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Abstract

The sequent calculus has been used for many purposes in recent years within theoretical computer
science. In these lectures, we shall highlight some of its uses in the specification of and reasoning
about computation.

During the search for cut-free sequent proofs, the formulas in sequents are re-arranged and
replaced with other formulas. Such changes can be used to model the dynamics of computation
in a wide range of applications. For various reasons, we shall be interested in “goal-directed proof
search” and will examine intuitionistic logic and linear logic for subsets that support this particularly
simple form of search. We will show, quite surprisingly, that with the appropriate selection of logical
connectives, goal-directed search is complete for all of linear logic. This fact leads naturally to the
design of a logic programming-like language based on linear logic. The resulting specification
language, called Forum, is an expressive and rich specification language suitable for a wide range
of computational paradigms.

After providing an overview of sequent calculus principles, we shall develop the notion of goal
directed search for a variety of logics, starting with the intuitionistic logic theory of Horn clauses
and hereditary Harrop formulas. We shall provide various example specifications in these logics,
especially examples that illustrate how rich forms of abstractions can be captured.

We then extend these languages with linear logic connectives and obtain first the specification
language Lolli and then Forum. After developing the theory of these languages, we present numer-
ous extended examples of how to specify computations in them. These examples will illustrate how
various concurrency notions can be captured. We shall illustrate the strength of this formalism by
specifying and reasoning about the following: operational semantics of imperative programming
languages; sequent calculus and natural deduction proof systems for an intuitionistic object-logic;
and process calculi.

No advanced knowledge of the sequent calculus or of linear logic will be assumed, although some
familiarity with their elementary syntactic properties will be useful. Similarly, some acquaintance
with the basic concepts of the lambda-calculus and intuitionistic logic will also be useful.
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1 Overview and Motivation

1.1 Roles for logic in the specification of computations

In the specification of computational systems, logics are generally used in one of two approaches.
In one approach, computations are mathematical structures, containing such items as nodes, tran-
sitions, and state, and logic is used in an external sense to make statements about those structures.
That is, computations are used as models for logical expressions. Intensional operators, such as
the modals of temporal and dynamic logics or the triples of Hoare logic, are often employed to
express propositions about the change in state. For example, next-time modal operators are used
to describe the possible evolution of state; expressions in the Hennessey-Milner Logic [HM85] are
evaluated against the transitions made by a process; and Hoare logic uses formulas to express pre-
and post-conditions on a computation’s state. We shall refer to this approach to using logic as
computation-as-model. In such approaches, the fact that some identifier x has value 5 is repre-
sented as, say a pair 〈x, 5〉, within some larger mathematical structure, and logic is used to express
propositions about such pairs: for example, x > 3 ∧ x < 10.

A second approach uses logical deduction to model computation. In this approach the fact
that the identifier x has value 5 can be encoded as the proposition “x has value 5.” Changes in
state can then be modeled by changes in propositions within a derivation. Of course, changing
state may require that a proposition no longer holds while a proposition that did not hold (such
as “x has value 6”) may hold in a new state. It is a common observation that such changes are
naturally supported by linear logic and that deduction (in particular, backchaining in the sense
of logic programming) can encode the evolution of a computation. As a result, it is possible to
see the state of a computation as a logical formula and transitions between states as steps in the
construction of a proof. We shall refer to this approach to using logic as computation-as-deduction.

There are many ways to contrast these two approaches to specification using logic. For example,
consider their different approaches to the “frame problem.” Assume that we are given a computation
state described as a model, say M1, in which it is encoded that the identifier x is bound to value
5. If we want to increment the value of x, we may need to characterize all those models M2 in
which x has value 6 and nothing else has changed. Specifying the precise formal meaning of this
last clause is difficult computationally and conceptually. On the other hand, when derivations are
used to represent computations directly, the frame problem is not solved but simply avoided: for
example, backchaining over the clause

x has value n −◦ x has value n+ 1

might simply change the representation of state in the required fashion.
In the first approach to specification, there is a great deal of richness available for modeling

computation, since, in principle, such disciplines as set theory, category theory, functional analysis,
algebras, etc., can be employed. This approach has had, of course, a great deal of success within
the theory of computation.

In contrast, the second approach seems thin and feeble: the syntax of logical formulas and
proofs contains only the most simple structures for representing computational state. What this
approach lacks in expressiveness, however, is ameliorated by the fact that it is more intimately
connected to computation. Deductions, for example, seldom make reference to infinity (something
commonly done in the other approach) and steps within the construction of proofs are generally
simple and effective computations. Recent developments in proof theory and logic programming
have also provided us with logics that are surprisingly flexible and rich in their expressiveness. In
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particular, linear logic [Gir87] provides flexible ways to model state, state transitions, and some
simple concurrency primitives, and higher-order quantification over typed λ-terms provides for
flexible notions of abstraction and encodings of object-level languages. Also, since specifications
are written using logical formulas, specifications can be subjected to rich forms of analysis and
transformations.

1.2 Desiderata for declarative programming

The development and maintenance of quality software is a serious and difficult challenge. All too
often, software is developed just to run efficiently and without too many serious errors. All other
demands that are placed on software — that it evolves with changing requirements, that it works
on various different hardware architectures, memory hierarchies, and software environments, that
parts of it can be reused, proved formally correct, and read by others — are seldom treated as
goals. If these additional goals are addressed, they are not addressed with formal and rigorous
techniques that have made other branches of engineering so successful. While the problems of
program development and correctness must be addressed at many levels, including, for example,
various human, managerial, and process factors, formal approaches can play important roles.

The field of mathematical logic has a long tradition of dealing with formal languages and with
providing deep ways to reason about logical specifications on multiple levels. For example, sound-
ness and completeness theorems show that two remarkably different approaches to the meaning
of specifications (via proofs and models) actually coincide. Similarly, many different proof styles
are known to be equivalent and such equivalences provide for deep understanding of inference and
computation. Logic also provides rich collections of transformations on logical specifications, as
can be easily seen by looking inside modern theorem provers.

If software could be given such multiple-levels of meaning, instead of being described in terms
of compilers and interpreters, then one might expect rich transformations and rich formal analyses
on programs that would make software much more flexible and malleable. A premise behind the
work in declarative programming languages is that if programming can be based on logically, well
understood formalisms, such as, say, the λ-calculus or intuitionistic logic, then programs expressed
in these paradigms inherit the attributes of those formalisms, and, as a result, should admit many
different kinds of semantic interpretations, for example, denotational, model-theoretical, and proof-
theoretic. Broad avenues for reasoning and transforming the descriptions of computations (namely,
programs) should result.

Given the central position that logic can play and has played in specification and programming
languages, advances in our understanding of logic should ripple throughout the world of software.
Given the recent advances in linear logic, logical frameworks, higher-order logic, and type theories,
this is an exciting time to be working on declarative languages.

1.3 Relating algorithm and logic

In an early paper on logic programming, Bob Kowalski wrote the follow equation relating compu-
tation and logic.

Algorithm = Logic + Control.

His point with this equation is that Logic did not contain enough information to describe algorithms
fully: what was missing, in his opinion, was control. This does summarize well the early experience
using Horn clauses for the specification of computation. When realizing Horn clause in an actual
computer system such as Prolog, explicit information about how goals were attempted and how
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program clauses were selected needed to be explicitly supplied, and this extra information was not
available via logic.

This equation makes the important point that there is a gap between logic specifications and
algorithmic specifications. This equation, however, seems to have been greatly elaborated in the
intervening years to look sometime more like the following.

Programming = Logic + Control + I/O +

+ Higher-order programming

+ Data abstractions

+ Modules

+ Concurrency + . . .

That is, in order to get logic programming systems to encompass a range of features common to
modern programming languages, many more extension to logic needed to be considered. Generally
these extensions were made in ad hoc fashions: logic, which was the motivation and the intriguing
start, is now put in a minor ghetto of the entire system. Questions about how various features
interact start to dominate the language design, and analysis, which when done on purely logical
expressions was deep and rich, was severely restricted or impossible.

An important activity of those working on logic and the specification of programming language
is to try to achieve the equation:

Programming = Logic.

If this equation is at all possible, then one will certainly need to rethink what is meant by “Pro-
gramming” and by “Logic”. Clearly, the classical first-order theory of Horn clauses is far too weak
for “Logic”. There is also considerable room to rethink the notion of “Programming”. If by pro-
gramming we only mean the process of writing code that runs fast of a given hardware and software
architecture and without too many series bugs, then logic may never be useful for programming:
logic would introduce an overhead into the process of building programs that might not be recov-
ered. If, however, we think of programming as the construction of artifacts (programs) that should
evolve as new demands are made of them, work on a range of hardware and software architectures,
be richly analyzed and transformed by compilers, and be verified as formally correct, then logic
should have an enormous role to play in the design and analysis of programs.

In these notes we shall approach this goal by exploring the following equation.

Programming = Higher-order linear Logic + . . . .

That is, we choose to use an expressive logic, that of higher-order linear logic, for making spec-
ifications. It will be clear that this logic will allow natural descriptions of programming features
such as higher-order programming, modular programming, abstract data types, and concurrency.
This equation is open since this approach does not capture everything that one would desire of
a high-level programming language. Possibly future advances in logic will yield logics still more
expressive and useful for specifying computations.
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2 First-Order Logic

As we shall see by the end of these lectures, linear logic serves a single framework in which much of
what we hope to do with proof search can be directly explained. We shall, however, chose to first
work with more traditional logics, namely classical, intuitionistic, and minimal logics. It will be
easy later to take what is learned from these logics and move them into the linear logic framework.
Furthermore, we shall focus almost entirely on first-order logics, allowing quantification of predicates
occasionally in examples, For more on higher-order quantification in logic programming, see [NM90,
MNPS91].

2.1 Types and signatures

Let S be a fixed, finite set of primitive types (also called sorts). We assume that the symbol o
is always a member of S. Following Church [Chu40], o is the type for propositions. The set of
types is the smallest set of expressions that contains the primitive types and is closed under the
construction of function types, denoted by the binary, infix symbol →. The Greek letters τ and σ
are used as syntactic variables ranging over types. The type constructor → associates to the right:
read τ1 → τ2 → τ3 as τ1 → (τ2 → τ3).

Let τ be the type τ1 → · · · → τn → τ0 where τ0 ∈ S and n ≥ 0. (By convention, if n = 0 then
τ is simply the type τ0.) The types τ1, . . . , τn are the argument types of τ while the type τ0 is the
target type of τ . The order of a type τ is defined as follows: If τ ∈ S then τ has order 0; otherwise,
the order of τ is one greater than the maximum order of the argument types of τ . Thus if ord(τ)
denotes the order of type expression τ then the following two equations define ord.

ord(τ) = 0 provided τ ∈ S
ord(τ1 → τ2) = max(ord(τ1) + 1, ord(τ2))

Thus, τ has order 1 exactly when τ is of the form τ1 → · · · → τn → τ0 where n ≥ 1 and
{τ0, τ1, . . . , τn} ⊆ S. We say, however, that τ is a first-order type if the order of τ is either 0 or 1
and that no argument type of τ is o. The target type of a first-order type may be o.

For each type τ , we assume that there are denumerably many constants and variables of that
type. Constants and variables do not overlap and if two constants (or variables) have different
types, they are different constants (or variables). A signature (over S) is a finite set Σ of constants.
We often enumerate signatures by listing their members as pairs, written a: τ , where a is a constant
of type τ . Although attaching a type in this way is redundant, it makes reading signatures easier.
A signature is first-order if all its constants are of first-order type.

2.2 First-order terms and formulas

[Mention the priority in parsing formulas.]
We can now define the first-order logic F . The logical constants of F are the symbols ∧

(conjunction), ∨ (disjunction), ⊃ (implication), true (truth), false (absurdity), and for every τ ∈
S − {o}, ∀τ (universal quantification over type τ), and ∃τ (existential quantification over type τ).
Thus, F has only a finite number of logical constants. The negation of a formula B is written as
B ⊃ false.

Let τ be a type of the form τ1 → · · · → τn → τ0 where τ0 is a primitive type and n ≥ 0. If τ0 is
o, a constant of type τ is a predicate constant of arity n. If τ0 is not o, then a constant of type τ is
either an individual constant if n = 0 or a function constant of arity n if n ≥ 1. Similarly, we can
define predicate variable of arity n, individual variable, and function variable of arity n.
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Let τ be a primitive type different from o. A first-order term of type τ is either a constant or
variable of type τ , or of the form (f t1 . . . tn) where f is a function constant of type τ1 → · · · →
τn → τ and, for i = 1, . . . , n, ti is a term of type τi. In the latter case, f is the head and t1, . . . , tn
are the arguments of this term.

A first-order formula is either atomic or non-atomic. An atomic formula is of the form (p t1 . . . tn),
where n ≥ 0, p is a predicate constant of the first-order type τ1 → · · · → τn → o, and t1, . . . , tn
are first-order terms of the types τ1, . . . , τn, respectively. The predicate constant p is the head of
this atomic formula. Non-atomic formulas are of the form true, false, B1 ∧B2, B1 ∨B2, B1 ⊃ B2,
∀τx B, or ∃τx B, where B,B1, and B2 are formulas and τ is a primitive type different from o. The
usual notions of free and bound variables and of open and closed terms and formulas are assumed.

The boldface letters t, s range over terms; the roman letters B,C range over formulas; A ranges
over atomic formulas; and the Greek letters Γ,∆ range over sets of formulas.

Let s be a first-order term of type τ and let x be a variable of type τ . The operation of
substituting s for free occurrences of x is written as [s/x]. Bound variables are assumed to be
changed in a systematic fashion in order to avoid variable capture. Simultaneous substitution is
written as the operator [s1/x1, . . . , sn/xn].

Let Σ be a first-order signature. A Σ-term is a closed term all of whose constants are members
of Σ. Likewise, a Σ-formula is a closed formula all of whose nonlogical constants are members of
Σ.

