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Abstract. The first-order theory of MALL (multiplicative, additive linear logic)
over only equalities is an interesting but weak logic since it cannot capture un-
bounded (infinite) behavior. Instead of accounting for unbounded behavior via
the addition of the exponentials (! and ?), we add least and greatest fixed point
operators. The resulting logic, which we call uMALL™, satisfies two fundamental
proof theoretic properties. In particular, UMALL satisfies cut-elimination, which
implies consistency, and has a complete focused proof system. This second result
about focused proofs provides a strong normal form for cut-free proof structures
that can be used, for example, to help automate proof search. We then consider
applying these two results about uMALL" to derive a focused proof system for
an intuitionistic logic extended with induction and co-induction. The traditional
approach to encoding intuitionistic logic into linear logic relies heavily on us-
ing the exponentials, which unfortunately weaken the focusing discipline. We get
a better focused proof system by observing that certain fixed points satisfy the
structural rules of weakening and contraction (without using exponentials). The
resulting focused proof system for intuitionistic logic is closely related to the one
implemented in Bedwyr, a recent model checker based on logic programming.
We discuss how our proof theory might be used to build a computational system
that can partially automate induction and co-induction.

1 Introduction

In order to justify the design and implementation architecture of a computational logic
system, foundational results concerning the normal forms of proofs are often used. One
starts with the cut-elimination theorem since it usually guarantees other properties of the
logic (e.g., consistency) and that there is no need to automate the creation of lemmas
during proof search. In many situations, the cut-elimination theorem implies that all
formulas considered during the search for a proof are subformulas of the original, pro-
posed theorem. This does not hold, in particular, when higher-order (relation) variables
are used, which is the case in this paper where the rules for induction and co-induction
use such higher-order variables. A second normal form theorem, usually related to fo-
cused proofs [And92] is also important to establish. Such “focusing” theorems provide
normal forms that organize invertible and non-invertible inference rules into collections:
such striping of the inference rules in a cut-free derivation can be used to understand
which choices in building proofs might need to be reconsidered (via backtracking) and
which do not. As we shall see, focusing yields useful structure in cut-free proofs, even
when the subformula property does not hold.

Various computational systems have employed different focusing theorems: much
of Prolog’s design and implementations can be justified by the completeness of SLD-



resolution [AVES2]; uniform proofs (goal-directed proofs) in intuitionistic and intuition-
istic linear logics have been used to justify AProlog [MNPS91] and Lolli [HM94]; the
classical linear logic programming languages LO [AP91] and Forum [Mil96] have used
directly Andreoli’s general focusing result [And92] for linear logic.

In this paper, we establish these two foundational proof-theoretic properties for the
following logic. We first extend the multiplicative and additive fragment of linear logic
(MALL) with equality and quantification (via ¥ and d) over simply typed A-terms.
Because of the bounded use of formulas during proof construction, provability in this
logic, call it MALL™, can be reduced to deciding unification problems (under a mixed
prefix) which is decidable for the first-order fragment of MALL™. An elegant and well
known way to make this logic more expressive is to add the exponentials ! and ? and
the rules of inference that allow for certain occurrences of formulas marked with these
systems to be contracted and weakened [Gir87]. Such modal-like operators are not,
however, without their problems. In particular, the exponentials are not canonical since
there are different ways to formulate the rules for the promotion and structural rules for
exponentials and some of these choices lead to different versions of logic (for example,
elementary and light linear logics [Gir98] and soft linear logic [Laf04]). Even if we
fix the inference rules for the exponentials, as in standard linear logic, the rules do
not describe unique exponentials. If one gives a red tensor and a blue tensor the same
inference rules, then one can prove that these two tensors are, in fact, equivalent. All of
linear logic connectives except the exponentials yield similar theorems. It is certainly
possible to consider a (partially ordered) collection of exponentials on top of MALL
(see, for example, [DJS93]).

An alternative to strengthen MALL with exponentials is to extend it with fixed
points. Early approaches to adding fixed points [Gir92,SH93] involved inference rules
that could only unfold fixed point descriptions: as a consequence, such logics could
not discriminate between a least and greatest fixed point. Stronger systems that allow
induction [MMOO0] as well as co-induction [Tiu04,MT03] include inference rules using
a higher-order variable that ranges over prefixed or postfixed points (invariants). Of
course, approaches that use (co)induction are not without problems as well: various
restrictions on fixed point expressions and on invariants may need to be considered. In
any case, we shall explore this alternative to exponentials: in particular, we extend the
logic MALL™ to yMALL™ by adding the two fixed points y and v.

