of our
cut-elimination proof. We first introduce the following key cut inference rule.

Σ: Ψ; Γ1 ⊢ B, ∆ Σ: Ψ; Γ2 ⇓ B ⊢ · ⇓ A

Σ: Ψ; Γ1, Γ2 ⊢ ∆, A
cutk
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When we allow this inference rule within a focused proof, we know that the right premise is
proved by using a left-phase rule on B, while the left premise is proved by a right-introduction
rule (and via permutation of right-introduction rules) on B.

Consider the following instance of cut ! in a single-focused proof Ξ.
Ξl

Σ: Ψ; · ⊢ B

Ξr

Σ: Ψ, B; Γ ⊢ ∆

Σ: Ψ; Γ ⊢ ∆
cut !

Consider also a subderivation of Ξr that ends in decidem, such as
Ξ0

Σ, Σ′ : Ψ, Ψ′, B; Γ′ ⇓ B ⊢ · ⇓ A

Σ, Σ′ : Ψ, Ψ′, B; Γ′ ⊢ A
decidem,

where the variables bound in Σ′ are not bound in Σ and where Ψ′ and Γ′ are multisets. This
inference rule can be converted to the derivation

Ξ̂l

Σ, Σ′ : Ψ, Ψ′; · ⊢ B

Ξ0
Σ, Σ′ : Ψ, Ψ′, B; Γ′ ⇓ B ⊢ · ⇓ A

Σ, Σ′ : Ψ, Ψ′, B; Γ′ ⊢ A
cutk.

Here, Ξ̂l is the result of weakening Ξl (using Proposition 20 in Appendix A.2). We can thus
remove all occurrences of decidem on B in Ξr to obtain the proof Ξ′

r of Σ: Ψ, B; Γ ⊢ ∆.
Since B is no longer used in this subproof, Ξ′

r can be strengthened (using Proposition 22
in Appendix A.2) to get a proof of Σ: Ψ; Γ ⊢ ∆. This proof can now replace our original
instance of cut !. Similarly, an occurrence of cutl can be used to rewrite instances of decidem

into a key cut. The argument for eliminating key cuts follows the usual pattern of matching
a left-introduction rule with a right-introduction rule.

One can draw some analogies between the proof theory of ⇓ L2 and the meta-theory of
typed λ-calculi. This connection is well developed for the ⇓ L0 calculus (see Section 5). More
generally, Theorems 9 and 10 are closely related to η-expansion and β-reduction in typed
λ-calculi, and Theorem 10 corresponds to a weak normalization theorem.

The completeness of ⇓ L2 proofs for linear logic is now a simple consequent of this
cut-elimination theorem since it is possible to prove that all the rules in an unfocused proof
system for linear logic are admissible in ⇓+L2.

▶ Theorem 11 (Completeness of ⇓ L2). Let B be an L2 Σ-formula provable in linear logic.
The sequent Σ: ·; · ⊢ B has a ⇓ L2-proof.

Several completeness proofs exist for focused proof systems. The first such proof, given
by Andreoli [1], transformed cut-free proofs into focused proofs via permutation of inference
rules. The completeness of ⇓ L2 is proved in [26] by mapping the formulas and focused proofs
used by Andreoli to those in ⇓ L2. An alternative proof, based directly on phases rather
than introduction rules, is given by Bruscoli and Guglielmi [2]. Other completeness proofs
leveraged the cut rule and cut elimination, rather than the direct manipulation of cut-free
proofs. Examples of this approach can be found in [5, 20, 37, 43] for various fragments of
linear and intuitionistic logic, and in [24] for classical logic. Theorem 11, which relies on
Theorems 9 and 10, falls into this latter category.

3 Parallel rule application within proofs

We illustrate in this section how multifocused proofs can capture parallel rule application.
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3.1 Multiset rewriting
An important class of examples supported by linear logic are those involved with multiset
rewriting. Let H be the multiset rewriting system {⟨Li, Ri⟩ | i ∈ I} where for each i ∈ I

(a finite index set), Li and Ri are finite multisets of atomic formulas. Define the relation
M =⇒H N on finite multisets to hold if there is some i ∈ I and some multiset C such that
M is C ⊎ Li and N is C ⊎ Ri. Let =⇒∗

H be the reflexive and transitive closure of =⇒H .
Given a multiset rewriting system H, we can encode the relation =⇒H into linear logic

using one of two schemes. The first scheme employs the left-bounded context of ⇓ L2
sequents. In this scheme, we select a new propositional constant, say q, and encode the pair
⟨{a1, . . . , am}, {b1, . . . , bn}⟩ ∈ H as (b1 ⊸ · · · ⊸ bn ⊸ q) ⊸ a1 ⊸ · · · ⊸ am ⊸ q.

▶ Example 12. Consider the multiset rewriting system {⟨{a, b}, {c}⟩, ⟨{d}, {e}⟩}, where
a, b, c, d, e, q are also considered to be atomic formulas. Finally, let Ψ be the formulas
{(c ⊸ q) ⊸ a ⊸ b ⊸ q, (e ⊸ q) ⊸ d ⊸ q}. The following partial proof illustrates how
these formulas can encode multiset rewriting of the left-bound context.

Σ: Ψ; c, d, Γ ⊢ q

Σ: Ψ; d, Γ ⊢ c ⊸ q

Σ: Ψ; d, Γ ⇓ · ⊢ c ⊸ q ⇓ ·

Σ: Ψ; · ⇓ a ⊢ · ⇓ a

Σ: Ψ; a ⊢ a

Σ: Ψ; a ⇓ · ⊢ a ⇓ ·

Σ: Ψ; · ⇓ b ⊢ · ⇓ b

Σ: Ψ; b ⊢ b

Σ: Ψ; b ⇓ · ⊢ b ⇓ · Σ: Ψ; · ⇓ q ⊢ · ⇓ q

Σ: Ψ; a, b, d, Γ ⇓ (c ⊸ q) ⊸ a ⊸ b ⊸ q ⊢ · ⇓ q

Σ: Ψ; a, b, d, Γ ⊢ q
decidem

This is a derivation (i.e., a partial proof) of Σ: Ψ; a, b, d, Γ ⊢ q from Σ: Ψ; c, d, Γ ⊢ q encoding
the application of the rewrite rule given by the pair ⟨{a, b}, {c}⟩. Note that this partial proof
is not a bipole; it is comprised of three bipoles.

