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Abstract. Operational semantics is often presented in a rather syntac-
tic fashion using relations specified by inference rules or equivalently by
clauses in a suitable logic programming language. As it is well known,
various syntactic details of specifications involving bound variables can
be greatly simplified if that logic programming language has term-level
abstractions (A-abstraction) and proof-level abstractions (eigenvariables)
and the specification encodes object-level binders using A-terms and uni-
versal quantification. We shall attempt to extend this specification set-
ting to include the problem of specifying not only relations capturing
operational semantics, such as one-step evaluation, but also properties
and relations about the semantics, such as simulation. Central to our
approach is the encoding of generic object-level judgments (universally
quantified formulas) as suitable atomic meta-level judgments. We shall
encode both the one-step transition semantics and simulation of (finite)
m-calculus to illustrate our approach.

1 Introduction

The operational semantics of a programming or specification language is often
given in a relational style using inference rules following a small-step approach
(a.k.a., structured operational semantic [Plo81]) or big-step approach (a.k.a.
natural semantics [Kah87]). In either case, algebraic (first-order) terms are of-
ten used to encode the language being specified and the first-order theory of
Horn clauses is often used to formalize and largely mechanize such semantic
specifications [Han93].

For example, consider specifying a functional programming language that has
a conditional specified using the following inference rule (following the natural
semantics style specification).

B} true MYV B |} false NV
(if BM N){V (if BM N)|V

These two inference figures can be mapped into the two first-order Horn clauses

VBYMVNVV[B | trueAM |V D (if BM N){|V]
VBYMVYNVV[Blfalse A\N{V D (if BM N){|V]
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Here, the down arrow is a non-logical, predicate symbol and an expression such
as NV is an atomic formula. A simple adequacy result shows that atomic
formulas provable from such Horn clauses are exactly those for which there is a
proof using the corresponding inference rules.

If these two rules are the only rules describing the evaluation of the condi-
tional, then it should follow that if (if B M M) |}V is provable then sois M | V.
In what logic can this be formalized and proved? For example, how might we
prove the sequent

(ifBM MV — M|V,

where B, M, and V are eigenvariables (universally quantified)? Since such a se-
quent contains no logical connectives, the standard sequent inference rules that
introduce logical connective will not directly help here. One natural extension of
the sequent calculus is then to add left and right introduction rules for atoms.
Lars Hallnés and Peter Schroeder-Heister [HSH90,HSH91,SH93], Girard [Gir92],
and more recently, McDowell and Miller [MM97,McD97,MMO00] have all consid-
ered just such introduction rules for non-logical constants. We outline this kind
of introduction rule in the next section.

2 A proof theoretic form of definitions

A definition is a finite collection of definition clauses of the form VZ[H = B],
where H is an atomic formula (the one being defined), every free variable of the
formula B is also free in H, and all variables free in H are contained in the list
Z of variables. Since all free variables in H and B are universally quantified, we
often leave these quantifiers implicit when displaying definitional clauses. The
atomic formula H is called the head of the clause, and the formula B is called
the body. The symbol £ is used simply to indicate a definitional clause: it is
not a logical connective. The same predicate may occur in the head of multiple
clauses of a definition: it is best to think of a definition as a mutually recursive
definition of the predicates in the heads of the clauses.

Given a definition, the following two inference rules are used to introduce
defined predicates. The right introduction rule is

I — Bé

I — A defR ,

provided that there is a clause VZ[H = B] in the given definition such that A is
equal to HO. The left-introduction rule is

{B8, 79 — CH | 0§ € CSU(A, H) for some clause VZ[H = B]}
ATl —C

def |

where the variables Z are chosen to be distinct from the (eigen)variables free
in the lower sequent of the rule. The set CSU(A, H) denotes a complete set of
unifiers for A and H: when the CSUs and definition are finite, this rule will have



a finite number of premises. (A set S of unifiers for ¢t and u is complete if for
every unifier p of ¢ and u there is a unifier § € S such that p is 8 o o for some
substitution o [Hue75].) There are many important situations where CSUs are
not only finite but are also singleton (containing a most general unifier) whenever
terms are unifiable. One such case is, of course, the first-order case. Another case
is when the application of functional variables are restricted to distinct bound
variables in the sense of higher-order pattern unification [Mil91a,Nip91]. In this
paper, many unification problems will fall into this latter case.