We define clausal order of formulas using the following recursion on first-order formulas.

clausal(A) = 0 provided A is atomic, true, or false

clausal(B1 ∧B2) = max(clausal(B1), clausal(B2))

clausal(B1 ∨B2) = max(clausal(B1), clausal(B2))

clausal(B1 ⊃ B2) = max(clausal(B1) + 1, clausal(B2))

clausal(∀x.B) = clausal(B)

clausal(∃x.B) = clausal(B)

This measurement on formulas will be of particular interest when we design various logic program-
ming languages.

The polarity of a subformula occurrence within a formula is defined as follows. If a subformula C
of B occurs to the left of an even number of occurrences of implications in a B, then C is a positive
subformula occurrence of B. On the other hand, if a subformula C occurs to the left of an odd
number of occurrences of implication in a formula B, then C is a negative subformula occurrence
of B. More formally:

• B is a positive subformula occurrence of B.

• If C is a positive subformula occurrence of B then C is a positive subformula occurrence in
B ∧B′, B′ ∧B, B ∨B′, B′ ∨B, B′ ⊃ B, ∀τx.B, and ∃τx.B; C is also a negative subformula
occurrence in B ⊃ B′.

• If C is a negative subformula occurrence of B then C is a negative subformula occurrence in
B ∧B′, B′ ∧B, B ∨B′, B′ ∨B, B′ ⊃ B, ∀τx.B, and ∃τx.B; C is also a positive subformula
occurrence in B ⊃ B′.
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2.3 Sequent calculus

The sequent calculus provides a setting to reason about logical truth by considering the form of
deduction. In this approach to proof, there are no axioms, only inference rules. In fact, for most
logical connective there are two inferences, one describing the form of an argument in which one
proves a formula with a given connective and one describing the form of an argument in which one
reasons from such a formula. There are also structural rules, one of which is the cut rule: this rule
can be used to justify that the two introduction rules are really describing dual aspects of the same
logical connective.

Provability for F is given using sequent calculus proofs [Gen69]. A sequent of F is a triple
Σ : Γ −→ ∆, where Σ is a first-order signature over S and Γ and ∆ are finite (possibly empty)
multisets of Σ-formulas. The multiset Γ is this sequent’s antecedent and ∆ is its succedent. The
expressions Γ, B and B,Γ denote the multiset union Γ∪ {B}. The rules for introducing the logical
connectives are presented in Figure 1, the initial and cut rules are given in Figure 2, and the
structural rules are given in Figure 3. The following provisos are also attached to the four inference
rules for quantifier introduction: in ∀R and ∃L, the constant c is not in Σ, and, in ∀L and ∃R, t is
a Σ-term of type τ .

A proof of the sequent Σ : Γ −→ Θ is a finite tree constructed using these inference rules such
that the root is labeled with Σ : Γ −→ Θ.

2.4 Classical, intuitionistic, and minimal logics

Any proof is also called a C-proof. Any C-proof in which the succedent of every sequent in it has
at most one formula is also called an I-proof. Furthermore, an I-proof in which the succedent of
every sequent in it has exactly one formula is also called an M-proof. Sequent proofs in classical,
intuitionistic, and minimal logics are represented by, respectively, C-proofs, I-proofs, and M-proofs.
Finally, let Σ be a given first-order signature over S, let Γ be a finite set of Σ-formulas, and let B
be a Σ-formula. We write Σ; Γ `C B, Σ; Γ `I B, and Σ; Γ `M B if the sequent Σ : Γ −→ B has,
respectively, a C-proof, an I-proof, or an M-proof. It follows immediately that Σ; Γ `M B implies
Σ; Γ `I B, and this in turn implies Σ; Γ `C B.

Notice that in an I-proof, there will be no occurrences of contrR while in an M-proof, there
will be no occurrences of contrR and of weakR.

The notion of provability defined here is not equivalent to the more usual presentations of
classical, intuitionistic, and minimal logic [Fit69, Gen69, Pra65, Tro73] in which signatures are not
made explicit and substitution terms (the terms used in ∀L and ∃R) are not constrained to be
taken from such signatures. The main reason they are not equivalent is illustrated by the following
example. Let S be the set {i, o} and consider the sequent

{p: i→ o} : ∀ix (px) −→ ∃ix (px).

This sequent has no proof even though ∃ix (px) follows from ∀ix (px) in the traditional presentations
of classical, intuitionistic, and minimal logics. The reason for this difference is that there are no
{p: i→ o}-terms of type i: that is, the type i is empty in this signature. Thus we need an additional
definition: the signature Σ inhabits the set of primitive types S if for every τ ∈ S different than o,
there is a Σ-term of type τ . When Σ inhabits S, the notions of provability defined above coincide
with the more traditional presentations.
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Σ : B,∆ −→ Γ

Σ : B ∧ C,∆ −→ Γ
∧L

Σ : C,∆ −→ Γ

Σ : B ∧ C,∆ −→ Γ
∧L

Σ : ∆ −→ Γ, B Σ : ∆ −→ Γ, C

Σ : ∆ −→ Γ, B ∧ C ∧R

Σ : B,∆ −→ Γ Σ : C,∆ −→ Γ

Σ : B ∨ C,∆ −→ Γ
∨L

Σ : ∆ −→ Γ, B

Σ : ∆ −→ Γ, B ∨ C ∨R
Σ : ∆ −→ Γ, C

Σ : ∆ −→ Γ, B ∨ C ∨R

Σ : ∆1 −→ Γ1, B Σ : C,∆2 −→ Γ2

Σ : B ⊃ C,∆1,∆2 −→ Γ1,Γ2
⊃L

Σ : B,∆ −→ Γ, C

Σ : ∆ −→ Γ, B ⊃ C ⊃R

Σ : ∆, B[t/x] −→ Γ

Σ : ∆,∀τx B −→ Γ
∀L

Σ ∪ {c: τ} : ∆ −→ Γ, B[c/x]

Σ : ∆ −→ Γ,∀τx B ∀R

Σ ∪ {c: τ} : ∆, B[c/x] −→ Γ

Σ : ∆,∃τx B −→ Γ
∃L

Σ : ∆ −→ Γ, B[t/x]

Σ : ∆ −→ Γ, ∃τx B ∃R

Σ : −→ true
trueR

Σ : false −→ falseL

Figure 1: Introduction rules.

Σ : B −→ B
initial

Σ : ∆1 −→ Γ1, B Σ : B,∆2 −→ Γ2

Σ : ∆1,∆2 −→ Γ1,Γ2
cut

Figure 2: Initial and cut rules.

Σ : ∆ −→ Γ
Σ : ∆, B −→ Γ

weakL
Σ : ∆ −→ Γ

Σ : ∆ −→ Γ, B
weakR

Σ : ∆, B,B −→ Γ

Σ : ∆, B −→ Γ
contrL

Σ : ∆ −→ Γ, B,B

Σ : ∆ −→ Γ, B
contrR

Figure 3: Structural rules.
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2.5 Permutations of inference rules

An important aspect of the structure of a sequent calculus proof system is the way in which inference
rules permute or do not permute. Consider the following combination of inference rules.

Σ : ∆, p, r −→ s,Γ Σ : ∆, q, r −→ s,Γ

Σ : ∆, p ∨ q, r −→ s,Γ
∨L

Σ : ∆, p ∨ q −→ r ⊃ s,Γ ⊃R

Here, implication is introduced on the right below a left introduction of a disjunction. This order
of introduction can be switch, as we see in the following combination of inference rules.

Σ : ∆, p, r −→ s,Γ

Σ : ∆, p −→ r ⊃ s,Γ ⊃R
Σ : ∆, q, r −→ s,Γ

Σ : ∆, q −→ r ⊃ s,Γ ⊃R

Σ : ∆, p ∨ q −→ r ⊃ s,Γ ∨L

Notice that in this latter proof, we need to have two occurrences of the right introduction of
implication.

Sometimes inference rules can be permuted if additional structural rules are employed. Consider
the following two inference rules.

Σ : ∆1, r −→ Γ1, p Σ : ∆2, q −→ Γ2, s

Σ : ∆1,∆2, p ⊃ q, r −→ Γ1,Γ2, s
⊃L

Σ : ∆1,∆2, p ⊃ q −→ Γ1,Γ2, r ⊃ s
⊃R

To switch the order of these two inference rules requires introduction some weakenings and a
contraction.

Σ : ∆1, r −→ Γ1, p

Σ : ∆1, r −→ Γ1, p, s
weakR

Σ : ∆1 −→ Γ1, p, r ⊃ s
⊃R

Σ : ∆2, q −→ Γ2, s

Σ : ∆2, q, r −→ Γ2, s
weakL

Σ : ∆2, q −→ Γ2, r ⊃ s
⊃R

Σ : ∆1,∆2, p ⊃ q −→ Γ1,Γ2, r ⊃ s, r ⊃ s
⊃L

Σ : ∆1,∆2, p ⊃ q −→ Γ1,Γ2, r ⊃ s contrR

Notice that if the first collection of inference rules was from an I-proof, then Γ1 and Γ2 must be
empty. However, the result of permuting these inference rule would necessarily be a C-proof since
we are required to have a sequent with two copies of r ⊃ s on the right. In general, an ⊃R below
an ⊃L in an I-proof cannot always be permuted.

There rules for the binary logical connectives that have two premises can be classified as either
additive or multiplicative. A rule is additive if its the context surrounding the logical formula in-
troduced in the conclusion is the same as the context surrounding its immediate subformulas in
the premise sequents. The ∨L and ∧R rules are additive. A rule is multiplicative if the context
surrounding the the logical formula introduced in the conclusion is the accumulation of as the
contexts surrounding its immediate subformulas in the premise sequents. The ⊃L rule is multi-
plicative. Later when we discuss linear logic in more detail, these two styles of inference rules
become particularly important. Linear logic also adds an exponential that relates these two. As
we show in an exercise below, in the presence of weakening and contraction, it is possible to move
between these two styles of inference rules without changing the logic.

2.6 Cut-elimination

The main theorem concerning sequent calculus proofs is called the cut-elimination theorem.
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Theorem 1 If a sequent has a C-proof (respectively, I-proof and M-proof) then it has a cut-free
C-proof (respectively, I-proof and M-proof).

Proofs of this theorem can be found in various places. Gentzen’s original proof [Gen69] is still
quite readable. See also [Gal86, GTL89]. Constructive proofs can be given and these result in
procedures that can take a proof and systematically remove cut rules.

2.7 Consequences of cut-elimination

There are many important consequences of the cut-elimination theorem for these first-order logics.
We list two here.

First, it is easy to show that these logics are consistent. That is, it is easy to see that there can
be no proof of false: the only inference rules that could be used to prove the sequent Σ : −→ false
would be contrR and weakR, and these do not lead to a proof.

Second, all the sequents in a cut-free proof of Σ : ∆ −→ Γ contain formulas that are
subformulas of a formula in ∆ or in Γ. This is the so-called subformula property. (By subformula,
we also need to admit substitution instances of subformulas).

Finally, while cuts can be eliminated from proofs, this is largely only a statement of principle:
there are few mathematically interesting sequents that have cut-free proofs that could be written
down or stored in computer memories. While it is possible to formulate domains of mathematical
interest within first-order logic, the most natural proofs of sequents in such domains would involve
extensive use of cut, since this is the inference rule that encompasses the use of lemmas. The cut-
elimination theorem claims that, in principle, lemmas are not needed: every theorem can be proved
by organizing its subformulas into a proof. Clearly, proofs where where every use of a lemma is
expanded out must be a huge object. It is not hard to check the complexity of the cut-elimination
procedure to see that it can produce super-exponential blow-ups in proof size. Simple sequents with
proofs involving a dozen cuts have cut-free proofs that require more elementary particles believed
to comprise the universe.

Then to who could cut-free proofs be of interest. Logicians use the cut-elimination theorem
to tell them that certain deep symmetries exist in their sequent systems. As we shall see in these
notes, cut-free proofs have a useful role in describing computation: a cut-free proof can provide an
elegant and flexible notion of computation trace. That is, here we shall think of cut-free proofs as
recording the many minuscule steps of a computation: that is, a cut-free proof is rather similar
to writing down every step that a Turing machine takes during some computation. Clearly, such
proofs are not of particular use in the expression of mathematically interesting proofs. They will
serve us, however, as a convenient device for representing and reasoning about computation.

2.8 Additional readings

In [Kle52], Kleene presents a detailed analysis of permutability of inference rules for classical and
intuitionistic sequent systems similar to those presented here.

In [Mil91], Miller argues that proof theory should be considered a rich and appropriate setting
for justifying declarative programming. The literature on logic programming more generally draws
its justifications from model theory considerations.

2.9 Exercises

1. Provide proofs for each of the following sequents. Provide a I-proof only if there is no M-
proof, and supply a C-proof only if there is no I-proof. Assume that the signature Σ is
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{p : o, q : o, r : i→ o, a : i, b : i}.

(a) p ∧ (p ⊃ q) ∧ (p ∧ q ⊃ s) ⊃ s
(b) (p ⊃ q) ⊃ (¬q ⊃ ¬p)
(c) (¬q ⊃ ¬p) ⊃ (p ⊃ q)
(d) p ∨ (p ⊃ q)
(e) (r a ∧ r b ⊃ q) ⊃ ∃x(r x ⊃ q)
(f) ((p ⊃ q) ⊃ p) ⊃ p
(g) ∃y∀x(r x ⊃ r y)

2. The multiplicative version of ∧R would be the inference rule

Σ : ∆1, −→ B,Γ1 Σ : ∆2 −→ C,Γ2

Σ : ∆1,∆2 −→ B ∧ C,Γ1,Γ2

.

Show that a sequent is has an C-proof (resp. I-proof, M-proof) if and only if it has one in a
proof system that results from replacing ∧R with the multiplicative version. Show the same
but where ∨L is replaced with its multiplicative version

Σ : B,∆1, −→ Γ1 Σ : C,∆2 −→ Γ2

Σ : B ∨ C,∆1,∆2 −→ Γ1,Γ2

.
.

[Notice that the multiplicative form of this rule can not be used with M-proofs. Fix this.]

3. Define a sequent proof to be atomically closed if every instance of the initial inference rule
involves only atomic formulas. Show that a sequent has a C-proof (respectively, I-proof
and M-proof) if and only if it has an atomically closed C-proof (respectively, I-proof and
M-proof). [Notice that this is not possible with false in M-proofs. Fix this.]