Besides considering fixed points as alternatives to the exponentials, there are other
reasons for examining uMALL™. First, least and greatest fixed points are de Morgan
duals of one another and, hence, the classical nature of linear logic should offer some
economy and elegance in developing their proof theory, in contrast to intuitionistic
logic. Second, since linear logic can be seen as the logic behind intuitionistic logic,
it will be rather easy to develop a focusing proof system for intuitionistic logic and
fixed points based on the structure of the one we develop for yMALL™.

It is important to stress that we are using linear logic here as “the logic behind
computational logic” and not, as it is more traditionally understood, as the logic of
resource management (in the sense of multiset rewriting, database updates, Petri nets,
etc). Instead, we find the proof theory of linear logic an appropriate and powerful setting



for exploring the structure of proofs in various intuitionistic logics (see [LMO7] for
another such use of linear logic).

In the next section, we define uMALL™ and prove some of the most basic aspects
of its proof theory, including the cut-elimination theorem. Section 3 presents a focused
proof system that is complete for uyMALL™. In Section 4 we describe a few examples of
(focused) derivations in uMALL™. Section 5 shows how the proof theory of uMALL™
can be applied to an intuitionistic logic extended with induction and co-induction, and
to the intuitionistic logic of fixed point unfoldings that is the foundation of the recent
computational system Bedwyr [BGM*07].

2 Linear logic extended with fixed points

For clarity, we will use simply typed A-calculus as our language of formulas. We assume
that formulas are always in Sn-long form. We make few restrictions on the language of
terms in this work and choose simply typed A-calculus for them as well: we assume
that the reader understands the basics involving substitution, equality, and complete
set of unifiers for such terms. In most of our examples variables will be of ground
type, and thus the possibly infinite complete set of unifiers can be replaced by the most
general unifier when there is one. Depending on one’s interests, it is possible to choose
weaker (e.g., first-order) or more powerful (e.g., dependently typed) terms.

In the following, terms are denoted by s, #; vectors of terms are denoted by s, ¢;
formulas (objects of type o) are denoted by P, Q; eigenvariables are denoted by x, c.
Finally, the syntactic variable B represents a formula abstracted over by a predicate and
n terms (ApAx; ... Ax,.Ppx; ...x,). We have the following formula constructors:

P:=P@P|POP|P®P|P&P|1]0|L|T
| AxPx|VyxPx|sLt]s#1| . 0Bt | vy Bt

The syntactic variable y ranges over all simple types that do not contain o. The quan-
tifiers have type (y — 0) — o and the equality and inequality have type y — y — o.
The connectives y and v have type (t — 7) - T where tisy; — -+ = ¥, = 0
for some arity n > 0. We shall almost always elide the references to y, assuming that
they can be determined from context when it is important to know their value. Formulas
with top-level connective u or v are called fixed point expressions and can be arbitrarily
nested. The first argument of a fixed point expression, denoted by B, is called its body.
Quantifiers and (in)equality are not new and play a small role in the proof theory
results: they are, however, crucial for our example applications. The central feature
here is the fixed point constructs. Finally, note that there are no atoms in the uMALL™
grammar. We shall see in the following the advantages of using fixed points instead.

Definition 1. We define the negation B of a body B, and extend the usual definition of
the involutive negation as follows:

BY apax.Bax.pohxyt =0t s#r wBHt Y VBt

A body B is said to be monotonic when for any variables p and t, the negation normal
and A-normal form of Bpt does not contain any negated instance of p.



MALL rules First-order structure

o +rILP +4,Q +I1,PQ N v 1, Pt + I, Pc ¢ new

1 v LAPRQ +LLP®Q +I,L v [, Ax.Px + I, ¥x.Px
+IbP + 1,0 v, P; {F16:0¢€csu(s =1)}

A, T FILP & Q FI,Py® P, Ft=t FI,s#t

Fixed points (where S is closed, x is new)

+ I, BuB)t FI1,St +BSx,(Sx)*

v —_— W
+1I,uBt + I, vBt + uBt,vBt

Fig. 1. Inference rules for uyMALL™

We shall assume that all bodies are monotonic. In other words, negation (e* for
formulas and e for bodies) is not part of the syntax since negation normal form of
formulas and bodies without atoms do not contain negations and since we forbid them
explicitly in fixed point expressions. When we write negation in some inference rules,
we shall be considering it as implicitly computing the negation normal form.

