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Abstract. We present the design of a new functional programming
language, MLTS, that uses the λ-tree syntax approach to encoding
bindings that appear within data structures. In this setting, bindings never
become free nor escape their scope: instead, binders in data structures are
permitted to move into binders within programs. The design of MLTS—
whose concrete syntax is based on that of OCaml—includes additional
sites within programs that directly support this movement of bindings.
We illustrate the features of MLTS by presenting several collections of
examples. We also present a typing discipline that naturally extends the
typing of OCaml programs. In order to formally define the language’s
operational semantics, we present an abstract syntax for MLTS and a
natural semantics for its evaluation. We shall view such natural semantics
as a logical theory with a rich logic that includes both nominal abstraction
and the ∇-quantifier: as a result, the natural semantic specification of
MLTS can be given a succinct and elegant presentation.
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1 Introduction

Even from the earliest days of high-level programming, functional programming
languages were used to build systems that manipulated the syntax of various
programming languages and logics. For example, Lisp was a common language
for building theorem provers, interpreters, compilers, and parsers, and the ML
programming language was designed as a “meta-language” for a proof checker
[Gordon, Milner, and Wadsworth, 1979]. While these various tasks involve the
manipulation of syntax, none of these earliest functional programming languages
provided support for a key feature of almost all programming languages and
logics: variable binding.

Bindings in syntactic expressions have been given, of course, a range of different
treatments within the functional programming setting. Common approaches are
to implement bindings by using variable names or, in a more abstract way, by
using de Bruijn’s nameless dummies [de Bruijn, 1979]. Since such techniques
are quite complex to get right and since bindings are so pervasive, a great deal
of energy has gone into making libraries of procedures that can help deal with
binders: for example, there is the locally nameless approach [Charguéraud, 2011,
Gordon, 1994, McBride and McKinna, 2004] and the parametric higher-order
abstract syntax approach [Chlipala, 2008].
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Extending a functional programming language with features that support
bindings in data has been considered before: for example, there have been the
FreshML [Shinwell, Pitts, and Gabbay, 2003, Pottier, 2007] and CαML [Pottier,
2006] extensions to ML-style functional programming languages. Also, entirely
new functional programming languages, such as the dependently typed Bel-
uga [Pientka and Dunfield, 2010] language, have been designed and implemented
with the goal to support bindings in syntax. In the domain of logic program-
ming and theorem prover conception, several designs and implemented systems
exist that incorporate approaches to binding: such systems include Isabelle’s
generic reasoning core [Paulson, 1989], λProlog [Nadathur and Miller, 1988,
Miller and Nadathur, 2012], Qu-Prolog [Cheng, Robinson, and Staples, 1991],
Twelf [Pfenning and Schürmann, 1999], αProlog [Cheney and Urban, 2004], the
Minlog prover [Schwichtenberg, 2006], and the Abella theorem prover [Baelde,
Chaudhuri, Gacek, Miller, Nadathur, Tiu, and Wang, 2014].

In this paper we present MLTS, a new language that extend (the core of)
ML and incorporates the λ-tree syntax approach to encoding the abstract syntax
of data structures containing binders. Briefly, we can define the λ-tree syntax
approach to syntax as following the three tenets: (1) Syntax is encoded as simply
typed λ-terms in which the primitive types are identified with syntactic categories.
(2) Equality of syntax must include αβ0η conversion (defined in Section 7.2). (3)
Bound variables never become free: instead, their binding scope can move. This
latter tenet introduces the most characteristic aspect of λ-tree syntax which is
often called binder mobility. MLTS is, in fact, an acronym for mobility and λ-tree
syntax.

2 The new features of MLTS

We chose the concrete syntax of MLTS to be an extension of that of the OCaml
programming language (a program in MLTS not using the new language features
should be accepted by the ocamlc compiler). We shall assume that the reader
is familiar with basic syntactic conventions of OCaml [OCaml, 2018], many of
which are shared with most ML-like programming languages. MLTS contains
the following five new language features.

1. Datatypes can be extended to contain new nominal constants and the (new

X in body) program phrase provides a binding that declares that the nominal
X is new within the lexical scope given by body.

2. A new typing constructor => is used to type bindings within term structures.
This constructor is an addition to the already familiar constructor -> used
for the typing of functional expressions.

3. The backslash (\ as an infix symbol that associates to the right) is used to
form an abstraction of a nominal over its scope. For example, (X\body) is a
syntactic expression that hides the nominal X in the scope body. Thus the
backslash introduces an abstraction.
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4. The @ eliminates an abstraction: for example, the expression ((X\body) @ t)

denotes the result of substituting the abstracted nominal X with the term t

in body.
5. Clauses within match-expressions can also contain the (nab X in rule)

binder: in the scope of this binder, the symbol X can match existing nominals
introduced by the new binder and the \ operator. Note that X is bound over
the entire rule (including both the left and right-side of the rule).

All three bindings expressions—(X\body), (new X in body) and (nab X

in rule)—are subject to α-renaming of bound variables, just as the names of
variables bound in let declarations and function definitions. As we shall see,
nominals are best thought of as constructors: as a consequence, we follow the
OCaml convention of capitalizing the name of their binders. We are assuming
that, in all parts of MLTS, the names of nominals (of bound variables in general)
are not available to programs since α-conversion (the alphabetic change of bound
variables) is always applicable. Thus, compilers are free to implement nominals
in any number of ways, even ways in which they do not have, say, print names.

Expressions involving @ are greatly restricted within patterns of match expres-
sions: in particular the expression (m @ X1 ... Xj) is restricted so that m is a
pattern variable and X1, . . ., Xj are distinct nominals bound within the scope of
the pattern binding on m. This restriction is essentially the same as those required
by higher-order pattern unification [Miller, 1991]: as a result, pattern matching
in this setting is a simple generalization of usual first-order pattern matching.

We note that the expression (X\ r @ X) is interchangeable with the simple
expression r: that is, when r is of => type, an η-equality holds.

We now present several sets of examples of MLTS programs in the next
sections: the Appendix contains an additional example. We hope that the informal
semantics given above plus the simplicity of the examples will give a working
understanding of the semantics of MLTS. We delay the formal definition of the
operational semantics of MLTS until Section 7.

3 MLTS examples: the untyped λ-calculus

The untyped λ-terms can be defined in MLTS as the following datatype:

type tm =

| App of tm * tm

| Abs of tm => tm;;

The use of the => type constructor here indicates that the argument of Abs is
a binding abstraction of a tm over a tm. Just as the type tm denotes a syntactic
category of untyped λ-terms, the type tm => tm denotes the syntactic category
of terms abstracted over such terms.

Following usual conventions, expressions whose concrete syntax have nested
binders using the same name are disambiguated by the parser by linking the named
variable with the closest binder. Thus, the concrete syntax (Abs(X\ Abs(X\ X)))
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is parsed as a term α-equivalent to (Abs(Y\ Abs(X\ X))). Similarly, the expres-
sion (let n = 2 in let n = 3 in n) is parsed as an expression α-equivalent
to (let m = 2 in let n = 3 in n): this expression has value 3.

The following MLTS program computes the size of an untyped λ-term.

let rec size term =

match term with

| App(n, m) -> 1 + size n + size m

| Abs(r) -> 1 + new X in size (r @ X)

| nab X in X -> 1;;

For example, (size (App(Abs(X\X), Abs(X\X)))) evaluates to 5. In the second
match rule, the match-variable r will be bound to an expression built using the
backslash. On the right of that rule, r is applied to a single argument which is a
newly provided nominal constructor of type tm. The third match rule contains
the nab binder that allows the token X to match any nominal: alternatively, that
last clause could have matched any non-App and non-Abs term by using the
clause | _ -> 1. (Note that as written, the three match rules used to define
size could have been listed in any order.) The following sequence of expressions
shows the evolution of a computation involving the size function.

size (Abs (X\ Abs (Y\ App(X,Y))));;

1 + new X in size (Abs (Y\ App(X,Y)));;

1 + new X in 1 + new Y in size (App(X,Y));;

1 + new X in 1 + new Y in 1 + size X + size Y;;

1 + new X in 1 + new Y in 1 + 1 + 1;;

The first call to size will bind the pattern variable r to X\ Abs(Y\ App(X,Y)).
It is important to note that the names of bound variables within MLTS programs
and data structures are fictions: in the expressions above, binding names are
chosen for readability.