4. Let n ≥ 1 and let Σ : ∆ −→ Γ be a sequent such that every formula in ∆ is of order n or
less and every formula in Γ is order n− 1 or less. Prove that every sequent in a cut-free proof
of Σ : ∆ −→ Γ has this same property.

5. Show that if we consider C-proofs, then all inference rules for propositional connectives (ex-
clude the quantifiers) permute over each other.

6. Not all pairs of quantification introduction rules permute. Present those pairs of inference
rules that do not permute.
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3 Logic Programming Considered Abstractly

3.1 Problems with proof search

In order to specify computation in a logic programming language, a programmer will first specify a
signature, say Σ, that contains typing declarations for the set of non-logical constants about which
a computation will involve. These constants are then used to build a formulas that are used for
two different purposes. A logic program is a multiset of Σ-formulas that specifies, at least partially,
the meaning of the constants in Σ. A query or goal is also a Σ-formula that serves as a question
to ask of a logic program: goals are used to explore consequences of the specifications given by
programs. More generally, a goal can also be a multiset of formulas (this is particularly important
in the linear logic setting).

Computation is then the process of attempting to prove that a given goal follows from a given
logic program. If this proof attempt is unsuccessful, the result of the computation is simply an
indication that there was such a failure. If the attempt was successful, the resulting proof could
also be returned: however, since proofs in this setting are essentially traces of entire computations,
some kind of extraction from this proof is more reasonable to returned. This extract is will be a
substitution for some of the variables found in the goal formula(s). This extract is often called an
answer substitution.

Given a sequent, there are potentially many directions to explore to build a proof. We list some
below.

1. It is always possible to use the cut rule. In that case, we need to produce a lemma to be
proved on one branch and to be used on the other (also called the cut-formula).

2. The structural rules of contractions can always be applied to make additional copies of a rule.

3. The structural rule of weakening can be used to remove any formula from a sequent.

4. We could apply a left introduction rule or a right introduction rule.

5. We can check to see if the sequent is initial.

Some of these choices produce sub-choices. For example, choosing the cut rule requires finding a
cut-formula; choosing ∀L or ∃R requires knowing a term t to instantiate a quantifier, and using the
⊃L or cut rules require splitting the multisets Γ and ∆ into two pairs of multisets.

All this freedom in searching for proofs is not, however, needed, and greatly reduced sets of
choices can still result in complete proof procedures. We can deal with many of these choices as
follows.

• Given the cut-elimination proof, we do not need to consider the cut rule and the problem of
selecting a cut-formula. Such a choice forces us to move into a domain where proofs are more
like computation traces than witnesses of mathematical truths. But since our goal here is the
specification of computation, we shall live inside this choice.

• Since we have the structural rules of contraction and weakening, several simplifications can
be made. First, we can assume that weakening is delayed until just prior to choosing the
initial rule. Also, instead of splitting the context in the ⊃L rule, we can apply contraction
to duplicate all the formulas and then place one copy on the left branch and one copy on the
right branch.
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• The problem of determining an approach substitution term in the ∀L and ∃R rules is a serious
problem whose solution fails outside our setting here. When systems based on proof search
are implemented, they generally make use of various techniques, relying on the so-called “logic
variable” and on unification. We shall not discuss these matters further here.

• The choice between selecting to do a right introduction or a left introduction can also be
greatly simplified and is the central issue in goal directed search, describe more below.

3.2 Interpretation as goal-directed search

An idealized interpreter has three components in its state: a signature Σ, a set of Σ-formulas P
denoting a program, and a Σ-formula G denoting the goal we wish to prove from P. We use the
sequent notation Σ : P −→ G to denote the state of this idealized interpreter.

If the interpreter is in state Σ : P −→ G, how should proof search proceed? The principal
restriction that we shall make in restricting the search for proofs is that that search should be
goal-directed: that is, if the goal formula has a logical connective as its toplevel symbol, then the
proof should be attempted by reducing that logical connective in a specific fashion. The particular
rule depends on the logical connective. In particular, we would desire that our interpreter can make
the following reductions.

AND Reduce Σ : P −→ B1 ∧ B2 to the two sequents Σ : P −→ G1 and Σ : P −→ B2.
Proofs of both sequents must now be attempted.

OR Reduce Σ : P −→ B1 ∨B2 to either Σ : P −→ B1 or Σ : P −→ B2. A proof on only one
of these needs will be sufficient.

INSTAN Reduce Σ : P −→ ∃τx.B to Σ : P −→ B[t/x], for some Σ-term t of type τ .

AUGMENT Reduce Σ : P −→ B1 ⊃ B2 to Σ : P ∪ {B1} −→ B2.

GENERIC Reduce Σ : P −→ ∀τx.B to {c : τ} ∪Σ : P −→ B[c/x], where c is a token that is
not in the current signature Σ. We shall often refer to c as a “new constant”.

TRUE The sequent Σ : P −→ true is provable immediately and does not need to be reduced
further.

These reduction rules are goal-directed and do not consider either the signature or the logic
program. Thus logical connectives get reflected into the search for proofs in a fixed fashion that
cannot be modified by a program. For example, the connectives ∧ and ∨ are always mapped into
AND and OR search steps. Logic programs are responsible for determining the meaning of only
the non-logical constants that are used to build atomic formulas.

If these reduction rules are reversed, the result can be seen as inference rules. For example,
if the sequent Σ : P −→ B[t/x] can be proved for some Σ-term t of type τ , then we have a
justification for the sequent Σ : P −→ ∃τx.B. Figure 4 displays the inference rules corresponding
to these reduction rules.

Since we are attempting to justify the design of a logic programming language, it is natural to
ask to what extent are these inference rules related to logic. It is easy to see that each of these
inference rules is sound: that is, if the premise sequents (the sequents above the horizontal line in
the inference rule) are true (in, say classical logic), then the original sequent is true. Soundness
can be established without knowing the exact nature of signatures and programs.

16



Σ : P −→ B1 Σ : P −→ B2

Σ : P −→ B1 ∧B2
∧R

Σ : P −→ B1

Σ : P −→ B1 ∨B2
∨R

Σ : P −→ B2

Σ : P −→ B1 ∨B2
∨R

Σ : P −→ B[t/x]

Σ : P −→ ∃τx.B ∃R Σ : P −→ true
trueR

Σ : P ∪ {B1} −→ B2

Σ : P −→ B1 ⊃ B2
⊃R

{c : τ} ∪ Σ : P −→ B[c/x]

Σ : P −→ ∀τx.B ∀R

Figure 4: Inference rules for provability. The rule for universal quantification has the proviso that
c is not declared in Σ and the rule for existential quantification has the proviso that t is a Σ-term
of type τ .

The converse property, that of logical completeness of these rules, can be phrased as follows:
if a sequent with a non-atomic goal is provable, are the sequents that it reduces to also provable?
Achieving completeness is more involved and, in fact, dominates the design of the logic programming
languages we considered. To see that these reductions are not generally complete, consider the
following examples. Here, let signature Σ contain the declarations {p : o, q : o, r : i→ o, a : i, b : i}.

1. The OR rule reduces the sequent Σ : p ∨ q −→ q ∨ p to either Σ : p ∨ q −→ q or
Σ : p ∨ q −→ p. Neither of these sequents is true while the original sequent is true.

2. The OR rule reduces the sequent Σ : ∅ −→ p ∨ (p ⊃ q) to either Σ : ∅ −→ p or
Σ : ∅ −→ p ⊃ q. The first sequent is not provable and the second sequent would reduce
to Σ : p −→ q, which is also not provable. It is easy to see, however, that p ∨ (p ⊃ q) is a
classical logic tautology: if p is true, then the disjunction p ∨ (p ⊃ q) is true and if p is false,
then p ⊃ q is true and again the disjunction is true.

3. The INSTAN rule reduces the sequent

Σ : (ra ∧ rb) ⊃ q −→ ∃ix(r x ⊃ q)

to the sequent Σ : (r a ∧ r b) ⊃ q −→ r t ⊃ q, where t is a Σ-term of type i. But there is
not such term which makes this sequent provable. For example, if we used a for t, we would
have the sequent

Σ : (ra ∧ rb) ⊃ q, r a −→ q

and this is no longer represents a true statement. To see that the original sequent is true
classically, we know that r a is either true or false. If it is false, then ∃ix(r x ⊃ q) is true (by
picking a for x). If r a is true, then (ra ∧ rb) ⊃ q is equivalence to rb ⊃ q, so once again we
have shown ∃ix(r x ⊃ q).

To achieve completeness for our logic programming languages, we shall need either to restrict
the formulas allowed to be programs and goals (so as to avoid these counterexamples) or to chose
our logic carefully. In fact, we shall take both steps. As the first example above illustrates, it
seems likely that we will need to avoid having disjunctions in our programs. In fact, the formulas
we eventually allow in programs will also be called definite formulas since they do not contain the
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indefinite information supplied by disjunctions. The last two examples illustrate that this step
will not be enough since classical logic itself has built into it a disjunctive assumption, called the
excluded middle: for every formula B, classical logic makes the formula B ∨¬B true. Intuitionistic
logic will play an important role in analyzing logic programs.

We shall make the following definitions to help formalize the above observations. A cut-free
I-proof is a uniform proof if for every sequent in it with a non-atomic succedent is the conclusion of
a right introduction rule. Notice that in uniform proofs, if a sequent is the conclusion of an initial
or left-introduction rule then the succedent of that sequent is an atomic formula. Let D and G be a
set of formula denoting, respectively, the definite clauses (program clauses) and goal formulas of an
intended logic programming. Let ` be provability in some logic, such as classical or intuitionistic
logic. The the triple 〈D,G,`〉 is an abstract logic programming language if and only if for every
finite subset P of D and for every G ∈ G, Σ;P ` G if and only if the sequent Σ : P −→ G has a
uniform proof.

Since these two definitions are restricted to I-proofs, we shall refer to them as the single-
conclusion version of uniform proofs and abstract logic programming. For more on these definitions,
see [MNPS91, NM90]. We shall later introduce a multiple-conclusion version of these definitions.

The first (abstract) logic programming language we consider is first-order Horn clauses: these
are weak enough that they do not separate classical from intuitionistic provability.

3.3 The syntax of first-order Horn clauses

There are several, roughly equivalent ways to describe first-order Horn clauses (fohc for short). We
present three here. In making these definitions, we make use of three syntactic variables: A denotes
atomic formulas, G denotes goal formulas, and D denotes program formulas (also called definite
formulas). Programs formulas are also called clauses.

A common definition of Horn clauses (see, for example, [AvE82]) is given using the following
grammar.

G ::= A | G ∧G
D ::= A | G ⊃ A | ∀τx D. (1)

(Here and in the rest of this chapter, we assume that the type τ is a primitive type.) That is, goal
formulas are conjunctions of atomic formulas and program clauses are of the form

∀τ1x1 . . . ∀τ1xm[A1 ∧ . . . ∧An ⊃ A0]

for m,n ≥ 0. (If m = 0 then we do not write any universal quantifiers, and if n = 0 then we do not
write the implication.)

A richer formulation is given by the following definition.

G ::= true | A | G ∧G | G ∨G | ∃τx G
D ::= A | G ⊃ D | D ∧D | ∀τx D. (2)

Here, the connectives true, ∨, and ∃ are permitted in goals and ∧ and ∀ can be mixed in definite
formulas. Also, the “head” of a definite clause does not need to be immediately present at the
top-level of a clause: it might be buried to the right of implications and conjunctions and under
universal quantifiers.
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A compact presentation of Horn clauses can be given simply as

G ::= A

D ::= A | A ⊃ D | ∀τx D. (3)

Notice that in this definition, definite clauses are composed only of implications and universal quan-
tifiers where the nesting of implications and universal quantifiers is allowed only in the conclusion
of an implication and not in a premise.

It is the D-formulas that are considered Horn clauses. A Horn clause program is then a finite set
of closed D-formulas. The symbol P will often be used as a syntactic variable to denote programs.

These three ways of defining program clauses give rise to programming languages of the same
expressive power: that is, a program clause in one definition is classically equivalent (also intuition-
istically equivalent) to a conjunction of program clauses in another definition. This is easily shown
by using suitable applications of the following classical and intuitionistic equivalences.

∀x(B1 ∧B2) ≡ (∀x B1) ∧ (∀x B2)

B1 ⊃ (B2 ⊃ B3) ≡ (B1 ∧B2) ⊃ B3

B1 ∧ (B2 ∨B3) ≡ (B1 ∧B2) ∨ (B1 ∧B3)

B1 ∨ (B2 ∧B3) ≡ (B1 ∨B2) ∧ (B1 ∨B3)

(B1 ∨B2) ⊃ B3 ≡ (B1 ⊃ B3) ∧ (B2 ⊃ B3)

B1 ⊃ (B2 ∧B3) ≡ (B1 ⊃ B2) ∧ (B1 ⊃ B3)

B1 ⊃ (∀x B2) ≡ ∀x (B1 ⊃ B2)

(∃x B2) ⊃ B1 ≡ ∀x (B2 ⊃ B1)

In the last two equivalences, x is not free in B1.
If we speak about first-order Horn clauses without qualification, then we assume we are using

the richest of these three definitions, namely (2).

3.4 Proof search with first-order Horn clauses

In the setting of classical logic, goal-directed search reductions presented in Subsection 3.2 is com-
plete. To give a more complete picture of proof search within fohc, we need to describe how proof
search deals with atomic goals. For example, if the goal G is the atomic formula A and the pro-
gram P contains the formula A, then we clearly have a proof and computation (search) finishes
immediately with a success. If P contains instead a clause of the form G′ ⊃ A then we know that
if we can prove G′ from P, then we have again found a proof for A: since G′ ⊃ A and G′ follow
from P, then so to does A. In this case, we have reduced the problem of proving Σ : P −→ A to
proving Σ : P −→ G′. Using a program clause in this manner to reduce the problem of proving
an atomic formula is generally called backchaining.

