Proof checking and logic programming

Dale Miller

Inria Saclay & LIX, Ecole Polytechnique
Palaiseau, France

15 July 2015, LOPSTR & PPDP 2015

Joint work with Roberto Blanco, Kaustuv Chaudhuri, Zakaria
Chihani, Quentin Heath, Stefan Hetzl, Danko llik, Chuck Liang,
Tomer Libal, Marco Volpe, Fabien Renaud, Giselle Reis, Alwen Tiu.

See papers in: CADE 2013, CPP 2011/13/15, PxTP 2013/15,
Tableaux 2015.

What can we trust?

In cryptology: Trust the math

the
math

Bruce Schneier

In software correctness: Trust the proof!

With software systems, there are so many things to trust.
@ printers and parsers
@ type checkers, type inference, abstract interpretation
@ compilers
@ verification condition generators
@ theorem provers

All this seems overwhelming. Our challenge here:
provide the framework so that we can at least trust proofs.

We restriction our of attention to formal proofs, generated and
checked by computer tools.

The current situation with formal proofs

Most proof production and checking is technology based.

Most proofs are locked into the technology.

If you change the version number of a prover, it may not
recognized its earlier proofs.

Some bridges are now being built between different provers, but
these are affected by two version numbers.

In them we can trust

de Bruijn, Huet, Paulson, Boyer, Moore
" |

In them we can trust

de Bruijn, Huet, Paulson, Boyer, Moore
" |

Obvious, this model of trust does not scale!

The tradition of proof checking

Most of the major proof checkers / theorem provers, e.g.,

Automath, Boyer and Moore, LCF Tactics/ Tacticals,
HOL, Isabelle, Coq, Agda, PVS, etc,

come from a functional programming background.

It seems odd that logic programming has played a minor role in
this area, even though

@ many primitives in this subject are relations, e.g., "= is a
proof of B" and
@ non-determinism and unification are part of the fabric of proof

checking and theorem proving.

The framework | present here can make extensive use of logic
programming systems and principles.

The vision: The network is the prover

Goal: Permit the formal methods community to become a network
of communicating provers.

Proof certificates: documents that circulate and denote proofs.

Approach: Provide formal definitions of “proof evidence” so that
proof certificates can be checked by trusted checkers.

But: There is a wide range of “proof evidence.”
e resolution refutations, natural deduction, tableaux, etc
e proof scripts for steering a theorem prover to a proof

e winning strategies, simulations

The need for frameworks

Three central questions:
@ How can we manage so many “proof languages”?
@ Will we need just as many proof checkers?

@ How does this improve trust?

Computer scientists have seen this kind of problem before.

The need for frameworks

Three central questions:
@ How can we manage so many “proof languages”?
@ Will we need just as many proof checkers?

@ How does this improve trust?

Computer scientists have seen this kind of problem before.

We develop frameworks to address such questions.
@ lexical analysis: finite state machines / transducers

@ language syntax: grammars, parsers, attribute grammars,
parser generators

@ programming languages: denotational and operational
semantics

A framework for proof evidence: First pick the logic

Church’s Simple Theory of Types (STT) is a good choice for the
syntax of formulas.

It is understood well in both the classical and intuitionistic settings.

Propositional, first-order, and higher-order logics are easily
identifiable sublogics of STT (many others too).

Earliest notion of formal proof

Frege, Hilbert, Church, Godel, etc, made extensive use of the
following notion of proof:

A proof is a list of formulas, each one of which is either
an axiom or the conclusion of an inference rule whose
premises come earlier in the list.

While granting us trust, there is little useful structure here.

The first programmable proof checker

Lecture Notes in
Computer Science

LCF/ML (1979) viewed proofs as
slight generalizations of such lists.

ML provided types, abstract
datatypes, and higher-order
programming in order to increase
confidence in proof checking.

Many provers today (HOL, Coq,
Isabelle) follow LCF principles.

12/33

More recent advances: Atoms and molecules of inference

Atoms of inference
e Gentzen's sequent calculus first provided these: introduction,
identity, and structural rules.

e Girard's linear logic refined our understanding of these atoms.

e To account for first-order structure, we also need fixed points
and equality.

Rules of Chemistry

e Focused proof systems show us that some atoms stick
together while other atoms form boundaries.

Molecules of inference

e Collections of atomic inference rules that stick together form
synthetic inference rules.

