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Abstract. The theory of cut-free sequent proofs has been used to motivate
and justify the design of a number of logic programming languages. Two such
languages, lambda Prolog and its linear logic refinement, Lolli, provide for
various forms of abstraction (modules, abstract data types, and higher-order
programming) but lack primitives for concurrency. The logic programming
language LO (Linear Objects) provides some primitives for concurrency but
lacks abstraction mechanisms. A logic programming presentation of all of
higher-order linear logic, named Forum, modularly extends these other lan-
guages and also allows for abstractions and concurrency in specifications. To
illustrate the expressive strengths of Forum, we specify in it a sequent calcu-
lus proof system and the operational semantics of a programming language
that incorporates side-effects.

Keywords. Logic programming, linear logic, higher-order abstract syntax,
meta-logic, lambda Prolog, Forum.

1 Logic as a specification language

This section contains some non-technical observations about the roles that
logic can play in the specification of computational systems. In the follow-
ing sections of this chapter, a more technical presentation of a specification
language based on higher-order linear logic is presented.

1.1 Two approaches to specifications

In the specification of computational systems, logics are generally used in one
of two approaches. In one approach, computations are mathematical struc-
tures, containing such items as nodes, transitions, and state, and logic is used
in an external sense to make statements about those structures. That is, com-
putations are used as models for logical expressions. Intensional operators,
such as the modals of temporal and dynamic logics or the triples of Hoare
logic, are often employed to express propositions about the change in state.
For example, next-time modal operators are used to describe the possible
evolution of state; expressions in the Hennessey-Milner are evaluated against
the transitions made by a process; and Hoare logic uses formulas to express



pre- and post-conditions on a computation’s state. We shall refer to this ap-
proach to using logic as computation-as-model. In such approaches, the fact
that some identifier  has value 5 is represented as, say a pair (z,5), within
some larger mathematical structure, and logic is used to express propositions
about such pairs: for example, x > 3 Az < 10.

A second approach uses logical deduction to model computation. In this
approach the fact that the identifier x has value 5 can be encoded as the
proposition “z has value 5.” Changes in state can then be modeled by changes
in propositions within a derivation. Of course, changing state may require
that a proposition no longer holds while a proposition that did not hold (such
as “z has value 6”) may hold in a new state. It is a common observation that
such changes are naturally supported by linear logic and that deduction (in
particular, backchaining in the sense of logic programming) can encode the
evolution of a computation. As a result, it is possible to see the state of a
computation as a logical formula and transitions between states as steps in
the construction of a proof. We shall refer to this approach to using logic as
computation-as-deduction.

There are many ways to contrast these two approaches to specification
using logic. For example, consider their different approaches to the “frame
problem.” Assume that we are given a computation state described as a
model, say M7, in which it is encoded that the identifier z is bound to value 5.
If we want to increment the value of x, we may need to characterize all those
models M in which z has value 6 and nothing else has changed. Specifying
the precise formal meaning of this last clause is difficult computationally and
conceptually. On the other hand, when derivations are used to represent
computations directly, the frame problem is not solved but simply avoided:
for example, backchaining over the clause

x has valuen o— x has valuen + 1

might simply change the representation of state in the required fashion.

In the first approach to specification, there is a great deal of richness
available for modeling computation, since, in principle, such disciplines as set
theory, category theory, functional analysis, algebras, etc., can be employed.
This approach has had, of course, a great deal of success within the theory
of computation.

In contrast, the second approach seems thin and feeble: the syntax of
logical formulas and proofs contains only the most simple structures for rep-
resenting computational state. What this approach lacks in expressiveness,
however, is ameliorated by the fact that it is more intimately connected
to computation. Deductions, for example, seldom make reference to infin-
ity (something commonly done in the other approach) and steps within the
construction of proofs are generally simple and effective computations. Re-
cent developments in proof theory and logic programming have also provided



us with logics that are surprisingly flexible and rich in their expressiveness.
In particular, linear logic [10] provides flexible ways to model state, state
transitions, and some simple concurrency primitives, and higher-order quan-
tification over typed A-terms provides for flexible notions of abstraction and
encodings of object-level languages. Also, since specifications are written us-
ing logical formulas, specifications can be subjected to rich forms of analysis
and transformations.

To design logics (or presentations of logics) for use in the computation-
as-deduction setting, it has proved useful to provide a direct and natural
operational interpretation of logical connective. To this end, the formaliza-
tion of goal-directed search using uniform proofs [31, 34] associates a fixed,
“search semantics” to logical connectives. When restricting to uniform proofs
does not cause a loss of completeness, logical connectives can be interpreted
as fixed search primitives. In this way, specifier can write declarative speci-
fications that map directly to descriptions of computations. This analysis of
goal-directed proof search has lead to the design of the logic programming
languages AProlog, Lolli, LO, and Forum (see Section 3). Some simple exam-
ples with using these languages for specifications can be found in [2, 18, 31].
The recent thesis [5] provides two modest-sized Forum specifications: one
being the operational semantics of a functional programming language con-
taining references, exceptions, and continuation passing, and the other being
a specification of a pipe-lined, RISC processor.

Observation 1. Logic can be used to specify computation by en-
coding states and transitions directly using formulas and proof.
This use of logic fits naturally in a logic programming setting
where backchaining can denote state transition. Both linear logic
and higher-order quantification can add greatly to the expressive-
ness of this paradigm.

1.2 An example

The following specification of reversing a list and the proof of its symmetry
illustrates how the expressiveness of higher-order linear logic can provide for
natural specifications and convenient forms of reasoning.

reverse L K :- pi rv\(
pi X\(pi M\(pi N\(rv (X::M) N :- rv M (X::N)))) =>
rv nil K -: rv L nil).

Here we use a variant of AProlog syntax: in particular, lists are constructed
from the infix :: and nil; pi X\ denotes universal quantification of the
variable X; => denotes intuitionistic implication; and, -: and :- denote linear
implication and its converse. This one example combines some elements of
both linear logic and higher-order quantification.



To illustrate this specification, consider proving the query
?- reverse (a::b::c::nil) Q.

Backchaining on the definition of reverse above yields a goal universally quan-
tified by pi rv\. Proving such a goal can be done by instantiating that
quantifier with a new constant, say rev, and proving the result, namely, the
goal

pi X\(pi M\(pi N\(rev (X::M) N :- rev M (X::N)))) =>
rev nil Q -: rev (a::b::c::nil) nil).

Thus, an attempt will be made to prove the goal (rev (a::b::c::nil) nil)
from the two clauses

pi X\(pi M\(pi N\(rev (X::M) N :- rev M (X::N)))).
rev nil Q.

(Note that the variable Q in the last clause is free and not implicitly univer-
sally quantified.) Given the use of intuitionistic and linear implications, the
first of these clauses can be used any number of times while the second must
be used once (natural characterizations of inductive and initial cases for this
example). Backchaining now leads to the following progression of goals:

rev (a::b::c::nil) nil.
rev (b::c::nil) (a::nil).
rev (c::nil) (b::a::nil).
rev nil (c::b::a::nil).

and the last goal will be proved by backchaining against the initial clause
and binding Q with (c::b::a::nil).

It is clear from this specification of reverse that it is a symmetric relation:
the informal proof simply notes that if the table of rev goals above is flipped
horizontally and vertically, the result is the core of a computation of the
symmetric version of reverse. Given the expressiveness of this logic, the
formal proof of this fact directly incorporates this main idea.

Proposition. Let 1 and k be two lists and let P be a collection of clauses
in which the only clause that contains an occurrence of reverse in its head
is the one displayed above. If the goal (reverse 1 k) is provable from P
then the goal (reverse k 1) is provable from P.

Proof. Assume that the goal (reverse 1 k) is provable from P. Given
the restriction on occurrences of reverse in P, this goal is provable if and
only if it is proved by backchaining with the above clause for reverse. Thus,
the goal



pi rv\(
pi X\(pi M\(pi N\(rv (X::M) N :- rv M (X::N)))) =>
rv nil k -: rv 1 nil)

is provable from P. Since this universally quantified formula is provable, any
instance of it is provable. Let rev be a new constant not free in P of the
same type as the variable rv. The formula that results from instantiating
this quantified goal with the A-term x\y\(not (rev y x)) (where \ is the
infix symbol for A-abstraction and not is the logical negation, often written
in linear logic using the superscript L). The resulting formula,

pi X\(pi M\ (pi N\(
not (rev N (X::M)) :- not (rev (X::N) M)))) =>
not (rev k nil) -: not (rev nil 1),

is thus provable from P. This formula is logically equivalent to the following
formula (linear implications and their contrapositives are equivalent in linear
logic).

pi X\(pi M\(pi N\(rev (X::N) M :- rev N (X::M))))
=> rev nil 1 -: rev k nil

Since this code is provable and since the constant rev is not free in P, we can
universally generalize over it; that is, the following formula is also provable.

pi rev\(
pi X\(pi M\(pi N\(rev (X::N) M :- rev N (X::M)))) =>
rev nil 1 -: rev k nil)

From this goal and the definition of reverse (and a-conversion) we can prove
(reverse k 1). Hence, reverse is symmetric. |

This proof should be considered elementary since it involves only simple
linear logic identities and facts. Notice that there is no direct use of induction.
The two symmetries mentioned above in the informal proof are captured in
the higher-order substitution x\y\(not (rev y x)): the switching of the
order of bound variables captures the vertical flip and linear logic negation
(via contrapositives) captures the the horizontal flip.

1.3 Meta-programming and meta-logic

An exciting area of specification is that of specifying the meaning and be-
havior of programs and programming languages. In such cases, the code of
a programming language must be represented and manipulated, and it is
valuable to introduce the terms meta-language to denote the specification
language and object-language to denote the language being specified.



Given the existence of two languages, it is natural to investigate the rela-
tionship that they may have to one another. That is, how can the meaning
of object-language expressions be related to the meaning of meta-level ex-
pressions. One of the major accomplishments in mathematical logic in the
first part of this century was achieved by K. Godel by probing this kind of
reflection, in this case, encoding meta-level formulas and proofs at the the
object-level [12].

Although much of the work on meta-level programming in logic program-
ming has also been focused on reflection, this focus is rather narrow and limit-
ing: there are many other ways to judge the success of a meta-programming
language apart from its ability to handle reflection. While a given meta-
programming language might not be successful at providing novel encodings
of itself, it might provide valuable and flexible encodings of other program-
ming languages. For example, the 7-calculus provides a revealing encoding of
evaluation in the A-calculus [35], evaluation in object-oriented programming
[50], and interpretation of Prolog programs [23]. Even the semantic theory of
the m-calculus can be fruitfully exploited to probe the semantics of encoded
object-languages [47]. While it has been useful as a meta-language, it does
not seem that the m-calculus would yield an interesting encoding of itself.