To describe backchaining we use the additional inference rules found in Figure 5. To indicate
that the interpreter is attempting to prove the atomic goal A by backchaining on the program

clause D, we use the expression Σ;P D−→ A. The first of the rules in Figure 5 specifies that when
reducing the problem of finding a proof of Σ : P −→ A, we need first to pick a member D of
P and then attempt to backchain on it. The second rule in this figure states the obvious: if the
formula that we are using for backchaining is the formula we are attempting to prove, then we are
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Σ;P D−→ A

Σ : P −→ A
decide

Σ;P A−→ A
initial

Σ;P D1−→ A

Σ;P D1∧D2−→ A
∧L

Σ;P D2−→ A

Σ;P D1∧D2−→ A
∧L

Σ : P −→ G Σ;P D−→ A

Σ;P G⊃D−→ A
⊃L

Σ;P D[t/x]−→ A

Σ;P ∀τx.D−→ A
∀L

Figure 5: Rules for backchaining. In the decide rule, D is a member of P, and in the ∀L rule, t is
a Σ-term of type τ .

finished. If the formula selected for backchaining is a conjunction, then reduce this attempt to one
using one of the conjuncts. If the backchain formula is universally quantified, then pick a Σ-term
and continue backchaining with that instance of the formula. Finally, if the the backchain formula
is an implication, say G ⊃ D, then we need to do two things: we must prove G and continue using
D to do backchaining.

Combining the inference rules in Figure 4 and 5 now yields a complete proof system for fohc
with respect to classical logic. A proof of this fact can be found in [NM90] (see also the exercises
below). When read bottom-up, these inference rules provide a complete set of reduction steps for
finding a proof.

Consider a proof of the sequent Σ : P −→ G using these inference rules. It is easy to see that

every sequent that appears in such a proof will either be of the form Σ : P −→ G′ or Σ;P D−→ A,
for some A, G′, and D. Notice that all of these sequents contain the same signature and program.
Thus, during the search for such a proof, all goals will be attempted from the same program and
all the selection of program clauses will be from that same program. This one observation has at
least two important consequences.

1. First, remember that changes to sequents during the construction of a proof are used to
capture the dynamics of computations. If the only changes that can occur to a sequent is to
the goal formula (which could be considered to be as simple as conjunctions of atoms), then
the dynamics of computations must be modeled mostly within atomic formulas, that is, via
changes in terms within atoms. Since most of the dynamics occurs in changes to atoms, logic
will be able to play little direct role in reasoning about computation.

2. If we initiate a computation (that is, a search for a proof), all the program clauses that will
ever be needed to complete the proof must be present in the initial sequent. Similarly, every
constant, and hence the constructors for every data structure that might every need to be
built, need to be present in the initial sequent. Thus, proof search using fohc provides no
mechanisms for hiding code or data constructors. Signatures and programs are global, flat
structures that do not change over the lifetime of a computation. Thus it will not be possible
in fohc to have auxiliary programs available only when they are needed and it will not be
possible to build data structures (terms) that only certain code will be allowed to access. If
any code or term constructors are ever needed they must be available from the start on equal
footing with all other code and data constructors. This lack of abstraction will be one of the
motivations for going beyond fohc.
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3.5 Additional readings

A background in using logic programming language, particularly Prolog, is assumed for much of
these notes. To gain such a background, see the books [CM84, SS86]. A nice introduction to theory
of first-order Horn clauses, see [AvE82].

3.6 Exercises

1. Show that each of the following is true using all three definitions of first-order Horn clauses.

(a) A definite clause is order 0 or 1.

(b) A goal formula is order 0.

(c) If a subformula of a definite clause occurs positively, then it is a definite clause; if it
occurs negatively, it is a goal formula.

(d) All subformula occurrences of a goal formula occur positively and are goal formulas.

2. If we restrict to using Horn clauses given by the first definition (1), then program clauses are
of the form

∀τ1x1 . . . ∀τ1xm[A1 ∧ . . . ∧An ⊃ A0]

where m,n ≥ 0. Show that the backchaining rule can also be simplified to the following one
rule.

Σ : P −→ A1θ · · · Σ : P −→ Anθ

Σ;P D−→ A

This rule has the proviso that D be a formula of the form above and θ is a substitution such
that for all i = 1, . . . ,m θ maps the variable xi to the Σ-terms ti of type τi, and that A is
equal to A0θ.

3. With this exercise, we show that first-order Horn clauses (using definition 2) is an abstract
logic programming language.

(a) Prove that if n ≥ 0 and Σ : P −→ G1, . . . , Gn has a C-proof, then there is an i such
that 1 ≤ i ≤ n such that Σ : P −→ Gi has a C-proof. (Hence, n > 0.)

(b) Show that programs in fohc are consistent: that is, that it is not the case that both
Σ : P −→ A and Σ : P −→ ¬A have C-proofs.

(c) If Σ : P −→ G has a C-proof then it has an I-proof with no occurrences of the ∀R
and ⊃R inference rules.

(d) If Σ : P −→ G has a C-proof then it has using the inference rules in Figures 4 and 5.

(e) Conclude that the classical theory of fohc is an abstract logic programming language.

4. Let P be a set of Horn clauses and let D be a Horn clause. Show that if Σ : P −→ D has
a C-proof then it has an I-proof.

5. For this exercise, consider only formulas built using only true, ⊃ and ∧. Assume that there
is a formula B that is classically provable but not intuitionistically provable.

(a) Show that B must have order at least 3.

(b) Show that the smallest such formula (counting logical connectives) is Pierce’s formula,
namely ((p ⊃ q) ⊃ p) ⊃ p.
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4 Hereditary Harrop Formulas

4.1 Harrop formulas

In [Har60], Harrop studied a class of formulas that can be defined as follows. Let B be a syntactic
variable for arbitrary first-order formulas and let H be defined by

H ::= A | B ⊃ H | ∀τx H | H1 ∧H2.

An H-formula is often called a Harrop formula. The main theorem regarding these formulas is that
the six reduction rules mentioned in Subsection 3.2 are intuitionistically satisfied when they are
applied to sequents of the form Σ : H −→ B where H is a finite collection of Harrop formulas and
B is an arbitrary Harrop formula. Actually, what is mentioned explicitly in [Har60] correspond to
the OR and INSTAN reductions: the other four reductions are simple to show. If a set of formulas
H satisfy the OR and INSTAN reductions, those formulas are often said to satisfy, respectively, the
disjunctive and existential property.

Harrop formulas do not, however, constitute an abstract logic programming language. Assume
that the Σ : H −→ B has an intuitionistic proof and that B is not atomic. Given the above
property for Harrop formulas, it is the case that if this sequent if probable then the last inference
can be taken to be a right introduction. For example, the sequent Σ : H −→ B1 ⊃ B2 would be
proved from the sequent Σ : H, B1 −→ B2 by ⊃R. Notice, however, that since B1 and B2 can
be arbitrary formulas, the antecedent of this new sequent is not necessarily a collection of Harrop
formulas. As a result, we will not be able to guarantee that such reductions can hold at all sequents
in a proof.

To fix this problem, we only need to arrange things so that whenever a formula, such as B1, is
added to the succedent, it is again a Harrop formulas.

4.2 Three presentations of fohh

The first-order hereditary Harrop formulas (fohh) extend Horn clauses by allowing implications
and universal quantifiers in goals (and, thus, in the body of program clauses). Parallel to the three
presentations of fohc in Section 3.3, there are the following three presentations of goals and program
clauses for fohh. The first presentation is similar to that of definition 1 in Section 3.3.

G ::= A | G ∧G | D ⊃ G | ∀τx.G
D ::= A | G ⊃ A | ∀x.D (4)

Notice now that the definitions of G- and D-formulas are mutually recursive, that a negative
(positive) subformula of a G-formula is a D-formula (G-formula), and that a negative (positive)
subformula of a D-formula is a G-formula (D-formula). A richer formulation is given by the
following definition.

G ::= > | A | G ∧G | G ∨G | ∃x.G | D ⊃ G | ∀x.G
D ::= A | G ⊃ D | D ∧D | ∀x.D (5)

It will be this set of richer D-formulas that we shall consider the proper definition of first-order
hereditary Harrop formulas.

A simple presentation of a class of definite formulas similar to the one above is given by the
definition

D ::= A | D ⊃ D | D ∧D | ∀x.D (6)
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Any first-order formula that does not contain occurrences of disjunction and existential quan-
tification is an example of both a D-formula and G-formula in the sense of definitions 5 and 6. The
formula (p ∨ q) ⊃ (p ∨ q) is neither a D-formula and G-formula in any of the definitions above.

Classical logic does not support a goal-directed search interpretation of logical connectives for
any interesting uses of ⊃ and ∀ in goal formulas. For example, the formula p∨ (p ⊃ q) is a classical
tautology but it is not provable using the search operations given above: p is not provable and q does
not follow from p. Similarly, if the current program P contains the single formula (p a ∧ p b) ⊃ q
then the formula ∃x.(p x ⊃ q) is a classical conclusion but it cannot be found using the search
reductions described above.

The three presentations of fohh given above are not related using intuitionistic equivalence. First
notice that the definite formulas of definition 5 strictly contain the definite formulas of definitions 4
and 6. In particular, the formula

(p ⊃ (q ∨ r)) ⊃ s

is a legal definite clause using Definition 5, but it is not logically equivalent to a formula or con-
junction of formulas using either 4 or 6. While it is the case that the displayed formula above does
imply the conjunction

((p ⊃ q) ⊃ s) ∧ ((p ⊃ r) ⊃ s),

the converse is not true (although the converse is a classical logic entailment). As program clauses,
however, these two formulas can be used interchangeably since they can be used to prove exactly
the same goal formulas.

The existential quantifiers allowed in goals in Definition 5 cannot always be eliminated as was
possible with fohc. In fohc, an existential quantifier in a goal can be given a larger scope until it
can be converted to a universal quantifier surrounding a Horn clause. There are two ways that an
existential quantifier in a goal can be “stuck” within a goal. First, it is possible for it to be to the
right of an implication, as in the goal formula D ⊃ ∃x G. Even if x is not free in D, this formula
is not intuitionistically equivalent to ∃x(D ⊃ G). It is also possible for an existential quantifier to
be inside the scope of a universal quantifier.

For example, consider the program clauses ∀x.((∀y∃z.(q x y z)) ⊃ p x). The existential quantifier
for z cannot be removed by simple logical equivalences of first-order logic. It is possible, however,
to introduce a new predicate constant to obtain a program that proves the same goals (that do
not involve the new predicate constants). In particular, the two clauses ∀x.((∀y.r x y) ⊃ p x) and
∀x∀y∀z.(q x y z ⊃ r x y) can be used instead of the above clause.

4.3 The core of a logic programming language

Given the distinctions we have made between the program clauses and the goal formulas of a given
logic programming language it is interesting to identify that class of formulas that can be in both
classes. The core of a logic programming language is the intersection of its goal formulas and its
program clauses. For example, using the definitions of logic programming based on first-order Horn
clauses given in Section 3.3, the core of fohc is either the set of atomic formulas (using definitions
(1) or (3)) or the set of conjunctions of atomic formulas (using definition (2)).

The core of fohh is, however, much richer. Using either definition (5) or (6), the core is the set
of formulas built from atomic formulas using ∧, ⊃, and ∀: only ∨ and ∃ are excluded. The core of
fohh coincides with the definition of program clauses given by (6). Notice, however, that first-order
Horn clauses defined using either (1) or (3) are contained within the core of fohh.

Formulas in the core of logic programming language can be both proved and used as program
clause. Since the core of fohh contains a rich set of formulas, it will sometimes be possible to use
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fohh to reason about programs directly. In so doing, the cut-elimination theorem can be used where
the cut-formula comes from the core. For example, if we have I-proofs for both Σ : P −→M and
Σ : P,M −→ G, where M is in the core, then the cut-elimination theorem tells us that there
is an I-proof of Σ : P −→ G. Here, cut-elimination tells us that if two computations exists, a
third one exists. This can be a powerful tool for reasoning, especially when M has some interesting
logical structure.

4.4 Proof search with first-order hereditary Harrop formulas

Proof search for fohh can be proved to be complete for the combination of rules taken from Figures 4
and 5. The different from proof search with fohc is that during the search for proofs, both the
signature and antecedent (program) can increase. A universally quantified goal can be seen to add
a new constant (called an eigen-variable) the signature and an implicational goal can be seen to
add clauses to the program.

These features of fohh make possible logical support for modular programs and abstract data-
types. See [Mil89b, Mil89a, Mil90] for examples of such uses of fohh. This observation about
fohh has spawned a lot of research into using various kinds of implications and modal operators to
structure code in logic programs. For a survey of these papers, see [BLM94].

4.5 Multiple conclusion sequents and scope extrusion

A natural notion of scoping occurs in logic programming based on single-conclusion sequents. For
example, the search for a uniform proof of the sequent Σ : P −→ D ⊃ G reduces to the search
for a uniform proof of the sequent Σ : P, D −→ G. If P is considered to be the current program
held by a logic programming interpreter, then D can be seen as a program unit that is added to the
current program during a computation. A notion of modular programming for logic programming
was developed in [Mil89b] based on this simple observation. To enforce that this notion of modular
programming obeys the correct notion of scoping, single conclusion sequent calculus is required.
Consider, for example, searching for a uniform proof of the sequent Σ : P −→ G1 ∨ (D ⊃ G2)
using the usual intuitionistic introduction rules for ∨-R and ⊃-R [Gen69]. This search would lead
to the search for proofs of either the sequent Σ : P −→ G1 or Σ : P, D −→ G2. In particular,
the formula D is only available to help prove the formula G2: its scope does not include G1. This
formula is, however, classically equivalent to (D ⊃ G1) ∨ G2 and D ⊃ (G1 ∨ G2). Thus the scope
of D can move in ways not supported in intuitionistic logic. In particular, p ∨ (p ⊃ q) is not
provable intuitionistically but it is classically. Gentzen’s characterization of the differences between
intuitionistic and classical logics as arising from differences in using single and multiple conclusion
sequents provides an elegant analysis of scope extrusion. Consider the following sequent proof.