We must also restrict the use of implication in the bodies of definitional
clauses, otherwise cut-elimination does not hold [SH92]. To that end we assume
that each predicate symbol p in the language is associated with it a natural
number Ivl(p), the level of the predicate. We then extend the notion of level to
formulas and derivations. Given a formula B, its level lvl(B) is defined as follows:

Wvl(pt) = Ivl(p)

Wvl(L)=WI(T)=0

(B AC)=W(BVC) = max(lvl(B),v1(C))
Ivl(B D C) = max(Ivl(B) + 1,1v1(C))
W(Vz.B) = Wl(3z.B) = VI(B).

Cup W=

We now require that for every definitional clause VZ[pt = B], Ivi(B) < Ivi(p¥?).
(If the definition is based on Horn clauses, then this restriction is trivial to
satisfy since no implications would occur in the body of definitional clauses.)
Cut-elimination for this use of definition within intuitionistic logic was proved
in [McD97] and [MMO0] and is modeled on proofs by Tait and Martin-Lof that
use the technical notions of normalizability and reducibility. In fact, that proof
also allowed the logic to contain a formulation of induction, a topic we return to
later.

We can think of definitions as a technique to introduce logical equivalences
in such a way that we do not introduce into proof search meaningless cycles:
that is, if we simply considered H = B, then when proving a sequent containing
H, we could replace it with B, which could then be replaced with H, etc.

To illustrate the strengthening of logic that can result from adding defini-
tions in this way, consider the motivating sequent above. We first convert the two
Horn clauses representing the evaluation rules for the conditional into the fol-
lowing definitional clauses. (We employ the usual convention that free variables
in displayed definitional clauses are implicitly universally quantified around that
clause.)

(if BM N)JV = BlitrueAM{V.
(if BM N)|JV = Bl falseAN|V.

This sequent then has the following simple and immediate proof.

By true, MYV — MYV jm‘zjal Bl false, M}V — M |V jnizjal
BltrueAMJV — MV " Blfalse AM IV — MUV il\f/:
(fBM M)V — MV e




. A ! A ! ! A ! - e
simP Q=VAYP.P— P D3Q.Q — Q Asim P @Q
A A
bisim P Q = [VAVP'.P —» P’ 5 3Q'.Q — Q' A bisim P’ Q'] A
A A
[VAVQ'.Q — Q' D 3P'.P — P’ A bisim Q' P']

Fig. 1. Simulation and bisimulation as definitions.

In the paper [MMPO1], the expressive strength of definitions was studied in
greater depth. One example considered there involved attempting to capture
the notion of simulation and bisimulation for labelled transition systems. In

particular, assume that P i) P’ is defined via clauses to which are added
the two clauses in Figure 1. These two clauses are a direct encoding of the
closure conditions for simulation and bisimulation. In [MMPO1] it was proved
that if the labeled transition system is finite (noetherian) then simulation and
bisimulation coincided exactly with provability of sim P () and bisim P (). The
restriction to noetherian transition systems is necessary since in such situations,
these closure clauses have unique fixed points and since provability yields atoms
that are true in all fixed points, provability correctly characterizes that fixed
point. In transition systems with infinite paths, the least fixed point and greatest
fixed point differ, so provability no longer captures only the greatest fixed point
(simulation and bisimulation are greatest fixed points). If, however, the transition
system is finitely branching, then induction can be used to characterize the
greatest fixed point by repeatedly applying the closure operator to the trivially
true relation.

In Section 5 we show how we can capture simulation and bisimulation for
the (finite) 7-calculus in a similar style.