Figure 1 defines the function (subst t u) that takes an abstraction over
terms t and a term u and returns the result of substituting the (top-level) bound
variable of t with u. This function works by first introducing a new nominal X
and then defining an auxiliary function that replaces that nominal in a term with
the term u. Finally, that auxiliary function is called on the expression (t @ X)

which is the result of “moving” the top-level bound variable in t to the binding
occurrence of the expression new X in. (As we note at the end of Section 10.2,
such binder movement can be implemented in constant time and does not need to
involve an actual substitution of a nominal for a bound variable.) This substitution
function has the type (tm => tm) -> (tm -> tm): that is, it is used to inject
the abstraction type => into the function type ->. Substitution is then used by the
second function of Figure 1, beta, to compute the β-normal form of a given term
of type tm. This figure also contains the Church numeral for 2 and operations
for addition and multiplication on Church numerals. In the resulting evaluation
context, the values computed by (beta (App(App(plus, two), two))) and
(beta (App(App(times, two), two))) are both the Church numeral for 4.
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let subst t u = new X in

let rec aux t = match t with

| X -> u

| nab Y in Y -> Y

| App(u, v) -> App(aux u, aux v)

| Abs r -> Abs(Y\ aux (r @ Y))

in aux (t @ X);;

let rec beta t = match t with

| Abs r -> Abs(Y\ beta (r @ Y))

| nab X in X -> X

| App(m, n) ->

let m = beta m in let n = beta n in

begin

match m with

| Abs r -> beta (subst r n)

| _ -> App(m, n)

end ;;

let two = Abs(F\ Abs(X\ App(F, App(F, X))));;

let plus = Abs(M\ Abs(N\ Abs(F\ Abs(X\

App(App(M, F), App(App(N, F), X))))));;

let times = Abs(M\ Abs(N\ Abs(F\ Abs(X\

App(App(M, App(N, F)), X)))));;

Fig. 1. The function for computing the substitution [t/x]u and the (partial) function
that returns the β-normal form of its argument.

For another example, consider a program that returns true if and only if
its argument, of type tm => tm, is such that its top-level bound variable is a
“vacuous” binding. Figure 2 contains three implementations of this boolean-valued
function. The first implementation proceeds by matching patterns with the prefix
X\, thereby, matching expressions of type tm => tm. The second implementation
uses a different style: it creates a new nominal X and proceeds to work on the term
t @ X, in the same fashion as the size example. The internal aux function is then
defined to search for occurrences of X in that term. The third implementation,
vacp3, is not (overtly) recursive since the entire effort of checking for the vacuous
binding is done during pattern matching. The first match rule of this third
implementation is essentially asking the question: is there an instantiation for
the (pattern) variable s so that the λx.s equals t? This question can be posed
as asking if the logical formula ∃s.(λx.s) = t can be proved. In this latter form,
it should be clear that since substitution is intended as a logical operation, the
result of substituting for s never allows for variable capture. Hence, every instance
of the existential quantifier yields an equation with a left-hand side that is a
vacuous abstraction. Of course, this kind of pattern matching requires a recursive
analysis of the term t.
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let rec vacp1 t = match t with

| X\ X -> false

| nab Y in X\ Y -> true

| X\ App(m @ X, n @ X) -> vacp1 m && vacp1 n

| X\ Abs(Y\ r @ X Y) -> new Y in vacp1 (X\ r @ X Y);;

let rec vacp2 t =

new X in

let rec aux term = match term with

| X -> false

| nab Y in Y -> true

| App(m, n) -> aux m && aux n

| Abs(u) -> new Y in aux (u @ Y)

in aux (t @ X);;

let vacp3 t = match t with

| X\ s -> true

Fig. 2. Three implementations for determining if an abstraction is vacuous.

let rec assoc x alist = match alist with

| (u,y)::alst -> if (u = x) then y else assoc x alst;;

type tm’ =

| App ’ of tm ’ * tm ’

| Abs ’ of tm ’ => tm ’;;

let rec id g term = match term with

| App(m,n) -> App ’(id g m, id g n)

| Abs(r) -> new X in Abs ’(Y\ id ((X, Y)::g) (r @ X))

| nab X in X -> assoc X g;;

Fig. 3. Translating from tm to its mirror version tm’.

For a simple example of computing on the untyped λ-calculus, consider
introducing a mirror version of tm, as is done in Figure 3, and writing the
function that constructs the mirror term in tm’ from an input term tm. This
computation is achieved by adding a context (an association list) as an extra
argument that maintains the association of bound variables of type tm and those
of type tm’. The value of id [] (Abs(X\ Abs(Y\ App(X,Y)))) is (Abs’(X\

Abs’(Y\ App’(X,Y)))) (the types of X and Y in these two expressions are, of
course, different).

Figure 4 presents a datatype for the untyped λ-calculus in De Bruijn’s style
nameless dummies [de Bruijn, 1972] as well as the functions that can convert
between that syntax and the one with explicit bindings. The auxiliary functions
nth and index take a list of nominals as their second argument: nth takes also
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type deb =

| Dapp of deb * deb

| Dabs of deb

| Dvar of int;;

let rec nth n l = match (n, l) with

| (0, x::k) -> x

| (c, x::k) -> nth (c - 1) k;;

let index x l =

let rec aux c x k = match (x, k) with

| nab X in (X, X::(l @ X)) -> c

| nab X Y in (X, Y::(l @ X Y)) ->

aux (c + 1) x (l @ X Y)

in aux 0 x l;;

let rec trans prefix term = match term with

| App(m, n) -> Dapp(trans prefix m, trans prefix n)

| Abs r -> new X in Dabs(trans (X:: prefix) (r @ X))

| nab Y in Y -> Dvar (index Y prefix);;

let rec dtrans prefix term = match term with

| Dapp(m, n) -> App(dtrans prefix m, dtrans prefix n)

| Dabs r -> Abs(X\ dtrans (X:: prefix) r)

| Dvar c -> nth c prefix ;;

Fig. 4. De Bruijn’s nameless dummy syntax and its conversions with type tm.

an integer n and returns the nth nominal in that list while index takes a nominal
and returns its ordinal position in that list. For example, the value of

trans [] (Abs(X\ Abs(Y\ Abs(Z\ App(X, Abs(W\ Z))))));;

is the term DAbs(DAbs(DAbs(DApp(Dvar 2, DAbs(Dvar 1))))) of type deb. If
dtrans [] is applied to this second term, the former term is returned (modulo
α-renaming, of course).

4 Higher-order programming examples

Recall the familiar “fold-right” higher-order function.

let rec foldr f a lst = match lst with

| [] -> a

| x :: xs -> f x (foldr f a xs);;

This function can be viewed as replacing all occurrences of :: with the binary
function f and all occurrences of [] with a. The higher-order program maptm

in Figure 5 does the analogous operation on the datatype of untyped λ-terms
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let rec maptm fapp fabs fvar t = match t with

| App(m,n) -> fapp (maptm fapp fabs fvar m)

(maptm fapp fabs fvar n)

| Abs r -> fabs (fun x -> maptm fapp fabs fvar (r @ x))

| nab X in X -> fvar X;;

let lookup sub var = match var with

| nab X in X ->

let rec aux s = match s with

| [] -> X

| (X,t)::sub -> t

| (y,t)::sub -> aux sub

in aux sub;;

let mapvar = maptm (fun m -> fun n -> App (m, n))

(fun r -> Abs (X \ r X));;

let subst_tm sub = mapvar (lookup sub);;

let fv term = maptm union (fun r -> new X in remove X (r X))

(fun x -> x::[]) term;;

let size term = maptm (fun x -> fun y -> 1 + x + y)

(fun r -> new X in 1 + (r X))

(fun x -> 1) term;;

let terminals term = maptm (fun x -> fun y -> x + y)

(fun r -> new X in (r X))

(fun x -> 1) term;;

Fig. 5. Various computations on untyped λ-terms using higher-order programs.

tm. In particular, the constructors App and Abs are replaced by functions fapp

and fabs respectively. In addition, the function fvar is applied to all nominals
encountered in the term. This higher-order function can be used to define a
number of other useful and familiar functions. For example, mapvar function is
a specialization of the maptm function that just applies a given function to all
nominals in an untyped λ-term. The application of a substitution (an expression
of type (tm * tm) list) to a term of type tm can then be seen as the result
of applying the lookup function to every variable in the term (using mapvar).
Using the functions in Figure 5, the three expressions

Abs(X\

mapvar (fun x -> X) (Abs(U\ Abs(V\ App(U, V)))));;

new X in new Y in

lookup ((X, Abs(U\U))::(Y, Abs(U\ App(U,U)))::[]) X;;

new X in new Y in
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lookup ((X, Abs(U\U))::(Y, Abs(U\ App(U,U)))::[]) Y;;

evaluate to the following three λ-terms.