The monotonicity of a function is also a natural condition for the existence of fixed
points in lattices or other models. The condition of monotonicity is used only syntacti-
cally here since we are not studying the semantics of uMALL™.

We present the inference rules for uMALL™ in Figure 1. The initial rule is restricted
to fixed points. In the v rule, which provides both induction and coinduction, S is called
the (co)invariant, and has the same type as vB, of the foom y; — --- — ¥, — 0. The
treatment of equality dates back to [Gir92,SH93]. In the inequality rule, csu stands for
complete set of unifiers. This set has at most one element in the first-order case, but can
be infinite in presence of higher-order term variables, which we do not exclude. In that
case, the proofs are infinitely branching but still have a finite depth. They are handled
easily in our proofs by means of transfinite inductions. Again, the use of higher-order
terms, and even the presence of the equality connectives are not essential to this work.
All the results presented below hold in the logic without equality, and they do not make
much assumptions on the language of terms.

Proposition 1. The following inference rules are derivable:

init + I, BvB)t
F P, P FLvBt
These results are standard, cf. [Tiu04]. The proof of the second one relies on mono-
tonicity and is obtained by applying the v rule with B(vB) as the co-invariant.

Definition 2. We classify as asynchronous (resp. synchronous) the connectives %, L,
& T, VY, # v(resp.®, 1, &, 0, 3, = u). A formula is said to be asynchronous (resp. syn-
chronous) when its top-level connective is asynchronous (resp. synchronous). A formula
is said to be fully asynchronous (resp. fully synchronous) when all of its connectives are



asynchronous (resp. synchronous). Finally, a body ApAx.Bpx is said to be fully asyn-
chronous (resp. fully synchronous) when the formula Bpx is fully asynchronous (resp.
fully synchronous).

Notice, for example, that ApAx.px is fully asynchronous and fully synchronous.

Proposition 2. The following structural rules are admissible provided that B is fully

asynchronous:
+1I,vBt,vBt A

rI,vBt "~ v TLvBt "
Hence, the following structural rules hold for any fully asynchronous formula P:
FI,PP A

rrp € irp W

w

The proof of this proposition can be found in [BMO07]. This property plays a central
role in the focusing proof system presented in Section 3 and is crucial in Section 5 for
our encoding of intuitionistic logic extended with least and greatest fixed points.

Example 1. Units can be represented by means of = and #. Assuming that 2 and 3 are
two distinct constants, then we have2 =2 oo 1and2 = 3 oo (0 (andhence2 # 2 o—o L
and 2 # 3 oo T). Here, P oo Q denotes (P —o Q) & (Q — P) and P — Q denotes
the formula P+ % Q.

Example 2. The u (resp. v) connective is meant to represent least (resp. greatest) fixed
points. For example v(dp.p) is provable (take any provable formula as the co-invariant),
while its dual p(Ap.p) is not provable. More precisely: u(4p.p) o— 0 and v(1p.p) o—o T.

Example 3. The least fixed point, as expected, entails the greatest. The following is a
proof of uBt —o vBt.

—B B) E( E) init

F x, B(vB)x

(15 B)x,vB "R Bt,vB "
F s FuBt,vBt .
(v )xvx_ HOLY von vBt with § := uB
+ vBt, vBt

The greatest fixed point entails the least fixed point when the fixed points are noetherian,
i.e., all unfoldings of B and B terminate.

In this paper we are investigating how far one can go without the exponentials, get-
ting the infinite behavior from the meaning of fixed points instead of modalities. If we
were to add, however, the usual inference rules for exponentials, the resulting proof sys-
tem would yield uBt o— ! uBt (and equivalently ? vBt o— vBt) provided that B is fully
synchronous. In the language of the Logic of Unity (LU) [Gir93], fully asynchronous
(resp. fully synchronous) would be negative (resp. positive) or right-permeable (resp.
left-permeable) formulas. Mixing synchronous and asynchronous connectives would
yield a neutral formula.

We now outline the proof of cut-elimination. Although it is indirect and relies on
cut-elimination for full second-order linear logic (LL2), this is still a syntactic proof
of cut-elimination. It yields consistency of uMALL™ as well as relative soundness and
completeness with respect to LL2.