From a proof-theoretic perspective, this approach to encoding multiset rewriting has
at least three issues. First, it requires an extraneous propositional constant q to fill in
the right-hand side of the context. Second, the core operation in multiset rewriting (the
rewrite step) does not correspond precisely to the core operation in a focused proof system,
specifically, the construction of a bipole. Third, this approach fails to capture the parallel
application of rewriting steps in multisets as the occurrences of the extraneous constant q

effectively forces sequential rewriting steps (see Example 14).
A second approach to encoding multiset rewriting performs the rewriting within the right-

bounded multiset of sequents. In particular, we can encode ⟨{a1, . . . , am}, {b1, . . . , bn}⟩ ∈ H

as the formula (b1 ` · · · ` bn) ⊸ a1 ` · · · ` am.

▶ Example 13. Assume that a, b, c, d, e are atomic formulas and that the two formulas
c ⊸ a ` b and e ⊸ d are members of Ψ. The derivation

Σ: Ψ; ∆ ⊢ c, e, Γ

Σ: Ψ; ∆ ⇓ · ⊢ c, e ⇓ Γ
release

Σ: Ψ; · ⇓ d ⊢ · ⇓ d, Γ
init

Σ: Ψ; ∆ ⇓ e ⊸ d ⊢ c ⇓ d, Γ
⊸L

Σ: Ψ; · ⇓ a ` b ⊢ · ⇓ a, b
`L, init

Σ: Ψ; ∆ ⇓ c ⊸ a ` b, e ⊸ d ⊢ · ⇓ a, b, d, Γ
⊸L

Σ: Ψ; ∆ ⊢ a, b, d, Γ
decidem

is a bipole that encodes the parallel composition of two rewriting steps
and corresponds to the following synthetic inference rule.

Σ: Ψ; Γ ⊢ c, e, ∆

Σ: Ψ; Γ ⊢ a, b, d, ∆

FSCD 2025
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▶ Example 14. Assume that a, b, c, d, l are atomic formulas and that the two formulas
b ` l ⊸ a ` l and d ` l ⊸ c ` l are members of Ψ. The atomic formula l serves as a kind
of lock, and this lock makes it impossible for there to be a parallel application of these two
rules unless there are two occurrences of the lock. The following is a synthetic inference rule

Σ: Ψ; Γ ⊢ b, d, l, l, ∆

Σ: Ψ; Γ ⊢ a, c, l, l, ∆
while the following is not a synthetic rule
(assuming that ∆ does not contain l).

Σ: Ψ; Γ ⊢ b, d, l, ∆

Σ: Ψ; Γ ⊢ a, c, l, ∆

The Lolli logic programming language [17] is based on the logic L1 and the only form
of multiset rewriting it provided followed the indirect style described in Example 12. The
Forum [26] extension to Lolli is based on L2 and it can encode multiset rewriting in the
more direct style of Example 13, although it did not provide for parallel rewriting steps
since it was described using a single-focused proof system. The LolliMon logic programming
language [25] and the Concurrent LF [40] extended L1 by allowing some occurrences of the
positive linear logic connectives 1, ⊗, !, and ∃ and positively polarized atomic formulas. In
that system, a direct form of multiset rewriting was also possible using the multiset encoded
in the left-bounded zone. The Concurrent LF did not permit multifocusing, but it did
provide an equality theory within its dependently-type setting that could equate different
non-overlapping rewrites occurring in different order.

3.2 Multifocusing as parallel rule application
Two notable aspects of the ⇓ L2 proof system make it possible to deal with parallel rule
application within a sequent calculus setting.

First, focusing makes it possible to hide the sequential nature of the construction of
synthetic inference rules. The order in which left introduction rules are applied within a
multifocused proof is irrelevant since every order leads to the same result. The same applies
to the order in which right-introduction rules are applied in multiple-conclusion proofs. Thus,
the reliance on phases and synthetic rules means that the particular details of how a phase is
constructed are hidden away.

Second, the ⇓ L2 proof system contains a subtle feature: namely, the interaction between
the zone on the right located between the ⊢ and the ⇓ and the use of the release rule to
merge that zone with the rest of the right-hand context. Consider modifying sequents so
that the right-hand zone between ⊢ and ⇓ is removed and rewriting the ⊸L inference rule as

Σ: Ψ; Γ1 ⇓ Θ1 ⊢ B, ∆1 Σ: Ψ; Γ2 ⇓ C, Θ2 ⊢ ∆2

Σ: Ψ; Γ1, Γ2 ⇓ B ⊸ C, Θ1, Θ2 ⊢ ∆1, ∆2
⊸L∗.

The inference rule in Example 14 that we argued should not exist as a synthetic rule can
now be constructed with the rule ⊸L∗.

Maximally multifocused proofs have been proposed as a way to describe canonical proofs
in the sequent calculus: in particular, they have been shown to correspond to expansion
proofs in classical logic [3] and proof nets in MALL [4]. To the extent that we are using
multifocusing to capture parallel rule application, a ⇓ L2 proof of a sequent that does not
mention ⊥ and ` will not exhibit this kind of parallelism.

4 Linear negation in proofs

The multiplicative false ⊥ separates the intuitionistic frameworks ⇓ L0 and ⇓ L1, where
proofs are single-conclusion and single-focused, from the full linear logic framework ⇓ L2.
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(As mentioned earlier, ` can be defined using L1 and ⊥.) Once ⊥ is present, it is natural
to deal with the notion of linear negation, which can be encoded in ⇓ L2 using the “implies
false” construction. In the following pairs of sequents, the first sequent has a ⇓ L2 proof if
and only if the second also has a ⇓ L2 proof.

Σ: Ψ; Γ, B ⊸ ⊥ ⊢ ∆ ⊣⊢ Σ: Ψ; Γ ⊢ B, ∆
Σ: Ψ, (B ⇒ ⊥) ⊸ ⊥; Γ ⊢ ∆ ⊣⊢ Σ: Ψ; Γ, (B ⇒ ⊥) ⊸ ⊥ ⊢ ∆

Σ: Ψ, B; Γ ⊢ ∆ ⊣⊢ Σ: Ψ; Γ, (B ⇒ ⊥) ⊸ ⊥ ⊢ ∆

If “implies false” was a logical connective, its introduction rules on the left and the right are
invertible, thus giving it both positive and negative polarities.

We define the delay operator ∂(B) to be (B ⊸ ⊥) ⊸ ⊥. While B and ∂(B) are provably
equivalent, their roles within ⇓ L2 proofs can differ. Consider the following derivation.