Abs(X\ Abs(Y\ Abs(Z\ App(X, X))))

Abs(X\ X)

Abs(X\ App(X, X))

Three additional functions are defined in Figure 5: fv constructs the list
of free variables in a term; size is a re-implementation of the size function
presented in Section 3; and terminals counts the number of variable occurrences
(terminal nodes) in its argument.

5 Typing

Given that MLTS is a rather mild extension to OCaml at the syntax level, a
typing system for MLTS is simple to present and follows standard practices.
Figure 6 contains the rules for typing the new features of MLTS: additional rules
for encoding let and let rec constructions (as well as for built-in types such as
integers) must also be added, but these follow the usual pattern. The inference
rules in this figure involve the following typing judgments.

Γ ` M : A Γ ` A : R : B Γ ` M : A ` ∆ open A

In all of these rules, Γ is the usual association between bound variables and
a type: in our situation, Γ will associate both variables and nominals to type
expressions. (We also assume that the order of pairs in Γ is not important.)
The first of these judgments is the usual typing judgment between a program
expression M and A. The second of these judgments is used to type a rewriting
rule R that has a left-hand side of type A and a right-hand side of type B. For
example, the following typing judgment should be provable.

Γ ` tm : Abs(r) -> 1 + (new X in size (r @ X)) : int

Since this rule expression is intended to be closed (that is, the variable r is
quantified implicitly around this rule), the actual value of Γ will not impact this
particular typing judgment. The third typing judgment above is used to analyze
the left-hand-side of a match rule: in particular, Γ ` M : A ` ∆ holds if during the
process of analyzing the pattern M, pattern variables are produced (since these
are implicitly quantified) and placed into the typing context ∆. For example, the
following should be provable.

Γ ` Abs(r) : tm ` {r : tm => tm}

Some of the inference rules in Figure 6 contain premises of the form (open A)
where A is a primitive type. Types for which this judgment holds are called
open types and are the types of bindings in the new and backslash expressions:
equivalently, open types can contain nominals. For our purposes here, we can
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Γ, x : C ` x : C
Γ ` M : A -> B Γ ` N : A

Γ ` (M N) : B

Γ,x : A ` M : B

Γ ` (fun x -> M) : A -> B

Γ,X : A ` M : B open A

Γ ` (new X in M) : B

Γ,X : A ` M : B open A

Γ ` (X \ M) : A => B

Γ ` r : A1 => ... => An => A Γ ` t1 : A1 . . . Γ ` tn : An
Γ ` (r @ t1 ... tn) : A

Γ ` term : B Γ ` B : R1 : A . . . Γ ` B : Rn : A
Γ ` match term with R1 | ... | Rn : A

Γ,X : C ` A : R : B open C

Γ ` A : nab X in R : B

Γ ` L : A ` ∆ Γ,∆ ` R : B

Γ ` A : L -> R : B

Γ,x : A ` x : A ` ·
Γ ` X1 : A1 . . . Γ ` Xn : An open A1 . . . open An

Γ ` (r @ X1 ... Xn) : A ` r : A1 => ... => An => A

Γ ` p : A ` ∆1 Γ ` q : B ` ∆2

Γ ` (p,q) : A * B ` ∆1,∆2

Γ ` t1 : A1 ` ∆1 . . . Γ ` tn : An ` ∆n

Γ ` C(t1,...,tn) : A ` ∆1, . . . ,∆n

provided C is a constructor of type
A1 * ... * An -> A

Fig. 6. Typing rules based on the concrete syntax for the new features of MLTS.

assume that every type that is defined in a program (using the type command)
is presumed to be open. For example, the judgment (open tm) needs to be true
so that the type tm => tm can be formed in the various typing rules. On the
other hand, the built-in type for integers int should not be considered open in
this sense. Clearly a keyword must be added to datatype declarations to indicate
if a type is intended as open in this sense.

In the inference rules in Figure 6, whenever we extend the typing context Γ
to, say, Γ,X : A, we always assume that X is not declared a type in Γ already.
Since α-conversion is always possible within terms, this assumption can always
be satisfied. Note that since pattern variables are restricted (as is usual) so that
they have at most one occurrence in a given pattern, the union of contexts, in
the form ∆1, . . . ,∆n never attributes more than one type to the same variable.

The prototype implementation TryMLTS [Gérard, Miller, and Scherer, 2018]
of MLTS contains a type inference engine that runs on top of λProlog: given the
hypothetical judgments available in λProlog, the implemented typing system is
structured differently (but equivalently) to the one given in Figure 6.
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6 Abstract syntax, untyped λ-calculus, and arity typing

Although MLTS is designed as a strongly typed functional programming language,
evaluation for this language is fundamentally untyped. The abstract syntax for
MLTS is based on the untyped λ-calculus along with a few extensions to capture
the new features of MLTS.

Recall the semantic description of the untyped λ-calculus given by Scott in
[Scott, 1970]. Scott was able to present a semantic domain D that was isomorphic
to its own function space: that is, D ≡ [D → D]. This equivalence is witnessed
by the two continuous mappings Φ : D → (D → D) (encoding application)
and Ψ : (D → D) → D (encoding abstraction). For example, the untyped λ-
term λxλy((xy)y) is encoded as a value in domain D using the expression
(Ψ(λx(Ψ(λy(Φ(Φ X Y ) X)))))).

Note that syntactically, application in the untyped λ-calculus is captured by
two domain-level features: function application and the mapping Φ. Similarly,
abstraction is captured by two domain-level features: function abstraction (the
creation of an element of [D → D]) and the mapping Ψ . We can thus identify
two different syntactic categories in this encoding: those denoted by the domain
D and those identified by the domain of (continuous) functions D → D. In what
follows, we need to make a similar distinction between (λx.T ) of type D → D
and (Ψ(λx.T )) of type D.

To capture this distinction in a more general setting, we employ the notion of
arity typing that has been used by Martin-Löf [Nordstrom, Petersson, and Smith,
1990]. In particular, we inductively define arity types as follows.

– There is one primitive arity type, written as 0.
– If ρ1 and ρ2 are arity types then so is (ρ1 → ρ2).
– If ρ1, . . . , ρn (n ≥ 2) are arity types then so is ρ1 ⊗ · · · ⊗ ρn.

Here, 0 formally plays a role in the syntax of expressions that is played by domain
D in denotational semantics. As is common practice, the infix arrow→ associates
to the right. In the encoding of the untyped λ-calculus, the operator Φ takes
two arguments of arity type 0 while the operator Ψ takes one argument of arity
0→ 0. The arity type constructor ⊗ will not be used in our setting except for
the possible convenience of writing an arity expressions in an uncurried form. In
particular, we follow the usual OCaml convention that constructors must have
arity (ρ1 ⊗ . . .⊗ ρn)→ ρ0 where ρ0 is a primitive arity. The abstract syntax of
such constructors could well have the curried arity type ρ1 → . . .→ ρn → ρ0.

In most formalizations of ML-style programming languages, expressions of
non-zero arity generally only arise in the application of a function to its argument:
all other features of the language only take arguments of arity type 0. In MLTS,
expressions of non-zero arity play extended roles: for example, in MLTS, pattern
matching variables can have non-primitive arity while in most ML-languages,
pattern variables are always of primitive arity. It is important to keep arity typing
and ML-style typing separated. For example, the type of subst in Section 4
can be inferred to be (tm => tm) -> tm -> tm. The arity typing of subst is,
however, the simple expression (0 → 0) → 0 → 0: that is, the first argument
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given to subst must be a binding at the level of the abstract syntax. As we shall
see in the following sections, the arity typing is used in the specification of the
operational semantics of MLTS.