Similarly, AProlog has been successful in providing powerful and flexible
specifications of functional programming languages [13, 41] and natural de-
duction proof systems [8]. Forum has similarly been used to specify sequent
calculi and various features of programming languages [5, 31]. It is not clear,
however, that AProlog or Forum would be particularly good for representing
their own operational semantics.

Observation 2. A meta-programming language does not need
to capture its own semantics to be useful. More importantly,
it should be able to capture the semantics of a large variety of
languages and the resulting encoding should be direct enough
that the semantics of the meta-language can provide semantically
meaningful information about the encoded object-language.

A particularly important aspect of meta-programming is the choice of
encodings for object-level expressions. Godel used natural numbers and the
prime factorization theorem to encode syntactic values: an encoding that
does not yield a transparent nor declarative approach to object-level syntax.
Because variables in logic programming range over expressions, representing
object-level syntax can be a particularly simple, at least for certain expres-
sions of the object language. For example, the meaning of a type in logic
programming, particularly types as they are used in AProlog, is a set of ex-
pressions of a given type. In contrast, types in functional programming (say,
in SML) generally denote sets of values. While the distinction between ex-
pressions and values can be cumbersome at times in logic programming (2 +



3 is different than 5), it can be useful in meta-programming. This is particu-
larly true when dealing with expressions of functional type. For example, the
type int -> int in functional programming denotes functions from integers
to integers: checking equality between two such functions is not possible, in
general. In logic programming, particularly in AProlog, this same type con-
tains the code of expressions (not functions) of that type: thus it is possible
to represent the syntax of higher-order operations in the meta-programming
language and meaningfully compare and compute on these codes. More gen-
erally, meta-level types are most naturally used to represent object-level syn-
tactic categories. When using such an encoding of object-level languages,
meta-level unification and meta-level variables can be used naturally to probe
the structure of object-level syntax.

Observation 3. Since types and variables in logic programming
range over expressions, the problem of naming object-level ex-
pressions is often easy to achieve and the resulting specifications
are natural and declarative.

1.4 Higher-order abstract syntax

In the last observation, we used the phrase “often easy to achieve.” In fact, if
object-level expressions contain bound variables, it is a common observation
that representing such variables using only first-order expressions is prob-
lematic since notions of bound variable names, equality up to a-conversion,
substitution, etc., are not addressed naturally by the structure of first-order
terms. From a logic programming point-of-view this is particularly embar-
rassing since all of these notions are part of the meta-theory of quantification
logic: since these issues exist in logic generally, it seems natural to expect a
logical treatment of them for object-languages that are encoded into logic.
Fortunately, the notion of higher-order abstract syntaz is capable of declara-
tively dealing with these aspects of object-level syntax.

Higher-order abstract syntax involves two concepts. First, A-terms and
their equational theory should be used uniformly to represent syntax con-
taining bound variables. Already in [6], Church was doing this to encode
the universal and existential quantifiers and the definite description opera-
tor. Following this approach, instantiation of quantifiers, for example, can
be specified using S-reduction.

The second concept behind higher-order abstract syntax is that operations
for composing and decomposing syntax must respect at least a-conversion
of terms. This appears to have first been done by Huet and Lang in [19]:
they discussed the advantages of representing object-level syntax using sim-
ply typed A-terms and manipulating such terms using matching modulo the
equational rules for A-conversion. Their approach, however, was rather weak



since it only used matching (not unification more generally). That restric-
tions made it impossible to express all but the simplest operations on syntax.
Their approach was extended by Miller and Nadathur in [33] by moving to
a logic programming setting that contained Bn-unification of simply typed
A-terms. In that paper the central ideas and advantages behind higher-order
abstract syntax are discussed. In the context of theorem proving, Paulson
also independently proposed similar ideas [39].

In [43] Pfenning and Elliot extended the observations in [33] by produc-
ing examples where the meta-language that incorporated A-abstractions con-
tained not just simple types but also product types. In that paper they coined
the expression “higher-order abstract syntax.” At about this time, Harper,
Honsell, and Plotkin in [15] proposed representing logics in a dependent typed
A-calculus. While they did not deal with the computational treatment of syn-
tax directly, that treatment was addressed later by considering the unification
of dependent typed A-expressions by Elliott [7] and Pym [45].

The treatment of higher-order abstract syntax in the above mentioned
papers had a couple of unfortunate aspects. First, those treatments involved
unification with respect to the full Sn-theory of the A-calculus, and this gen-
eral theory is computational expensive. In [19], only second-order matching
was used, an operation that is NP-complete; later papers used full, unde-
cidable unification. Second, various different type systems were used with
higher-order abstract syntax, namely simple types, product types, and de-
pendent types. However, if abstract syntax is essentially about a treatment of
bound variables in syntax, it should have a presentation that is independent
from typing.

The introduction of Ly in [29] provided solutions to both of these prob-
lems. First, L) provides a setting where the unification of A-terms is decidable
and has most general unifiers: it was shown by Qian [46] that Ly-unification
can be done in linear time and space (as with first-order unification). Nipkow
showed that the exponential unification algorithm presented in [29] can be
effectively used within theorem provers [38]. Second, it was also shown in
[29] that Ly-unification can be described for untyped A-terms: that is, typing
may impose additional constraints on unification but Ly-unification can be
defined without types. Thus, it is possible then to define Ly-like unification
for various typed calculi [42].

Observation 4. Ly appears to be one of the weakest settings in
which higher-order abstract syntax can be supported. The main
features of Ly can be merged with various logical systems (say,
AProlog and Forum), with various type systems (say, simple types
and dependent types) [41], and with equational reasoning systems
[37, 44].

While existing implementations of AProlog, Isabelle, Elf, and NuPRL all



make use of results about Ly, there is currently no direct implementation of
L. It should be a small and flexible meta-logic specification language.

2 Logic programming and linear logic

The previous section described some of the advantages of using a rich and
expressive logic as the foundation of a programing language. In the next
several sections, we consider how to shape higher-order linear logic into a
logic programming language and discuss some of the advantages that are
derived from using such a logic for specifications.

In [34] a proof theoretic foundation for logic programming was proposed
in which logic programs are collections of formulas used to specify the mean-
ing of non-logical constants and computation is identified with goal-directed
search for proofs. Using the sequent calculus, this can be formalized by
having the sequent ¥ ; A — G denote the state of an idealized logic pro-
gramming interpreter, where the current set of non-logical constants (the
signature) is ¥, the current logic program is the set of formulas A, and the
formula to be established, called the query or goal, is G. (We assume that
all the non-logical constants in G and in the formulas of A are contained in
3.) A goal-directed or uniform proof is then a cut-free proof in which every
occurrence of a sequent whose right-hand side is non-atomic is the conclusion
of a right-introduction rule. The bottom-up search for uniform proofs is goal-
directed to the extent that if the goal has a logical connective as its head,
that occurrence of that connective must be introduced: the left-hand side of
a sequent is only considered when the goal is atomic. A logic programming
language is then a logical system for which uniform proofs are complete. The
logics underlying Prolog, AProlog, and Lolli [18] satisfy such a completeness
result.

The description of logic programming above is based on single-conclusion
sequents: that is, on the right of the sequent arrow in ¥; A — G is a
single formula. This leaves open the question of how to define logic program-
ming in the more general setting where sequents may have multiple formulas
on the right-hand side [9]. When extending this notion of goal-directed search
to multiple-conclusion sequents, the following problem is encountered: if the
right-hand side of a sequent contains two or more non-atomic formulas, how
should the logical connectives at the head of those formulas be introduced?
There seems to be two choices. One choice simply requires that one of the
possible introductions be done [14]. This choice has the disadvantage that
there might be interdependencies between right-introduction rules: thus, the
meaning of the logical connectives in the goal would not be reflected directly
and simply into the structure of a proof, a fact that complicates the oper-
ational semantics of the logic as a programming language. A second choice



requires that all possible introductions on the right can be done simultane-
ously. Although the sequent calculus cannot deal directly with simultaneous
rule application, reference to permutabilities of inference rules [20] can in-
directly address simultaneity. That is, we can require that if two or more
right-introduction rules can be used to derive a given sequent, then all possi-
ble orders of applying those right-introduction rules can, in fact, be done and
the resulting proofs are all equal modulo permutations of introduction rules.
This approach, which makes the operational interpretation of specifications
simple and natural, is used in this paper.

We employ the logical connectives of Girard [10] (typeset as in that paper)
and the quantification and term structures of Church’s Simple Theory of
Types [6]. A signature ¥ is a finite set of pairs, written ¢ : 7, where ¢ is a
token and 7 is a simple type (over some fixed set of base types). We assume
that a given token is declared at most one type in a given signature. A
closed, simply typed A-term t is a X-term if all the non-logical constants in
t are declared types in 3. The base type o is used to denote formulas, and
the various logical constants are given types over o. For example, the binary
logical connectives have the type o — 0 — o and the quantifiers V, and 3,
have the type (1 — 0) — o, for any type 7. Expressions of the form V, \z.B
and 3 z.B will be written more simply as V,x.B and 3,x.B, or as Vz.B
and Jz.B when the type 7 is either unimportant or can be inferred from
context. A Y-term B of type o is also called a 3-formula. In addition to the
usual connectives present in linear logic, we also add the infix symbol = to
denote intuitionistic implication; that is, B = C' is equivalent to ! B —o C.
The expression B = C abbreviates the formula (B —o C) & (C — B): if
this formula is provable in linear logic, we say that B and C are logically
equivalent.

In the next section, the design of Forum is motivated by considering how
to modularly extend certain logic programming languages that have been
designed following proof theoretic considerations. In Section 4, Forum is
shown to be a logic programming language using the multiple conclusion
generalization of uniform proofs. The operational semantics of Forum is
described in Section 5 so that the examples in the rest of the paper can
be understood from a programming point-of-view as well as the declarative
point-of-view. Sequent calculus proof systems for some object-level logics
are specified in Section 6, and various imperative features of a object-level
programming language are specified and analyzed in Section 7.