3 Should we explicitly reference provability?

Although we have now succeeded in giving the sequent (if B M M)}V —
M |V a natural proof using this proof theoretic notion of definition, it appears
that we need to revisit what we really have in mind for that sequent. It seems
more natural that what we intend to prove is rather: “if (if B M M) |V is prov-
able then M |} V is provable.” To explore this possibility, consider introducing the
predicate > - that serves as an operator for provability. In this case, we now need
to distinguish between two logics, one meta-level logic and one object-level logic.
To do so, we shall use the type o to denote meta-level logical expressions and
obj to denote object-level logical expressions. The meta-logic uses the symbols
V. of type (¢ = 0) = o, 3, of type (¢ = 0) = o and A and D, both of type
0 — 0 — o for universal and existential quantification at type o, for conjunction,
and for implication, respectively. The object-logic uses the symbols A of type
(o — obj) — obj and & and =, both of type obj — obj — obj for universal
quantification at type o, for conjunction, and for implication, respectively. (The
type subscripts for V, and A, will often be dropped if they can be easily inferred



b(G&G) 2 bGAGG.
bAZ atomic A A prog D A D < A.
AdAZ atomic A.
(G=D)4A2 D1ANABG.
(A, -Dz)<AZ 3, (D taA).

Fig. 2. Interpreter for object-level specifications.

atomic (M V)
prog (ABAMANAV[B|true& MV = (if BM N){V])
prog (ABAMANAV[Bfalse & NyV = (if B M N){V])

> 1> 1>

B

Fig. 3. Specification of object-level inference rules via Horn clauses.

or are not important.) As is the usual convention, the expression A Az will be
abbreviated as simply A z.

To encode the provability relation for the object-logic, we copy the struc-
ture of a logic programming interpreter following the completeness theorems for
uniform proofs and backchaining found in, say, [Mil90], or the notion of focused
proof [And92,Mil96]. Our interpreter will use the following four predicates: prov-
ability is denoted by > and has type obj — o, backchaining is denoted by the
infix symbol < and has type obj — obj — o, atomic of type obj — o decides if an
object-level formula is atomic, and prog, also of type obj — o, decides if a for-
mula is an object-level assumption (object-level logic program). A Horn clause
interpreter will be written as the definition in Figure 2. Notice that in both the
>- and - <- expression, the triangle points to the formula for which (object-level)
introductions rules are considered (right-rules for - and left-rules for - < -).

The full specification of provability at the object level would then require ad-
ditional definitional clauses for specifying what are atomic object-level formulas
and what formulas constitute the object-level Horn clause specification. Exam-
ples of such clauses are given in Figure 3. Here, | has type tm — tm — obj,
where tm is the type of the intended programming language that we are at-
tempting to encode the operational semantics. We can now prove the sequent

b(if B M M)V —s o M V.

Proposition 1. An atomic judgment has a proof using inference figures if and
only if it has a proof using > - (Figure 2) in which the inference figures are encoded
as atomic - and prog - clauses (as in Figure 3).

Proof outline. Applications of inference figures correspond exactly to the selec-
tion of prog- clauses for backchaining over. The completeness for the treatment
of the goal-reduction and backchaining steps follows from familiar completeness
theorems for logic programs [MNPS91]. o

Having now described this interpreter, it is interesting to note that, although
conceptually there might be important distinctions arising from using >, prov-



ability of M | V directly from its Horn clause specification or indirectly via the
use of this interpreter are essentially the same: (uniform) proofs in one setting
map naturally to (uniform) proofs in the other setting. From a practical point
of view, this distinction does not provide any proof search advantages.

If we leave Horn clauses for a logic with universally quantified judgments,
then a difference does appear. We look at this next.

4 A-tree syntax and generic judgments

It is a common observation that first-order terms are not expressive enough
to capture rich syntactic structures declaratively. In particular, such terms do
not permit a direct encoding of the syntactic category of “abstraction” and the
associated notions of a-conversion and substitution.

4.1 Syntactic representation of abstractions

The encoding style called higher-order abstract syntaz [PE88] views such ab-
stractions as functional expressions that relying on the full power of S-conversion
in a typed A-calculus setting to perform substitutions. The computer systems
AProlog, Elf, Isabelle, and Coq, to name a few, all implement a form HOAS
and many earlier papers have appeared exploiting this style of syntactic repre-
sentation [MN85,MN86,MN87,Pau89]. Since the earliest papers, however, there
has been a tendency to consider richer A-calculi as foundations for HOAS, mov-
ing away from the simply typed A-calculus setting where it was first exploited.
Trying to encode a syntactic category of abstraction by placing it within a rich
function spaces can cause significant problems (undecidable unification, exotic
terms, etc) that might seem rather inappropriate if one is only trying to develop
a simple treatment of syntax.