Σ: Ψ, ∂(B); Γ, B ⊢ ∆

Σ: Ψ, ∂(B); Γ, B ⊢ ⊥, ∆

Σ: Ψ, ∂(B); Γ ⊢ B ⊸ ⊥, ∆

Σ: Ψ, ∂(B); Γ ⇓ · ⊢ B ⊸ ⊥ ⇓ ∆ Σ: Ψ, ∂(B); · ⇓ ⊥ ⊢ · ⇓ ·

Σ: Ψ, ∂(B); Γ ⇓ ∂(B) ⊢ · ⇓ ∆

Σ: Ψ, ∂(B); Γ ⊢ ∆

Thus, the following is an admissible rule

Σ: Ψ, ∂(B); Γ, B ⊢ ∆

Σ: Ψ, ∂(B); Γ ⊢ ∆
, although we do not generally

have the rule

Σ: Ψ, B; Γ, B ⊢ ∆

Σ: Ψ, B; Γ ⊢ ∆
.

This latter rule is a form of contraction that is not immediately associated with focusing (as
is the case with the decidem rule).

5 The LJT± proof system for intuitionistic logic

Let Neg be the negative intuitionistic connectives {t, ∧, ⊃, ∀} and let Pos be the positive
intuitionistic connectives {f, ∨, ∃}. We map intuitionistic logic formulas over the connectives
in Neg to formulas in linear logic connectives using the following obvious translation: A◦ = A

for atomic formulas and

t◦ = ⊤, (B ∧ C)◦ = B◦ & C◦, (B ⊃ C)◦ = B◦ ⇒ C◦, (∀x.B)◦ = ∀x.B◦

Let LJT− be the proof system in Figure 4 for intuitionistic logic over the connectives in Neg
that results from renaming the L0 connectives in Figure 3 with the corresponding connectives
in Neg. The implication-only fragment of this proof system is exactly the LJT proof system
of Herbelin in [15]. The following proposition has an immediate proof, given the structural
properties we have seen of ⇓ L2 proofs of L0 sequents.

▶ Proposition 15. Let B be an intuitionistic formula over the connectives in Neg. The
sequent Σ: ·; · ⊢ B◦ is provable in ⇓ L2 if and only if the sequent Σ: · ⊢ B has an LJT−

proof.

To the extent that maximal multifocused proofs are candidates for canonical proofs, we can
conclude that LJT− proofs are canonical for the negative connectives since all multifocused
proofs are single-focused, and, hence, are maximal multifocused.
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Σ: Ψ ⊢ t
tR

Σ: Ψ ⊢ B Σ: Ψ ⊢ C

Σ: Ψ ⊢ B ∧ C
∧R

Σ: B, Ψ ⊢ C

Σ: Ψ ⊢ B ⊃ C
⊃R

y : τ, Σ: Ψ ⊢ B[y/x]

Σ: Ψ ⊢ ∀τ x.B
∀R

Σ: Ψ, N ⇓ N ⊢ Pa

Σ: Ψ, N ⊢ Pa

decidem
Σ: Ψ ⇓ A ⊢ A

init

Σ: Ψ ⇓ Bi ⊢ A

Σ: Ψ ⇓ B1 ∧ B2 ⊢ A
∧Li

Σ: Ψ ⇓ B[t/x] ⊢ A

Σ: Ψ ⇓ ∀τ x.B ⊢ A
∀L

Σ: Ψ ⊢ B Σ: Ψ ⇓ C ⊢ A

Σ: Ψ ⇓ B ⊃ C ⊢ A
⊃L

Figure 4 The LJT− proof system

Σ: Ψ ⊢ Bi

Σ: Ψ ⊢ B1 ∨ B2
∨R

Σ: Ψ ⊢ B[t/x]

Σ: Ψ ⊢ ∃x.B
∨R

Σ: Ψ ⊢ t+ t+R
Σ: Ψ ⊢ B Σ: Ψ ⊢ C

Σ: Ψ ⊢ B ∧+ C
∧+R

Σ: Ψ, P ⇑ P ⊢ Pa

Σ: Ψ, P ⊢ Pa

invert
Σ: Ψ, N ⊢ Pa

Σ: Ψ ⇑ N ⊢ Pa

done

Σ: Ψ ⇑ B, Γ ⊢ Pa Σ: Ψ ⇑ C, Γ ⊢ Pa

Σ: Ψ ⇑ B ∨ C, Γ ⊢ Pa

∨L
Σ: Ψ ⇑ f, Γ ⊢ Pa

fL

Σ: Ψ ⇑ B, C, Γ ⊢ Pa

Σ: Ψ ⇑ B ∧+ C, Γ ⊢ Pa
∧+L

Σ: Ψ ⇑ Γ ⊢ Pa

Σ: Ψ ⇑ t+, Γ ⊢ Pa
t+L

Σ: Ψ ⇑ B[t/x], Γ ⊢ Pa

Σ: Ψ ⇑ ∃x.B, Γ ⊢ Pa

∃L

Here, PA ranges over either positive formulas or atomic formulas, and P (in the invert rule)
is a non-empty multiset of positive formulas.

Figure 5 The additional rules for the LJT± proof system.

We now extend the mapping of intuitionistic logic formulas into L2 formulas in a rather
natural fashion in order to treat also the positive connectives: f◦ = ⊤ ⊸ ⊥, (B ∨ C)◦ =
((B◦ ⇒ ⊥) & (C◦ ⇒ ⊥)) ⊸ ⊥, and (∃x.B)◦ = (∀x.(B◦ ⇒ ⊥)) ⊸ ⊥. To make for a stronger
result, we add the positive truth t+ and the positive conjunction ∧+ to our intuitionistic logic.
These connectives are superfluous since we will be able to prove the formulas t and t+ and the
formulas B ∧ C and B ∧+ C are equivalent (in intuitionistic logic). Nonetheless, we shall map
them into linear logic differently: (t+)◦ = ⊥ ⊸ ⊥ and (B ∧+ C)◦ = (B◦ ⇒ C◦ ⇒ ⊥) ⊸ ⊥.
We shall also derive different inference rules for them. Note two things about this extension:
First, the results of such translations are much richer than for the negative connectives: for
example, one occurrence of ∨ yields seven occurrences of linear logic connectives. Second,
this translation uses ⊥, which leaves open the possibility to have multifocused proofs that
are not single-focused.