Although Forum extends some existing logic programming languages based
on linear logic, there have been other linear logic programming languages
proposed that it does not extend or otherwise relate directly. In particu-
lar, the language ACL by Kobayashi and Yonezawa [21, 22] captures simple
notions of asynchronous communication by identifying the send and read
primitives with two complementary linear logic connectives. Also, Lincoln



and Saraswat have developed a linear logic version of concurrent constraint
programming and used linear logic connectives to extend previous languages
in this paradigm [24, 48].

3 Designing Forum

The following generalization of the definition of uniform proof was introduced
in [30] where it was shown that a certain logic specification inspired by the
m-calculus [36] can be seen as a logic program.

Definition 1 A cut-free sequent proof Z is uniform if for every subproof =’
of Z and for every non-atomic formula occurrence B in the right-hand side
of the end-sequent of Z', there is a proof 2" that is equal to Z' up to a
permutation of inference rules and is such that the last inference rule in Z"

introduces the top-level logical connective of B.

Definition 2 A logic with a sequent calculus proof system is an abstract
logic programming language if restricting to uniform proofs does not lose
completeness.

Below are several examples of abstract logic programming languages.

e Horn clauses, the logical foundation of Prolog, are formulas of the form
VZ(G = A) where G may contain occurrences of & and T. (We shall
use T as a syntactic variable ranging over a list of variables and A as
a syntactic variables ranging over atomic formulas.) In such formulas,
occurrences of = and V are restricted so that they do not occur to the
left of the implication =. As a result of this restriction, uniform proofs
involving Horn clauses do not contain right-introduction rules for =
and V.

e Hereditary Harrop formulas [34], the foundation of AProlog, result from
removing the restriction on = and V in Horn clauses: that is, such for-
mulas can be built freely from T, &, =, and V. Some presentations of
hereditary Harrop formulas and Horn clauses allow certain occurrences
of disjunctions (@) and existential quantifiers [34]: since such occur-
rences do not add much to the expressiveness of these languages (as we
shall see at the end of this section), they are not considered directly
here.

e The logic at the foundation of Lolli is the result of adding —o to the
connectives present in hereditary Harrop formulas: that is, Lolli pro-
grams are freely built from T, &, —o, =, and V. As with hereditary
Harrop formulas, it is possible to also allow certain occurrences of @
and 3, as well as the tensor ® and the modal !.



e The formulas used in LO are of the form VZ(G - A; B --- B A,) where
n > 1 and G may contain occurrences of &, T, %, L. Similar to the
Horn clause case, occurrences of —o and V are restricted so that they
do not occur to the left of the implication —o.

The reason that Lolli does not include LO is the presence of ® and L in the
latter. This suggests the following definition for Forum, the intended super-
language: allow formulas to be freely generated from T, &, L, B, —o, =,
and V. For various reasons, it is also desirable to add the modal ? directly to
this list of connectives. Clearly, Forum contains the formulas in all the above
logic programming languages.

Since the logics underlying Prolog, AProlog, Lolli, LO, and Forum differ
in what logical connectives are allowed, richer languages modularly contain
weaker languages. This is a direct result of the cut-elimination theorem for
linear logic. Thus a Forum program that does not happen to use L, %, —o,
and 7 will, in fact, have the same uniform proofs as are described for AProlog.
Similarly, a program containing just a few occurrences of these connectives
can be understood as a AProlog program that takes a few exceptional steps,
but otherwise behaves as a AProlog program.

Forum is a presentation of all of linear logic since it contains a complete
set of connectives. The connectives missing from Forum are directly definable
using the following logical equivalences.

Bt=B—ol 0=T-ol 1=1-—ol
'B=(B=1)-ol BeC=(B*&CYH*+ BeC=(B+%CH*
3x.B = (Vo.B+)*

The collection of connectives in Forum are not minimal. For example, ? and
B, can be defined in terms of the remaining connectives.

?B=(B—ol)=1 and BRC=(B-ol)—oC

The other logic programming languages we have mentioned can, of course,
capture the expressiveness of full logic by introducing non-logical constants
and programs to describe their meaning. Felty in [8] uses a meta-logical
presentation to specify full logic at the object-level. Andreoli [1] provides
a “compilation-like” translation of linear logic into LinLog (of which LO is
a subset). Forum has a more immediate relationship to all of linear logic
since no non-logical symbols need to be used to provide complete coverage of
linear logic. Of course, to achieve this complete coverage, many of the logical
connectives of linear logic are encoded using negations (more precisely, using
“implies bottom”), a fact that causes certain operational problems, as we
shall see in Section 5.

As a presentation of linear logic, Forum may appear rather strange since
it uses neither the cut rule (uniform proofs are cut-free) nor the dualities that



follow from uses of negation (since negation is not a primitive). The execution
of a Forum program (in the logic programming sense of the search for a proof)
makes no use of cut or of the basic dualities. These aspects of linear logic,
however, are important in meta-level arguments about specifications written
in Forum. In Sections 6 and 7 we show some examples of how linear logic’s
negation and cut-elimination theorem can be used to reason about Forum
specifications.

The choice of these primitives for this presentation of linear logic makes it
possible to keep close to the usual computational significance of backchaining,
and the presence of the two implications, —o and =, makes the specification
of object-level inference rules natural. For example, the proof figure

(4)

B C
D
Can be written at the meta-level using implications such as (A = B)—oC'—oD.
Since we intend to use Forum as a specification language for type checking
rules, structured operational semantics, and proof systems, the presence of

implications as primitives is desirable.
The logical equivalences

1-oH = H
1=H = H
(BeC)—oH = B—-oC-—oH
Bt oH = B®H
Bt=H = ?BRH
'!B—-oH = B=H
!B=H = B=H
(BeC)—oH (B—oH)&(C —-H)

(3z.B(x)) o H Va.(B(z) — H)

can be used to remove certain occurrences of ®, @, 3, !, and 1 when they
occur to the left of implications. (In the last equivalence above, assume that =
is not free in H.) These equivalences are more direct than those that employ
the equivalences mentioned earlier that use negation via the “implies bottom”
construction. As a result, we shall allow their use in Forum specifications and
employ these equivalences to remove them when necessary.

Formulas of the form

Vi(Gr = - = G = (A1 B+ BA)), (m,p>0)

where G1,...G,, are arbitrary Forum formulas and Ai,...A,, are atomic
formulas, are called clauses. Here, occurrences of < are either occurrences



of —o or =. An empty % (p = 0) is written as L. The formula A; %--- B A,
is the head of such a clause. If p = 0 then we say that this clause has an
empty head. The formulas of LinLog [1] are essentially clauses in which p > 0
and the formula G,...,G,, do not contain —o and = and where 7 has only
atomic scope.

4 Proof Search

In this section we consider the abstract character of cut-free proofs over the
connectives of Forum. Let £; be the set of all formulas over the logical
connectives |, B T, &, —o, =, 7, and V. If C is a set or multiset of formulas,
the notation !C denotes the corresponding set or multiset that results from
placing ! on each of the formula occurrences in C: the notation ?C is defined
similarly.

Let F be the sequent proof system given in Figure 1. In this proof system,
sequents have the form

YA — ;YT and S0 A 2T

where X is a signature, A is a multiset of formulas, I" is a list of formulas, ¥
and T are sets of formulas, and B is a formula. All of these formulas are from
L1 and are also X-formulas. (The introduction of signatures into sequents
is not strictly necessary but is desirable when this proof system is used for
logic programming specifications [28].) The intended meanings of these two
sequents in linear logic are

IU,A —T,?7T and !U,A,B—T,77,

respectively. In the proof system of Figure 1, the only right rules are those
for sequents of the form ¥: ¥; A — T Y. In fact, the only formula in T’
that can be introduced is the left-most, non-atomic formula in I'. This style
of selection is specified by using the syntactic variable A to denote a list of
atomic formulas. Thus, the right-hand side of a sequent matches A, B& C,T'
if it contains a formula that is a top-level & for which at most atomic formulas
can occur to its left. Both A and I" may be empty. Left rules are applied

only to the formula B that labels the sequent arrow in :W; A N A; Y.
The notation A; + A matches a list A if A; and Ay are lists that can be
interleaved to yield A: that is, the order of members in A; and As is as in
A, and (ignoring the order of elements) A denotes the multiset set union of
the multisets represented by A; and As.

As in Church’s Simple Theory of Types, we assume the usual rules of «,
B3, and n-conversion and we identify terms up to a-conversion. A term is
A-normal if it contains no 8 and no 7 redexes. All terms are A-convertible to



a term in A-normal form, and such a term is unique up to a-conversion. All
formulas in sequents are in A-normal form: in particular, the notation B[t/z],
used in VL and VR, denotes the A-normal form of the S-redex (Az.B)t.

We use the turnstile symbol as the mathematics-level judgment that a
sequent is provable: that is, A - I means that the two-sided sequent A — T
has a linear logic proof. The sequents of F are similar to those used in the
LU proof system of Girard [11] except that we have followed the tradition
of [1, 17] in writing the “classical” context (here, ¥ and T) on the outside
of the sequent and the “linear” context (here, A and I') nearest the sequent
arrow: in LU these conventions are reversed.

Given the intended interpretation of sequents in JF, the following sound-
ness theorem can be proved by simple induction on the structure of F proofs.

Theorem 1 (Soundness) If the sequent X: ;A — T, Y has an F proof

then ' U A+ T,?7Y. If the sequent X: W; A B, A; Y has an F proof then
WA BFT,?T.

Completeness of the F proof system is a more difficult matter, largely
because proofs can be built only in a greatly constrained fashion. In sequent
proof systems generally, left and right introduction rules can be interleaved,
where as, in F, occurrences of introduction rules are constrained so that
(reading from the bottom up) right rules are used entirely until the linear part
of the right-hand side (T') is decomposed to only atoms, and it is only when
the right-hand side is a list of atoms that left introduction rules are applied.
Completeness of F can be proved by showing that any proof in linear logic
can be converted to a proof in F by permuting enough inference rules. Since
there are many opportunities for such permutations, such a completeness
proof has many cases. Fortunately, Andreoli has provided a nice packaging
of the permutation aspects of linear logic within a single proof system [1].
The F proof system is simply a variation of the proof system he provided.