The notion of A-tree syntax [MP99,Mil00] was introduced to work around
these complexities. Here, A-abstractions are not general functions: they can only
be applied to other, internally bound variables. Substitution of general values is
not part of the equality theory in the A-term syntax approach: it must be coded
as a separate judgment via logic. This weaker approach has a much simpler
equality theory, yielding a unification setting (called Ly [Mil91a] or higher-order
pattern unification [Nip91,Nip93]) which is decidable and unary. The relationship
between the A-tree approach where abstractions are applied to only internal
bound variable and HOAS where abstractions can be applied to general terms
is rather similar to the distinctions made in the w-calculus between 7y, which
only allows “internal mobility” [San96] and the full w-calculus, where “external
mobility” is also allowed (via general substitutions). In Section 5.2, we will see
that this comparison is not accidental. In this paper, we generally view syntax
as encoded using A-trees.



4.2 Generic judgments as atomic meta-level judgments
When using HOAS or A-tree syntax representations, inference rules of the form

N\ z.Gz
A

?

are often encountered. If one were to capture this in the interpreter described in
Figure 2, there would need to be a way to interpret universally quantified goals.
One is tempted to augment that earlier interpreter with the following clause:

>(\ 2.G ) £ VY,2[> G ], (1)

that is, the object-level universal quantifier would be interpreted using the meta-
level universal quantifier. While this is a common approach to dealing with
object-level universal quantification, this encoding causes some problems when
attempting to reason about logic specifications containing generic judgments.

For example, consider proving the query Vy1Vya[q (y1,t1) {ya2,t2) (y2,13)],
where (-,-) is used to form pairs, from the three clauses

X XY
¢ XY X.
Y X X.

This query succeeds only if 5 and ¢3 are equal. In particular, we would like to
prove the sequent

S(Awr \vela (Wi t) (Y2, ta) (o, 15)]) — t2 =13,

where t1, t2, and t3 are eigenvariables and with a definition that consists of the
clause (1), those clauses in Figure 2, and the following clauses:

X=X=2T
prog (A XAY ¢ X XY)=T
prog (A XAY ¢ XY X)=T
prog A XAY qY X X) =T

Using these definitional clauses, this sequent reduces to

>(g (s1,t1) (s2,t2) (s2,t3)) —> to = t3,

for some terms s; and so. This latter sequent is provable only if s; and s; are
chosen to be two non-unifiable terms. This style proof is quite unnatural and it
also depends on the fact that the underlying type that is quantified in Vy;Vys is
non-empty.

Additionally, if we use the rule (1) then whenever >(A, z.G z) is provable,
the meta-level atomic formula (G t) is provable for all terms ¢ of type o. While



this is likely to be appropriate when the object-language is a conventional logic,
it is not likely to be appropriate when one encodes something like the 7-calculus
where an object-level universal quantifier might be used to encode restriction
but where the presence of, say, a match prefix means that general substitutions
may not be applicable to judgments generally.

For these reasons, the conversion of an object-level universal quantifier into
a meta-level universal quantifier in (1) must be judged inappropriate. We now
look for a different approach.

Consider the rule for proving a universal formula:

I'c:oF Pc
't A, z.Px

where c is an eigenvariable with the usual restriction that ¢ is not free in the lower
sequent. Here, P is a variable of higher type, and the context, I', denotes a set of
distinct typed eigenvariables. If we see the judgment I' - A z.Px as “atomic”
and that this is the only way to prove a universally quantified formula, then
this rule can be inverted: that is, if A, z.Pz is provable assuming the variables
in I' are generic then Pc is provable assuming that ¢ is also generic. Whether
or not that generic ¢ can be instantiated and yield another valid judgment is
dependent on the object-level itself. In other words, we will require that this
universally quantified variable acts as a bound variable but will not assume that
it can be arbitrarily instantiated: using an analogy from before, we will assume
that we can apply this abstraction to another abstracted variable but not to an
arbitrary value.

Thus we need to encode the object-level judgment zq,...,z, F (Px1...2,),
where the variables on the left are all distinct and understood as bound entirely
within this judgment, as an atomic formula in our meta-logic. We mention two
ways to achieve this encoding. The first introduces a “local” binders using a
family of constants, say, loc, of type (¢ — obj) — obj. The above expression
would be something of the form

locy, Az ... loc, Axy. Pxy...Zp.