Theorem 1. The logic uMALL™ enjoys cut-elimination.

Proof Our proof consists in first translating kMALL~ formulas and proofs into full
second-order linear logic derivations, which are then normalized and focused, and fi-
nally translated back to cut-free yMALL™ derivations. Formally speaking, the previous
work on proof normalization for LL2 does not include equality, but all the previous
work on equality has shown that it has little role to play in normalization.

We first define the translation from first-order to second-order. The translation com-
mutes with the connectives of MALL™ and the negation, and is defined as follows on
the least fixed points:

[uBx]1=VS . I(Vy .[B]Sy - Sy) - Sx

The corresponding transformation of proofs is straightforward, relying on the mono-
tonicity of bodies. We get a proof where all second-order instantiations are either of the
form [77 (from v rules) or second-order eigenvariables (from uv rules). Cut-elimination
and focusing never change these instantiations.

It is possible to normalize the resulting LL2 derivations, and then apply Andreoli’s
result to yield even more structured normal forms. (We shall temporarily assume that
the reader is familiar with the focusing proof system in [And92]. A description of this
kind of system may otherwise be found in Section 3.) Doing so, we get exactly the
derivations we want for transforming them back to uMALL~. For example, focusing on
an unfolding hypothesis translates immediately to the u rule:

FO:T|[B1S;y FrO:S;x|(Six)*t
FO: F,Sixll |'B[|S,-x®(S,-x)L
FO:LSix | Ay [B1Siy ® (Siy)*

Similarly, focusing on the translation of a v gives us either an instance of the v rule:

F O [Bly — Iy]
O Vy.[Bly — Iy]
FO:\Wy[Bly oIyl +0O:T|[Ix]*
FO T | (Wy.[BI[Ily — [Iy) ® [Ix]*
FO: T J3S.!(Vy.[BlSy - Sy) ® (Sx)*

= [11

or an instance of uv (the unfolding hypothesis for S is in ©):

FO :U!\/y.l"B]Sy -8y FO:8x | (Sx)*
FO:Sx | (IVy.[BlSy - Sy)® (Sx)*
FO:Sx | 3AS.!/(Vy.[B]Sy = Sy) ® (Sx)*

For a more detailed proof, see [BMO07]. O

As shown in the above proof, fixed points can be encoded by means of second-
order quantification and exponentials. However, first-order MALL with exponentials
and first-order MALL with fixed points are incomparable.



It has been observed [Gir92,SH93] that exponentials and non-monotonic definitions
combine to yield inconsistency: for example, the definition p = p* (that is, the fixed
point udp.p*t) does not lead to an inconsistency, whereas the definition p = ?(p*) (that
is, udp. 2(p*)) does. To reproduce the latter inconsistency in uMALLS, one needs to
be able to unfold the expression vAp. !(pt). But this is not implied by Proposition 1
since its body is not monotonic. Thus, even in presence of exponentials, we currently
do not have any example of non-monotonic definition that invalidates the consistency
of uyMALL"™.

3 Focused proofs

As we have explained in the introduction, completeness of a focused proof system is
a valuable property for a logic to possess. Focused proofs have applications in proof-
search since it reduces the proof-search space by limiting the situations when backtrack-
ing is necessary. Focused proofs are also useful for justifying game theoretic semantics
[MSO05] and have been central to the design of Ludics [GirO1].

A good focused proof system for uMALL™ is not a simple consequence of the trans-
lation of fixed points into LL2 that is used in the proof of Theorem 1: applying linear
logic focusing to the result of that translation leads to a poorly structured system that is
not consistent with our classification of connectives as asynchronous and synchronous.
On the contrary, we present the proof system in Figure 2 as a good candidate for a
focused proof system for yMALL™. We use explicit annotations of the sequents in the
style of Andreoli. In the synchronous phase sequents have the form + I" || P. In the
asynchronous phase they have the form + I" } 4 where I" and 4 are both multisets of
formulas. In both sequents, I is a multiset of synchronous formulas and v-expressions.
The convention on 4 is a slight departure from Andreoli’s original proof system where 4
is a list (which can be used to provide a fixed but arbitrary ordering of the asynchronous
phase).