Σ : p −→ p, q
initial

Σ : −→ p, p ⊃ q ⊃R

Σ : −→ p ∨ (p ⊃ q) ∨R

The occurrence of p in the left of the initial sequent has as its scope all the formulas on the right:
in the intuitionistic case, there can only be one such formula on the right and, hence, scope cannot
be liberalized in this way.

For reason such as this, to achieve a notion of modular programming with a “proper” discipline
for scoping, we need to limit ourselves to intuitionistic logic. Scope extrusion is, however, a fea-
ture of the π-calculus [MPW92a, MPW92b] and such extrusion has been described using multiple
conclusion sequent calculus in [Mil93].
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Σ′ : P ′ −→ B Σ : P, B −→ C

Σ′ : P ′ −→ C
cut

Σ + x : τ : P −→ B t is a Σ′-term of type τ

Σ′ : P ′ −→ B[t/x]
subst

Figure 6: Cut and subst rules for M. Here, Σ ⊆ Σ′ and P ⊆ P ′.

4.6 A Kripke model semantics

Consider the first-order intuitionistic theory for the connectives true, ∧, ⊃, and ∀τ . We briefly
describe a model theoretic semantics for this logic.

A dependent pair is a pair 〈Σ,P〉 where Σ is a signature and P is a set of Σ-formulas. Define
〈Σ,P〉 � 〈Σ′,P ′〉 whenever Σ ⊆ Σ′ and P ⊆ P ′. A Kripke model , [W, I], is the specification of a
set of worlds W, which is a set of dependent pairs, and a function I, called an interpretation, that
maps pairs in W to sets of atomic formulas. The mapping I must satisfy the two conditions:

1. I(〈Σ,P〉) is a set of atomic Σ-formulas, and

2. for all w,w′ ∈ W such that w � w′, I(w) ⊆ I(w′) (that is, I is order preserving).

Satisfiability (also called forcing) in a Kripke model is defined as follows. Let [W, I] be a Kripke
model, let 〈Σ,P〉 ∈ W, and let B be a Σ-formula. The three place satisfaction relation I, 〈Σ,P〉 ` B
is defined by induction on the structure of B.

• I, 〈Σ,P〉 ` B if B is atomic and B ∈ I(〈Σ,P〉).

• I, 〈Σ,P〉 ` B ∧B′ if I, 〈Σ,P〉 ` B and I, 〈Σ,P〉 ` B′.

• I, 〈Σ,P〉 ` B ⊃ B′ if for every 〈Σ′,P ′〉 ∈ W such that 〈Σ,P〉 � 〈Σ′,P ′〉 and I, 〈Σ′,P ′〉 ` B
then I, 〈Σ′,P ′〉 ` B′.

• I, 〈Σ,P〉 ` ∀τx.B if for every 〈Σ′,P ′〉 ∈ W such that 〈Σ,P〉 � 〈Σ′,P ′〉 and for every Σ′-terms
t of type τ , the relation I, 〈Σ′,P ′〉 ` B[t/x] holds.

The signature of an interpretation I is the largest signature that is contained in all worlds of
the partial order underlying I. If Σ0 is the signature of the interpretation I and B is a Σ0-formula,
then we write I ` B if I, w ` B for all w ∈ W.

Let 〈Σ,P〉 be a dependent pair. The canonical model for 〈Σ,P〉 is defined as the model with
the set of worlds {〈Σ′,P ′〉 | 〈Σ,P〉 � 〈Σ′,P ′〉} and where I is defined so that I(〈Σ′,P ′〉) is the set
of all atomic formulas A so that Σ′;P ′ ` A.

For the purposes of this section, we shall assume that there are two forms of cut rules for this
sequent calculus: one works with the signature of the antecedent (called the subst rule) and one
works with the formulas of the antecedent (called simply the cut rule). Both rules are displayed
in Figure 6. The cut-elimination theorem for this logic is the fact that both of these rules can be
eliminated from proofs.

Theorem 2 Cut-elimination holds for M if and only if the following holds: for every dependent
pair 〈Σ,P〉 and every Σ-formula B, Σ;P ` B if and only if I ` B, where I is the canonical model
for 〈Σ,P〉.
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Proof Assume first that cut-elimination holds forM. We now prove by induction on the structure
of B that Σ;P ` B if and only if I, 〈Σ,P〉 ` B.
Case: B is atomic. The equivalence is trivial.
Case: B is B1 ∧B2. This case is simple and immediate.
Case: B is B1 ⊃ B2. Assume first that Σ;P ` B1 ⊃ B2. By completeness of uniform proofs,
Σ;P ∪ {B1} ` B2. To show I, 〈Σ,P〉 ` B1 ⊃ B2, let 〈Σ′,P ′〉 ∈ W be such that 〈Σ,P〉 � 〈Σ′,P ′〉
and I, 〈Σ′,P ′〉 ` B1. By the inductive hypothesis, Σ′;P ′ ` B1 and by cut-elimination, Σ′;P ′ ` B2.
By induction again, we have I, 〈Σ′,P ′〉 ` B2. Thus, I, 〈Σ,P〉 ` B1 ⊃ B2. For the converse, assume
I, 〈Σ,P〉 ` B1 ⊃ B2. Since Σ;P∪{B1} ` B1, the inductive hypothesis yields I, 〈Σ,P∪{B1}〉 ` B1.
By the definition of satisfaction of implication we must have I, 〈Σ,P ∪ {B1}〉 ` B2. But by the
inductive hypothesis again, Σ;P ∪ {B1} ` B2, and Σ;P ` B1 ⊃ B2.
Case: B is ∀τxB1. Assume first that Σ;P ` ∀τxB1. By completeness of uniform proofs, Σ∪{d};P `
B1[d/x] for any constant d not in Σ. To show I, 〈Σ,P〉 ` ∀τxB1, let 〈Σ′,P ′〉 ∈ W be such that
〈Σ,P〉 � 〈Σ′,P ′〉 and t is a Σ′-term of type τ . By cut-elimination on signatures (the subst rule),
we have Σ′;P ′ ` B1[t/x]. By induction we have I, 〈Σ′,P ′〉 ` B1[t/x]. Thus, I, 〈Σ,P〉 ` ∀τxB1.
For the converse, assume I, 〈Σ,P〉 ` ∀τxB1. Let d be a constant not a member of Σ. Since d is a
Σ∪ {d}-term, I, 〈Σ∪ {d},P〉 ` B1[d/x] by the definition of satisfaction of universal quantification.
But by the inductive hypothesis again, Σ ∪ {d};P ` B1[d/x] and Σ;P ` ∀τxB1.

Now assume the equivalence: for every dependent pair 〈Σ,P〉 and every Σ-formula B, Σ;P ` B
if and only if I ` B, where I is the canonical model for 〈Σ,P〉. We now show that any sequent
that can be proved using occurrences of the cut and subst rules can be proved without such rules.
In particular, we show that if 〈Σ,P〉 � 〈Σ′,P ′〉 then each of the following holds.

1. If Σ′;P ′ ` B and Σ;P, B ` C then Σ′;P ′ ` C.

2. If t is a Σ′-term of type τ and Σ + x : τ ;P ` B then Σ′;P ′ ` B[t/x] (of course, x does not
occur in Σ).

From these facts, any number of occurrences of the cut and subst rules can be eliminated from a
proof containing them.

To prove (1), assume that Σ′;P ′ ` B and Σ;P, B ` C. Thus, Σ;P ` B ⊃ C. By the assumed
equivalence, I, 〈Σ′,P ′〉 ` B and I, 〈Σ,P〉 ` B ⊃ C. By the definition of satisfaction for implication,
I, 〈Σ′,P ′〉 ` C. By the assumed equivalence again, this yields Σ′;P ′ ` C.

To prove (2), assume that t is a Σ′-term of type τ and that Σ + x : τ ;P ` C. Thus, Σ;P `
∀τx.B. By the assumed equivalence, I, 〈Σ,P〉 ` ∀τx.B. By the definition of satisfaction for
universal quantification, we have I, 〈Σ′,P ′〉 ` B[t/x]. By the assumed equivalence again, this
yields Σ′;P ′ ` B[t/x].

Given cut-elimination for intuitionistic logic, this lemma provides an immediate proof of the
following theorem.

Theorem 3 Let 〈Σ,P〉 be a dependent pair and let I be the canonical model for 〈Σ,P〉. For all
Σ-formulas B, Σ;P ` B if and only if I ` B. In particular, for every B ∈ P, I ` B.

This theorem can be sharpened using the following definition of order for types and for formulas.
Next we define the notion of the canonical model at a given order. Such models contain, in a

sense, fewer worlds than the canonical models introduced previously.
A dependent pair 〈Σ,P〉 is of order n if all the types in Σ are of order n or less and all the

formulas in P are of order n or less. Let 〈Σ,P〉 be a dependent pair of order n. The canonical model
of order n for 〈Σ,P〉 is [W, I] where W is the set of all dependent pairs 〈Σ′,P ′〉 of order n such
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that (i) Σ′ extends Σ with constants of order at most n−2, and (ii) P ′ extends P with Σ′-formulas
of order at most n − 2. The mapping I is defined as before, namely, for all 〈Σ′,P ′〉 ∈ W, the set
I(〈Σ′,P ′〉) contains all atomic A so that Σ′;P ′ ` A.

Notice that if 〈Σ,P〉 is of order 1 then Σ is a first-order signature (all constants are of order 0
or 1) and P is a set of Horn clauses. The canonical model for such a dependent pair contains just
one world, namely, the pair 〈Σ,P〉.

Lemma 4 Cut-elimination holds for M if and only if the following holds: Let n ≥ 1, let 〈Σ,P〉
be a dependent pair of order n, let I be the canonical model of order n for 〈Σ,P〉, and let B be a
Σ-formula of order n− 1. Then Σ;P ` B if and only if I ` B.

Proof Assume first that cut-elimination holds forM. We now prove by induction on the structure
of B that Σ;P ` B if and only if I, 〈Σ,P〉 ` B. The forward part of this equivalence is the same
as in the proof of Lemma 2. Thus we only show details of the reverse implication for the two
interesting cases.
Case: B is B1 ⊃ B2. Thus the order of B1 is n − 2 or less. Assume I, 〈Σ,P〉 ` B1 ⊃ B2. Since
Σ;P ∪ {B1} ` B1 and 〈Σ,P ∪ {B1}〉 ∈ W, the inductive hypothesis yields I, 〈Σ,P ∪ {B1}〉 ` B1.
By the definition of satisfaction of implication we must have I, 〈Σ,P ∪ {B1}〉 ` B2. But by the
inductive hypothesis again, Σ;P ∪ {B1} ` B2 and Σ;P ` B1 ⊃ B2.
Case: B is ∀τxB1. Thus the order of τ is n − 2 or less. Assume I, 〈Σ,P〉 ` ∀τxB1. Let d be a
constant not a member of Σ. Since d is a Σ∪{d}-term and since 〈Σ∪{d}〉 is a member of W, then
we have I, 〈Σ ∪ {d},P〉 ` B1[d/x] by the definition of satisfaction of universal quantification. But
by the inductive hypothesis again, we have Σ ∪ {d};P ` B1[d/x] and Σ;P ` ∀τxB1.

The fact that cut-elimination holds follows just as in the proof of Lemma 2, except here we
need to use the equivalence at various different orders.

We shall need the following technical result.

Lemma 5 Let 〈Σ,P〉 be a dependent pair of order n ≥ 1, and let [W, I] be the canonical model of
order n for 〈Σ,P〉. Let 〈Σ′,P ′〉 ∈ W, and let [W ′, I ′] be the canonical model of order n for 〈Σ′,P ′〉.
For all Σ′-formulas B of order n, I, 〈Σ′,P ′〉 ` B if and only if I ′ ` B.

This is proved by simple induction on the structure of B.
The next theorem shows that if 〈Σ,P〉 is a dependent pair of order n then the canonical model

for 〈Σ,P〉 of order n is, in fact, a model for P.

Theorem 6 Let 〈Σ,P〉 be a dependent pair of order n and let [W, I] be the canonical model of
order n for 〈Σ,P〉. If B is of order n or less, then Σ;P ` B implies I ` B.

Proof We prove the following by induction on the structure of B: for every 〈Σ′,P ′〉 ∈ W, if
Σ′;P ′ ` B then I, 〈Σ′,P ′〉 ` B.
Cases: B is atomic or B is conjunctive. These cases are simple.
Case: B is B1 ⊃ B2 where B1 is of order n− 1 or less. Let 〈Σ′,P ′〉 ∈ W and let 〈Σ′′,P ′′〉 ∈ W be
such that 〈Σ′,P ′〉 � 〈Σ′′,P ′′〉 and I, 〈Σ′′,P ′′〉 ` B1. Let [W ′′, I ′′] be the canonical model of order n
for 〈Σ′′,P ′′〉. By Lemma 5, I ′′ ` B1. By Lemma 4, Σ′′;P ′′ ` B1. By cut-elimination, Σ′′;P ′′ ` B2.
By the inductive hypothesis, we have I, 〈Σ′′,P ′′〉 ` B2. By the definition of satisfaction, we have
I, 〈Σ′,P ′〉 ` B1 ⊃ B2.
Case: B is ∀τx.B1 where τ is of order n− 1 or less. Let 〈Σ′,P ′〉 ∈ W and let 〈Σ′′,P ′′〉 ∈ W be such
that 〈Σ′,P ′〉 � 〈Σ′′,P ′′〉 and let t be a Σ′′-term of type τ . By cut-elimination, Σ′′;P ′′ ` B1[t/x].
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By the inductive hypothesis, we have I, 〈Σ′′,P ′′〉 ` B1[t/x]. By the definition of satisfaction, we
have I, 〈Σ′,P ′〉 ` ∀τx.B1.

If Theorem 6 is specialized to just the case for order 1, it provides the familiar “minimal model”
construction for first-order Horn clause theories [AvE82]. Thus, Theorem 6 can be seen as a
generalization of that model construction to arbitrary orders.

Notice that the converse to Theorem 6 is not generally true if the formula B is of order n. For
example, let i be the only primitive type, let p and q be the only predicates, each of sort 〈i〉, let Σ
be the signature {a : i} and let P be the set of Σ-formulas

{p a, ∀ix (p x ⊃ q x)}.