Let L5 be the set of formulas all of whose logical connectives are from the
list L, %, T, &, 7, V (those used in £; minus the two implications) along with
the duals of these connectives, namely, 1, ®, 0, @, !, and 3. Negations of
atomic formulas are also allowed, and we write BL, for non-atomic formula
B, to denote the formula that results from giving negations atomic scope
using the de Morgan dualities of linear logic. A formula is asynchronous if
it has a top-level logical connective that is either 1, &, T, &, 7, or V, and is
synchronous if it has a top-level logical connective that is either 1, ®, 0, &,
!, and 3. Figure 2 contains the J proof system. Andreoli showed in [1] that
this proof system is complete for linear logic. Although he proved this only
for the first-order fragment of linear logic, it lifts to the higher-order case we
are considering given Girard’s proof of cut-elimination for full, higher-order
linear logic [10].
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Figure 1: The F proof system. The rule VR has the proviso that y is not
declared in the signature 3, and the rule VL has the proviso that ¢ is a 3-term
of type 7. In &L;, i =1 or i = 2.
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Figure 2: The J proof system. The rule [V] has the proviso that y is not
declared in ¥, and the rule [3] has the proviso that ¢ is a X-term of type 7.
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The following theorem shows that the F and J proof systems are similar,
and in this way, the completeness for F is established.

Theorem 2 (Completeness) Let X be a signature, A be a multiset of L1
Y-formulas, T be a list of L1 X-formulas, and ¥ and Y be sets of L1 X-
formulas. If VU, AFT,77 then the sequent X:¥; A — T'; T has a proof in
F.

See [27] for the proof. The completeness of F immediately establishes
Forum as an abstract logic programming language.

Notice that the form of the 7L rule is different from the other left intro-
duction rules in that none of the sequents in its premise contain an arrow
labeled with a formula. Thus, using this rule causes the “focus” of proof con-
struction, which for left rules is directed by the subformulas of the formula
labeling the sequent arrow, to be lost. If we were to replace that rule with
the rule

B
E.\IJ,-7—>~,T o1/
E:\I/;~£>-;T

that keeps the “focus”, then the resulting proof system is not complete. In
particular, the linear logic theorems ?a—o?a and ? a —o ?((a —o0 b) —ob) would
not be provable.

5 Operational reading of programs

We shall not discuss the many issues involved with building an interpreter
or theorem prover for Forum. Certainly, work done on the implementations
of languages such as AProlog, Lolli, and LO would all be applicable here.
For now, we attempt to give the reader an understanding of what the high-
level operational behavior of proof search is like using Forum specifications.
Clearly, that semantics is an extension of these other logic programming
languages, so we shall focus on those features that are novel to Forum and
which are needed for the examples in the following sections.

First we comment on how the impermutabilities of some inference rules
of linear logic are treated in Forum. In particular, an analogy exists between
the embedding of all of linear logic into Forum and the embedding of classical
logic into intuitionistic logic via a double negation translation. In classical
logic, contraction and weakening can be used on both the left and right of
the sequent arrow: in intuitionistic logic, they can only be used on the left.
The familiar double negation translation of classical logic into intuitionistic
logic makes it possible for the formula B++ on the right to be moved to
the left as B*, where contractions and weakening can be applied to it, and
then moved back to the right as B. In this way, classical reasoning can be



regained indirectly. Similarly, in linear logic when there are, for example,
non-permutable right-rules, one of the logical connectives involved can be
rewritten so that the non-permutability is transferred to one between a left
rule above a right rule. For example, the bottom-up construction of a proof
of the sequent — a ® b,a’t % bt must first introduce the 2 prior to the
®: the context splitting required by ® must be delayed until after the % is
introduced. This sequent, written using the connectives of Forum, is —
(at Bbt) —o L,at Bbt. In this case, —o and B can be introduced in any
order, giving rise to the sequent a* b+ — a*,bt. Introducing the % now
causes the context to be split, but this occurs after the right-introduction of
B. Thus, the encoding of some of the linear logic connectives into the set used
by Forum essentially amounts to moving any “offending” non-permutabilities
to where they are allowed.

We shall use the term backchaining to refer to an application of either
the decide or the decide! inference rule followed by a series of applcations
of left-introduction rules. This notion of backchaining generalizes the usual
notion found in the logic programming literature.

Sequents in linear logic and F contain multisets as (part of) their right-
hand and left-hand sides. If we focus on the right-hand side, then the gener-
alization of backchaining contained in the F proof system can be used to do
multiset rewriting. As is well known, multiset rewriting is a natural setting
for the specification of some aspects of concurrent computation. Given that
multiset rewriting is only one aspect of the behavior of linear logic, such con-
current specifications are greatly enriched by the rest of higher-order linear
logic. In particular, Forum allows for the integration of some concurrency
primitives and various abstractions mechanisms in one declarative setting
(see Section 7 for such an example specification).

To illustrate how multiset rewriting is specified in Forum, consider the
clause

aBbo—cBdRe.

When presenting examples of Forum code we often use (as in this example)
o— and < to be the converses of —o and = since they provide a more natural
operational reading of clauses (similar to the use of :- in Prolog). Here, %
binds tighter than o— and <. Consider the sequent X: ¥; A — a,b, T} T
where the above clause is a member of W. A proof for this sequent can then
look like the following.

2:U:A — e, dye, ;T < b
SUA S edBel T E.\I/,-—>a,TQ&Z.\II,-—>b,T

S:UA — cBd Be,I; T YU —Sa,b; Y

WA C%&Oa% a,b,I; T
2:U:A — a,b, T




We can interpret this fragment of a proof as a reduction of the multiset a, b, "
to the multiset ¢, d, e, I" by backchaining on the clause displayed above.

Of course, a clause may have multiple, top-level implications. In this case,
the surrounding context must be manipulated properly to prove the sub-goals
that arise in backchaining. Consider a clause of the form

G1—0G2:>G3—OG4:>A1 Q?AQ

labeling the sequent arrow in the sequent ¥: V; A — Ap, Ay, A; Y. An
attempt to prove this sequent would then lead to attempt to prove the four
sequents

MU A] — Gy, A Y U — Gy T

XU Ay — G, Ag; T U — Gy T

where A is the multiset union of Ay and A,, and A is A; + As. In other
words, those subgoals immediately to the left of an = are attempted with
empty bounded contexts: the bounded contexts, here A and A, are divided
up and used in attempts to prove those goals immediately to the left of —o.

Although the innermost right-hand context of sequents in F is formally
treated as a list, the order in the list is not “semantically” important: that
list structure is only used to allow for a more constrained notion of proof
search. In particular we have the following corollary.

Corollary 3 LetT' and IV be lists of formulas that are permutations of each
other. If 2: ¥; A — T'; T has an F proof then so too does ¥: U; A — TV; Y.

Proof This corollary can be proved by either referring to the soundness
and completeness of F and the commutativity of % or showing that all right-
introduction rules in F permute over each other. |

A particularly difficult aspect of Forum to imagine implementing directly
is backchaining over clauses with empty heads. For example, consider at-
tempting to prove a sequent with right-hand side A and with the clause
VZ(G—oL) labeling the sequent arrow. This clause can be used in a backchain-
ing step, regardless of A’s structure, yielding the new right-hand side A, G,
for some substitution # over the variables Z. Such a clause provides no overt
clues as to when it can be effectively used to prove a given goal: backchain-
ing using a clause with an empty head is always successful. See [26] for a
discussion of a similar problem when negated clauses are allowed in logic
programming based on minimal or intuitionistic logic. As we shall see in the
next section, the specification of the cut rule for an object-level logic employs
just such a clause: the well known problems of searching for proofs involv-
ing cut thus apply equally well to the search for F proofs involving such
clauses. Also, the encoding of various linear logic connectives into Forum
involve clauses with empty heads. (Notice that clauses with empty heads are
not allowed in LO.)



6 Specifying object-level sequent proofs

Given the proof-theoretic motivations of Forum and its inclusion of quantifi-
cation at higher-order types, it is not surprising that it can be used to specify
proof systems for various object-level logics. Below we illustrate how sequent
calculus proof systems can be specified using the multiple conclusion aspect
of Forum and show how properties of linear logic can be used to infer prop-
erties of the object-level proof systems. We shall use the terms object-level
logic and meta-level logic to distinguish between the logic whose proof system
is being specified and the logic of Forum.

Consider the well known, two-sided sequent proof systems for classical,
intuitionistic, minimal, and linear logic. The distinction between these logics
can be described, in part, by where the structural rules of thinning and con-
traction can be applied. In classical logic, these structural rules are allowed
on both sides of the sequent arrow; in intuitionistic logic, only thinning is al-
lowed on the right of the sequent arrow; in minimal logic, no structural rules
are allowed on the right of the sequent arrow; and in linear logic, they are
not allowed on either side of the arrow. This suggests the following represen-
tation of sequents in these four systems. Let bool be the type of object-level
propositional formulas and let left and right be two meta-level predicates of
type bool — 0. Sequents in these four logics can be specified as follows.

Linear: The sequent By,...,B, — C1,...,Cy (n,m > 0) can be repre-
sented by the meta-level formula

left By B--- Bleft B, Bright C; B--- Vright C,,.

Minimal: The sequent By, ..., B, — C (n > 0) can be represented by the
meta-level formula

?left By ®--- B 7 left B, ®right C.

Intuitionistic: Intuitionistic logic contains the sequents of minimal logic
and sequents of the form Bi,...,B, — (n > 0) with empty right-
hand sides. These additional sequents can represented by the meta-level
formula

?left By B--- B left B,,.

Classical: The sequent By,...,B, — Ci,...,Cp, (n,m > 0) can be rep-
resented by the meta-level formula

?left By ®--- B7left B, 87 right C; ®--- ®7right C,,.
The left and right predicates are used to identify which object-level formulas

appear on which side of the sequent arrow, and the 7 modal is used to mark
the formulas to which weakening and contraction can be applied.



(OR) right (A D B) o— (?(left A) Bright B).
oL ?(left (A D B)) o— right A o— ?(left B).
(AR) right (A A B) o— right A o— right B.
(ALy) ?(left (A A B)) o— ?(left A).

(ALg) ?(left (A A B)) o— ?(left B).

(VR) right (VB) o— Va(right (Bzx)).

(VL) ?(left (VB)) o— ?(left (Bx)).
(Initial) right B % ?(left B).

(Cut) 1 o— ?(left B) o— right B.

Figure 3: Specification of the LM; sequent calculus.