The rules for equality are not surprising. The main novelty here is the treatment of
fixed points. Depending on the body, both y and v rules can be applied any number of
times — but not with any co-invariant concerning v. Notice for example that an instance
of uv can be n-expanded into a larger derivation, unfolding both fixed points to apply
v on the recursive occurrences. As a result, each of the fixed point connectives has two
rules in the focused system: one treats it as “an atom” and the other one as an expression
with “internal structure.”

In accord with Definition 2, u is treated during the synchronous phase and v during
the asynchronous phase. (Alternatives to this choice are discussed later.) Roughly, what
the focused system implies is that if a proof involving a v-expression proceeds by co-
induction on it, then this co-induction can be done at the beginning; otherwise that
formula can be ignored in the whole derivation, except for the uv rule. Focusing on a u-
expression yields two choices: unfolding or applying the initial rule for fixed points. If
the body is fully synchronous, the focusing will never be lost. For example, if nat is the
(fully synchronous) expression p(Anat.Ax. x = 0 @ Jy.x = sy ® nat y), then focusing
puts a lot of structure on a proof of I" || nat t: either ¢ is a ground term representing a
natural number and I” is empty, or t = 5" x for some n > 0 and I' is {(nat x)*}.



Asynchronous phase

FCNPQA vTQHPA v QA
FTNP® QA FINP& QA

Synchronous phase

FCUP MU0 FLUP;
FLIPUP®Q  rT | Pyd® P

FIN4 {FIONA40:0 € csu(s =1)}
FCR LA v T4 FLNs#t,4 L1 H)t=t
_trfiPed o _tripe
F It Vx.Px, A kI 3x.Px
FLNStA HfBSx,Sxt  rLvBtf4 FrL BB
F T vBt, 4 v 1 vBt, A FI'UuBx  +vBx | uBx

Switching (where P is synchronous, Q asynchronous)

FLPMA vT'UP v Q
FINYPA vILPY TUQ

Fig. 2. A focused proof-system for uMALL™

Theorem 2. The focused system is sound and complete with respect to uMALL".

Proof Soundness is trivial. We only give an outline of the completeness proof: see
[BMO7] for more details. The proof is by (transfinite) induction on (h,(I7), |[1]) where
h,(I1) is the height of IT in terms of fixed point rules, and |/1] is the size of the deriva-
tion’s conclusion. We first prove two permutation lemmas which preserve this measure:
one shows that if there is any asynchronous formula in the conclusion, the proof can
be transformed such that this formula is active in the conclusion; the other shows that
when there is no more asynchronous in the conclusion, it is possible to focus on a syn-
chronous if it is maximal. Finally we prove that there is always a maximal formula in
such a sequent. The notion of maximality is due to Alexis Saurin [MS07] and is crucial
to make the proof clear and simple.

It is worth pointing out, however, that there is a non-trivial permutation of & and
v in the first of these lemmas. This permutation, which requires the ability to sum co-
invariants (a consequence of the monotonicity assumption on fixed point expressions)
is illustrated in Figure 3. i

4 Examples

We shall now give a few theorems in yMALL™. Although we do not give their deriva-
tions here, we stress that all of these examples are proved naturally in the focused proof
system. The reader will also note that although uMALL is linear, these derivations are
intuitive and their structure resemble that of proofs in intuitionistic logic.

We first define a few least fixed points expressing basic properties of natural num-
bers. We assume two constants z and s of respective types n and n — n. Note that all
these definitions are fully synchronous.

nat = p(Anatdx. x =z ® dy. x = s y ® nat y)



17 HS g HS’
+I,P,St +BSx,Sx* +I,P,S't +BS'x,S'x*

+ I, P,vBt + 1, P, vBt
+I,P & P ,vBt
U
17 )i
FI,PSt +ILP,S't é1(Is) ¢ (Ils)
FLLPSt®S't +LLP,StaS’t +FBES &S)x,(Sx)* +BS &S)x,(S'x)* &
FLP&P.,St®S't FBS ®S)x, (S & S)x)*
+I,P & P,vBt

Fig. 3. The permutation of the & and the co-induction rules.

even = p(devendx. x =z® dy. x = s (sy) ® even y)
plus = u(Aplusdadblc.a =z® b =c
®Jdd'Ac’a=sd @c=s5c @ plusa’ b ')
leg o wAlegAxdy. x=y®Ay.y=s5sy Qleqgxy’)

half e p(Ahalfixan. (x=z@ x=s2) ®h =z
@A . x=s(x)Qh=sh ®half X' I')

The following statements are theorems, all of which can be proved by induction. The
main insights required for proving these theorems involve deciding which fixed point
expression should be introduced by induction: the proper invariant is not the difficult
choice here since the context itself is adequate in these cases.