The soundness of this translation (Proposition 16) is proved by a simple induction on the
structure of LJT± proofs; the proof of completeness (Proposition 17) is in Appendix A.3.

▶ Proposition 16 (Soundness of (·)◦). Let B be a formula over the connectives in Neg ∪ Pos.
If B is provable in LJT ±, then B◦ is provable in linear logic.

▶ Proposition 17 (Completeness of (·)◦). Let B be a formula over the connectives in Neg∪Pos.
If B◦ is provable in linear logic, then B is provable in the LJT ± proof system.

▶ Example 18. The formula (a ∨ b) ⊃ p ⊃ p is clearly provable in intuitionistic logic. The
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LJF proof system [23] treats disjunctions and existentials on the left in a linear fashion:
when such formulas appear on the left, they are introduced exactly once. Thus, the formula
above has exactly one LJF proof, and that proof includes a (harmless) case analysis. In LJT±,
there are possibly many proofs of this formula, one for every invocation of the invert rule
on a disjunctive assumption. This is similar to the proof system in [9] based on a polarized
intuitionistic proof system that uses a “negation translation” for the disjunction.

6 Revisiting natural deduction

Given the work of Herbelin [15], Espírito Santo [8], and others, the connection between
focused proofs and natural deduction using only negative connectives is well established.
It is also well known that the natural deduction treatment of the positive connectives is
challenged by some of the same issues experienced by the sequent calculus: elimination rules
for the positive connectives can permute over each other without changing the essential
nature of the proof. As a result, dealing with normal-form proofs is complicated. In [14],
Girard says “one tends to think that natural deduction should be modified to correct such
atrocities.” We illustrate one approach to making such a correction, but the cost will be an
inference rule that can have a large number of premises. This approach is motivated by the
treatment of left-introduction rules for the positive connectives in LJT± proofs.

A positive formula is in disjunctive normal form if it is of the form

∃x1 . . . ∃xp

( ∨ n

i=1

∧
+ mi

ji=1 Ni,ji

)
. (∗)

The formula Ni,ji
must be either atomic or have a negative connective as its top level

connective. It is easy to show the following facts about disjunctive normal forms.
1. These normal forms are unique up to renaming the existentially bound variables and the

ordering of conjuncts and disjuncts (i.e., modulo commutativity and identity for these
binary connectives).

2. The disjunctive normal form of a formula can be exponentially larger than the formula.
3. The following invariant holds for rules in LJT±: if a rule has ⇑ Γ ⊢ in the conclusion and

the premises contain ⇑ Γ1 ⊢, . . . , ⇑ Γn ⊢, then both
∧+Γ and (

∧+Γ1) ∨ · · · ∨ (
∧+Γn) have

the same disjunctive normal form.

The disjunctive normal form can be used to describe the following parallel elimination
for the positive connectives, which can be given as the figure on the left.

P1 · · · Pp

(
Ni,1 . . . Ni,mi...

D

)n

i=1

D

Here, P1, . . . , Pp (p ≥ 1) are positive formulas
and the disjunctive normal form of P1 ∧+ · · ·∧+

Pp is given by (∗) above. The formula D can
be restricted to being either a positive formula
or an atomic formula. In this inference rule,
x1, . . . , xp are treated as (new) eigenvariables.

A drawback of this rule is that the number of hypothetical premises can be an exponential
in the number of occurrences of logical connectives in the formulas P1, . . . , Pp.

▶ Example 19. Assume that p ≥ 1 and that a1, . . . , ap, b1, . . . , bp are atomic formulas. A
special case of the parallel elimination rule for positive formulas is the following.

a1 ∨ b1 · · · ap ∨ bp

( {ai | i ∈ I} ∪ {bj | i /∈ I}...
D

)
I⊆{1,...,p}

D

This rule has p + 2p

premises.
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7 Related and Future work

Following Gentzen’s approach to defining the intuitionistic proof system LJ from the classical
proof system LK, Schellinx [36] defined the ILL proof system for intuitionistic logic to be the
single-conclusion restriction of the multiple-conclusion CLL proof system for full (classical)
linear logic. He then studied situations where CLL is not conservative over ILL. In particular,
he showed that there are formulas composed of only ⊸ and the additive false 0 that are
provable in CLL and not in ILL. He also showed that Girard’s translation of LJ into CLL
is conservative, a result that shows a different approach to relating L0 to L2. Laurent [21]
continued the study of ILL and CLL and provided several generalizations and extensions to
Schellinx’s paper.

As we mentioned at the start of Section 2, the ⇓ L2 proof system assumes that atomic
formulas have negative polarity. Since this assumption is baked into the design of ⇓ L2, it is
unclear how one might accommodate atoms with a positive polarity. Nonetheless, having
atomic formulas with positive polarity has been used at the level of term representation
[12, 31, 42, 41], where explicit sharing of term structures is enabled, and at the proof search
level [4], where forward chaining (in contrast to backward chaining) is the major inference
form. In the setting of intuitionistic and classical logics, the proof systems LKQ [6] and
LJQ [7] assume that all atomic formulas are positive. The LKF and LJF proof system [23]
go further and allow positive and negative atomic formulas within the same proof. It is
interesting to consider modifying ⇓ L2 to allow mixing both positive and negative polarized
atomic formulas.

Extending this work to include higher-order quantification is a natural next step to
consider given the successful higher-order extensions of ⇓ L0 in [10] and LKQ and LKT in [6].

Whether or not this work can be extended to account for different cut-elimination
strategies, such as those inspired by call-by-value and call-by-name [34] and call-by-push-
value [22] is currently an open question.

8 Conclusion

This paper presents the proof theory of full linear logic through an intuitionistic orientation
rather than the classical orientation based on De Morgan dualities, proof nets, and one-sided
sequent calculi. Linear logic is dissected into L0, a core intuitionistic logic, and L1, which
incorporates linear implication, and finally L2, which extends L1 with multiplicative falsity
⊥ and disjunction `.

Central to our analysis is the multifocused, multiple-conclusion proof system ⇓ L2 for full
linear logic. We demonstrate how ⇓ L2 subsumes existing focused proof systems for L0 and
L1, while also introducing a formal definition of parallel rule application via multifocusing.
Crucially, we show that this form of parallelism, which is non-trivial in ⇓ L2, is absent
in proofs involving only L0 or L1 formulas. Furthermore, our work revisits and refines
existing results, offering a new treatment of disjunction and existential quantification within
intuitionistic sequent calculus and natural deduction. These innovations lead to more intuitive
and modular proof systems. The cut elimination theorem, detailed in the appendix of the
extended version of this paper [27], provides the essential foundation for the results presented
in this paper.
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A Some omitted proofs

We limit the ⇓ L2 proofs we reason about in this appendix to single-focused proofs. This
restriction does not limit the main results, which are essentially about provability. Dealing
with the nature of, say, cut-elimination with multifocused proofs is an interesting project,
but one that would only complicate the results we prove here.