We shall focus only on an object-logic that is minimal in this section.
To denote first-order object-level formulas, we introduce the binary, infix
symbols A, Vv, and D of type bool — bool — bool, and the symbols vV and
3 of type (i — bool) — bool: the type i will be used to denote object-level
individuals. Figure 3 is a specification of minimal logic provability using the
above style of sequent encoding for just the connectives A, D, and v. (The
connectives V and 3 will be addressed later.) Expressions displayed as they
are in Figure 3 are abbreviations for closed formulas: the intended formulas
are those that result by applying ! to their universal closure. The operational
reading of these clauses is quite natural. For example, the first clause in
Figure 3 encodes the right-introduction of D: operationally, an occurrence
of A D B on the right is removed and replaced with an occurrence of B on
the right and a (modalized) occurrence of A on the left (reading the right-
introduction rule for O from the bottom). Notice that all occurrences of the
left predicate in Figure 3 are in the scope of 7. If occurrences of such modals
in the heads of clauses were dropped, it would be possible to prove meta-level
goals that do not correspond to any minimal logic sequent: such goals could
contain left-atoms that are not prefixed with the ? modal.

We say that the object-level sequent By, ..., B, — B has an LM -proof
if it has one in the sense of Gentzen [9] using the corresponding object-level
inference rules (O R), (O L), (AR), (AL1), (ALs), (YR), (VL), (Initial),
(Cut).

Let LM; be the set of clauses displayed in Figure 3 and let 31 be the set
of constants containing object-logical connectives 9, D, and A along with the
two predicates left and right and any non-empty set of constants of type 4
(denoting members of the object-level domain of individuals). Notice that
object-level quantification is treated by using a constant of second order,
v (i = bool) — bool, in concert with meta-level quantification: in the two
clauses (VR) and (VL), the type of B is i — bool. This style representation



of quantification is familiar from Church [6] and has been used to advantage
in computer systems such as AProlog [8], Isabelle [40], and EIf [41]. This
style of representing object-level syntax is often called higher-order abstract
syntaz.

To illustrate how these clauses specify the corresponding object-level infer-
ence rule, consider in more detail the first two clauses in Figure 3. Backchain-
ing on the F sequent

1: LMy; - — right(Bg D Cy); left(By), . . ., left B,

using the (O R) clause in LM, (i.e., use decide!, VL twice, and —oL) yields
the sequent

212 LMl, c— 7(left Bo) @I‘Ight Co; Ieft(Bl), A ,left Bn,
which in turns is provable if and only if the sequent
31:LMy; - — right Cy; left By, ..., left B,

is provable. Thus, proving the object-level sequent By, ..., B, — By D Cy
has been successfully reduced to proving the sequent By,...,B, — Cj.
Now consider the sequent

Y1: LMy ;- — right(C); left(Co D By), left(B1), . . ., left B,,.

Using the decide! inference rule to select the (O L) clause, and using two
instances of VL, we get the sequent whose right-hand and left-hand sides
have not changed but where the sequent arrow is labeled with

? left By —o right(Cp) —o 7 left(Cy D By).
Using —oL twice yields the following three sequents:

$1: LMy - — right(C); left(Co > Bo), left By, ..., left By,
Y LMl; C— I'lght(C()), 181%(00 D BQ), left(Bl), Ce ,Ieft B,

S LM - 71eft(g330)

-5 left(Cy D By), left(By), .. ., left By,

The last sequent is immediately provable using the 7L, decide, and initial ?
inference rules. Notice that the formula right(Cp) could have moved to ei-
ther the first or second sequent: if it had moved to the first sequent, no
proof in F of that sequent is possible (provable F sequents using LM; con-
tain at most one right formula in the right, inner-most context). Thus,
we have succeeded in reducing the provability of the object-level sequent
Cy D By, By, ...,B, — C to the provability of the sequents

Co D> By,By,...,B, — Cy and Cy D By, By,...,B, — C.



As we shall show in the proof of Proposition 4, these are the only possible
reductions available using the clauses in LMj.

In a similar fashion, we can trace the use of decide! on the (Initial) and
(Cut) clauses to see these are equivalent to the inference rules

¥1:LMy;- — right B;left B, L
and

31:LMy;- — right C; L X1: LMy;- — right B;left C, L
¥1:LMy;- — right B; L ’

respectively, where L is a syntactic variable denoting a finite set of left-atoms.

In many ways, this style presentation of inference rules for LM; can be
judged superior to the usual presentation using inference figures. For ex-
ample, consider the following inference figures for AR and DL taken from
[9].

r—-o,A I —06,B AR ' —06,A B,A—A

T 50 AAB ASBT.A oA F

In these inference rules, the context surrounding the formulas being intro-
duced must be explicitly mentioned and managed: in the AR figure, the
context is copied, while in the DL, the context is split to different branches
(again, reading these inference figure bottom up). In the Forum specifica-
tion, the context is manipulated implicitly via the use of the meta-level con-
junctions: context copying is achieved using the additive conjunction & and
context splitting is achieved using iterated o— (i.e., using the multiplicative
conjunction ®). Similarly, the structural rules of contraction and thinning
can be captured together using the 7 modal. Since the meta-logic captures so
well many of the structural properties of the object-level proof system we can
reason about properties of the object-level system using meta-level properties
of Forum and linear logic. Of course, this approach to sequent calculus is also
limited since Forum cannot naturally capture a number of features that are
captured by conventional sequent figures: for example, the structural rule of
exchange.

Notice that the well known problems with searching for proofs containing
cut rules are transferred to the meta-level as problems of using a clause with
1 for a head within the search for cut-free proofs (see Section 4).

Proposition 4 (Correctness of LM;) The sequent By, ..., B, — Bg has
an LMy -proof if and only if the sequent

EliLMl; - — I'lght Bo;left Bl, e ,Ieft B,

has a proof in F (here, n > 0).



The proof of the missing propositions and theorems in this section can be
found in [27].

So far we have only discussed the operational interpretation of the speci-
fication in Figure 3. It is delightful, however, to note that this specification
has some meta-logical properties that go beyond its operational reading. In
particular, the specifications for the initial and cut inference rules together
imply the equivalences (right B)* = ?(left B) and (right B) = !(right B).
That is, we have the (not too surprising) fact that left and right are related
by a meta-level negation, and that this is guaranteed by reference only to
the specifications for the initial and cut rules. Given these equivalences, it is
possible to eliminate references to left in the LM; specification. The result
would be a specification quite similar to one for specifying a natural deduc-
tion proof system for minimal logic. To this end, consider the specification
of the NM; natural deduction proof system given in Figure 4. The specifica-
tion there is similar to those given using intuitionistic meta-logics [8, 40] and
dependent typed calculi [3, 16].

Proposition 5 (Correctness of NM;) The formula By has an NM; proof
from the assumptions By, ..., B, (n > 0) if and only if

>1: NMy, right By, ..., right B,;- — right By;-
has a proof in F.

Proof The correctness proof for natural deduction based on intuitionistic
logic and type theories that can be found in [8, 16, 40] can be used here
as well. The only difference is that in Figure 4, certain occurrences of <
are replaced with occurrences of o—. This replacement can be justified using
Proposition 6 of [18] in which it is shown that when translating an intuition-
istic theory to linear logic, positive occurrences of intuitionistic implications
can be translated using by —o while negative occurrences can be translated
using =. It follows that these two presentations of NM; prove the same
sequents of the form displayed in this Proposition. |

We can now supply a meta-logical proof that NM; and LM; prove the
same object-level theorems. The following two lemmas supply the necessary
implications.

Lemma 6 - LM; = [( NM;) ® Initial ® Cut).
Proof As we remarked before the formulas Initial and Cut in LM; entail
the equivalences (right B)* = ?(left B) and (right B) = !(right B). If we

apply these two equivalences along with the linear logic equivalences

pro—qgt=qo-p (Ip)*Bg=p=q (p &g ) =pag



(D I) right (A D B) o— (right A = right B).

(D E) right B o— right A o— right (A D B).
(ANI)  right (AN B) o— right A o— right B.

(AEY) right A o— right (A A B).

(AEs) right B o— right (A A B).

(VI) right (VB) o— Va(right (Bz)).

(VE) right (Bx) o— right (VB).

Figure 4: Specification of the NM; natural deduction calculus.

to the first seven clauses in Figure 3, we get the seven clauses in Figure 4.
(The last two clauses of LM; become linear logic theorems.) Clearly, LM; F
(® NMj). The proof of the converse entailment follows by simply reverse the
steps taking above: we can work backwards from NM; to LM; by equiva-
lences. |

Before we establish that LM; and NM; prove the same object-level for-
mulas (Theorem 10), we need a couple of technical lemmas.

Lemma 7 If ¥1: NMy;- — right B;- has a proof in F, then Xq: LMy;- —
right B;- has a proof in F.

Proof This follows directly from Lemma 6, cut-elimination for linear logic,
and the soundness and completeness results for F. |

Lemma 8 If Xy: NMy, Cut, Initial; - — right B;- has a proof in F, then
31:NMy;- —> right B;- has a proof in F.

Proof Let = be a proof in F of ¥1: NM;, Cut, Initial,- — right B;-. We
show we can always eliminate occurrences of decide! rules in Z that select
the Cut clause. Once they have all been eliminated, the Initial clause is also
not selected.

Consider the sequent that occurs the highest in = that is also the conclu-
sion of a decide! rule that select Cut. As we noted earlier, that sequent is of

the form
3: NM;y, Cut, Initial;- — right B; L

and it has above it subproofs Z; and Z5 of the sequents
3:NMy;- —> right C; L and X: NMy;- — right B;left C, L,

respectively. We can now transform Z5 into =} as follows: first remove left C
from the right-most context of all of its sequents and for every occurrence of
the initial rule in Z5 of the form

¥1: NMy;- — right C; left C, L’



replace that subproof in Z5 with Zy. The resulting Z) is a proof of
3: NM;y, Cut, Initial;- — right B; L

and, since Z; and Z5 do not contain occurrences of decide! that selected Cut,
neither does Zi. In this way, we have reduced the number of backchainings
using Cut in = by one.

Continuing in this fashion, we can eliminate all such uses of the Cut clause
in proving the sequent ¥1: NMy, Cut, Initial;- — right B; -. Since backchain-
ing on Cut introduces left-atoms and backchaining on Initial eliminates such
atoms (reading from bottom-up), if there there are no such occurrences of
Cut, then there are no such occurrences of Initial. Hence, we have described
a proof in F of ¥1: NMy;- —> right B;-. |

Lemma 9 If ¥,: LM;;- — right B;- has a proof in F, then ¥1: NMy;- —
right B;- has a proof in F.