7 Formalizing the design of MLTS

Bindings are such an intimate part of the nature of syntax that we should expect
that our high-level programming languages accounts for them directly in, for
example, any built-in notion of equality or matching. (The paper [Miller, 2018]
contains an extended argument of this point in the setting of logic programming
and proof assistants.) Another reason to include binders as a primitive within a
functional programming languages is that their semantics have a well understood
declarative and operational treatment. For example, Church’s higher-order logic
STT [Church, 1940] contains an elegant integration of bindings in both terms and
formulas. His logic also identifies equality for both terms and formulas with αβη-
conversion. Church’s integration is also a popular one in theorem proving—being
the core logic of the Isabelle [Paulson, 1994], HOL [Harrison, 2009, Gordon, 1991],
and Abella [Baelde, Chaudhuri, Gacek, Miller, Nadathur, Tiu, and Wang, 2014]
theorem provers—as well as the logic programming language λProlog [Miller
and Nadathur, 2012]. Given the existence of these provers, a good literature
now exists that describes how to effectively implement STT and closely related
logics. Below, we describe what that literature can tell us about the meaning and
implementation of the novel features of MLTS.

7.1 Equality modulo α, β, η conversion

The abstract syntax behind MLTS is essentially a simply typed λ-term where
the types are identified with arity types over the primitive arity 0 and the binary
arity constructor →. Furthermore, the equality theory of such terms is given by
the familiar α, β, η conversion rules. As a result, a programming language that
adopts this notion of equality cannot take an abstraction and return, say, the
name of its bound variable: since that name can be changed via the α-conversion,
such an operation would not be a proper function. Thus, it is not possible to
decompose the untyped λ-term λx.t into the two components x and t. Not being
able to retrieve a bound variables name might appear as a serious deficiency
but, in fact, it can be a valuable feature of the language: for example, a compiler
does not need to maintain such names and can choose any number of different,
low-level representations of bindings to exploit during execution. Since the names
of bindings seldom have semantically meaningful value, dropping them entirely
is an interesting design choice. That choice is similar to one taken in ML-style
languages in which the location in memory of a reference cell is not maintained
as a value in the language.

The relation of λ-conversion is invoked when evaluating the expression (t

@ s1 ... sn). If we assume that expressions s1, . . . , sn have arities ρ1, . . . , ρn,
respectively, then t must have arity ρ1 → · · · → ρn → 0. Thus, t is η-equivalent
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to a term with n abstractions, for example, X1\...Xn\ t’ and the value of
the expression (t @ s1 ... sn) is the result of performing λ-normalization of
(X1\...Xn\ t’) to the arguments s1, . . . , sn.

As we illustrated in Section 3, it is possible to implement both substitution
and λ-conversion in MLTS. Thus, it is possible to limit the occurrences of @
to appear only within the scope of match clauses and only then with a pattern
variable as the first argument of @. For the sake of the rest of this paper, we will
not enforce that restriction.

7.2 Pattern unification and matching

Since we are not able to decompose bindings into their bound variable and body,
we need to find alternative means for analyzing the structure of terms containing
bindings. As our earlier examples illustrated, matching within patterns can be
used to probe terms and their bindings. If we do not place restrictions on the use
of pattern variables, then patterns can have complex behaviors.

No repeated pattern variable occurrences. We impose a familiar restriction
on the match rules: a pattern variable cannot have more than one occurrence
within a match pattern. The main reason this is done in ML-style languages is that
it relieves pattern matching from the need to check equality of terms. Since terms
can be large, pattern matching could involve a costly recursive descent of terms.
It is far more common to forbid repeated occurrences of pattern variables and
force the programmer to insert equality checking outside the pattern matching
operation. Thus, instead of defining memb : tm -> tm list -> bool with the
following code using a repeated match variable

let rec memb x l = match (x,l) with

| (x,[]) -> false

| (x,(x::l)) -> true

| (y,(x::l)) -> memb x l;;

we can require the programmer to write an equality predicate for type tm and
then rewrite the program above as follows.

let rec eqtm t s = match (t,s) with

| (App(m1 ,m2),

App(n1 ,n2)) -> eqtm m1 n1 && eqtm m2 n2

| (Abs r, Abs s) -> new X in eqtm (r @ X) (s @ X)

| nab X in (X, X) -> true

| _ -> false ;;

let rec memb x l = match (x,l) with

| (x,[]) -> false

| (x,(y::l)) -> if (eqtm x y) then true

else (memb x l);;
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Given the definition of the tm datatype, it is clear that a compiler for MLTS could
define its own equality predicate for this type. In that case, repeated variable
occurrences in patterns could be allowed since resolving such patterns could be
done using these equality predicates.

Restricted use of higher-order pattern variables. Since pattern variables
within match rules can have higher-order arity (and higher-order types), oc-
currences of those variables within patterns need to be restricted: otherwise,
undesirable features of higher-order matching could appear. Fortunately, there
is a natural restriction on occurrences of pattern variables that guarantees that
a match either fails or succeeds with at most one solution. That restriction is
the following: every occurrence of an expression of the form (r @ X1 ... Xn)

in the left-hand side of a match rule must be such that the pattern variable r

is applied to n ≥ 0 distinct nominals X1 ... Xn and those nominals are bound
within the scope of the binding for r. For example, the following expression is
not well formed

Abs(X\ (match Abs(Y\ App(X,Y)) with

| Abs(Z\ r @ Z X) -> Abs(Z\ r @ X Z)))

since the scope of the nominal X contains the (implicit) scope of the pattern
variable r, which is around the rule (Abs(Z\ r @ Z X) -> Abs(Z\ r @ X Z)).

This restriction can be motivated within a purely logical setting as follows.
Let j be a primitive type and let f : j → j → j be a simply typed constant. The
formula ∃G : j → j ∀x : j [G x = (f x x)] has a unique proof in which G is
instantiated by the term λw.(f w w). Note that the binding scope of the variable
x is inside the binding scope of the variable G. If, however, one switches the
order of the quantifiers, yielding ∀x : j ∃G : j → j [G x = (f x x)], then there
are four different proofs of this equation: if one replaces the outermost universal
quantifier with an eigenvariable, say a, then there are four different solutions for
G, namely, λw.(f a a), λw.(f a w), λw.(f w a), and λw.(f w w).

The subset of higher-order unification in which unification variables (a.k.a.,
logic variables, meta-variables, pattern variables) are applied to distinct bound
variables restricted as described above, is called higher-order pattern unification
or Lλ unification [Miller, 1991]. (Nipkow provides a functional programming
implementation of such unification in [Nipkow, 1993].) This particular subset
of higher-order unification is commonly implemented in theorem provers such
as Abella [Baelde, Chaudhuri, Gacek, Miller, Nadathur, Tiu, and Wang, 2014],
Minlog [Schwichtenberg, 2006], and Twelf [Pfenning and Schürmann, 1999] as
well as recent implementations of λProlog [Dunchev, Guidi, Coen, and Tassi,
2015, Qi, Gacek, Holte, Nadathur, and Snow, 2015].

The following results about about higher-order pattern unification are proved
in [Miller, 1991].

1. It is decidable and unitary, meaning that if there is a unifier then there exists
a most general unifier.



Functional programming with λ-tree syntax 15

2. It does not depend on typing (or on arity). As a result, it is possible to add
it to the evaluator for MLTS based on untyped terms.

3. The only form of β-conversion that is needed to solve such unification problems
is what is called β0-conversion which is a form of the β rule that equates
(λx.t)x with t.

An equivalent way to write the β0-conversion rule (assuming the presence
of α-conversion) is that (λx.t)y converts to t[y/x] provided that y is not free in
λx.t. Notice that applying β0 reduction actually makes a term smaller and does
not introduce new β redexes: as a result it is not a surprise that such unification
(and, hence, matching) has low computational complexity (the paper [Qian, 1996]
claims that such unification is, in fact, solvable in linear time).