While this encoding is natural, it hides the top-level structure of Pz ...z, un-
der a prefix of varying length. Unification and matching, which are central to
the functioning of the definition introduction rules, would not be able to directly
access that top-level structure. The second alternative employs a coding tech-
nique used by McDowell [McD97,MM)]. Here, one abstraction, say for a variable
[ of type evs (eigenvariables), is always written over the judgment and is used
to denote the list of distinct variables zq,...,z,. Individual variables are then
accessed via the projections p, of type evs — ¢ and p of type evs — evs. For
example, the judgment z : a,y : b,z : ¢ F Pxyz could be encoded as either the
expression loc, AxlocyAyloc.Az.Pxyz, or as

AL(P(pal) (po (1)) (pe(p(P1))))-



bi((G 1) & (G' 1) 2 0i(Gl) Asi(G'1).

bi( A\, w-(G Lw)) =i(G(pl)(pol)).
b, (Al) £ atomic A A progD A (D) <; (Al).
(Al) < (Al) £ atomic A.
(G 1) = (D 1)< (Al) £ (DI) < (Al) Asi(GI).
(A, w-(D 1)) 4 (Al) = Jevsoot.(D 1 (t1) < (Al)).

Fig. 4. An interpreter for simple generic judgments.

In this second, preferred encoding, the abstraction [ denotes a list of variables,
the first variable being of type a, the second being of type b, and the third of

type c.

4.3 A interpreter for generic judgments

An interpreter for generic judgments is displayed in Figure 4. This interpreter
generalizes the previous interpreter by allowing for the additional abstraction
over evs. Here, the three meta-level predicates atomic -, prog -, and - all have
the type (evs — obj) — o while -<- has the type (evs — obj) — (evs — obj) — o.
Notice that the technique of replacing the abstraction Al. A, Aw.(G | w)) with
ALG(pl)(pl)) is really the same as replacing the judgment

X1,.. s Tn EVY(Pyxy .. .2,) with zp,...,Z0,Tnp1 b (P21 ... TpTnt1)-

Notice that this interpreter is not in L, for two reasons. First, the def-
initional clause for interpreting (M. A, Aw.(G [ w)) contains the expression
(M.G(pl)(psl)) and the subterms (pl) and (p,l) are not distinct bound vari-
ables. They are, however, distinct object-level variables so it should be a rather
simple matter to extend the technical definition of L) to also allow for this style
encoding of object-level variables. A second reason that this interpreter is not
in Ly is the definitional clause for backchaining over (M. A, w.(D [ w)) since
this clause contains the expression (Al.D [ (¢ 1)), which requires applying an
abstraction to a general (external) term ¢. Such a specification can be made into
an Ly specification by encoding object-level substitution as an explicit judgment
[Mil91b)]. The fact that this specification is not in Ly simply means that when
we apply the left-introduction rule for definitions, unification may not produce
a most general unifier.

Proposition 2. Letn > —1 and let zg: 0q, ..., Ty: 0y be distinct variables such
that (Pxg . ..xy,) is an atomic formula in which the variables xo, ..., x, are not
free in P. The judgment xg,...,z, = (Pz1...2,) has a proof using inference

figures (admitting universally quantified premises) if and only if
Il>P (pao l) T (pan (ﬁnl))

has a proof using the interpreter in Figure 4 in which the inference figures are
encoded as atomic - and prog - clauses (as in Figure 3).



Proof outline. Applications of inference figures correspond exactly to the se-
lection of prog- clauses for backchaining over. Here, the use of p and j ensures
that object-level eigenvariables are represented by new terms at the meta-level.
For this encoding to work properly, we also assume that no constants at the
object-level have types involving evs. O
Other judgments besides generic judgments can be encoded similarly. For
example, in [McD97,MM], hypothetical as well as linear logic judgments were
encoded along these lines. The main objective in those papers is to encode an
object-level sequent as atomic judgments in a meta-logic. We focus on generic
judgments here because of their relationship to abstractions within syntax.