Proof Assume X1: LM;;- — right B;- has a proof in F. Using Lemma 6,
cut-elimination for linear logic, and the soundness and completeness results
for F, the sequent

Y1: NMy, Cut, Initial;- — right B; -

has a proof in F. Now using Lemma 8, we have that >;: NM;;- — right B;-
has a proof in F. |

The following theorem follows from results of Gentzen [9]. We supply a
new proof here using linear logic as a meta-theory.

Theorem 10 The sequent — B has an LMy proof if and only if B has an
NM; -proof (from no assumptions).

Proof This theorem follows immediately from Propositions 4 and 5 and
Lemmas 7 and 9. |

Now consider adding to our object-logic disjunction and existential quan-
tification. Let X5 be ¥; with the constants V and 3 added. Let LM, be the
sequent system that results from adding the five clauses in Figure 5 to LM;.
Note the use of & in the specification of (VL): this conjunction is needed
since the right-hand of the object-level sequent is copied in this inference
rule.

Using the equivalences (right B)* = ?(left B) and (right B) = !(right B)
with the clauses displayed in Figure 5, we get the formulas in Figure 6. The
clauses for (VE) and (3E)’ could also be written more directly as the linear
logic formulas

(right A) & (right B) o— right (AV B).
3z (right (Bz)) o— right (3B).



(VRy)  right (AV B) o— right A.
(VR2)  right (AV B) o— right B.

(VL)  ?(left (AV B)) o— ?(left A) & ?(left B).
(3R) right (aB) o— right (Bz).
(3L) ?(left (3B)) o— Va(?(left (Bx))).

Figure 5: Sequent rules for disjunction and existential quantification.

(V)" right (AV B) o— right A.
(VIz) right (AV B) o— right B.
(VE) 1 o— right (AV B)
o— (right A= 1) & (right B = 1).
(31) right (3B) o— right (Bz).
(3E) L o— right (3B)
o— Va(right (Bz) = L1).

Figure 6: Equivalent forms of the clauses in Figure 5.

(VIy) right (AV B) o— right A.
(VIz) right (AV B) o— right B.
(VE) right E o— right (AV B)

o— (right A = right E)

o— (right B = right E).
right (3B) o— right (Bz).
(3E) right E o— right (3B)

o— Va(right (Bx) = right E).

—~
LL>
~

~

Figure 7: Natural deduction rules for disjunction and existential quantifica-

tion.



(using the equivalence (right B) = !(right B)).

Figure 7 contains the usual introduction and elimination rules for natural
deduction for V and 3. The only difference between the clauses in that Figure
and those in Figure 6 is that the natural deduction rules for disjunction and
existential quantification use the atom right E instead of L in the elimination
rules for V and 3. While this difference does not allow us to directly generalize
Lemma 6 to include these two connectives, it is possible to show that the
clauses in Figure 6 or in Figure 7 prove the same object-level theorems. For
example, let NM, be the set of clauses formed by adding the clauses in
Figure 6 to NM; and consider using decide! rule with the (VE)' clause to
prove the F sequent

Yo: NMy, R; - — right Ej;-.
This would lead to subproofs of the form
Yo: NM,, right A, R;- —> right E;- and Xa: NM,, right A, R; - — right E; -.

Here, we assume that R is a set of right-atoms containing right (A V B).
This is, of course, the same reduction in proof search if (VE) (from Figure 7)
was used instead. A similar observation holds for using either (E)’ or (IE).
Given these observations, we could prove the generalization of Theorem 10
using LM, and NM,. Notice that the specifications of NM; and NM; avoid
using either Bor L, and as a result, they can be modeled using on intuition-
istic linear logic, in fact, a simple subset of that like Lolli [18].

Most logical or type-theoretic systems that have been used for meta-level
specifications of proof systems have been based on intuitionistic principles:
for example, AProlog [8], Isabelle [40], and Elf [41]. Although these sys-
tems have been successful at specifying numerous logical systems, they have
important limitations. For example, while they can often provide elegant
specifications of natural deduction proof systems, specifications of sequent
calculus proofs are often unachievable without the addition of various non-
logical constants for the sequent arrow and for forming lists of formulas (see,
for example, [8]). Furthermore, these systems often have problems capturing
substructural logics, such as linear logic, that do not contain the usual com-
plement of structural rules. It should be clear from the above examples that
Forum allows for both the natural specification of sequent calculus and the
possibility of handling some substructural object-logics.

7 Operational Semantics Examples
Evaluation of pure functional programs has been successfully specified in

intuitionistic meta-logics [13] and type theories [4, 41] using structured oper-
ational semantics and natural semantics. These specification systems are less



successful at providing natural specifications of languages that incorporate
references and concurrency. In this section, we consider how evaluation in-
corporating references can be specified in Forum; specification of concurrency
primitives will be addressed in the following section.

Consider the presentation of call-by-value evaluation given by the follow-
ing inference rules (in natural semantics style).

M |} (abs R) N|U (RU)IV
(app M N) |V (abs R) || (abs R)

Here, we assume that there is a type tm representing the domain of object-
level, untyped A-terms and that app and abs denote application (at type
tm — tm — tm) and abstraction (at type (tm — tm) — tm). Object-level
substitution is achieved at the meta-level by [S-reduction of the meta-level
application (R U) in the above inference rule. A familiar way to represent
these inference rules in meta-logic is to encode them as the following two
clauses using the predicate eval of type tm — tm — o (see, for example,
[13)).
eval (app M N) V o— eval M (abs R)
o—eval N U o—eval (RU) V.

eval (abs R) (abs R).

In order to add side-effecting features, this specification must be made more
explicit: in particular, the exact order in which M, N, and (R U) are evalu-
ated must be specified. Using a “continuation-passing” technique from logic
programming [49], this ordering can be made explicit using the following two
clauses, this time using the predicate eval at type tm — tm — o — o.

eval (app M N)V K o—
eval M (abs R) (eval N U (eval (RU) V K)).
eval (abs R) (abs R) K o— K.

From these clauses, the goal (eval M V' T) is provable if and only if V is
the call-by-value value of M. It is this “single-threaded” specification of
evaluation that we shall modularly extend with non-functional features.
Consider adding to this specification a single global counter that can be
read and incremented. To specify such a counter we place the integers into
type tm, add several simple functions over the integers, and introduce the
two symbols get and inc of type tm. The intended meaning of these two
constants is that evaluating the first returns the current value of the counter
and evaluating the second increments the counter’s value and returns the
counter’s old value. We also assume that integers are values: that is, for every
integer ¢ the clause Vk(eval i i k o— k) is part of the evaluator’s specification.
Figure 8 contains three specifications, E1, Fs, and Fj3, of such a counter:
all three specifications store the counter’s value in an atomic formula as the



Ei=3 (ro)te
IWVKVV(eval get V K BrVo— K ®rV))®
IWKVV(eval inc V K Br V o— K Br (V +1))]

Ey=3r] (r0)*®
IVKVV (eval get (=V) K Br VoK ®rV)®
IVKVV (eval inc (=V) K BrV o— K Br (V —1))]

Es=3r] (r0)®
IVKYV (eval get V K o- 1 V@ (rV —oK))®
IWKVYV(eval incV K o—r V@ (r (V+1) — K)]

Figure 8: Three specifications of a global counter.

argument of the predicate r. In these three specifications, the predicate r is
existentially quantified over the specification in which it is used so that the
atomic formula that stores the counter’s value is itself local to the counter’s
specification (such existential quantification of predicates is a familiar tech-
nique for implementing abstract data types in logic programming [25]). The
first two specifications store the counter’s value on the right of the sequent ar-
row, and reading and incrementing the counter occurs via a synchronization
between an eval-atom and an r-atom. In the third specification, the counter
is stored as a linear assumption on the left of the sequent arrow, and synchro-
nization is not used: instead, the linear assumption is “destructively” read
and then rewritten in order to specify the get and inc functions (counters such
as these are described in [18]). Finally, in the first and third specifications,
evaluating the inc symbol causes 1 to be added to the counter’s value. In
the second specification, evaluating the inc symbol causes 1 to be subtracted
from the counter’s value: to compensate for this unusual implementation of
inc, reading a counter in the second specification returns the negative of the
counter’s value.

The use of ®, !, 3, and negation in Figure 8, all of which are not primitive
connectives of Forum, is for convenience in displaying these abstract data
types. The equivalence

Ir(Rf ® 'Ry ® ! R3) 0 G =Vr(Ry = R3 = G B R;)

directly converts a use of such a specification into a formula of Forum (given
a-conversion, we may assume that r is not free in G).

Although these three specifications of a global counter are different, they
should be equivalent in the sense that evaluation cannot tell them apart.
Although there are several ways that the equivalence of such counters can
be proved (for example, operational equivalence), the specifications of these



counters are, in fact, logically equivalent.

Proposition 11 The three entailments F1 - Eo, Es F E3, and Es F Ey are
provable in linear logic.

Proof The proof of each of these entailments proceeds (in a bottom-up
fashion) by choosing an eigen-variable to instantiate the existential quan-
tifier on the left-hand specification and then instantiating the right-hand
existential quantifier with some term involving that eigen-variable. Assume
that in all three cases, the eigen-variable selected is the predicate symbol
s. Then the first entailment is proved by instantiating the right-hand exis-
tential with Az.s (—z); the second entailment is proved using the substitu-
tion Az.(s (—x))*; and the third entailment is proved using the substitution
Az.(s x)L. The proof of the first two entailments must also use the equations

{-0=0,—(z+1)=—-2—-1,—(z—1)= -z +1}.

The proof of the third entailment requires no such equations. |

Clearly, logical equivalence is a strong equivalence: it immediately im-
plies that evaluation cannot tell the difference between any of these different
specifications of a counter. For example, assume E; - eval M V T. Then by
cut and the above proposition, we have Fy -eval M V' T.

It is possible to specify a more general notion of reference from which a
counter such as that described above can be built. Consider the specification
in Figure 9. Here, the type loc is introduced to denote the location of refer-
ences, and three constructors have been added to the object-level A-calculus
to manipulate references: one for reading a reference (read), one for setting
a reference (set), and one for introducing a new reference within a particular
lexical scope (new). For example, let m and n be expressions of type tm that
do not contain free occurrences of r, and let F; be the expression

(new (Ar(set r (app m (read r)))) n).