All nab bound variables must have a rigid occurrence. There is an addi-
tional restriction on match rules that is associated to the nab quantifiers that
appear in such rules. We say that an occurrence of a nab-quantified nominal is
flexible if it is in the scope of an @. For example, in the code

Abs(X\ (match Abs(Y\ App(X,Y)) with

| nab W in Abs(Z\ r @ Z W) ->

Abs(Z\ r @ W Z)));;

the nominal binding W has two occurrences that are flexible: one each within
(r @ Z W) and (r @ W Z). All other occurrences of a nab quantified nominal
is rigid. For example, in the match rule | nab X in X -> 1, X has a binding
occurrence and a rigid occurrence. In the auxiliary function used by the insert

function in Figure 4, namely,

let rec aux c x k = match (x, k) with

| nab X in (X, X::(l @ X)) -> c

| nab X Y in (X, Y::(l @ X Y)) ->

aux (c + 1) x (l @ X Y)

the nominals X and Y have both rigid and flexible occurrences within their scope.
The one additional restriction that we need is the following: every nab quanti-

fied variable must have at least one rigid occurrence in the left part of the match
rule (the pattern) that falls within the scope of its binder. For example, the
code listed above (for an expression of type tm) does not satisfy this restriction
since every occurrence of of W in the pattern is flexible (there is just one such
occurrence). The necessity of this restriction can be seen when we consider a
pattern of the form

| nat X Y in (r @ X Y) -> term

In the event that a nominal, say U, is matched with the pattern in this rule, there
are two possible instantiations for r that could succeed, namely, the terms X\Y\X
and X\Y\Y: we wish to avoid multiple successful matches of the same rule. The
following clause is also ruled out by this restriction
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| nat X in 1 -> X

since X has no rigid occurrence in the expression 1. Discarding this match rule
makes sense since the nominal that is returned as the result of this match is not
constrained by the input to the match.

7.3 β0 versus β

In order to ensure that matching a rule either fails or has a unique, most general
solution, we will insist that in the left side of a match rule, all subexpressions of
the form (r @ X1 ... Xn) are such that the scope of the binding for r contains
the scope of the bindings for the distinct variables in X1, . . ., Xn. On the right-
hand side of a match rule, however, it seems that one has an interesting choice.
If on the right, we have an expression of the form (r @ t1 ... tn) then clearly,
the terms t1, . . ., tn are intended to be substituted into the abstraction that
is instantiated for the pattern variable r: that is, we need to use β-conversion
on this redex. One choice is that we restrict the terms t1, . . ., tn to be distinct
nominals just as on the left-hand-side: in this case, β-reduction of the expression
(r @ t1 ... tn) requires only β0 reductions. A second choice is that we allow
the terms t1, . . ., tn to be unrestricted: in this case, β-reduction of the expression
(r @ t1 ... tn) requires more general (and costly) β-reductions.

A similar trade-off between allowing β-conversion or just β0 conversion has
also been studied within the theory and design of the π-calculus. In particular,
the full π-calculus allows the substitution of arbitrary names into input prefixes
(modeled by β-conversion) while the πI -calculus (π-calculus with internal mo-
bility [Sangiorgi, 1996]) is restricted in such a way that the only instances of
β-conversions are, in fact, β0-conversions.

Another reason to identify the β0 fragment of β-conversion is that β0 reduction
provides support for binder mobility and it can be given effective implementations,
sometime involving only constant time (see Section 10.2).

7.4 Match rule quantification

Match rules in MLTS contain two kinds of quantification. The familiar quantifi-
cation of pattern variables can be interpreted as being universal quantifiers. For
example, the first rule defining the size function in Section 3, namely,

| App(n, m) -> 1 + size n + size m

can be encoded as the logical statement

∀m∀n[(size (App(n, m))) = 1 + size n + size m].

On the other hand, the third match rule for size contains the binder nab

| nab X in X -> 1
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which corresponds approximately to the generic ∇-quantifier (pronounced nabla)
that is found in various efforts to formalize the metatheory of computational
systems [Miller and Tiu, 2005, Baelde, Chaudhuri, Gacek, Miller, Nadathur, Tiu,
and Wang, 2014]. That is, this rule can be encoded as the quantified equation
∇x.(size x = 1): that is, the size of a nominal constant is 1.

Although there are two kinds of quantifiers around such match rules, the
ones corresponding to the universal quantifiers are implicit while the ones cor-
responding to the ∇-quantifiers are explicit. Our design for MLTS places the
implicit quantifiers at outermost scope: that is, the quantification over a match
rule is of the form ∀∇. Another choice might be to allow some (all) universal
quantifiers to be explicitly written and placed among any nab bindings. While
this is a sensible choice, the ∀∇-prefixes is, in fact, a reduction class in the sense
that if one has a ∀ quantifier inside a ∇-quantifier, it is possible to rotate that
∇-quantifier inside using a technique called raising [Miller, 1991, Miller and
Tiu, 2005]. That is, the formula ∇x : γ∀y : τ(Bxy) is logically equivalent to the
formula ∀h : (γ → τ)∇x : γ(Bx(hx)): note that as the ∇-quantifier of type γ
is moved to the right over a universal quantifier, the type of that quantifier is
raised from τ to γ → τ . Thus, it is possible for an arbitrary mixing of ∀ and ∇
quantifiers to be simplified to be of the form ∀∇.

7.5 Nominal abstraction

Before we can present the formal operational semantics of MLTS, we need to
introduce one final logical concept: nominal abstraction which allows implicit
bindings represented by nominals to be moved into explicit abstractions over
terms [Gacek, Miller, and Nadathur, 2011]. The following notation is useful for
defining this relationship.

Let t be a term, let c1, . . . , cn be distinct nominals that possibly occur in
t, and let y1, . . . , yn be distinct variables not occurring in t and such that, for
1 ≤ i ≤ n, yi and ci have the same type. Then we write λc1 . . . λcn.t to denote
the term λy1 . . . λyn.t

′ where t′ is the term obtained from t by replacing ci by
yi for 1 ≤ i ≤ n. There is an ambiguity in this notation in that the choice of
variables y1, . . . , yn is not fixed. However, this ambiguity is harmless: the terms
that are produced by acceptable choices are all equivalent under a renaming of
bound variables.

Let n ≥ 0 and let s and t be terms of type τ1 → · · · → τn → τ and τ ,
respectively; notice, in particular, that s takes n arguments to yield a term of
the same type as t. The formula sD t is a nominal abstraction of degree n (or,
simply, a nominal abstraction). The symbol D is used here in an overloaded way
in that the degree of the nominal abstraction it participates in can vary. The
nominal abstraction s D t of degree n is said to hold just in the case that s is
λ-convertible to λc1 . . . cn.t for some distinct nominals c1, . . . , cn.

Clearly, nominal abstraction of degree 0 is the same as equality between terms
based on λ-conversion, and we will use = to denote this relation in that case. In
the more general case, the term on the left of the operator serves as a pattern
for isolating occurrences of nominals. For example, if p is a binary constructor
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` val V
` V ⇓ V

`M ⇓ F ` N ⇓ U ` apply F U V

`M@N ⇓ V
` (R (fixpt R)) ⇓ V
` (fixpt R) ⇓ V

` C ⇓ tt ` L ⇓ V
` cond C L M ⇓ V

` C ⇓ ff `M ⇓ V
` cond C L M ⇓ V

`M ⇓ U ` (R U) ⇓ V
` (let M R) ⇓ V

` (R U) ⇓ V
` apply (lam R) U V

` ∇x.(E x) ⇓ (V x)

` λx.Ex ⇓ λx.V x
` ∇x.(E x) ⇓ V
` new E ⇓ V

` pattern T Rule U ` U ⇓ V
` (match T (Rule :: Rules)) ⇓ V

` (match T Rules) ⇓ V
` (match T (Rule :: Rules)) ⇓ V

` ∃x.pattern T (P x) U

` pattern T (all λx.P x) U

` (λz1 . . . λzm.(t =⇒ s)) D (T =⇒ U)

` pattern T (nab z1 . . .nab zm.(t =⇒ s)) U

Fig. 7. A natural semantic specification of evaluation.

and c1 and c2 are nominals, then the nominal abstractions of the first row below
hold while those in the second row do not.

λx.xD c1 λx.p x c2 D p c1 c2 λx.λy.p x y D p c1 c2

λx.x 6D p c1 c2 λx.p x c2 6D p c2 c1 λx.λy.p x y 6D p c1 c1

A logic with equality generalized to nominal abstraction has been studied
in [Gacek, 2009, Gacek, Miller, and Nadathur, 2011] where a logic, named
G, that contains fixed points, induction, coinduction, ∇-quantification, and
nominal abstraction is given a sequent calculus presentation. Cut-elimination
for G is proved in [Gacek, Miller, and Nadathur, 2011] and algorithms and
implementations for nominal abstraction are presented in [Gacek, 2009, Wang,
Chaudhuri, Gacek, and Nadathur, 2013]. An important feature of the Abella
prover—∇ in the head of a definition—can be explained and encoded using
nominal abstraction [Gacek, Miller, and Nadathur, 2008].