F VYx. nat x —o even x @ even (s x)

FVx. nat x —o Vydz. plus xy z

F Vx. nat x — plus x z x

F Vx. nat x — Yy. nat y —o ¥z. plus x y z —o nat z

In the last theorem, the assumption (nat x)* is not needed and can be weakened, thanks
to Proposition 2. In order to prove (Yx. nat x —o 3h. half x h) one has to use a complete
induction, i.e., use the strengthened invariant (Ax. nat x ® Vy. leq y x — 3h. half'y h).

A typical example of co-induction involves the simulation relation. Assume that
step : state — label — state — o is an inductively defined relation encoding a labeled
transition system. Simulation can be defined using the definition

sim < v(AsimApAg. Na¥p'. step pap’ — Aq . stepqaq ® simp’ q').

Reflexivity of simulation (Vp. sim p p) is proved easily by co-induction with the co-
invariant (ApAq. p = q). Instances of step are not subject to induction but are treated
“as atoms”. Proving transitivity, that is,

VpVqVr. simp g — simqr —o simpr



is done by co-induction on (sim p r) with the co-invariant (ApAr. dq. sim p ¢ ® sim q r).
The focus is first put on (sim p g)*, then on (sim g r)*. The fixed points (sim p’ ¢q’)
and (sim ¢’ r’) appearing later in the proof are treated “as atoms”, as are all negative
instances of step.

Except for the totality of half, all these theorems seem simple to prove using a
limited number of heuristics. For example, one could first try to treat fixed points “as
atoms”, an approach that would likely fail quickly if inappropriate. Second, depending
on the “rigid” structure of the arguments to a fixed point expression, one might choose
to either unfold the fixed point or attempt to use the surrounding context to generate an
invariant.

5 Translating Intuitionistic Logic

The examples in the previous section make it clear that despite its simplicity and linear-
ity, UMALL™ can be related to a more conventional logic. In particular we are interested
in drawing some connections with an extension of intuitionistic logic with inductive
and coinductive definitions. We will show that the focusing of uMALL™ derivations
yields a similar result in the intuitionistic setting. A general approach for making such
a connection is to first encode intuitionistic logic in uMALL, focus the derivations
of encodings, and translate them back to intuitionistic derivations. When doing so, it
is interesting to minimize the use of exponentials in the encoding since these connec-
tives weaken the focusing discipline. This is precisely what the extension of the asyn-
chronous/synchronous classification allows. In the following, we show a simple first
step to this program, in which we actually capture a non-trivial fragment of intuitionis-
tic logic extended with fixed points even though uMALL™ does not have exponentials
at all.

We shall consider an intuitionistic logic in which there are no atomic formulas but
were there are (positive) equalities and the two fixed point constructors u and v. Let
UL~ be the proof system that extends Gentzen’s cut-free L] [Gen69] with the following
rules for equality and (co)inductive expressions.

{(I'+G)8 : 0 € csu(s = 1)}

Is=t+G =L ==Kk
BSx+Sx I,St+G 4 '+ B(uB)t
TLuBtr G K TuBtruBt " T+ uBt
LBOBtrG vo SxrBSx I'rSt .
TvBtrG " T, vBt - vBt T+ vBt v

We have observed (Prop. 2) that structural rules are admissible for fully asyn-
chronous formulas of yMALL™. This property will allow us to get a faithful encoding of
a fragment of uLLJ~ in yMALLT despite the absence of exponentials. The encoding must
be organized so that formulas appearing in the left-hand side of uLLJ~ sequents must be
encoded as fully asynchronous uMALL~ formulas. The only connectives allowed to
appear negatively will thus be A, V, =, u and 3. Moreover, the encoding must com-
mute with negation, in order to translate the (co)induction rules correctly. This leaves
no choice in the following design.