5 The mw-calculus

To illustrate the use of this style representation of universal judgments, we turn,
as many others have done [MP99,HMS01,Des00,RHBO01], to consider encoding
the m-calculus. In particular, we follow the presentation in [MP99] for the syntax
and one-step operational semantics.

5.1 Syntax

We shall follow the presentation of the 7-calculus given in [MPW92]. We need
three primitive syntactic categories: name for channels, proc for processes, and
action for actions. The output prefix is the constructor out of type name —
name — proc — proc and the input prefix is the constructor in of type name —
(name — proc) — proc: the w-calculus expressions Zy.P and z(y).P are rep-
resented as (out z y P) and (in z Ay.P), respectively. We use | and +, both
of type proc — proc — proc and written as infix, to denote parallel com-
position and summation, and v of type (name — proc) — proc to denote
restriction. The m-calculus expression (z)P will be encoded as vAn.P, which
itself is abbreviated as simply vz.P. The match operator, [ = -]- is of type
name — name — proc — proc. When 7 is written as a prefix, it has type
proc — proc. When 7 is written as an action, it has type action. The symbols
J and 1, both of type name — name — action, denote the input and output
actions, respectively, on a named channel with a named value.

We shall deal with only finite w-calculus expression, that is, expressions with-
out ! or defined constants. Extending this work to infinite process expressions
can be done using induction, as outlined in [MMPO1] or by adding an explicit
co-induction proof rule dual to the induction rule. Fortunately, the finite expres-
sions are rich enough to illustrate the issues regarding syntax and abstractions
that are the focus of this paper.

Proposition 3. Let P be a finite w-calculus expression using the syntazr of
[MPW92]. If the free names of P are admitted as constants in the meta-logic
of type name then P corresponds uniquely to a Bn-equivalence class of terms of

type proc.



5.2 One-step transitions

The transition semantics uses two predicates: - — 5 -of type proc — action —

proc — obj; and - — - of type proc — (name — action) — (name — proc) —
o. The first of these predicates encodes transitions involving free values and the
second encodes transitions involving bound values. Figure 5 specifies the one step
transition system for the “core” w-calculus. Figure 6 provides the increment to
the core rules to get the late transition system, and Figure 7 gives the increment
to the core to get the early transition system. Note that all the rules in the core
system belong to the Ly subset of logic specifications: that is, abstractions are
applied to only abstracted variables (either bound by a A-abstraction or bound
by a universally quantifier in the premise of the rule). Furthermore, note that
each of the increments for the late and early systems involve at least one clause
that is not in L. The core system of rules has also been singled out and named
7y [San96] since it only allows for “internal” mobility of names, that is, local
(restricted) names only being passed to abstractions.

One advantage of this style of specification over the traditional one [MPW92]
is the absence of complicated side-conditions on variables: they are handled
directly by the logical mechanisms described above.

In order for this theory of one-step transitions to be interpreted by the prover
given in Figure 4, we need to take the following steps.

— Convert the inference rules of either the core, late, or early system into prog
clauses. This is straightforward (as illustrated in Section 1).

— Axiomatize the atomic predicate, which would simply be the two definitional
clauses

1>

A

atomic (P— Q) =T
A

atomic (P —Q) =T

— One clause for the >- and one clause for - < - are parametrized by a type o.
Here, the clause for >- needs just one instance for o equal to name while
-<- needs 7 different instances on each for o set equal to name, action, proc,
name — name, name — action, name — proc, and name — name — proc.

A
Proposition 4. Let P — @) be provable in late (resp., early) transition system

A
of [MPW92]. If A is either T or | zy or T zy then by P —— @ is provable
from the clauses for the interpreter plus the clauses encoding late (resp., early)
transitions. (Here, P, A, and Q are all translated to the corresponding meta-level

4 0
expression.) If A is x(y) then b P "R and if A is Z(y) then >y P ~ R
Here, R is the meta-level representation of the A-abstraction of y over Q.