8 Natural semantic specification of MLTS

We can now define the operational semantics of MLTS by giving inference rules
in the style of natural semantic (a.k.a. big-step semantic) following Kahn [Kahn,
1987]. The semantic definition for the core of MLTS is defined in Figure 7. Since
those inference rules are written using an abstract syntax for MLTS, we need to
describe briefly how that abstract syntax is derived from the concrete syntax we
have presented for our several examples.
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prog "size" (fixpt size\ lam term\ match term

[(all n\ all m\ ((app n m) ==>

(sum @ (i 1) @ (sum @ (size @ n) @ (size @ m))))),

(all ’ r\ ((abs r) ==>

(sum @ (i 1) @ (new x\ size @ (r x))))),

(nab x\ (x ==> (i 1)))]).

Fig. 8. The abstract syntax of the size program.

Instead of detailing the translation from concrete to abstract syntax, we illus-
trate this translation with an example. There is an implementation of MLTS that
includes a parser and a transpiler into λProlog code: this system is available for
online use and for downloading at https://trymlts.github.io [Gérard, Miller, and
Scherer, 2018]. The abstract syntax used in this section and in that implementa-
tion are different in detail. For presentation purposes, we use a simplified version
of the abstract syntax of MLTS. For example, the λProlog code in Figure 8 is
the abstract syntax for the MLTS program for size given in Section 3.

The backslash (as infix notation) is also used in λProlog to denote binders; the
@ denotes the untyped λ-calculus application; lam denotes the untyped λ-calculus
abstraction; recursive function definitions are encoded using the fixpt operator;
the infix symbol ==> denotes a match rule; nab denotes the nab-quantifier; and
all and all’ are explicit universal quantification bindings for variables of arity
0 and 0 → 0, respectively.1 Finally, the concrete syntax (let x = t in s) is
translated to the abstract syntax (let (x\ s) t).

It is intended that the inference rules given in Figure 7 are, in fact, notations
for formulas in the logic G. For example, schema variables of the inference figure
are universally quantified around the intended formula; the horizontal line is
an implication; the list of premises is a conjunction; and ⇓ is a binary (infix)
predicate, etc. Some features of G are exploited by some of those inference rules:
those features are enumerated below.

In the rules for fixpt, let, and apply, a variable of arity type 0→ 0 (namely,
R) is applied to a term of arity type 0. These rules make use of the underlying
equality theory of simply typed λ-terms in G to perform a substitution. In the rule
for apply, for example, if R is instantiated by the term λw.t and U is instantiated
by the term s, then the expression written as (R U) is equal (in G) to the result
of substituting s for the free occurrences of w in t: that is, to the result of a
β-reduction on the expression ((λw.t) s).

Existential quantification is written explicitly into the first rule for patterns.
It is possible (as is done in other rules) to drop the explicit existential quantifier
and instead have the quantification be implicitly universally quantified around
the entire rule. We write it explicitly here to highlight the fact that solving the
problem of finding instances of pattern variables in matching rules is lifted to

1 The abstract syntax used in the tryMLTS implementation contains only one such
quantifier: pattern variables of any arity can be encoded using all.

https://trymlts.github.io
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the general problem of finding substitution terms in G. Also, the arity of the
existentially quantified variable in that inference rule can range over 0, 0→ 0,
0→ 0→ 0, . . ..

The proof rules for natural semantics are nondeterministic in principle. Con-
sider attempting to prove that t, a term of arity type 0, has a value: that is,
∃V, t ⇓ V . It can be the case that no proof exists or that there might be several
proofs with different values for V . No proofs are possible if, for example, the
condition in a conditional phrase does not evaluate to a boolean or if there are
insufficient match rules provided to cover all the possible values given to a match
expression. Similarly, if there are overlapping matching rules, it is possible to
have multiple values computed. Ultimately, we will want to provide a static
check that could issue a warning if the rules listed in a match expression are not
exhaustive. Making sure that only the first successful match in a list of matching
rules is selected is easily achieved in the implementation of natural semantics: for
example, we added a single Prolog-cut operator into our λProlog implementation
of the natural semantics of MLTS to satisfy that restriction.

The nominal abstraction of G is directly invoked to solve pattern matching
in which nominals are explicitly abstracted using the nab binding construction.
When attempting to prove the judgment ` pattern T Rule U , the inference rules
in Figure 7 eventually lead to an attempt to prove in G an existentially quantified
nominal abstraction of the form

∃x1 . . . ∃xn[(λz1 . . . λzm.(t =⇒ s)) D (T =⇒ U)].

Here, the arrow =⇒ is simply a formal (syntactic) pairing operator. The schema
variables x1, . . . , xn can be of arity 0, 0→ 0, 0→ 0→ 0, . . . and can appear free
only in t and s: furthermore, if any of these variables are free in s they must be
free in t. Also, if any of the variables z1, . . . , zm (all of which are assumed to have
arity 0) are free in s they are also free in t. While the variables x1, . . . , xn cannot
appear more than once in t, the variables z1, . . . , zm are not restricted in this
fashion. In order to prove the formula ∃x̄(λz̄.t) D s, one must find a collection of
distinct nominals c̄ and witness terms t̄ that do not contain any of the elements
of c̄ such that [t̄/x̄, c̄/z̄]t = s [Wang, Chaudhuri, Gacek, and Nadathur, 2013].

It is worth pointing out that given the way we have defined the operational
semantics of MLTS, it is immediate that “nominals cannot escape their scopes.”
For example, the expression (new X in X) does not have a value (in abstract
syntax, this expression translates to (new X\ X)). More precisely, there is no
proof of ` ∃v.(newλx.x) ⇓ v using the inference rules in Figure 7. To understand
why this is an immediate consequence of the specification of evaluation, consider
the formula (which encodes the inference rule in Figure 7 defining new)

∀E∀V [(∇x.(E x) ⇓ V ) ⊃ (new E ⇓ V )].

Given that the scope of the ∇x is inside the scope of ∀V , it is not possible for any
instance of this formula to allow the x binder to appear as the second argument
of the ⇓ predicate. While such escaping is easily ruled out using this logical
specification, a direct implementation of this logic must incur a cost, however,
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to constantly ensure that no escaping is permitted. (See Section 10 for more
discussion on this point.)

9 Binder mobility

We started this programming language project with the desire to treat binders
in syntax as directly and naturally as possible. We approached this project by
designing the MLTS language with more binders than, say, OCaml: it has not
only the usual binders for building functions and for refactoring computation (via
the let construction) but also new binders that are directly linked to binders
in data (via the new X in, nab X in, and X\ operators). Finally, the natural
semantics of MLTS in G and its implementation in λProlog are all based on using
logics that contain rich binding operators that go beyond the usual universal
and existential quantifiers. It is worth noting that if one were to write MLTS
programs that do not need to manipulate data structures containing bindings,
then the new binding features of MLTS would not be needed and neither would
the novel features of both G and λProlog. Thus, in a sense, binders have not
been formally implemented in this story: instead, binders of one kind have been
implemented and specified using binders in another system. We were able to
complete a prototype implementation of MLTS since we know how to implement
the high-level logics, and those techniques can be applied directly to the natural
semantic specification.

One way to view the processing a binder is that one needs to first open the
abstraction, process the result (by “freshening” the newly freed names), and
then close the abstraction [Pottier, 2006]. In the setting of MLTS, it is better to
view such processing as the movement of a binder: that is, the binder in a data
structure actually gets re-identified with an actual binder in the programming
language. As we illustrated in Section 3 with the following step-by-step evaluation

size (Abs (X\ (Abs (Y\ (App(X,Y))))));;

new X in 1 + (size (Abs (Y\ (App(X,Y)))));;

new X in 1 + new Y in 1 + (size (App(X,Y)));;

new X in 1 + new Y in 1 + 1 + (size X) + (size Y);;

new X in 1 + new Y in 1 + 1 + 1 + 1;;

the bound variable occurrences for X and Y simply move. It is never the case
that a bound variable actually becomes free: instead, it just becomes bound
elsewhere. Thus, our strategy for strengthening the expressiveness of MLTS over
other ML-style languages has been to add to the language more binding sites to
which bindings can move.