A.1 The generalized initial rule

◀ Theorem 9 (Admissibility of the generalized initial rule) Let B be an L2 Σ-formula. The
sequent Σ: ·; B ⊢ B has a ⇓ L2 proof.

Proof. Let Ψ ⊎ {B} be a multiset of L2 Σ-formulas. We describe how to build an ⇓ L2
proof of Σ: Ψ; B ⊢ B by induction on the structure of the formula B. By Proposition 7,
there is a right phase with endsequent Σ: Ψ; B ⊢ B and with one premise for every path
P in B. In particular, if the associated sequent for P is Σ′ : C1, . . . , Cn; B1, . . . , Bm ⊢
A1, . . . , Ap, then the premise of the right-introduction phase that corresponds to this path is
Σ, Σ′ : C1, . . . , Cn; B, B1, . . . , Bm ⊢ A1, . . . , Ap. We can now use the decidem rule to select
the occurrence of B in the left-bounded context. By Proposition 8, there is a left-introduction
phase corresponding to P such that the sequents

{Σ, Σ′ : Ψ, C1, . . . , Cn; · ⊢ Ci}n
i=1 ⊎ {Σ, Σ′ : Ψ, C1, . . . , Cn; Bi ⊢ Bi}m

i=1

must all be provable (the θ in Proposition 8 is set to the identity substitution on the variables
in Σ′). The inductive assumption proves the second group of sequents, and the first group is
proved using the decidem rule on Ci. The inductive assumption completes this proof. ◀

A.2 Proofs with cuts in ⇓+L2

Section 2 introduced two cut rules involving ⇓ L2 sequents. We call those two cut rules the
regular cut rules since we now introduce a new cut rule called the key cut.

Σ: Ψ; Γ1 ⊢ B, ∆ Σ: Ψ; Γ2 ⇓ B ⊢ · ⇓ A

Σ: Ψ; Γ1, Γ2 ⊢ ∆, A
cutk

Here, A is a multiset (possibly empty) of atomic formulas. The key cut is the only cut rule
containing a ⇓-sequent. The formula B is the cut-formula in this rule. To help prove the
cut-elimination theorem, we extend the ⇓+L2 proof system to include the key cut. A proof is
cut-free if it has no occurrences of these three cut rules.

The cut-elimination argument uses various measurements attached to occurrences of both
regular and key-cut rules. A thread in the ⇓+L2 proof Ξ is a list of sequent occurrences
S1, . . . , Sn in Ξ such that n ≥ 1, S1 is the conclusion of an init rule, Sn is the endsequent
of Ξ, and, for i = 1, . . . , n − 1, there is an inference rule occurrence of Ξ that has Si as a
premise and Si+1 as its conclusion. Such a thread is said to have length n.

The rank of Ξ is the maximal number of occurrences of decide and cut rules in threads in
Ξ that do not contain a sequent occurrence that is the left premise of a cutl, cut !, or cutk.
The degree of a formula is the number of occurrences of logical connectives in that formula.

Every occurrence of a cut rule in a given proof is given a measure as follows. Let Ξ be the
subproof determined by having that occurrence of cut as its last inference rule. We define
|Ξ| to be the pair of natural numbers ⟨d, w⟩, where d is the degree of its cut formula, and
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w is the rank of Ξ. Such pairs are well-ordered using the lexicographic ordering on pairs.
This measure plays an important role in the termination of the cut-elimination procedure
described in Appendix A.4 of [27]. The following two propositions are proved by simple
inductions on the structure of ⇓+L2 proofs.

▶ Proposition 20 (Weakening ⇓+L2 proofs). Let Σ′ be a signature disjoint from Σ, and let Ψ′

be a multiset of Σ, Σ′-formulas. If Σ: Ψ; Γ ⊢ A has a ⇓+L2 proof Ξ then Σ, Σ′ : Ψ, Ψ′; Γ ⊢ A
has a ⇓+L2 proof Ξ′. Furthermore, every instance of a cut rule in Ξ corresponds to an
instance of cut in Ξ′ and they have the same measure.

▶ Proposition 21 (Substitution into ⇓+L2 proofs). Let Σ be a signature, x be a variable not
declared in Σ, τ be a primitive type, and t be a Σ-term of type τ . If Σ, x : τ : Ψ; Γ ⊢ A has
a ⇓+L2 proof Ξ then Σ: Ψ[t/x]; Γ[t/x] ⊢ A[t/x] has a ⇓+L2 proof Ξ′. Furthermore, every
instance of a cut rule in Ξ corresponds to an instance of cut in Ξ′ and they have the same
measure.

The following proposition states that if a formula occurrence in the unbounded zone of a
sequent is never decided on within the proof of that sequent, then that occurrence can be
removed from its zone. This proposition is proved by a simple induction on the structure of
⇓+L2 proofs.

▶ Proposition 22 (Strengthening ⇓+L2 proofs). Assume that we have a ⇓+L2 proof Ξ of
Σ: Ψ, B; Γ ⊢ ∆ (resp. Σ: Ψ, B; Γ ⇓ D ⊢ · ⇓ ∆) in which there is no occurrence of decidem

applied to the formula B. Then there is a ⇓+L2 proof Ξ′ of Σ: Ψ; Γ ⊢ ∆ (respectively,
Σ: Ψ; Γ ⇓ D ⊢ · ⇓ ∆). Furthermore, every instance of a cut rule in Ξ corresponds to an
instance of cut in Ξ′, and they have the same measure.

A.3 The completeness of (·)◦

For convenience, define B• for positive intuitionistic formulas B as follows: f• = ⊤, (B∨C)• =
(B◦ ⇒ ⊥) & (C◦ ⇒ ⊥), (∃x.B)• = ∀x.(B◦ ⇒ ⊥), (t+)• = ⊥, (B ∧+ C)• = B◦ ⇒ C◦ ⇒ ⊥.
Thus, for B a positive intuitionistic formula, B◦ is the same formula as B• ⊸ ⊥.