10



Definition 3. We restrict formulas to two fragments described by the two syntactic vari-
ables G and H:

Gu=GANGIGVGI|s=t|u@px.Gpx)t|Ix.Gx
| Yx.Gx|H D G|v(Apx.Gpx)t
Hu=HAH|HVH|s=t|udpx.Hpx)t | Ix.Hx

Formulas in H and G are translated in uMALL™ as follows:

def
P = [P ef
raihte v
def vBe] < viBlt
[s=1'= s=t P>01Y [Pl - (0]
Bl ¢ u[Blt [ 2

def
[ApAx.Bpx] = ApAx.[Bpx]
[3x.Px] € Ax[Px] PP pAHIop
Proposition 3. For any P € G, P is provable in uLJ~ if and only if [P] is provable in
UMALL, under the restrictions that (co)invariants Ax.S x in uMALL™ (resp. uLJ~) are
such that Sx is in [H] (resp. H).

Proof The proof transformations are simple and compositional. The induction rule
is mapped to v rule for (uBt)*; the left unfolding for co-inductives to u for (vBt)*. In
order to restore the additive behavior of some intuitionistic rules (e.g., AR) and translate
the structural rules, we can contract and weaken our fully asynchronous formulas on the
left of uLLJ~ sequents. O

Linear logic provides an appealing proof theoretic setting because of its empha-
sis on dualities and on its clear separation of concepts (additive/multiplicative, asyn-
chronous/synchronous). Our experience is that yMALL" is a good place to study fo-
cusing in the presence of least and greatest fixed point operators. To get similar results
for intuitionistic logic, one can either work from scratch entirely within, say, uL.J~=, or
use an encoding into linear logic. Given a mapping from intuitionistic to linear logic,
and a complete focused proof system for linear logic, one can often build a complete
“focalized” proof-system for intuitionistic logic. The usual encoding of intuitionistic
logic into linear logic involves exponentials, which can damage focusing structures (by
causing both synchronous and asynchronous phases to end). Hence, a careful study of
the polarity of linear connectives must be done (cf. [DJS93,LMO07]) in order to minimize
the role played by the exponentials in such encodings. Here, as a result of Proposition 3,
it is possible to get a complete focused system for uLL.J= on G (under the assumptions
that (co)invariants are in /) that inherits the strong structure of the linear focusing
derivations.

Although G is not as expressive as full uLLJ~, it catches many interesting and use-
ful problems. For example, any Horn-clause specification can be expressed in H as a
least fixed point and theorems that state properties such as totality or functionality of
predicates defined in this manner are in G. Theorems that state more model-checking
properties, for example, Yx.p(x) D g(x), where p and g are one-placed least fixed point
expressions over [H], are also in G. Finally, the theorems about natural numbers pre-
sented in Section 4 are within [G] although two of the derivations (for the totality of half
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and that the sum of natural numbers is a natural number) do not satisfy the restriction
on co-invariants.

The logic uLLJ™ is closely related to LINC [Tiu04]. The main difference is the ab-
sence of the V quantifier in our system: we suspect that V can be added to uMALL™ in
the same relatively orthogonal fashion that LINC added it to LJ. The resulting exten-
sion to UMALL™ (and uLJ™) should allow natural ways to reason about specifications
involving variable bindings, in the manner illustrated in [BGM*07,Tiu04,Tiu05]. An-
other difference is that fixed points in LINC have to satisfy a stratification condition,
which is strictly stronger than monotonicity; co-invariants also have to satisfy a techni-
cal restriction related to stratification. While our system, derived from linear logic, does
not share such restrictions, neither difference is relevant when we restrict our attention
to formulas in G.

Interestingly, the fragment G has already been identified in LINC [TNMO5], and
the Bedwyr system [BGM*07] implements a proof-search strategy for it that is com-
plete under the assumption that all fixed points are noetherian (and hence that least and
greatest fixed points coincide and that (co)induction can be restricted to unfolding).
This strategy coincides with the focused system for L]~ restricted to noetherian fixed
points: there is no need for any explicit contraction and you can always eagerly elimi-
nate left-hand side (asynchronous) connectives before working on the goal (right-hand
side); moreover there is no need for the initial rule uv.

6 Discussion about the focusing system

The design of the above focused proof system for yMALLT is rather satisfactory. For
example, its treatment of u as synchronous and v as asynchronous is consistent with
a similar treatment of these operators via game semantics given in [MS05,Sti96]. Fo-
cusing is also natural and helpful when trying to prove theorems in yMALL", such as
the examples proposed in Section 4. Finally, as we have seen in Section 5, this focused
proof system yields another one for an intuitionistic logic similarly extended with fixed
points, and accounts for the proof search strategy underlying the implemented prover
Bedwyr [BGM™*07]. It is worth noting, however, two unusual aspects of focused proofs
in uMALL".