10 Interpreters for MLTS

We have a prototype implementation of MLTS. A parser from our extended
OCaml syntax and a transpiler that generates λProlog code are implemented
in OCaml. A simple evaluator and type checker written in λProlog can then
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be used to type check and execute MLTS code. The implementation of the
evaluator in λProlog is rather compact but not completely trivial since neither
∇-quantification nor nominal abstraction are native to λProlog: they needed
to be implemented. Both the Teyjus [Qi, Gacek, Holte, Nadathur, and Snow,
2015] and the Elpi [Dunchev, Guidi, Coen, and Tassi, 2015] implementations of
λProlog can be used to execute the MLTS interpreter.

The TryMLTS web site [Gérard, Miller, and Scherer, 2018] provides a means for
anyone with a recent web browser to create and execute MLTS programs online
without needing to install any software. Since Elpi, the parser, and the transpiler
are written in OCaml, web-based execution was made possible by compiling the
OCaml bytecode to a Javascript client library with js_of_ocaml [js-of-ocaml].

There is little about this prototype implementation that is focused on providing
an efficient implementation of MLTS. Instead, the prototype is a useful device
for exploring the exact meaning and possible uses of the new program features.
Never-the-less, we can comment here briefly on some costs of the underlying
system that will likely appear in any implementation of MLTS.

10.1 Nominal-escape checking

As we have mentioned in Section 8, nominals are not allowed to escape their scope
during evaluation and quantifier alternation can be used to enforce this restriction
at the logic level. When one implements the logic, one needs to implement (parts
of) the unification of simply typed λ-terms [Huet, 1975] and such unification is
constantly checking that bound variable scopes are properly restricted. There
are times, however, when the expensive check for escaping nominals are not, in
fact, needed. In particular, it is possible to rewrite the inference rule in Figure 7
for the new binding operator as the following rule.

` ∇x.(E x) ⇓ (U x) U = λx.V

` new E ⇓ V

Here, both U and V are quantified universally around the inference rule. At-
tempting a proof of the first premise can result in the construction of some
(possibly large) value, say t such that ` (E x) ⇓ t holds. We can immediately
form the binding of U 7→ λx.t without checking the structure of t. The second
premise is where the examination of t may need to take place: if x is free in t,
then there is no substitution for V that makes λx.t equal to λx.V . This check can
be expensive, of course, since one might in principle need to examine the entire
structure of t to solve this second premise. There are many situations, however,
where such an examination is not needed and they can be revealed by the typing
system. For example, if the type of U is, say, tm => int, there should not be
any possible way for an untyped λ-term to have an occurrence inside an integer.
Furthermore, there are static methods for examining type declarations in order
to describe if a type τ1 → τ2 (for primitive types τ1 and τ2) can be inhabited by
only vacuous λ-terms (see, for example, [Miller, 1992]). Of course, if the types of
τ1 and τ2 are the same (say, tm), then type information is not useful here and
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a check of the entire structure t might be necessary. Other static checks and
program analyses might be possible as a way to reduce the costs of checking for
escaping nominals: the paper [Pottier, 2007] includes such static checks albeit
for a technically different functional programming language, namely FreshML
[Shinwell, Pitts, and Gabbay, 2003].

10.2 Costs of moving binders

As we have mentioned before, binders are able to move from, say, a term-level
binding to a program-level binding by the use of β0. In particular, if y is a
binder that does not appear free in the abstraction λx.B then the β0 reduction
of (λx.B)y causes the x binding in B to move and to be identified with the y
binder in B[y/x]. If one must actually do the substitution of y for x in B, a
possibly large term (at least its spine) must be copied. However, there are some
situations where this movement of a binding can be inexpensive. For example,
consider again the following match rule for size.

| Abs(r) -> 1 + (new X in size (r @ X))

If we assume that the underlying implementation of terms use De Bruijn’s
nameless dummies, it is possible to understand the rewriting needed in applying
this match clause to be a constant time operation. In particular, if r is instantiated
with an abstraction then it’s top-level constructor would indicate where a binder
of value 0 points. If we were to compile the syntax (r @ X) as simply meaning
that that top-level constant is stripped away, then a binder of value 0 in the
resulting term would automatically point (move) to being bound by the new X

binder. While such a treatment of binder mobility without doing substitution
is possible in many of our examples, it does not cover all cases. In general, a
more involved scheme for implementing binder mobility must be considered. This
kind of analysis and implementation of binder mobility is used in the ELPI
implementation of λProlog [Dunchev, Guidi, Coen, and Tassi, 2015].

11 Future work

There is clearly much more work to do. While the examples presented in this
paper illustrate that the new features in MLTS can provide elegant and direct
support for computing with binding structures, we plan to develop many more
examples. The general area of theorem proving implementation and compiler
construction is an early target for us. A more effective implementation is also
something we wish to target soon. It seems likely that we will need to consider
extensions to the usual abstract machine models for functional programming in
order to get such a direct implementation.

The cost of basic operations in MLTS must also be understood better. As
we noted in Section 3, we could design pattern matching in clauses in such a way
that they might require the recursive descent of entire terms in order to know
if a match was successful. The language could also be designed so that such a
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costly check is never performed during pattern matching: for example, one could
insist that every pattern variable is @-applied to a list of all nominal abstractions
that are in the scope of the binding for that pattern variable. In that case, a
recursive descent of terms is not needed.

Given the additional expressivity of MLTS, the usual static checks used to
produce warnings for non-exhaustive matchings are missing cases that we should
add. As mentioned in Section 10, still other static checks are needed to help a
future compiler avoid making costly checks.

It would also be interesting to see to what extent binders might interact with
a range of non-functional features like references found in languages such as
OCaml. A natural starting point to explore the possible interaction of effectful
features would be to use a natural semantic treatment based on linear logic (see,
for example, [Chirimar, 1995]): the logical features of G should also work well in
a linear logic setting.

Finally, the treatment of syntax with bindings generally leads to the need to
manipulate contexts and association lists that relate bindings to other bindings,
to types, or to bits of code. We have already seen association lists used in Figure 3.
It seems likely that more sophisticated MLTS examples will require singling out
contexts for special treatment. Although the current design of MLTS does not
commit to any special treatment of context, we are interested to see what kind
of treatment will actually prove useful in a range of applications.

12 Related work

The term higher-order abstract syntax (HOAS) was introduced in [Pfenning
and Elliott, 1988] to describe an encoding technique available in λProlog. A
subsequent paper identified HOAS as a technique “whereby variables of an object
language are mapped to variables in the metalanguage” [Pfenning and Schürmann,
1999]. When applied to functional programming, this latter description of HOAS
describes the mapping of bindings in syntax to the bindings which create functions.
Unfortunately, this encoding technique often lacks adequacy (since “exotic terms”
can appear [Despeyroux, Felty, and Hirschowitz, 1995]), and structural recursion
can slip away [Gabbay and Pitts, 1999]. The term λ-tree syntax was introduced
in [Miller and Palamidessi, 1999] and the term binder mobility was introduced in
[Miller, 2004] to describe the different approach that we have used here.

The MLλ [Miller, 1990] extension to ML is similar to MLTS in that it also
contained two different arrow type constructors (-> and =>) and pattern matching
was extended to allow for pattern variables to be applied to a list of distinct bound
variables. The new operator of MLTS could be emulated by using the backslash
operator and a “discharge” function. Critically missing from that language was
anything similar to the nab binding of MLTS. Also, no formal specification and
no implementation were ever offered.

Nominals and nominal abstraction, in the sense used in this paper, were
first conceived, studied, and implemented as part of the Abella theorem prover
[Baelde, Chaudhuri, Gacek, Miller, Nadathur, Tiu, and Wang, 2014]. Although
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the design of Abella does not use the D relation directly, the notion of “∇ in the
head” of definitions is essentially equivalent to having the D relation in the logic.

The Delphin [Poswolsky and Schürmann, 2008] and Beluga [Pientka and
Dunfield, 2010] computer systems provide functional programming support for
object-level terms that are taken from the dependently typed λ-calculus LF. Both
of these systems are rather ambitious and make many extensions to the core of
the ML family of programming languages. For example, these languages have well
established notions of contexts and proofs (as dependently typed λ-terms) that
are part of their programming language’s design and evaluation. Our approach
here has been much more minimal and incremental.

The FreshML [Shinwell, Pitts, and Gabbay, 2003] and CαML [Pottier, 2006]
functional programming languages provide an approach to names based on
nominal logic [Pitts, 2003]. In a sense, these two programming languages provide
for an abstract treatment of names and naming. Once naming is available, binding
structures can also be implemented. In a sense, the design of these two ML-
variants are also more ambitious than the design goal intended for MLTS: in the
latter, we were not focused on naming but just bindings.