◀ Proposition 17 (Completeness of (·)◦) Let B be a formula over the connectives in
Neg ∪ Pos. If B◦ is provable in linear logic, then B is provable in the LJT ± proof system.

Proof. Let B be a formula over the connectives in Neg ∪ Pos. If B◦ is provable in linear
logic, then Σ: ·; · ⊢ B◦ has a ⇓ L2 proof. There are a few different kinds of sequents that
can appear in such a ⇓ L2 proof, and we need to consider ⇓ L2 proofs of sequents which are
in one of the following shapes: Σ: Ψ◦; · ⊢ B◦ or Σ: Ψ◦; B• ⊢ · or Σ: Ψ◦; · ⇓ B◦ ⊢ · ⇓ A or
Σ: Ψ◦; ·⇓ B• ⊢ · ⇓ ·. Note that if the left-bounded zone is non-empty, then that zone contains
one formula which is the result of (·)• of a positive formula, and the right zone is empty.

Remark: If the sequent Σ: Ψ; B• ⇓ (C)◦ ⊢ · ⇓ · has a proof (when B is a positive formula)
then C is also positive. This remark is easily proved by induction on the structure of C.

We can now translate ⇓ L2 proofs of these four kinds of sequents directly into LJT± proofs.
We proceed by induction on the structure of an ⇓ L2 proof Ξ of these kinds of sequents.

Case: Ξ is a proof of Σ: Ψ◦; · ⊢ B◦. If B is positive, then Ξ has a subproof of Σ: Ψ◦; B• ⊢ ·:
the translation of that proof (see below) is the needed LJT± proof. If B is negative, we
consider the last inference rule of Ξ, which is either ⊤R, &R, ⇒ R, or ∀R. In each of these
cases, the translation is achieved by first translating the immediate subproof(s) and then
adding the corresponding LJT± rules of tR, ∧R, ⊃ R, and ∀R. The right introduction rules
for the negative connectives arise this way.

FSCD 2025
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Case: Ξ is a proof of Σ: Ψ◦; B• ⊢ ·, where B is a positive formula. This sequent is
the conclusion of a decide rule that selects either B• or a member of Ψ◦. The former
case is considered below. In the latter case, this is only possible (by the remark above) if
the selected member C of Ψ is a positive formula. Ξ contains a subproof of the sequent
Σ: Ψ◦; B• ⇓ C• ⊸ ⊥ ⊢ · ⇓ · and this has a subproof of Σ: Ψ◦; B• ⊢ C•. By considering
all cases for the positive formula C, Ξ will contain subproofs of the shape Σ′ : Ψ′◦; B• ⊢ ·.
The translation of those subproofs and the corresponding left-introduction rules, yields the
required translation.

Case: Ξ is a proof of Σ: Ψ◦; · ⇓ B◦ ⊢ · ⇓ A. If B is a negative formula, then Ξ must be
the right introduction rule of either ⊤, &, ⇒, or ∀. The required LJT± proof results from
applying the right introduction rules for t, ∧, ⊃, or ∀ to the transformations of the associated
subproofs of Ξ. If B is a positive formula, then Ξ must end with

Σ: Ψ◦; · ⊢ B•, A

Σ: Ψ◦; · ⇓ · ⊢ B• ⇓ A Σ: Ψ◦; · ⇓ ⊥ ⊢ · ⇓ ·

Σ: Ψ◦; · ⇓ B• ⊸ ⊥ ⊢ · ⇓ A
.

If we now consider each case for the positive formula B, we see that invertibility will yield
direct translations of the corresponding left introduction rule. For example, if B is B1 ∨ B2
then the Ξ proof of Σ: Ψ◦; · ⇓ (B1 ∨ B2)◦ ⊢ · ⇓ A contains a subproof of

Σ: Ψ◦; · ⊢ (B◦
1 ⇒ ⊥) & (B◦

2 ⇒ ⊥), A,

which in turn contains subproofs of Σ: Ψ◦, B◦
i ; · ⊢ A, for i ∈ {1, 2}. The full translation uses

the ∨L rule of LJT±.
Case: Ξ is a proof of Σ: Ψ◦; · ⇓ B• ⊢ · ⇓ ·. This case emulates the right introduction rule

of LJT± for the positive connectives. For example, if B is B1 ∨ B2 then Ξ must have the
form Σ: Ψ◦; · ⇓ (B◦

1 ⇒ ⊥) & (B◦
2 ⇒ ⊥) ⊢ · ⇓ · and this means that there must be a subproof

of Ξ of Σ: Ψ◦; · ⊢ B◦
i .

Note that the abstraction mechanism of synthetic inference rules allows hiding the internal
presence of multiple-conclusion sequents even within an intuitionistic proof. ◀

A.4 The cut-elimination theorem for ⇓ L2

We single out instances of atomic cutk rules for special treatment. Note that the right
premise of an atomic cutk rule can only be proved using init, for example:

Σ: Ψ; Γ ⊢ ∆, A Σ: Ψ; · ⇓ A ⊢ · ⇓ A
init

Σ: Ψ; Γ ⊢ ∆, A
cutk.

This derivation can be written more simply as

Σ: Ψ; Γ ⊢ ∆, A

Σ: Ψ; Γ ⊢ ∆, A
Rep.

which resembles the repetition rule used by Mints [32] to prove a cut-elimination theorem for
a different logic. An important feature of atomic key cut rules is that their measure is always
⟨0, 1⟩ since the proof structure in their left premise is not part of the measure. Ultimately,
our cut-elimination procedure will eliminate all cuts except for atomic key cuts. After those
eliminations are made, a second procedure will eliminate all atomic key cuts.
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A ⇓+L2 proof is called a ⇓aL2-proof if the only occurrences of cut rules in it are atomic
key cuts. A redex is a ⇓+L2 proof where the last inference rule is a regular or key cut and
where that rule’s two premises are ⇓aL2-proofs. A redex is classified as atomic or non-atomic
depending on whether the cut formula of its final cut rule is atomic or non-atomic. A redex
is also classified by the kind of cut rule it has as its final rule.

It is easy to prove that the side-formulas on the right-bounded zone for the Rep rule (the
schematic variable ∆ above) can be restricted to contain only atomic formulas: that is, the
conclusion of such rules can be assumed to be border sequents. As a result, Proposition 7
can be used to characterize additionally the right-introduction phase of ⇓aL2-proofs.

We now provide several lemmas that show how various redexes can be replaced with
proofs involving strictly smaller redexes.