Then, the formula of order 1, ∀ix (q x ⊃ p x) is valid in the canonical model of order 1 for 〈Σ,P〉
but it is not provable from Σ and P.

It is worth making the following simple observation about how canonical models can be consid-
ered minimal. We shall say that a Kripke model N satisfies 〈Σ,P〉 if Σ is contained in the signature
of N and if for every B ∈ P, N ` B.

Theorem 7 Let 〈Σ,P〉 be a dependent pair, and let K be the canonical model for 〈Σ,P〉. If N is
a model of 〈Σ,P〉 then K ` B implies N ` B.

Proof Since K ` B then Σ;P ` B. By the soundness of Kripke models and the fact that N
models 〈Σ,P〉, we have N ` B.
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5 Intuitionistic Linear Logic

If we now move to linear logic, we find that sequents have more structure and more possibilities
to change during the search for proofs. As a result, this logic offers a richer setting for doing logic
programming. Furthermore, since linear logic is a logic “behind” classical and intuitionistic logic,
our work here and the next section will improve on the work in previous sections: we will only be
refining and not discarding the previous results.

Most of the material here is taken from [HM94]. The reader should also refer to that paper for
a more complete presentation. The material in Section 5.6 is new.

5.1 Weaknesses of hereditary Harrop formulas

As we have seen, if the sequents Σ : P −→ G and Σ′ : P ′ −→ G′ have occurrences on the
same path in a proof, with first being closer to the endsequent, then Σ ⊆ Σ′ and P ⊆ P ′. Thus, as
a computation builds a proof from the bottom up, the left-hand sides of sequents do not decrease,
and the formulas in them are available for backchaining on any number of times; they represent
unbounded resources for constructing proofs.

There have been a few papers written that argue that implications in goal formulas provide
an important approach to solving certain scoping issues in various applications. See, for example,
the notion of gap threading in [PM90], theorem proving using natural deduction proof systems in
[FM88], and state encapsulation in object-oriented style programming [HM90]. In each of these
examples, intuitionistic implications in goals were used and they supplied part of the functionality
that was needed. They also illustrated some weakness of intuitionistic logic. In particular, since
contexts grow during the search for proofs, it is not possible to have a formula in a context replaced
or deleted, two operations that were needed in these problems.

Linear logic, with its notion that formulas are resources that can be consumed, seems a natural
logic to consider next. It should allow richer possibilities to model dynamics of computations at
the level of logic.

5.2 Sequent calculus for linear logic

In order to refine hereditary Harrop formulas, we consider the linear logic connectives>,&,1,⊗,−◦, !,
and ∀. These are related to the connectives of classical and intuitionistic logic as follow.

Classical Linear Additive Linear Multiplicative

true > 1
false 0 ⊥
∧ & ⊗
∨ ⊕ .................................................

............
..................................

Here, 1 is the identity for ⊗, true is the identity for &, ⊥ is the identity for
.................................................
............
.................................. , and 0 is the identity

for ⊕. The implication ⊃ also splits into two implications, namely the linear implication −◦ and
the “intuitionistic” implication ⇒. The differences between these are not best described by the
difference between multiplicative and additive. The following equivalences, however, do hold.

(p⊗ q)−◦ r ≡ p−◦ q −◦ r (p& q)⇒ r ≡ p⇒ q ⇒ r.

Notice that until now, we have used the terms “multiplicative” and “additive” to describe two
different styles of inference rules with multiple premises. We have now extended the use of those
terms to the logical connectives that are defined using those style inference rules.
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Σ : ∆ −→ >
>R Σ : ∆ −→ B

Σ : ∆,1 −→ B
1L

Σ : −→ 1
1R

Σ : ∆, Bi −→ C

Σ : ∆, B1 &B2 −→ C
&L (i = 1, 2)

Σ : ∆ −→ B Σ : ∆ −→ C

Σ : ∆ −→ B & C
&R

Σ : ∆, B1, B2 −→ C

Σ : ∆, B1 ⊗B2 −→ C
⊗ L Σ : ∆1 −→ B Σ : ∆2 −→ C

Σ : ∆1,∆2 −→ B ⊗ C
⊗R

Σ : ∆1 −→ B Σ : ∆2, C −→ E

Σ : ∆1,∆2, B −◦ C −→ E
−◦ L Σ : ∆, B −→ C

Σ : ∆ −→ B −◦ C
−◦R

Σ : ∆ −→ C

Σ : ∆, !B −→ C
!W

Σ : ∆, !B, !B −→ C

Σ : ∆, !B −→ C
!C

Σ : ∆, B −→ C

Σ : ∆, !B −→ C
!D

Σ : ! ∆ −→ B

Σ : ! ∆ −→ !B
!R

Σ : ∆, B[t/x] −→ C

Σ : ∆,∀x.B −→ C
∀L Σ : ∆ −→ B[y/x]

Σ : ∆ −→ ∀x.B
∀R,

provided that y is not free in the lower sequent.

Figure 7: The proof system LL for a fragment of linear logic

Σ : B −→ B
identity

Σ : ∆ −→ B Σ : ∆′, B −→ C

Σ : ∆,∆′ −→ C
cut

Figure 8: The initial and cut rules for LL.

The intuitionistic fragment of linear logic, which we consider first in this section, is the result
of removing the

.................................................
............
.................................. connective, and the associated ⊥ (a 0-ary

.................................................
............
.................................. ) and ? (an “infinite-ary”

.................................................
............
.................................. , the

de Morgan dual of !). Proof rules for these connectives are given in Figure 7 and the initial and
cut rules for this proof system are given in Figure 8. Here, the left-hand side of sequents are
multisets of formulas. As a result, the structural rule for exchange need not be explicitly stated.
The structural rules of contraction and weakening are now available for those formulas marked with
!: they are !C (for contraction) and !W (for weakening). The syntactic variable ! ∆ denotes the
multiset {!C | C ∈ ∆}. We write Σ; ∆ `LL B if the sequent Σ : ∆ −→ B has a proof in the
proof system of Figure 7. Because all sequents in Figure 7 are single conclusion sequents, we shall
be working completely within the “intuitionistic” fragment of linear logic.

5.3 Uniform proofs in intuitionistic linear logic

It is easy to see that linear logic, even over just the logical connectives considered here, is not an
abstract logic programming language. For example, the sequents

Σ : a⊗ b −→ b⊗ a,
Σ : ! a −→ ! a⊗!a,
Σ : ! a& b −→ ! a,

Σ : b⊗ (b−◦ ! a) −→ ! a, and
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Σ : 1 −→ 1

are all provable in intuitionistic linear logic but do not have uniform LL-proofs. The problem here
is that 1R, ⊗R and !R do not permute down over all the left-introduction rules.

If we drop 1, ⊗, and !, the resulting logic will, in fact, will be complete for uniform proofs.
Unfortunately, this result is far too weak to be interesting and it does not supply a generalization
of previous logic programming languages that we have seen. In particular, removing the ! means
that there are no “potentially infinite” computation, as one would expect from a programming
language. We can reintroduce the ! by allowing an intuitionistic implications as well as a linear
implication.

In particular, we introduce a new sequent and a new proof system for the connectives >, &,
−◦, ⇒, and ∀τ . The new sequents will be of the form Σ : Γ ; ∆ −→ B where Σ is a signature,
B is a Σ-formula, Γ is a set of Σ-formulas, and ∆ is a multiset of Σ-formulas. Such sequents have
their left-hand context divided into two parts: the unbounded part, Γ, that corresponds to the
left-hand side of intuitionistic sequents, and the bounded part, ∆, which corresponds to left-hand
side of sequents of the purely linear fragment of linear logic (no !’s). Contraction and weakening
are allowed (implicitly) in the unbounded part of the context, but not in the bounded part. As we
show below, the sequent Σ : B1, . . . , Bn ; C1, . . . , Cm −→ B can be mapped to the linear logic
sequent

!B1, . . . , !Bn, C1, . . . , Cm −→ B.

The right introduction rules for the two implications are responsible for placing formulas into
two parts of the left context. The right-introduction rule for linear implication adds its assumption
to the bounded part of a context, and the right-introduction rule for the intuitionistic implication
adds its assumption to the unbounded part of a context. These differences are naturally related to
the fact that the intended meaning of B ⇒ C is (!B)−◦ C.

Consider a sequent in which the bounded formulas are atomic. If the only logical connectives
are −◦ and ⇒ then every formula in the bounded part of the context must be used exactly once:
that is, they must be accounted for in some identity inference rule by matching them with the
same formula on the right of a sequent. Such rigid control of resources is limiting for most uses.
For example, if a data base is held in the bounded part of a context, then querying the data base
about an item makes that item unavailable elsewhere. Also, before a computation on the data base
can be finished, it is necessary to “read” all items in this way. The connectives > and & have the
ability to erase parts of the bounded context (using >) and to duplicate bounded contexts (using
&). Thus, non-destructively reading a value from a data base can be achieved by first making a
copy of the data base from which we destructively read one item and delete the rest: the original
data base is untouched.

Figure 9 contains proof rules for the logical connectives >, &, −◦,⇒, and ∀. It is this collection
of connectives that determines the logic programming language called Lolli. Notice the form of
the left-introduction rules for the two implications: for −◦, the bounded context is treated in a
multiplicative fashion whereas for the ⇒, the bounded context must be empty in the premise used
to proved the antecedent of the implication. Notice that the inference rules in figure 9 are “focused”,
in the sense that left-introduction rules only work on formulas that label sequent arrow.

Proposition 8 The sequent Σ : Γ ; ∆ −→ B, where Σ is a signature, B is a Σ-formula, Γ is a
set of Σ-formulas, and ∆ is a multiset of Σ-formulas, has an L-proof (Figure 9) if and only if the
sequent !B1, . . . , !Bn, C1, . . . , Cm −→ B has a proof in linear logic.

For a proof of this Proposition, see [HM94].
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Σ : P ; ∆ −→ >
Σ : P ; ∆ −→ B1 Σ : P ; ∆ −→ B2

Σ : P ; ∆ −→ B1 &B2

Σ : P, B1 ; ∆ −→ B2

Σ : P ; ∆ −→ B1 ⇒ B2

Σ : P ; ∆, B1 −→ B2

Σ : P ; ∆ −→ B1 −◦B2

c : τ,Σ : P ; ∆ −→ B[c/x]

Σ : P ; ∆ −→ ∀τx.B

Σ : P, D ; ∆
D−→ A

Σ : P, D ; ∆ −→ A

Σ : P ; ∆
D−→ A

Σ : P ; ∆, D −→ A Σ : P ; · A−→ A

Σ : P ; ∆
D1−→ A

Σ : P ; ∆
D1∧D2−→ A

Σ : P ; ∆
D2−→ A

Σ : P ; ∆
D1∧D2−→ A

Σ : P ; · −→ G Σ : P ; ∆
D−→ A

Σ : P ; ∆
G⇒D−→ A

Σ : P ; ∆1 −→ G Σ : P ; ∆2
D−→ A

Σ : P ; ∆1,∆2
G−◦D−→ A

Σ : P ; ∆
D[t/x]−→ A t is a Σ-term of type τ

Σ : P ; ∆
∀τx.D−→ A

Figure 9: The proof system L. The rule for universal quantification has the proviso that c is not
declared in Σ.

5.4 An embedding of hereditary Harrop formulas

Girard has presented a mapping of intuitionistic logic into linear logic that preserves not only
provability but also proofs [Gir87]. On the fragment of intuitionistic logic containing true, ∧, ⊃,
and ∀, the translation is given by:

(A)0 = A, where A is atomic,
(true)0 = >,

(B1 ∧B2)
0 = (B1)

0 & (B2)
0,

(B1 ⊃ B2)
0 = !(B1)

0 −◦ (B2)
0,

(∀x.B)0 = ∀x.(B)0.

That is, true and ∧ are mapped to their additive versions, ⊃ is mapped to ⇒, and universal
quantification is left unchanged. If we are willing to focus attention on only cut-free proofs, it is
possible to define a “tighter” translation based on polarities. Consider the following two translation
functions.

(A)+ = (A)− = A, where A is atomic
(true)+ = 1
(true)− = >

(B1 ∧B2)
+ = (B1)

+ ⊗ (B2)
+
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Σ : Γ −→ 1
1R

Σ : Γ −→ B

Σ : Γ −→ !B
!R

Σ : Γ −→ ∆, Bi
Σ : Γ −→ ∆, B1 ⊕B2

⊕R (i = 1, 2)

Σ : Γ −→ ∆, B[x/t]

Σ : Γ −→ ∆, ∃x.B
∃R Σ : Γ −→ ∆1, B1 Σ : Γ −→ ∆2, B2

Σ : Γ −→ ∆1,∆2, B1 ⊗B2
⊗R

Figure 10: Additional rules for positive occurrences of 1,⊗,⊕, !, and ∃.

(B1 ∧B2)
− = (B1)

− & (B2)
−

(B1 ⊃ B2)
+ = (B1)

− ⇒ (B2)
+

(B1 ⊃ B2)
− = (B1)

+ −◦ (B2)
−

(∀x.B)+ = ∀x.(B)+

(∀x.B)− = ∀x.(B)−

The following proposition is proved by structural induction on cut-free proofs.

Proposition 9 Let B be a formula and Γ a set of formulas, all over the logical constants true,∧,⊃,
and ∀. Define Γ− = {C− | C ∈ Γ}. Then, Σ : Γ −→ B has an I-proof if and only if the sequent
Σ : Γ− ; · −→ B+ has a cut-free proof using the rules from Figure 9..

Applying this encoding to the Horn clause A1 ∧ . . . ∧ An ⊃ A0 yields the linear logic formula
A1 ⊗ . . .⊗An −◦A0.

5.5 Allowing right rules for some additional connectives

Since we are only interested in searching for cut-free proofs , it is possible to permit different sets
of formulas to occur on the left and right of the sequent arrow. There are at least two ways to
do this. We can expand the logic by allowing some occurrences of additional logical constants (as
was done with ∨ and ∃ in definition (5) for fohh), or we can use higher-order quantification with
respect to the given logic to “define” the additional constants.