The recent paper [Ferreira and Pientka, 2017] introduces a syntactic framework
that treats bindings as primitives. That framework is then integrated with various
tools and with the framework of contextual types (similar to that found in Beluga)
in order to provide a programmer of, say, OCaml with sophisticated tools for the
manipulation of syntax and binders. A possible future target for MLTS could be
to provide some aspects of such tools more directly in the language itself.

13 Conclusion

While the λ-tree syntax approach to computing with syntax containing bind-
ings has been successfully developed within the logic programming setting (in
particular, in λProlog and Twelf), we provide in this paper another example of
how binding can be captured in a functional programming language. Most of the
expressiveness of MLTS arises from its increased use of program-level binding.
The sophistication needed to correctly exploit binders and quantifiers in MLTS
is a skill most people have learned from using quantification in, for example,
predicate logic.

We have presented a number of MLTS programs and we note that they are
both natural and unencumbered by concerns about managing bound variable
names. We have also presented a typing discipline for MLTS as well as a formal
specification of its natural semantics: this latter task was aided by being able to
directly exploit a rich logic, called G, that incorporates λ-tree syntax principles
within quantificational logic. Finally, this natural semantic specification was
directly implementable in λProlog. As a consequence, a prototype implementation
is available for helping to judge the expressiveness of MLTS programs.
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Adam Poswolsky and Carsten Schürmann. System description: Delphin - A
functional programming language for deductive systems. In A. Abel and
C. Urban, editors, International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP 2008), volume 228, pages 113–120,
2008.

François Pottier. An overview of Cαml. In Proceedings of the ACM-SIGPLAN
Workshop on ML (ML 2005), volume 148 of Electr. Notes Theor. Comput. Sci.,
pages 27–52, 2006. https://doi.org/10.1016/j.entcs.2005.11.039.

François Pottier. Static name control for FreshML. In 22nd Annual IEEE
Symposium on Logic in Computer Science (LICS 2007), pages 356–365. IEEE,
2007.

Xiaochu Qi, Andrew Gacek, Steven Holte, Gopalan Nadathur, and Zach Snow.
The Teyjus system – version 2, 2015. URL http://teyjus.cs.umn.edu/. http:
//teyjus.cs.umn.edu/.

Zhenyu Qian. Unification of higher-order patterns in linear time and space. J.
of Logic and Computation, 6(3):315–341, 1996.

Davide Sangiorgi. π-calculus, internal mobility and agent-passing calculi. Theo-
retical Computer Science, 167(2):235–274, 1996.

Helmut Schwichtenberg. Minlog. In Freek Wiedijk, editor, The Seventeen
Provers of the World, volume 3600 of LNCS, pages 151–157. Springer, 2006.
https://doi.org/10.1007/11542384 19.

Dana Scott. Outline of a mathematical theory of computation. In Proceedings,
Fourth Annual Princeton Conference on Information Sciences and Systems,
pages 169–176. Princeton University, 1970. Also, Programming Research Group
Technical Monograph PRG–2, Oxford University.

M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming with
binders made simple. In Eighth ACM SIGPLAN International Conference on
Functional Programming (ICFP 2003), Uppsala, Sweden, pages 263–274. ACM
Press, August 2003.

Yuting Wang, Kaustuv Chaudhuri, Andrew Gacek, and Gopalan Nadathur.
Reasoning about higher-order relational specifications. In Tom Schrijvers,
editor, Proceedings of the 15th International Symposium on Princples and
Practice of Declarative Programming (PPDP), pages 157–168, Madrid, Spain,
September 2013. https://doi.org/10.1145/2505879.2505889. URL http://
chaudhuri.info/papers/draft13hhw.pdf.

https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1016/j.entcs.2005.11.039
http://teyjus.cs.umn.edu/
http://teyjus.cs.umn.edu/
http://teyjus.cs.umn.edu/
https://doi.org/10.1007/11542384_19
https://doi.org/10.1145/2505879.2505889
http://chaudhuri.info/papers/draft13hhw.pdf
http://chaudhuri.info/papers/draft13hhw.pdf


30 Ulysse Gérard, Dale Miller, and Gabriel Scherer

A Another MLTS example: the π-calculus

The π-calculus [Milner, Parrow, and Walker, 1992, Milner, 1990] is a language
for modeling processes in which interactions are name-based. In particular, this
calculus permits communication via named channels, including the communication
of the names of the channels themselves. The basic calculus has two syntactic
categories: names and processes.

Process expressions are defined by the following syntax rule.

P := 0 | P | P | P+P | x(y).P | x̄y.P | [x = y].P | τ.P | (y)P | ! P.

Here, x and y range over names. The process 0 cannot perform any actions. The
expressions P | P and P + P denote, respectively, the parallel composition and
the choice of two processes. The next four expressions are prefixed processes:

– x(y).P represents a process that can accept a name on the channel x and
will then become P with y bound to the input name;

– x̄y.P is a process that can output the name y on the channel x;
– [x = y].P is a process that can become P provided that the names x and y

are equal;
– τ.P is a process that can evolve through a silent action.

The expression (y)P represents the restriction of the name y to P : interactions can
take place internally to P through this name but the process cannot communicate
externally along the channels ȳ or y. Finally, ! P denotes the parallel composition
of any number of copies of P .

To represent expressions of the π-calculus in MLTS, we define the two
datatypes name and proc for names and processes that are given in Figure 9.
Note that the two process expressions x(y).P and (y)P embody a binding notion.
The λ-tree syntax for these expressions will accordingly include an explicit
abstraction. For example, the two π-calculus expressions

(y)āy.((y(w).0) | (b̄b.0)) and (y)āy.((y(w).b̄b.0) + (b̄b.y(w).0))

are encoded in MLTS with the terms, respectively.

Nu(Y\ Out(A,Y,Par(In(Y, W\ Null),Out(B,B,Null))))

Nu(Y\ Out(A,Y,Plus(In(Y, W\ Out(B,B,Null)),

Out(B,B, In(Y, W\ Null)))))

In this encoding of the π-calculus (Figure 9), the type name must be con-
sidered open (in the sense described in Section 5) while the type proc is not
open. The operational semantics of the π-calculus is generally described using a
non-deterministic, labeled transition systems. That semantics is easily specified
in λProlog [Miller and Nadathur, 2012] and reasoned with in Abella [Baelde,
Chaudhuri, Gacek, Miller, Nadathur, Tiu, and Wang, 2014].

One way to demonstrate the expressiveness of the π-calculus is to encode
within it the call-by-name evaluation in the untyped λ-calculus. Such a translation
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type name = | A | B | C;;

type proc =

| Null

| Plus of proc * proc

| Par of proc * proc

| In of name * (name => proc)

| Out of name * name * proc

| Eqn of name * name * proc

| Taup of proc

| Bang of proc

| Nu of name => proc;;

Fig. 9. Two data types for encoding the π-calculus.

let rec trans gamma term = match term with

| App(m, n) ->

let p = trans gamma m in

let q = trans gamma n in

(U\ Nu(V\ Par(

p @ V,

Nu(X\ Out(V, X, Out(V, U, Bang(In(X, q))))))))

| Abs(m) ->

new X in (U\ In(U, Y\

let p = trans ((X,Y):: gamma) (m @ X) in

In(U, V\ p @ V)))

| nab X in X -> (U\ Out(assoc X gamma , U, Null));;

Fig. 10. Encoding of the call-by-name evaluation of untyped λ-terms into the π-calculus.

function was given by Milner in [Milner, 1990] and it can be written as follows.

[[x]](u) = x̄u.0

[[λx M ]](u) = u(x).u(v).[[M ]](v)

[[(M N)]](u) = (v).([[M ]](v) | (x).(v̄x.v̄u.!x(w).[[N ]](w)))

Here, the translation function [[M ]](u) takes an untyped λ-term M and a name u
and returns a process that encodes the λ-term M in such a way that it expects
to receive its arguments on channel u. In Figure 10, we provide an MLTS
implementation of this translation: in particular, if [[M ]](u) is the process calculus
expression P , then the function trans, when applied to (the encoding of) M
would yield (the encoding of) λu.P . (The function assoc used here is defined in
Figure 3.) For example, the value of (transf [] Abs(X\X)) is

(U\ In(U,X\ In(U,(Y\ Out(X,Y, Null))))).


	Functional programming with -tree syntax