Proof Outline. Follows almost directly from Propositions 2 and 3. The induc-
tion needs to be strengthen slightly to handle the case where the bound variable
[ in >; are free in the judgment, which can happen, of course, when a universally
quantified goal is interpreted. O



A A
—_—T Lil Q match Lil Q match
P —P [z =2z]P — Q [t=2z]P —Q
A A A A
P— R Q—R P—R Q—R
" sum n sum n sum n sum
P+@Q—R P+@Q—R P+Q—R P+@Q@—R
A A
P—P Q—Q
a4 b — a4 b
P|Q — P'|Q P|Q — Pl
A A
P—M Q—N
A par A par
PlQ — An(Mn|Q) P|Q — An(P|Nn)
A A
Pn—s P Pn—sp
An(Pn ") res An(Pn n) res

A A
vn.Pn — vn.P'n vn.Pn — Am vn.(P'nm)

———————;—— output — input
outzy P— P imxM —M

Ty
ANy(My — M'y)

. open
vy M — M’
lz 1tz Tz lz
P—M —N P—M —N
— @ close - @ close
P|Q — vn.(Mn|Nn) P|Q — vn.(Mn|Nn)
Fig. 5. The core w-calculus in A-tree syntax.
lo toy toy lo
P MT Q Q L-com P PT Q N L-com
PlQ — (My)|Qr PIQ — P|(Ny)
Fig. 6. The additional rules for late w-calculus.
e E-input
inz M — My
P p g oy P p
= E-com = E-com
P|Q — P'|Q PlQ — P'|QY

Fig. 7. The additional rules for early m-calculus.



Since the types of P and P’ are different in the expression P A P’ we
cannot immediately form the transitive closure of this relationship to give a
notion of a sequence of transitions. It is necessary to lower the type of P’ first
by applying it to a term of type name. How this is done, depends on what we
are trying to model. In the next section, we consider modeling simulation.

5.3 Simulation of w-expressions

For simplicity, we shall consider only simulation and not bisimulation: extending
to bisimulation is not difficult (see Figure 1) but does introduce several more
cases and make our examples more difficult to read.

sim; (P1) (QI) 2 VAVP' [, (Pl —— P'l) 5 3Q" 51 (Ql —— Q')A
sim; (P'1) (Q'D] A
L(X1) LX)
VXVP' [y (Pl == P'l) 5 3Q" 51(Q == Q')A
Yw sim; (P'lw) (Q'lw)] A

1(x1) (XD)
VXVP'[;(Pl — P'1) 5 3Q" 51(Ql — Q')A
sim; (P'(pl)(pl)) (Q'(p1)(p1))]

Fig. 8. Definitional clause for simulation of m-calculus

Figure 8 presents a definitional clause for simulation. Here, the meta-logical
predicate sim is of type (evs — proc) — (evs — proc) — o and again, we
abbreviate the expression sim(Al.PI)(A.QI) as sim;(Pl)(Ql). Here, X has type
evs — name, P has type evs — proc, and P’ has two different types, evs — proc
and evs — name — proc. Since the only occurrence of p, is such that o is name,
we shall drop the subscript on p. Notice also that for this set of clauses to be
successfully stratified, the level of sim must be strictly greater than the level of
all the other predicates of the interpreter (which can all be equal).

Notice also that sim is a meta-level predicate while - — - and - —— - are
object-level predicates. This is a required separation since simulation needs to
encompass the provability of these one-step translation relations. This is different
from the encoding in [MMPO1] (Figure 1) since no universal judgments were
needed to encoded CCS and hence the object/meta-level distinction was not
needed.

The first conjunct in the body of the clause in Figure 8 deals with the case
where a process makes either a 7 step or a free input or output action. In
these cases, the variable A would be bound to either Al.7 (in the first case) or
AL (N D(M 1) or M.t (N I)(M 1), in which cases, N and M would be of the
form Al.p(pil) for some non-negative integer i.

The last two cases correspond to when a bounded input or output action is
done. In the case of the bounded input (the second conjunct), a universal quan-



tifier of the meta-logic, Vw, is used to instantiate the abstractions (P’ and Q'),
whereas in the bounded output case (the third conjunct), a universal quantifier of
the object-level is emulated: such an internal quantifier is immediately replaced
by using a new variable in the context, via the use of p and j. This one definition
clause thus illustrates important distinctions about meta-level and object-level:
in particular, the observation that simulation is encoded as a meta-level predi-
cate and not an object-level predicate (as with the one-step predicates) and that
the universal quantifiers in both logics each have their applications and should
not be confused.