This expression represents the program that first evaluates n; then allocates
a new, scoped reference cell that is initialized with n’s value; then overwrites
this new reference cell with the result of applying m to the value currently
stored in that cell. Since m does not contain a reference to r, it should be the
case that this expression has the same operational behavior as the expression
F5 defined as

(app (abs Ax(app m x)) n).
Below we illustrate the use of meta-level properties of linear logic to prove
the fact that ) and F5 have the same operational behaviors.

Let Ev be the set of formulas from Figure 9 plus the two formulas dis-
played above for the evaluation of app and abs. An object-level program may



read : loc — tm
set :loc — tm — tm
new : (loc — tm) — tm — tm
assign :loc — tm — 0 — o
ref :loc — tm — o

eval (set L N)V K o— eval NV (assign L V K).
eval (new R E) V K o— eval E U (Yh(ref h U Beval (R h) V K)).

eval (read L) V K Bref LV o— K Bref L V.
assign LV K Bref LU o— K ®Bref L'V.

Figure 9: Specification of references.

have both a value and the side-effect of changing a store. Let S be a syntactic
variable for a store: that is, a formula of the form ref hy u1 ®... Bref h,, u,
(n > 0), where all the constants hy, ..., h, are distinct. A store is essentially
a finite function that maps locations to values stored in those locations. The
domain of a store is the set of locations it assigns: in the above case, the
domain of S is {h1,...,hn}. A garbaged state is a formula of the form Vh.S,
where S is a state and Vh is the universal quantification of all the variables in
the domain of S. Given the specification of the evaluation of new in Figure 9,
new locations are modeled at the meta-level using the eigen-variables that
are introduced by the VR inference rule of F.
Consider, for example, the program expression Fj given as

(new Ar(read r) 5).

This program has the value 5 and the side-effect of leaving behind a garbaged
store. More precisely, the evaluation of a program M in a store .S yields a
value V', a new store S’, and a garbaged store G if the formula

Vklk S G —oeval M V k B S]

is provable from the clauses in Ev and the signature extended with the do-
main of S. An immediate consequence of this formula is that the formula
eval M V' T %S is provable: that is, the value of M is V if the store is ini-
tially S. The references specified here obey a block structured discipline in
the sense that the domains of S and S’ are the same and any new references
that are created in the evaluation of M are collected in the garbaged store
G.

A consequence of the formulas in Ev is the formula

VEk[k BVh(ref h 5) —o eval F5 5 k.



That is, evaluating expression Fj yields the value 5 and the garbaged store
Vh(ref h 5). An immediate consequence of this formula is the formula

VEk[k 28 S BYh(ref h 5) — eval F3 5 k B8 S];

in other words, this expression can be evaluated in any store without changing
it. Because of their quantification, garbaged stores are inaccessible: opera-
tionally (but not logically) Vh(ref h 5) can be considered the same as L in
a manner similar to the identification of (x)Zy with the null process in the
m-calculus [36].

We can now return to the problem of establishing how the programs Fj
and F3 are related. They both contain the program phrases m and n, so we
first assume that if n is evaluated in store Sy it yields value v and mutates
the store into Sy, leaving the garbaged store GG;. Similarly, assume that if m
is evaluated in store S; it yields value (abs u) and mutates the store into Sy
with garbaged store G5. That is, assume the formulas

Vklk 851 Gy oevaln v k 8BSy and
VEk[k B Sy B Gy — eval m (abs u) k 8 51].

From these formulas and those in Ev, we can infer the following formulas.

VwVk[eval (u v) w k 8BSy BG1 B Gy BYh(ref hv) —oeval Fy w k 8 .50]
YwVkleval (uv) w k BS: BGL B G, —oeval Fy w k B 5]

That is, if the expression (u v) has value w in store S5 then both expressions
Fy and F5 yield value w in store S7. The only difference in their evaluations
is that Fj leaves behind an additional garbaged store. Since the continuation
k is universally quantified in these formulas, F; and F5 have these behaviors
in any evaluation context.

Clearly resolution at the meta-level can be used to compose the meaning of
different program fragments into the meaning of larger fragments. Hopefully,
such a compositional approach to program meaning can be used to aid the
analysis of programs using references.

8 Some exercises

Problems 1 and 2 require proofs that will involve permutations of inferences
and induction of the structure of proofs. These two problems will probably
be the most difficult.

Problems 3, 4, and 5 involve analyzing and writing particular logic pro-
grams illustrating linear logic features. For related example programs, see
[18].

Problem 6 concerns working out an example and proving a theorem about
the m-calculus. For this problem, see [30].



8.1 Provability using Horn clauses

In the Section 8.7, a proof system and terminology is introduced (for this
question only). With respect to the terms defined there, show the follow-
ing. Let D and G-formulas be defined as follows (these are first-order Horn
clauses).
G:I:AlGl A Go |G1\/G2 | J;2G
DZI:A|G3D|D1/\D2 \VixD,
where, of course, A is a syntactic variable ranging over first-order atomic
formulas. (Assume that the only domain type is i.) Now let P be a finite set
of D-formulas and let G be a finite set of G-formulas. Carefully prove each
of the following.

1. It is never the case that ;P F¢ L. Notice that L is not considered to
be an atomic formula.

2. If ;P k¢ G then there exists a G € G such that ;P F¢ G.

3. If ;P ¢ G then the sequent X ; P — G has a uniform proof (in
the single-conclusion sense).

4. ¥;P ke G if and only if ;P -y G.

8.2 A proof system for LO

The LO logic programming language is based on clauses of the following form.
Gu=1|T|A|G1 &G |Gy BG,
D:=G—o (A1 B...BA,) | VizD,

where n > 1 and, of course, A is a syntactic variable ranging over first-order
atomic formulas. (Assume that the only domain type is i.) The following
proof system is specialized for just LO: sequents in the proof system are such
that formulas on the left of the arrow are D-formulas and formulas on the
right are G-formulas.

P—)F P_>F)G17G2 P_>1—‘,G1 P—>F,G2
’P*)F,T P‘)F,J_ ,P*)F,GltngQ 'P—)F,Gl&GQ

P—1TI,G Provided there is a formula in P whose ground
P—T,A,..., A, instanceis G —o (A; B... BA,).

Let G be a goal formula, let P be a finite set of D-formulas, and let ¥ be
the signature containing the non-logical constants in G and P. Show that the
sequent P — G has a proof in the system above if and only if ¥ : P; — G
has a proof in the linear logic proof system used in lectures.




8.3 Computing the maximum of a list

This problem concerns computing the maximum of a multiset of integers.
Assume that you have the predicates (greaterEq N M) and (lesser N M)
that are provable (consuming no resources) if and only if N is greater than or
equal to M and (respectively) N is less than M.

1. Write a logic program P; for the predicate maz A such that the sequent
P A(m), ... A(ng,) — mazA(n)

is provable if and only if n is the maximum of {ny,...,n,,}. (Here, as
in the next problem, if m = 0 then set the maximum to be 0.)

2. Write a logic program P5 for the predicate max A such that the sequent
Y Pa;— maxzA(n), A(n1), ..., A(nm)

is provable if and only if n is the maximum of {nq,...,n,,}.

8.4 Using the left and right contexts

Below are specifications of two binary predicates.

predl L K <= pi load\(pi unload\(pi m\(

(pi X\(pi M\( load (X::M) :- m X -: load M) ))) =>

(pi X\(pi M\( unload (X::M) :- m X, wunload M) ))) =>

(load nil :- unload K) -: (unload nil) -: (load L)))).
pred2 L K <= pi load\(pi unload\(pi m\(

(pi X\(pi M\( 1load (X::M) - m X | load M))) =>

(pi X\(pi M\(unload (X::M) | m X :- unload M ))) =>

(load nil  :- wunload K) -: (unload nil) -: (load L)))).

Here, we use pi token\ to denote universal quantification over token and
use | to denote “par” (multipicative disjunction). The comma is used to
denote “tensor” (multiplicative conjunction). The implication signs -: and
=> associate to the right.

1. It turns out that both of these clauses specify the same relation. What
is that relation? Informally justify your answer.

2. Formally prove that each of these specifications compute the same re-
lation by a logical transformation of one to the other using a technique
similar to that used in lectures to show that reverse is symmetric.



8.5 An example of a linear logic program
Below is the specification of two predicates. The greaterEq is the same of
in the problem above.

mx N.

mx N :- a M, greaterEq N M, mx N.
sr nil.

st (N::L) :-—a N, (mx N & sr L).

Let P be the set containing these four clauses. Let A be the multiset of
atomic formulas {a(i1),...,a(i,)}, where {i1,...,i,} (n > 0) is a multiset of
positive integers. Describe when it is the case that the linear sequent

>:P;A— (sr L),

is provable. Explain your reason.

8.6 Encoding the m-calculus into linear logic
Consider the following two m-calculus agents.
P = z(y).y(w).(v).wv.ybnil | u(r).ranil | (z).2z.zZu.nil
Q = ((2).2zb.ndl) | (v)va.nil
1. Using the unlabeled transitions for the m-calculus, show that P reduces
to Q.

2. Let P° and Q° be the formulas (over the non-logical constants get and
send) that are the result of translating these agents into linear logic.
Produce a proof in linear logic of the sequent

2:ILQY — P
Here, II is the formula
VaV2YPYQ(Pz/y] BQ — z(y).P BZz.Q),
and ¥ is a signature containing the constants x, u, a, and b.

3. Let G and H be two linear logic formulas that are the result of trans-
lating two m-calculus agents into linear logic and let ¥ be the constants
contained in both G and H. Prove the following fact: If the sequent

> II,G— H

has a proof it has a proof = with the following structure: there is some
sequent in = such that all inference rules below it are either right-
introduction rules for 1, %, and V or are backchaining steps over the
formula II, and all inference rules above it are left-introduction rules
for 1, ®and V or initial sequents.



8.7 Proof systems for question 1

Provability for F is given in terms of sequent calculus proofs. A sequent of F
is a triple X ; I' — A, where X is a first-order signature over S and I and
A are finite (possibly empty) sets of X-formulas. The set I is this sequent’s
antecedent and A is its succedent. The expressions I', B and B, I" denote the
set T'U { B}; this notation is used even if B € I". The following provisos are
also attached to the four inference rules for quantifier introduction: in V-R
and 3-L, the constant ¢ is not in ¥, and, in V-L and 3-R, t is a X-term of
type T.

A proof of the sequent ¥ ; I' — © is a finite tree constructed using
these inference rules such that the root is labeled with ¥ ; ' — O and the
leaves are labeled with initial sequents, that is, sequents ¥’ ; IV — ©’ such
that either T is a member of @ or the intersection IV N ©’ contains either L
or an atomic formula.