▶ Lemma 23 (Replace cut ! with cutk). Let Ξ be a cut ! redex. Then there exists a proof of
the same endsequent in which the only instances of cut rules are either cutl or atomic cutk,
and all such instances of cuts have a measure strictly less than |Ξ|.

Proof. Consider the following cut !-redex Ξ.

Ξl

Σ: Ψ; · ⊢ B

Ξr

Σ: Ψ, B; Γ ⊢ ∆

Σ: Ψ; Γ ⊢ ∆
cut !

Here, the only occurrences of cut rules in the subproofs Ξl and Ξr are atomic key cuts.
Consider a subderivation of Ξr that ends in decidem, such as

Ξ0
Σ, Σ′ : Ψ, Ψ′, B; Γ ⇓ B ⊢ · ⇓ A

Σ, Σ′ : Ψ, Ψ′, B; Γ ⊢ A
decidem,

where the variables bound in Σ′ are not bound in Σ and where Ψ′ is a multiset. This inference
rule can be converted to the derivation

Ξ̂l

Σ, Σ′ : Ψ, Ψ′; · ⊢ B

Ξ0
Σ, Σ′ : Ψ, Ψ′, B; Γ ⇓ B ⊢ · ⇓ A

Σ, Σ′ : Ψ, Ψ′, B; Γ ⊢ A
cutk,

where Ξ̂l is the result of weakening Ξl using Proposition 20. In this way, we can remove
all occurrences of decidem on B in Ξr to obtain the proof Ξ′

r of Σ: Ψ, B; Γ ⊢ ∆. By
Proposition 22, we can strengthen Ξ′

r to get a proof Ξ′′
r of Σ: Ψ; Γ ⊢ ∆. This proof can now

replace our original redex. Since all new occurrences of cuts have B as their cut formula
and since the rank part of the measure of redexes does not consider the subproof of the left
premise of cut ! and cutl, the measure of the cut-rules in Ξ′′

l is strictly smaller than |Ξ|. ◀

The previous lemma removed a cut ! by converting some decidem rules into cutk rules.
The treatment of the cutl rule is not so easily handled. In particular, we will use the following
lemma to show that the “side cut” case can be treated by moving a cutl rule over an entire
left-introduction phase.

▶ Lemma 24 (Side cut l case). Let Ξ be a cutl-redex such that a decide rule is the last
inference rule of the proof of the right premise. If the formula selected is not the cut formula,
then there exists a ⇓+L2 proof with the same endsequent in which all instances of cuts have a
measure strictly less than |Ξ|.

FSCD 2025
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Proof. The decide rule that ends the proof of the right premise must select its focus from
either the bounded or unbounded zone on the left. We consider these two cases below.

Case: The decide rule selects from the bounded zone. Let Ξ be the following proof.

Ξl

Σ: Ψ; Γ ⊢ C, ∆

Ξr

Σ: Ψ; Γ′, C ⇓ B ⊢ · ⇓ A

Σ: Ψ; Γ′, B, C ⊢ A
decidem

Σ: Ψ; Γ, Γ′, B ⊢ ∆, A
cutl

Here, the only occurrences of cut rules in the subproofs Ξl and Ξr are atomic key cuts, and
A is a multiset of atomic formulas. By Proposition 8,1 the sequent Σ: Ψ; Γ′, C ⇓ B ⊢ · ⇓ A is
the endsequent of a left-introduction phase with a multiset of premises M such that there is
a path P in B with the associated sequent

Σ′ : C1, . . . , Cn; B1, . . . , Bm ⊢ A1, . . . , Ap,

and there is a substitution θ that maps the variables in Σ′ to Σ-terms such that
1. A is equal to the multiset union {A1θ, . . . , Apθ} ⊎ A1 ⊎ · · · ⊎ Am;
2. Γ′ ⊎ {C} is the multiset union Γ1 ⊎ · · · ⊎ Γm; and
3. M is {Σ: Ψ; · ⊢ Ciθ}n

i=1 ⊎ {Σ: Ψ; Γi ⊢ Biθ, Ai}m
i=1.

Since the left-phase is multiplicative, there is a unique k ∈ {1, . . . , m} such that C occurs in
Γk. Let Γ′

k be the result of removing one occurrence of C from Γk. Thus, one of the premises
in M is Σ: Ψ; Γ′

k, C ⊢ Bkθ, Ak. By using the cutl rule we have, together with a proof of the
above sequent, the following proof.

Ξl

Σ: Ψ; Γ′ ⊢ C, A Σ: Ψ; Γ′
k, C ⊢ Bkθ, Ak

Σ: Ψ; Γ′, Γ′
k ⊢ Bkθ, Ak, A

cutl

By using the same path above, we can move this left-introduction phase below the cutl rule.
Thus, the original cutl rule has been moved up, and its measure has decreased.

Case: The decide rule selects from the unbounded zone. Let Ξ be the following proof,
and assume that B is a member of Ψ.

Ξl

Σ: Ψ; Γ ⊢ C, ∆

Ξr

Σ: Ψ; Γ′, C ⇓ B ⊢ · ⇓ A

Σ: Ψ; Γ′, C ⊢ A
decidem

Σ: Ψ; Γ, Γ′ ⊢ ∆, A
cutl

Here, the only occurrences of cut rules in the subproofs Ξl and Ξr are atomic key cuts, and
A is a multiset of atomic formulas. This case is treated the same as the previous case. ◀

· · ·
Ξi

Σi : Ψi; Γi, B ⊢ Ai · · ·
...

Σ: Ψ; Γ, B ⊢ ∆

Remark: Let Ξ be a ⇓+L2 proof of Σ: Ψ; Γ, B ⊢ ∆.
If ∆ contains a logical connective, then this proof is of
the form displayed to the right. Here, Ai is a multiset
of atomic formulas; Γ is a sub-multiset of Γi; Ψ is a sub-
multiset of Ψi; all the inference rules elided here are either

1 While Proposition 8 was proved for ⇓ L2 proofs, it also holds in the presence of cut rules since no cut
rule contains a ⇓ in its conclusion.
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right-introduction rules or atomic key cuts; and the last inference rule of the subproofs Ξi’s
are one of the decide rules. An instance of cutl on B in the endsequent can then be lifted to
several instances of cutl with Ξi. This does not change the measure of any cuts. Next we
resolve the cut/decide pairing as described in the following proof.

▶ Lemma 25 (Replace cut l with cutk). Let Ξ be a cutl redex. Then there exists a proof of
the same endsequent in which the only instances of cut rules are cutk, and all such instances
of cuts have a measure strictly less than |Ξ|.