6.1 A choice inside asynchronous rules.

As we noted, there are two rules for each of the fixed point connectives. Having a
choice of rules in the asynchronous phase is, at first, rather surprising since it is during
this phase of proof construction that we expect to see invertible rules and no choices.
One way to look at this is that, in fact, the v-connective should be annotated or divided
into an infinite number of different connectives. In particular, consider replacing the v
constructor with both v, (with the same types and arity as v) and vg (where S is an
annotated formula abstraction of the appropriate type). Now consider the proof system
that results from replacing the three rules involving v in Figure 2 by the rules

FLCNSt,4 +) BSx,Sxt  new I, v.Bx 1 4
+r I N vsBt, 4 + I N veBx, 4 FveBx | uBx
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Notice that using such annotated formulas, there is no longer any choice in the asyn-
chronous phase. Furthermore, if in the expression vg B it is really the case that S is a
co-invariant, i.e., (BS x, S x) is provable, then the first inference rule is invertible.

From a focused proof of F, it is possible to extract an annotation of F' that is provable
in the disambiguated focused system. This extraction requires the non-trivial composi-
tion of co-invariants in a manner similar to that used for the permutation of v and &.
Such annotations might be useful for the partial automation of proof search involving
induction and co-induction. For example, v connectives could be labeled with partial
information about what to do with the connective in the asynchronous phase: unfold,
freeze (i.e., treat as atomic), use the sequent as the invariant, etc. Such hints might be
enough to mechanize a large amount of simple but tedious proofs by (co)induction.
Notice that since we have annotated v but not x, we should not think that v’s with an-
notations are logical connectives: instead, such annotations hint at the structure of a
particular proof involving that annotated expression.

6.2 Are the polarities of u and v forced?

While the classification of u as synchronous and v as asynchronous is rather satisfying
and is backed by several other observations, that choice does not seem to be forced from
the focusing point of view alone. Maybe y can be handled in the asynchronous phase,
instead? After all the u rule is invertible. Consider replacing the fixed point rules in the
focused proof system in Figure 2 with the following four inference rules:

FI N BuBt,A  vLuBtft4  +T St ) BSx, (Sx)*
F I 0 uBt, A F I ) uBt, 4 F I | vBt + uBt || vBt

We conjecture that the resulting proof system is complete for yMALL™. The non-trivial
step in such a proof would involve the permuting of the inference rules for u and &.
The invertibility of y allows it, but we have not proved the termination of the whole
transformation.

To go one step further, one wonders if arbitrary assignment of “bias” to expressions
such as (uBt) and (vBt) can be made in a fashion similar to the way literals are given
fixed but arbitrary “bias” in Andreoli’s original focused proof system [And92]. Thus,
maybe some u expressions can be synchronous while others are asynchronous.

7 Conclusion and Future Work

UMALLT is an elegant logic supporting reasoning on inductive and co-inductive spec-
ifications. We have shown that it has two important proof-theoretic properties: namely,
cut-elimination and the completeness of focused proofs. The design and completeness
of a focused proof system is the major contribution of this paper. We have also shown
that uyMALL™ is expressive and formally connected it to a fragment of intuitionistic
logic extended with fixed points, a step that brings yMALL™ closer to applications. Fi-
nally, we have identified an implemented system that attempts to find focused proofs
within the noetherian part of this logic.
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There are a number of interesting open questions to consider next. At the proof the-
ory level, we would like to understand better whether or not dropping the monotonicity
requirement leads to inconsistency or not and to what extent we can provide alternative
assignment of polarities (synchronous/asynchronous) to fixed points. We can also con-
sider adding exponentials and atomic formulas to yMALLT so that all of uLLJ~ could be
encoded (in which case, a precise connection to the focused proof systems of [LMO7]
should be explored). Such an extension to uMALL™ could also be used to generalize
the uses of induction in the linear logic programming setting of [PMO05]. At the system
designing and implementation level, our focused proof system should help in designing
a logic engine that attempts to prove formulas involving induction and co-induction.
Our hope is that the focused proof system would help in understanding the strengths
and limitations of various heuristics for generating invariants and co-invariants.
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