Using the first approach, consider the following definition of two classes of formulas over the
logical constants >,&,1,⊗,⊕,−◦,⇒, !, ∀, and ∃.

D := > | A | D1 &D2 | G−◦D | G⇒ D | ∀x.D
G := > | A | G1 &G2 | D −◦G | D ⇒ G | ∀x.G | G1 ⊕G2 | 1 | G1 ⊗G2 | !G | ∃x.G

Here, D-formulas can appear in either part of the context on the left of a sequent while G-formulas,
called goal formulas, can appear on the right of sequents. Given this extension, it is necessary to
add to the proof system L right-introduction rules for 1,⊕,⊗, ! and ∃, which are found in Figure 10.

The second approach does not extend the logic by adding these logical constants directly but
instead axiomatizes their right-introduction rules using higher-order quantification. The following
clauses are appropriate definitions for these constants:

∀P∀Q[P −◦ (P ⊕Q)]
∀P∀Q[Q−◦ (P ⊕Q)]
∀B∀T [(B T )−◦ (∃B)]

> ⇒ 1
∀P∀Q[P −◦Q−◦ (P ⊗Q)]

∀P [P ⇒ !P ]
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If we assume that there are no negative occurrences of any of these constants within a proof (except
in these defining formulas) then this amounts to the same restriction as in the first approach.

To describe, then, the full mapping of fohh into linear logic using the polarity mapping, we need
to add the following two clauses to the mapping of given in Subsection 5.4.

(B1 ∨B2)
+ = (B1)

+ ⊕ (B2)
+

(∃x.B)+ = ∃x.(B)+

Notice that our presentation of Lolli has been reversed to that used for fohh. In Section 4, we
presented collections of definite clauses and goal formulas based on their polarities and allowed ∨
and ∃ in goal formulas but not in definite clauses. We then noticed that the core of fohh was freely
generated by true, ∧, ⊃, and ∀. In this section, we presented Lolli first as being freely generated
from >, &, −◦, ⇒, and ∀ (that is, we worked first with the core of Lolli), and then observed that
we could add occurrences of 1, ⊗, ⊕, !, and ∃ to goal formulas.

5.6 An example

In this section we present a simple example of a logic specification. In order to present it, we use
the syntax of λProlog. In particular, the combination pi x\ denotes universal quantification of the
variable x (its type will be determined from context), -: denotes linear implication, :- denotes the
converse of linear implication, , denotes tensor, and nil and :: denote the two constructors for
lists.

A specification of a computation should do more than provide an approach to performing a
computation: it should also provide a basis for reasoning about the computation specified.

Consider specifying the binary relation reverse that relates two lists if they are reverses of each
other. First, consider how to compute the reverse of a list. Make a place for two piles on a table.
Make one pile the list you wish to reverse and make the other pile empty. After this initialization,
repeatedly move the top element from the first pile to the top of the second pile. When the first
pile is empty, the second pile is the reverse of the original list. For example, consider the following
two pairs of lists.

(a :: b :: c :: nil) nil

(b :: c :: nil) (a :: nil)

(c :: nil) (b :: a :: nil)

nil (c :: b :: a :: nil)

In more general terms: if we wish to reverse the list L to get K, first pick a binary relation rv to
denote the pairing of lists above (this is predicate will not denote the reverse); then start with the
atom (rv L nil), do a series of backchaining over the clause

rv (X :: P) Q :- rv P (X :: Q).

to get to the formula (rv nil K). If this can be done, then K is the result of reversing K. The entire
specification of reverse can be written as the following single formula.

reverse L K :-

pi rv\((pi X\ pi P\ pi Q\ rv (X :: P) Q :- rv P (X :: Q)) =>

rv nil K -: rv L nil)
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Notice that the clause used for backchaining is to the left of an intuitionistic implication (so it can
be used any number of times) while the formula rv nil K is to the left of a linear implication (can
be used once). Since the base case of this iteration is used exactly once, this seems like a sensible
choice.

Now consider proving that reverse is symmetric. That is, we wish to prove that if (reverse L

K) can be proved from the above clause, then so can (reverse K L). The informal proof of this is
simple: in the table above, flip the rows and the columns. What is left is a correct computation
of reversing again, but the start and final lists have exchanged roles. This informal proof is easily
made formal but exploiting the meta-theory of linear logic. A formal proof proceeds as follows.
Assume that (reverse L K) can be proved. There is only one way to prove this (backchaining on
the above definition of reverse). Thus the formula

pi rv\ (

(pi X\ pi P\ pi Q\ rv (X :: P) Q :- rv P (X :: Q) ) =>

rv nil K -: rv L nil)

is provable. Since we are in logic, we can instantiate this quantifier with any binary predicate
expression and the result is still provable. So choose to instantiate it with the lambda-expression
x\y\ (not (rv y x)). (The infix backslash denotes lambda-abstraction: in logical symbols, this
substitution can be written as λxλy(rv y x)⊥.) The resulting formula

(pi X\pi P\pi Q\ not (rv Q (X :: P)) :- not (rv (X :: Q) P)) =>

not (rv K nil) -: not (rv nil L)

can be simplified by using the contrapositive rule for negation and linear implication, and hence
yields

(pi X\ pi P\ pi Q\ rv (X :: Q) P:- rv Q (X :: P) ) =>

rv nil L -: rv K nil

If we now universally generalize on rv we again have proved the body of the reverse clause, but
this time with L and K switched.

5.7 Additional readings

This section is based on the paper [HM94], which derives from the paper [HM91] and the PhD thesis
of Joshua Hodas [Hod94]. See [Hod92] for a treatment of gap in natural language parsing inside
Lolli. In [HM94], a lazy way of splitting contexts for the multiplicative rules for ⊗-R and −◦-L was
developed, using the so-called “input-output model of resource consumption.” This approach works
well when only multiplicative connectives are used, but in the presence of additive connectives, it
can be improved. In [Hod94], the treatment of the additive truth > is addressed and in [CHP96]
the additive & is also addressed.

It is possible to design a dependent typed calculus around the principles of Lolli. See, for
example, [CP96].

Harland and Pym have also approached the design of linear logic programming languages using
the notion of goal-directed search [HP91, HP92].

A survey of various approaches to using linear logic in logic programming can be found in
[Mil95].
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5.8 Exercises

1. Below is the specification of two predicates. The greaterEq is the same of in the problem
above. Assume that the predicate (greaterEq N M) is provable (consuming no resources) if
and only if N is greater than or equal to M.

mx N.

mx N o- a M, greaterEq N M, mx N.

sr nil.

sr (N::L) o- a N, (mx N & sr L).

Let P be the set containing these four clauses. Let A be the multiset of atomic formulas
{a(i1), . . . , a(in)}, where {i1, . . . , in} (n ≥ 0) is a multiset of positive integers. Describe when
it is the case that the linear sequent

Σ : P;A −→ (sr L),

is provable. Explain your reason.
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6 Forum

The following brief section serves mostly to introduce the design goals of Forum and a proof system
for it. More extensive information can be found in [Mil96].

6.1 Designing Forum

Below are several examples of abstract logic programming languages.

• Horn clauses, the logical foundation of Prolog, are formulas of the form ∀x̄(G⇒ A) where G
may contain occurrences of & and >. In such formulas, occurrences of⇒ and ∀ are restricted
so that they do not occur to the left of the implication ⇒. As a result of this restriction,
uniform proofs involving Horn clauses do not contain right-introduction rules for ⇒ and ∀.

• Hereditary Harrop formulas [MNPS91], the foundation of λProlog, result from removing the
restriction on ⇒ and ∀ in Horn clauses: that is, such formulas can be built freely from >, &,
⇒, and ∀. (Some presentations of hereditary Harrop formulas and Horn clauses allow certain
occurrences of disjunctions (⊕) and existential quantifiers.)

• The logic at the foundation of Lolli is the result of adding −◦ to the connectives present in
hereditary Harrop formulas: that is, Lolli programs are freely built from >, &, −◦, ⇒, and
∀. (As with hereditary Harrop formulas, it is possible to also allow certain occurrences of ⊕
and ∃, as well as the tensor ⊗ and the modal !.)

Each of these logics include the other and allow for increasing richer forms of abstraction. As
we have seen, Horn clauses are flat and do not hide anything. Hereditary Harrop formulas allow
for notions of modular programming and abstract datatypes. Moving to Lolli allows also the
encapsulation (hiding) of state. For all this gain in expressiveness, these languages do not offer any
primitives for the specification of concurrence, that is, there are no primitive for communication or
synchronization.

J-M Andreoli and R Pareschi introduced the first extension of Horn clauses using linear logic
[AP90]. The formulas of their language, called LO, were are of the form ∀x̄(G −◦ A1

.................................................
............
.................................. · · · .................................................

............
.................................. An)

where n ≥ 1 and G may contain occurrences of &, >,
.................................................
............
.................................. , ⊥. Similar to the Horn clause case,

occurrences of −◦ and ∀ are restricted so that they do not occur to the left of the implication −◦.
As we shall later see, the multiple

.................................................
............
.................................. ’s in the head of LO clauses allow for specifications to address

some issues of concurrency. Given the restriction on universal quantification and on implications,
LO is a flat language like Horn clauses that does not admit abstractions. Of course, it would be
natural to desire both elements of abstraction and concurrency within a specification language.
Linear logic should contain a super-language that would allow these different features to be placed
in a common language.

The reason that Lolli does not include LO is the presence of
.................................................
............
.................................. and ⊥ in the latter. This

suggests the following definition for Forum, the intended super-language: allow formulas to be
freely generated from >, &, ⊥,

.................................................
............
.................................. , −◦, ⇒, and ∀. For various reasons, it is also desirable to add the

modal ? directly to this list of connectives. Clearly, Forum contains the formulas in all the above
logic programming languages.

Before proceeding, it is important to generalize the definition of uniform proofs to sequents
that contain multiple conclusions (an essential aspect of sequents that contain

.................................................
............
.................................. .) The following

generalization of the definition of uniform proof was introduced in [Mil93] where it was shown that
a certain logic specification inspired by the π-calculus [MPW92a] can be seen as a logic program.
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Definition 1 A cut-free sequent proof Ξ is uniform if for every subproof Ξ′ of Ξ and for every
non-atomic formula occurrence B in the right-hand side of the end-sequent of Ξ′, there is a proof
Ξ′′ that is equal to Ξ′ up to a permutation of inference rules and is such that the last inference rule
in Ξ′′ introduces the top-level logical connective of B.

Definition 2 A logic with a sequent calculus proof system is an abstract logic programming lan-
guage if restricting to uniform proofs does not lose completeness.

As it turns out, Forum is a presentation of all of linear logic since it contains a complete set
of connectives. A proof system for all of linear logic can be found in Figures 11 and 12. The
connectives missing from Forum are directly definable using the following logical equivalences.

B⊥ ≡ B −◦ ⊥ 0 ≡ >−◦ ⊥ 1 ≡ ⊥−◦ ⊥
!B ≡ (B ⇒ ⊥)−◦ ⊥ B ⊕ C ≡ (B⊥ & C⊥)⊥ B ⊗ C ≡ (B⊥

.................................................
............
.................................. C⊥)⊥

∃x.B ≡ (∀x.B⊥)⊥

The collection of connectives in Forum are not minimal. For example, ? and
.................................................
............
.................................. , can be defined in

terms of the remaining connectives.

?B ≡ (B −◦ ⊥)⇒ ⊥ and B
.................................................
............
.................................. C ≡ (B −◦ ⊥)−◦ C

Thus, Forum can be seen as Lolli with just the addition of ⊥.
Since the logics underlying Prolog, λProlog, Lolli, LO, and Forum differ in what logical connec-

tives are allowed, richer languages modularly contain weaker languages. This is a direct result of
the cut-elimination theorem for linear logic. Thus a Forum program that does not happen to use
⊥,

.................................................
............
.................................. , −◦, and ? will, in fact, have the same uniform proofs as are described for λProlog. Similarly,

a program containing just a few occurrences of these connectives can be understood as a λProlog
program that takes a few exceptional steps, but otherwise behaves as a λProlog program.

The other logic programming languages we have mentioned can, of course, capture the expres-
siveness of full logic by introducing non-logical constants and programs to describe their meaning.
Felty in [Fel93] uses a meta-logical presentation to specify full logic at the object-level. Andreoli
[And92] provides a “compilation-like” translation of linear logic into LinLog (of which LO is a sub-
set). Forum has a more immediate relationship to all of linear logic since no non-logical symbols
need to be used to provide complete coverage of linear logic. Of course, to achieve this complete
coverage, many of the logical connectives of linear logic are encoded using negations (more pre-
cisely, using “implies bottom”), a fact that causes certain operational problems, as we shall see in
Section 6.3.

As a presentation of linear logic, Forum may appear rather strange since it uses neither the cut
rule (uniform proofs are cut-free) nor the dualities that follow from uses of negation (since negation
is not a primitive). The execution of a Forum program (in the logic programming sense of the
search for a proof) makes no use of cut or of the basic dualities. These aspects of linear logic,
however, are important in meta-level arguments about specifications written in Forum.