5.4 Modal Logics for mw-calculus

To further illustrate the ease of handling and encoding binding structures, we
now encode the modal logic for the for m-calculus given in [MPW93] (of neces-
sity, we consider only binary conjunctions instead of general, indexed conjunc-
tions). We first introduce the new type assert to denote assertion forms and
then introduce the following constructors of this type: true : assert for true,
-and - : assert — assert — assert for conjunction, not- : assert — assert for
negation, (- = -)- : name — name — assert — assert for the match modal,
() : action — assert — assert for the possibility modal for non-binding actions,
and the following four modal operators used to encode the possibility of a bound
actions: (| ), {(} )L, ( YE-, (1 -)- : name — (name — assert) — assert. The
first three of these modals are used to code the “basic”, “late”, and “early” ver-
sions of the bounded input prefix while the forth encodes the bounded output
action. Natural numbers are encoded as the type nat with constants z : nat
and succ : nat — nat. The satisfaction relation is defined using two predi-
cates: = at type (evs — proc) — (evs — assert) — o as well as at the type
nat — (evs — proc) — (evs — assert) — o. This extra argument is used to
help stratify this definition in the presence of negation in the assertion language.
The predicate depth is of type (evs — assert) — nat — o and the expression
depth(\l.Bl) N is abbreviated as simply depth,(Bl, N). This predicate holds
if N is an upper bound on the nesting of negations in the (Bl) formula: this
number is used to pick a suitable level to start the use of the stratified version
of satisfaction. As we have done before, the expression = (M.PI) (M.Bl) is ab-
breviated as Pl |=; Bl while the expression | (M.Pl) (A.Bl) is abbreviated as
Pl =i BL.

To properly stratify the definition in Figure 9, a slight generalization to the
definition of levels for predicates needs to be made. In particular, we need to see
the expression |=¢ as a predicate of level i and then give the predicate = the
level w. In other words, levels need to be generalized beyond finite ordinal.

6 Related and future work

Of course, the value of this approach to encoding the w-calculus comes, in part,
from the ability to automate proofs using such definitions. For example, one



Pl = Bl 2 3i.depth,(Bl,i) A Pl =i Bl

depth,(true, N) 2T

depth,((Bil) and (Bsl), N) £ depth,(Bil, N) A depth,(Bsl, N)
depth,(not(BI),succ N) £ depth,(BI, N)
depth,((X1 = Y1)BI,N) = depth,(BI, N)

depth;((Al)BI, N) = depth,(BI, N)
depth,(({ A)BI,N) = depth,(B(pl)(pl), N)
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Fig. 9. Definition of a process satisfying an assert formula.

would hope that the sequent
assert;(Bl), Pl |=; Bl, sim(Pl)(Ql) — QI = Bl,

would have a simple, natural proof (where the predicate assert;(-) describes a
subset of the modal logic that would correspond to simulation). Jeremie Wajs
and the author are working on a tactic-style theorem prover for a logic with in-
duction and definitions. This system, called Iris, is written entirely in Nadathur’s
Teyjus implementation [NM99] of AProlog and appears to be the first theorem
proving system to be written entirely using higher-order abstract syntax (parser,
printer, top-level, tactics, tacticals, etc). Example proofs that we have done by
hand come out as expected: they are rather natural and immediate, although
the encoding of eigenvariable context as a single abstraction makes expressions
rather awkward to read. Fortunately, simple printing and parsing conventions
can improve readability greatly. Given that the interpreter in Figure 4 is based on
Horn clauses definitions, it is possible to employ well known induction principles
for Horn clauses to help prove such properties.

There are various other calculi, such as the join and ambient calculi, in which
names and name restriction are prominent and we plan to test this style of
encoding with them. Generic judgments have been used to model names for



references and exceptions [Mil96,Chi95] so it would be interesting to see if this
style of encoding can adequately help in reasoning about programming language
semantics containing such features. Comparing this particular encoding of the
m-calculus with those of others, for example, [HMS01,Des00,RHBO01], should be
done in some detail.

Finally, the approach to encoding syntax and operational semantics used here
is strongly motivated by proof theoretic considerations. There has been much
work lately on using a more model-theoretic or categorical-theoretic approaches
for such syntactic representations, see for example [FPT99,GP99,Hof99]. Com-
paring those two approaches should be quite illuminating.
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