Sequent systems generally have three structural rules that are not listed
here. Two such rules, interchange and contraction, are not necessary here
because the antecedents and succedents of sequents are sets instead of lists.
Hence, the order and multiplicity of formulas in sequents are not made
explicit. The third common structural rule is that of weakening: from a
given sequent one may add any additional formulas to the succedent and
antecedent. Weakening could be added as a derived inference rule, but it is
not needed here.

Any proof is also called a C-proof. Any C-proof in which the succedent of
every sequent in it is a singleton set is also called an I-proof. Furthermore, an
I-proof in which no instance of the L-R inference rule appears is also called
an M-proof. Sequent proofs in classical, intuitionistic, and minimal logics are
represented by, respectively, C-proofs, I-proofs, and M-proofs. Finally, let
3 be a given first-order signature over S, let " be a finite set of 3-formulas,
and let B be a X-formula. We write ;1" F¢ B, ;T F; B, and ;T ) B
if the sequent ¥ ; I' — B has, respectively, a C-proof, an I-proof, or an
M-proof. It follows immediately that 3;T" 5, B implies ;T 7 B, and this
in turn implies ;T F¢o B.

Acknowledgments

The author has been funded in part by ONR N00014-93-1-1324, NSF CCR-
92-09224, NSF CCR-94-00907, and ARO DA AH04-95-1-0092.

The material in this chapter has been taken largely from the following
sources. Section 1 has been taken from [32]. Sections 2 through 7 have been
taken from [27], which is itself an extended version of a paper that appeared
as [31] and which was also presented at the 1994 Joint Meeting of ALP and
PLILP, Madrid, September 1994. Section 8 contains exercises I used in a



;' — A)B ;' — AC ¥; B.CLA — ©

A-R A-L
;' — ABAC Y; BANC,A — ©
¥>; BBA — O >; CCA — ©
V-L
>; BVC,A — ©
>; ' — A,B >; ' — AC
V-R V-R
;' — A BVC ;' — A,BVC
;' — ©,B ;0T — A ¥; B,I' — ©6,C
D-L O-R
¥;BO>C,I' — OUA ;' — ©6,B>C
Y ; Ix—t]B — O ¥; ' — O,x—t|B
V-L IR
¥; 'V, B — © ;' — 6,3z B
YU{cr}; I[x—c]B — O YU{c7}; T' — O,[x+—c|B
3-L V-R
¥; I'4xB — © ;' — ©,v,xB
;' — 6,1
1-R

>; ' — ©,B

Figure 10: A proof system F for classical, intuitionistic, and minimal logics.



course given at the University of Pisa during July 1994.

Papers by Miller listed in the bibliography are available via anonymous

ftp from ftp.cis.upenn.edu in pub/papers/miller or using WWW at
http://www.cis.upenn.edu/"dale.

References

[1]

2]

[10]

[11]

Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):297-347, 1992.

J.M. Andreoli and R. Pareschi. Linear objects: Logical processes with
built-in inheritance. New Generation Computing, 9(3-4):445-473, 1991.

Arnon Avron, Furio Honsell, Ian A. Mason, and Robert Pollack. Us-
ing typed lambda calculus to implement formal systems on a machine.
Journal of Automated Reasoning, 9:309-354, 1992.

R. Burstall and Furio Honsell. A natural deduction treatment of oper-
ational semantics. In Proceedings of the 8th Conf. on Foundations of
Software Technology and Theoretical Computer Science, volume LNCS,
Vol. 338, pages 250-269. Springer-Verlag, 1988.

Jawahar Chirimar. Proof Theoretic Approach to Specification Languages.
PhD thesis, University of Pennsylvania, February 1995. Available as
ftp://ftp.cis.upenn.edu/pub/papers/chirimar/phd.ps.gz.

Alonzo Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56—68, 1940.

Conal Elliott. Higher-order unification with dependent types. In Rewrit-
ing Techniques and Applications, volume 355, pages 121-136. Springer-
Verlag LNCS, April 1989.

Amy Felty. Implementing tactics and tacticals in a higher-order logic
programming language. Journal of Automated Reasoning, 11(1):43-81,
August 1993.

Gerhard Gentzen. Investigations into logical deductions, 1935. In M. E.
Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 68-131.
North-Holland Publishing Co., Amsterdam, 1969.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102,
1987.

Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied
Logic, 59:201-217, 1993.



[12]

[13]

[14]

[20]

[21]

Kurt Godel. On formally undecidable propositions of the principia math-
ematica and related systems. I. In Martin Davis, The Undecidable.
Raven Press, 1965.

John Hannan. Extended natural semantics. Journal of Functional Pro-
gramming, 3(2):123-152, April 1993.

James Harland and David Pym. On goal-directed provability in classical
logic. Technical Report 92/16, Dept of Comp Sci, Uni. of Melbourne,
1992.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. In Second Annual Symposium on Logic in Computer
Science, pages 194-204, Ithaca, NY, June 1987.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the ACM, 40(1):143-184, 1993.

Joshua Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic: Extended abstract. In G. Kahn, editor, Sizth
Annual Symposium on Logic in Computer Science, pages 32-42, Ams-
terdam, July 1991.

Joshua Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic. Information and Computation, 110(2):327—
365, 1994.

Gérard Huet and Bernard Lang. Proving and applying program transfor-
mations expressed with second-order patterns. Acta Informatica, 11:31—
55, 1978.

Stephen Cole Kleene. Permutabilities of inferences in Gentzen’s calculi
LK and LJ. Memoirs of the American Mathematical Society, 10, 1952.

Naoki Kobayashi and Akinori Yonezawa. ACL - a concurrent linear logic
programming paradigm. In Dale Miller, editor, Logic Programming -
Proceedings of the 1993 International Symposium, pages 279-294. MIT
Press, October 1993.

Naoki Kobayashi and Akinori Yonezawa. Type-theoretic foundations for
concurrent object-oriented programming. In Proceedings of OOPSLA’9/,
1994. To appear.

Benjamin Li. A 7-calculus specification of Prolog. In Proc. ESOP 199/,
1994.

Patrick Lincoln and Vijay Saraswat. Higher-order, linear, concurrent
constraint programming. January 1993. Available on the world-wide
web at the url file://parcftp.xerox.com/pub/ccp/lec/hlec.dvi.



[25]

Dale Miller. Lexical scoping as universal quantification. In Sizth Interna-
tional Logic Programming Conference, pages 268-283, Lisbon, Portugal,
June 1989. MIT Press.

Dale Miller. A logical analysis of modules in logic programming. Journal
of Logic Programming, 6(1-2):79-108, January 1989.

Dale Miller. Forum: A multiple-conclusion specification language. The-
oretical Computer Science. To appear.

Dale Miller. Abstractions in logic programming. In Piergiorgio
Odifreddi, editor, Logic and Computer Science, pages 329-359. Aca-
demic Press, 1990.

Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of Logic and Compu-
tation, 1(4):497-536, 1991.

Dale Miller. The w-calculus as a theory in linear logic: Preliminary
results. In E. Lamma and P. Mello, editors, Proceedings of the 1992
Workshop on Eatensions to Logic Programming, number 660 in LNCS,
pages 242-265. Springer-Verlag, 1993.

Dale Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor,
Ninth Annual Symposium on Logic in Computer Science, pages 272-281,
Paris, July 1994.

Dale Miller. Observations about using logic as a specification language.
In M. Sessa, editor, Proceedings of GULP-PRODE’95: Joint Conference
on Declarative Programming, Marina di Vietri (Salerno-Italy), Septem-
ber 1995.

Dale Miller and Gopalan Nadathur. A logic programming approach to
manipulating formulas and programs. In Seif Haridi, editor, IEEE Sym-
posium on Logic Programming, pages 379-388, San Francisco, September
1987.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of Pure
and Applied Logic, 51:125-157, 1991.

Robin Milner. Functions as processes. In Automata, Languages and Pro-
gramming 17th Int. Coll., volume 443 of LNCS, pages 167-180. Springer
Verlag, July 1990.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes, Part 1. Information and Computation, pages 1-40, September
1992.



[37]

[38]

Tobias Nipkow. Higher-order critical pairs. In G. Kahn, editor, Sizth
Annual Symposium on Logic in Computer Science, pages 342-349. IEEE,
July 1991.

Tobias Nipkow. Functional unification of higher-order patterns. In
M. Vardi, editor, Fighth Annual Symposium on Logic in Computer Sci-
ence, pages 64-74. IEEE, June 1993.

Lawrence C. Paulson. Natural deduction as higher-order resolution.
Journal of Logic Programming, 3:237-258, 1986.

Lawrence C. Paulson. The foundation of a generic theorem prover. Jour-
nal of Automated Reasoning, 5:363-397, September 1989.

Frank Pfenning. EIf: A language for logic definition and verified
metaprogramming. In Fourth Annual Symposium on Logic in Computer
Science, pages 313-321, Monterey, CA, June 1989.

Frank Pfenning. Unification and anti-unification in the Calculus of Con-
structions. In G. Kahn, editor, Sizth Annual Symposium on Logic in
Computer Science, pages 74-85. IEEE, July 1991.

Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Pro-
ceedings of the ACM-SIGPLAN Conference on Programming Language
Design and Implementation, pages 199-208. ACM Press, June 1988.

Christian Prehofer. Solving Higher-Order Equations: From Logic to Pro-
grammang. PhD thesis, Technische Universitdt Minchen, 1995.

David Pym. Proofs, Search and Computation in General Logic. PhD
thesis, LFCS, University of Edinburgh, 1990.

Zhenyu Qian. Linear unification of higher-order patterns. In J.-P.
Jouannaud, editor, Proc. 1993 Coll. Trees in Algebra and Programming.
Springer Verlag LNCS, 1993.

Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario.
Information and Computation, 111(1):120-153, May 1994.

V. Saraswat. A brief introduction to linear concurrent constraint
programming. Available as file://parcftp.xerox.com/pub/ccp/lec/lcc-
intro.dvi.Z., 1993.

Paul Tarau. Program transformations and WAM-support for the com-
pilation of definite metaprograms. In Logic Programming: Proceedings
of the First and Second Russian Conferences on Logic Programming,
number 592 in LNAI, pages 462-473. Springer-Verlag, 1992.



[50] David Walker. m-calculus semantics of object-oriented programming
languages. LFCS Report Series ECS-LFCS-90-122; University of Ed-
inburgh, October 1990.