Proof. Consider the following cutl-redex Ξ.

Ξl

Σ: Ψ; Γ1 ⊢ B, ∆1

Ξr

Σ: Ψ; Γ2, B ⊢ ∆2

Σ: Ψ; Γ1, Γ2 ⊢ ∆1, ∆2
cutl

Here, the only occurrences of cut rules in the subproofs Ξl and Ξr are atomic key cuts. Given
the remark above, we only need to consider the situation where the right-bounded context
contains only atomic formulas and that the last inference rule of Ξr is a decide rule.

If the decidem rule selects B as its focus, then the proof Ξr has the form

Ξ′
r

Σ: Ψ; Γ′
2 ⇓ B ⊢ · ⇓ ∆′

2

Σ: Ψ; Γ′
2, B ⊢ ∆′

2
decidem.

This instance of the cutl rule above can be replaced with the following instance of cutk.

Ξl

Σ: Ψ; Γ1 ⊢ B, ∆1

Ξ′
r

Σ: Ψ; Γ2 ⇓ B ⊢ · ⇓ ∆2

Σ: Ψ; Γ1, Γ2 ⊢ ∆1, ∆2
cutk

If the formula selected for the focus is some other formula than B, then the proof Ξr has the
form (Γ2 is of the form C, Γ′

2)

Ξ′
r

Σ: Ψ; Γ′
2, B ⇓ C ⊢ · ⇓ ∆2

Σ: Ψ; Γ′
2, B, C ⊢ ∆2

decidem.

We now use Lemma 24 to construct a ⇓+L2 proof of Σ: Ψ; Γ′
2, C ⊢ ∆2 of lower rank. ◀

▶ Lemma 26 (Reduce cutk). Let Ξ be a non-atomic cutk redex. Then there exists a proof of
the same endsequent in which the redexes it has are cutl and cut !-redexes all with a measure
strictly less than |Ξ|.

Proof. Consider a cutk-redex Ξ of the form

Ξl

Σ: Ψ; Γ1 ⊢ B, ∆
Ξr

Σ: Ψ; Γ2 ⇓ B ⊢ · ⇓ A

Σ: Ψ; Γ1, Γ2 ⊢ ∆, A
cutk,

where Ξl and Ξr are ⇓aL2 proofs. Since B is not atomic, Ξl ends in a right-introduction
phase and Ξr ends in a left-introduction phase. By Proposition 8, there is a path P in B

that has the associated sequent representation

Σ′ : C1, . . . , Cn; B1, . . . , Bm ⊢ A1, . . . , Ap,

FSCD 2025
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and there is a substitution θ that maps the variables in Σ′ to Σ-terms such that A is the
multiset union {A1θ, . . . , Apθ}∪A1 ∪· · ·∪Am, Γ is the multiset union Γ1 ∪· · ·∪Γm, and this
phase has n + m premises {Σ: Ψ; · ⊢ Ciθ}n

i=1 ∪ {Σ: Ψ; Γi ⊢ Biθ, Ai}m
i=1. By Proposition 7,

Ξl ends with a right-introduction phase that contains a premise of the form

Ξ0
Σ, Σ′ : Ψ, C1, . . . , Cn; Γ, B1, . . . , Bm ⊢ A′, A1, . . . , Ap.

By repeated application of Proposition 21, we know that the sequent

Ξ′
0

Σ: Ψ, C1θ, . . . , Cnθ; Γ, B1θ, . . . , Bmθ ⊢ A′, A1θ, . . . , Apθ

has a ⇓aL2 proof. We can take Ξ′
0 and use cutl and cut ! with the proofs of the n+m premises

above to yield a proof with n + m occurrences of these cut rules to provide a proof without
occurrences of cutk of the endsequent Σ: Ψ; Γ, Γ′ ⊢ ∆, A. Note that the size of each of the
cut formulas C1θ, . . . , Cnθ, B1θ, . . . , Bmθ is strictly smaller than the size of the original cut
formula B. ◀

We are now in a position to prove the cut-elimination theorem for ⇓+L2 proofs.

◀ Theorem 10 (Cut elimination for ⇓+L2) Let B be an L2 Σ-formula. If the sequent
Σ: ·; · ⊢ B has a ⇓+L2 proof, then it has an ⇓ L2 proof.

Proof. We divide this proof into two parts. The first part proves that if a sequent has a ⇓+L2
proof, then it has a ⇓aL2-proof. The second part proves that if a sequent has a ⇓aL2-proof
then it has a (cut-free) ⇓ L2 proof.

Thus, assume that we have a ⇓+L2 proof. We proceed by induction on the number of
occurrences of cut rules in that proof that are not atomic key cuts. If the number of such
redexes is zero, we are finished with the first part of this proof. Otherwise, select a redex Ξ
that is not an atomic key cut redex. We prove by induction on the measure |Ξ| that this
redex can be replaced by a ⇓aL2-proof of the same endsequent. If Ξ is a cut !-redex then
apply Lemma 23; if Ξ is a cutl-redex then apply Lemma 25; and, finally, if Ξ is a non-atomic
cutk-redex then apply Lemma 26. The results of such applications are proofs of the same
endsequent as Ξ in which all redexes have a measure strictly less than |Ξ|. Thus, by induction,
all of these can be replaced by ⇓aL2-proofs.

To complete the second part of this proof, we proceed to prove by induction that if the
⇓aL2-proof Ξ contains n ≥ 0 occurrences of atomic key cuts, then there is a ⇓ L2 proof of the
same endsequent. Pick any atomic key cut occurrence in Ξ. That occurrence resembles the
Rep rule, which is trivial to remove. ◀

More details on proving cut-elimination for ⇓ L2 is contained in [28, Chapter 7].


	1 Introduction
	2 The focused proof systems L2 and +L2
	2.1 Deriving L0 and L1 from L2
	2.2 Paths in formulas
	2.3 Cut elimination and completeness for L2

	3 Parallel rule application within proofs
	3.1 Multiset rewriting
	3.2 Multifocusing as parallel rule application

	4 Linear negation in proofs
	5 The LJT  proof system for intuitionistic logic
	6 Revisiting natural deduction
	7 Related and Future work
	8 Conclusion
	A Some omitted proofs
	A.1 The generalized initial rule
	A.2 Proofs with cuts in +L2
	A.3 The completeness of ()
	A.4 The cut-elimination theorem for L2