The choice of these primitives for this presentation of linear logic makes it possible to keep close
to the usual computational significance of backchaining, and the presence of the two implications,
−◦ and ⇒, makes the specification of object-level inference rules natural. For example, the proof
figure

(A)
...
B C

D
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∆ −→ >,Γ
>R ∆ −→ Γ

∆,1 −→ Γ
1L

−→ 1
1R

∆,0 −→ Γ
0L

∆ −→ Γ

∆ −→ ⊥,Γ
⊥R

⊥ −→
⊥L

∆, Bi −→ Γ

∆, B1 &B2 −→ Γ
&L (i = 1, 2)

∆ −→ B,Γ ∆ −→ C,Γ

∆ −→ B & C,Γ
&R

∆ −→ Bi,Γ

∆ −→ B1 ⊕B2,Γ
⊕R (i = 1, 2)

∆, B −→ Γ ∆, C −→ Γ

∆, B ⊕ C −→ Γ
⊕ L

∆, B1, B2 −→ Γ

∆, B1 ⊗B2 −→ Γ
⊗ L ∆1 −→ B,Γ1 ∆2 −→ C,Γ2

∆1,∆2 −→ B ⊗ C,Γ1,Γ2
⊗R

∆1, B −→ Γ1 ∆2, C −→ Γ2

∆1,∆2, B
.................................................
............
.................................. C −→ Γ1,Γ2

.................................................
............
.................................. L

∆ −→ B
.................................................
............
.................................. C,Γ

∆ −→ B,C,Γ
.................................................
............
.................................. R

∆ −→ Γ

∆, !B −→ Γ
!W

∆, !B, !B −→ Γ

∆, !B −→ Γ
!C

∆, B −→ Γ

∆, !B −→ Γ
!D

∆ −→ Γ

∆ −→ ?B,Γ
?W

∆ −→ ?B, ?B,Γ

∆ −→ ?B,Γ
?C

∆ −→ B,Γ

∆ −→ ?B,Γ
?D

! ∆ −→ B, ? Γ

! ∆ −→ !B, ? Γ
!R

! ∆, B −→ ? Γ

! ∆, ?B −→ ? Γ
?L

∆, B[t/x] −→ Γ

∆, ∀x.B −→ Γ
∀L ∆ −→ B[y/x],Γ

∆ −→ ∀x.B,Γ
∀R

∆ −→ B[t/x],Γ

∆ −→ ∃x.BΓ
∃R ∆, B[y/x] −→ Γ

∆,∃x.B −→ Γ
∃L,

provided that y is not free in the lower sequent or ∀R and ∃L.

∆ −→ B,Γ

∆, B⊥ −→ Γ
notL

∆, B −→ Γ

∆ −→ B⊥,Γ
notR,

Figure 11: The introduction rules for linear logic.

B −→ B
identity

∆ −→ B,Γ ∆′, B −→ Γ′

∆,∆′ −→ Γ,Γ′
cut

Figure 12: The initial and cut rules for linear logic.
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can be written at the meta-level using implications such as (A ⇒ B) −◦ C −◦D. Since we intend
to use Forum as a specification language for type checking rules, structured operational semantics,
and proof systems, the presence of implications as primitives is desirable.

The logical equivalences

1−◦H ≡ H
1⇒ H ≡ H

(B ⊗ C)−◦H ≡ B −◦ C −◦H
B⊥ −◦H ≡ B

.................................................
............
.................................. H

B⊥ ⇒ H ≡ ?B
.................................................
............
.................................. H

!B −◦H ≡ B ⇒ H
!B ⇒ H ≡ B ⇒ H

(B ⊕ C)−◦H ≡ (B −◦H) & (C −◦H)
(∃x.B(x))−◦H ≡ ∀x.(B(x)−◦H)

can be used to remove certain occurrences of ⊗, ⊕, ∃, !, and 1 when they occur to the left of
implications. (In the last equivalence above, assume that x is not free in H.) These equivalences
are more direct than those that employ the equivalences mentioned earlier that use negation via
the “implies bottom” construction. As a result, we shall allow their use in Forum specifications
and employ these equivalences to remove them when necessary.

Formulas of the form

∀ȳ(G1 ↪→ · · · ↪→ Gm ↪→ (A1
.................................................
............
.................................. · · · ............................................................................................... Ap)), (m, p ≥ 0)

where G1, . . . Gm are arbitrary Forum formulas and A1, . . . Am are atomic formulas, are called
clauses. Here, occurrences of ↪→ are either occurrences of −◦ or ⇒. An empty

.................................................
............
.................................. (p = 0) is written

as ⊥. The formula A1
.................................................
............
.................................. · · · ............................................................................................... Ap is the head of such a clause. If p = 0 then we say that this clause

has an empty head. The formulas of LinLog [And92] are essentially clauses in which p > 0 and the
formula G1, . . . , Gm do not contain −◦ and ⇒ and where ? has only atomic scope.

6.2 Proof system for Forum

If we add to the Lolli language in the preceding section the connective
.................................................
............
.................................. , its identity ⊥, and the

modal ?, then we arrive at the Forum logic programming language. The proof systems for Forum
is given in Figure 13 and is called F .

Theorem 10 The sequent Σ: Ψ; ∆ −→ Γ; Υ has an F proof if and only if ! Ψ,∆ ` Γ, ? Υ.

Proof The forward direction is soundness and can be proved by simple induction on the structure
of F proofs. The converse is completeness and this is a harder result. One approach is to extended
the similar result for Lolli, but this time accounting for the

.................................................
............
.................................. , ⊥, and ? connectives. However,

Andreoli has a result in [And92] that he calls focused proofs and he shows that focused proofs are
complete for linear logic. It is possible to translated between focused proofs and the proofs in F .
Completeness for F then follows from completeness for focused proofs.

6.3 Multiset rewriting as backchaining

To illustrate how multiset rewriting is specified in Forum, consider the clause

a
.................................................
............
.................................. b ◦− c .................................................

............
.................................. d

.................................................
............
.................................. e.
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Σ: Ψ; ∆ −→ A,>,Γ; Υ
>R

Σ: Ψ; ∆ −→ A, B,Γ; Υ Σ: Ψ; ∆ −→ A, C,Γ; Υ

Σ: Ψ; ∆ −→ A, B & C,Γ; Υ
& R

Σ: Ψ; ∆ −→ A,Γ; Υ

Σ: Ψ; ∆ −→ A,⊥,Γ; Υ
⊥R

Σ: Ψ; ∆ −→ A, B,C,Γ; Υ

Σ: Ψ; ∆ −→ A, B .................................................
............
.................................. C,Γ; Υ

.................................................
............
.................................. R

Σ: Ψ;B,∆ −→ A, C,Γ; Υ

Σ: Ψ; ∆ −→ A, B −◦ C,Γ; Υ
−◦ R

Σ:B,Ψ; ∆ −→ A, C,Γ; Υ

Σ: Ψ; ∆ −→ A, B ⇒ C,Γ; Υ
⇒ R

y: τ,Σ: Ψ; ∆ −→ A, B[y/x],Γ; Υ

Σ: Ψ; ∆ −→ A,∀τx.B,Γ; Υ
∀R Σ: Ψ; ∆ −→ A,Γ;B,Υ

Σ: Ψ; ∆ −→ A, ?B,Γ; Υ
? R

Σ:B,Ψ; ∆
B−→ A; Υ

Σ:B,Ψ; ∆ −→ A; Υ
decide !

Σ: Ψ; ∆ −→ A, B;B,Υ

Σ: Ψ; ∆ −→ A;B,Υ
decide ?

Σ: Ψ; ∆
B−→ A; Υ

Σ: Ψ;B,∆ −→ A; Υ
decide

Σ: Ψ; · A−→ A; Υ
initial

Σ: Ψ; · A−→ ·;A,Υ
initial ?

Σ: Ψ; · ⊥−→ ·; Υ
⊥L

Σ: Ψ; ∆
Bi−→ A; Υ

Σ: Ψ; ∆
B1&B2−→ A; Υ

& Li
Σ: Ψ;B −→ ·; Υ

Σ: Ψ; · ?B−→ ·; Υ
? L

Σ: Ψ; ∆1
B−→ A1; Υ Σ: Ψ; ∆2

C−→ A2; Υ

Σ: Ψ; ∆1,∆2
B

.................................................
............
.................................. C−→ A1 +A2; Υ

.................................................
............
.................................. L

Σ: Ψ; ∆
B[t/x]−→ A; Υ

Σ: Ψ; ∆
∀τx.B−→ A; Υ

∀L

Σ: Ψ; ∆1 −→ A1, B; Υ Σ: Ψ; ∆2
C−→ A2; Υ

Σ: Ψ; ∆1,∆2
B−◦C−→ A1 +A2; Υ

−◦ L

Σ: Ψ; · −→ B; Υ Σ: Ψ; ∆
C−→ A; Υ

Σ: Ψ; ∆
B⇒C−→ A; Υ

⇒ L

Figure 13: The F proof system. The rule ∀R has the proviso that y is not declared in the signature
Σ, and the rule ∀L has the proviso that t is a Σ-term of type τ . In &Li, i = 1 or i = 2.
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When presenting examples of Forum code we often use (as in this example) ◦− and ⇐ to be the
converses of −◦ and ⇒ since they provide a more natural operational reading of clauses (similar to
the use of :- in Prolog). Here,

.................................................
............
.................................. binds tighter than ◦− and ⇐. Consider the sequent Σ: Ψ; ∆ −→

a, b,Γ; Υ where the above clause is a member of Ψ. A proof for this sequent can then look like the
following.

Σ: Ψ; ∆ −→ c, d, e,Γ; Υ

Σ: Ψ; ∆ −→ c, d
.................................................
............
.................................. e,Γ; Υ

Σ: Ψ; ∆ −→ c
.................................................
............
.................................. d

.................................................
............
.................................. e,Γ; Υ

Σ: Ψ; · a−→ a; Υ Σ: Ψ; · b−→ b; Υ

Σ: Ψ; · a
.................................................
............
.................................. b−→ a, b; Υ

Σ: Ψ; ∆
c
.................................................
............
.................................. d
.................................................
............
.................................. e−◦a

.................................................
............
.................................. b−→ a, b,Γ; Υ

Σ: Ψ; ∆ −→ a, b,Γ; Υ

We can interpret this fragment of a proof as a reduction of the multiset a, b,Γ to the multiset
c, d, e,Γ by backchaining on the clause displayed above.

Of course, a clause may have multiple, top-level implications. In this case, the surrounding
context must be manipulated properly to prove the sub-goals that arise in backchaining. Consider
a clause of the form

G1 −◦G2 ⇒ G3 −◦G4 ⇒ A1
.................................................
............
.................................. A2

labeling the sequent arrow in the sequent Σ: Ψ; ∆ −→ A1, A2,A; Υ. An attempt to prove this
sequent would then lead to attempt to prove the four sequents

Σ: Ψ; ∆1 −→ G1,A1; Υ Σ: Ψ; · −→ G2; Υ

Σ: Ψ; ∆2 −→ G3,A2; Υ Σ: Ψ; · −→ G4; Υ

where ∆ is the multiset union of ∆1 and ∆2, and A is A1 + A2. In other words, those subgoals
immediately to the left of an⇒ are attempted with empty bounded contexts: the bounded contexts,
here ∆ and A, are divided up and used in attempts to prove those goals immediately to the left of
−◦.

6.4 Further readings

The material in this section is taken largely from the paper [Mil96]. In his PhD thesis [Chi95],
Chirimar presents specifications of the operation semantics of a programming language similar to
Standard ML. He is able to give a modular specification of call-by-value evaluation, of exceptions,
of references, and of continuations. He was also able to proved various identities concerning object-
level programs by using the meta-theory of linear logic. He also presented a specification of the
pipe-line processing of the DLX RISC processor of Hennessy and Patterson [HP90] and used linear
logic to help prove its equivalence to its sequential, machine code specification.

Proof search using linear logic and/or Forum has been used to represent object-oriented pro-
gramming languages [DM95, BDLM96]. Topics in concurrency have often been addresses as well:
see, for example, [AP90, AP91], [BG96, Gug95, Gug96, Gug94], [KY93], and [Mil93]. See also the
survey paper [Mil95].

6.5 Exercises

1. The LO logic programming language is based on clauses of the following form.

G ::= ⊥ | > | A | G1 &G2 | G1
.................................................
............
.................................. G2
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D ::= G−◦ (A1
.................................................
............
.................................. . . .

.................................................
............
.................................. An) | ∀ixD,

where n ≥ 1 and, of course, A is a syntactic variable ranging over first-order atomic formulas.
(Assume that the only domain type is i.) The following proof system is specialized for just LO:
sequents in the proof system are such that formulas on the left of the arrow are D-formulas
and formulas on the right are G-formulas.

P −→ Γ,>
P −→ Γ
P −→ Γ,⊥

P −→ Γ, G1, G2

P −→ Γ, G1
.................................................
............
.................................. G2

P −→ Γ, G1 P −→ Γ, G2

P −→ Γ, G1 &G2

P −→ Γ, G

P −→ Γ, A1, . . . , An

provided a formula in P has the ground
instance G−◦ (A1

.................................................
............
.................................. . . .

.................................................
............
.................................. An).

Let G be a goal formula, let P be a finite set of D-formulas, and let Σ be the signature
containing the non-logical constants in G and P. Show that the sequent P −→ G has a proof
in the system above if and only if Σ : P;−→ G has a proof in the linear logic proof system
used in lectures.

2. This problem concerns computing the maximum of a multiset of integers. Assume that you
have the predicates (greaterEq N M) and (lesser N M) that are provable (consuming no
resources) if and only if N is greater than or equal to M and (respectively) N is less than M.

(a) Write a logic program P1 for the predicate maxA such that the sequent

Σ : P1;A(n1), . . . , A(nm) −→ maxA(n)

is provable if and only if n is the maximum of {n1, . . . , nm}. (Here, as in the next
problem, if m = 0 then set the maximum to be 0.)

(b) Write a logic program P2 for the predicate maxA such that the sequent

Σ : P2;−→ maxA(n), A(n1), . . . , A(nm)

is provable if and only if n is the maximum of {n1, . . . , nm}.

3. Below are specifications of two binary predicates.

pred1 L K <= all load\all unload\all item\

(all X\all M\ load (X::M) o- (item X -o load M)) =>

(all X\all M\ unload (X::M) o- item X, unload M) =>

(load nil o- unload K) -o

unload nil -o

load L.

pred2 L K <= all load\all unload\all item\

(all X\all M\ load (X::M) o- item X | load M) =>

(all X\all M\ unload (X::M) | item X o- unload M ) =>

(load nil o- unload K) -o

unload nil -o

load L.

43



Here, we use all token\ to denote universal quantification over token and use | to denote
“par” (multiplicative disjunction). The comma is used to denote “tensor” (multiplicative
conjunction). The implication signs -o and => associate to the right.

(a) It turns out that both of these clauses specify the same relation. What is that relation?
Informally justify your answer.

(b) Formally prove that each of these specifications compute the same relation by a logical
transformation of one to the other using a technique similar to that used in lectures to
show that reverse is symmetric.
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