Features enabled for proof certificates

e Simple checkers can be implemented.
Only the atoms of inference and the rules of chemistry (both
small and closed sets) need to be implemented in a checker of
certificates.

e Certificates support a wide range of proof systems.
The molecules of inference can be engineered into a wide range
of inference rules.

e Certificates are based (ultimately) on proof theory.
Immediate by design.

e Proof details can be elided.
Search using atoms will match search in the space of molecules:
that is, the checker will not invent new molecules.

An analogy between two frameworks: SOS and FPC

Structural Operational Semantics (SOS)
© There are many programming languages.
@ SOS can define the semantics of many of them.
© Logic programming can provide prototype interpreters.

@ Compliant compilers can be built based on the semantics.

An analogy between two frameworks: SOS and FPC

Structural Operational Semantics (SOS)
© There are many programming languages.
@ SOS can define the semantics of many of them.
© Logic programming can provide prototype interpreters.

@ Compliant compilers can be built based on the semantics.

The Definition of Standard ML

An analogy between two frameworks: SOS and FPC

Structural Operational Semantics (SOS)
© There are many programming languages.
@ SOS can define the semantics of many of them.
© Logic programming can provide prototype interpreters.

@ Compliant compilers can be built based on the semantics.

Foundational Proof Certificates (FPC)
© There are many forms of proof evidence.
@ FPC can define the semantics of many of them.
© Logic programming can provide prototype checkers.

@ Compliant checkers can be built based on the semantics.

Clerks and experts: the office workflow analogy

Imagine an accounting office that needs to check if a certain
mound of financial documents (provided by a client) represents a
legal tax transaction (as judged by the kernel).

Experts look into the mound and extract information and
e decide which transactions to dig into and

e release their findings for storage and later reconsideration.

Clerks take information released by the experts and perform some
computations on them, including their indexing and storing.

Focused proofs alternate between two phases: positive (experts are
active) and negative (clerks are active).

The terms decide, store, and release come from proof theory.

A proof certificate format defines workflow and the duties of the
clerks and experts.

Proof checking and proof reconstruction

Clearly, (determinate) computation is built into this paradigm: the
clerks can perform such computation.

Proof reconstruction might be needed when invoking not-so-expert
experts (or ambiguous tax forms).

Non-deterministic computation is part of the mix: non-determinism
is an important resource that is useful for proof-compression.

The LKneg proof system

Use invertible rules where possible. In propositional classical logic,
both conjunction and disjunction can be given invertible rules.

-+ B FA LT .
5 start FALT store FAAA- init
FA;T FA; B C,IT FA;B,T FACT
FA; false,T A BV C, I FA;true T FABAC,T

Here, A is an atom, L a literal, A a multiset of literals, and I a list
of formulas. Sequents have two zones.

This proof system provides a decision procedure (resembling
conjunctive normal forms).

A small (constant sized) certificate is possible.

The LKneg proof system

Use invertible rules where possible. In propositional classical logic,
both conjunction and disjunction can be given invertible rules.

-+ B FA LT .
5 start FALT store FAAA- init
FA;T FA; B C,IT FA;B,T FACT
FA; false,T A BV C, I FA;true T FABAC,T

Here, A is an atom, L a literal, A a multiset of literals, and I a list
of formulas. Sequents have two zones.

This proof system provides a decision procedure (resembling
conjunctive normal forms).

A small (constant sized) certificate is possible.

Consider proving (p VvV C) V —p for large C.

The LKpos proof system

Non-invertible rules are used here.

FB: B rart FB;N,-A; B rart o

g St T B oA st —l—B;N,—\A;AmIt
FB;N; B; FB,N;Bi FB,N;B
FB;N;:BiV B F B; N true FB:N;:Bi A B>

Here, A is an atom and N is a multiset of negated atoms.
Sequents have three zones.

The V rule consumes some external information or some
non-determinism.

An oracle string, a series of bits used to indicate whether to go left
or right, can be a proof certificate.

A proof in LKpos

Let C have several alternations of conjunction and disjunction.

Let B=(pV C)V —p.

~Bipip m

FB;—-p;pV C .

Bimpi(pv C)Vp restart

FB;- ip

"B ;(p\/C)\/ﬁp start
- B

The subformula C is avoided. Clever choices * are injected at
these points: right, left, left. We have a small certificate and small
checking time. In general, these certificates may grow large.

Combining the LKneg and LKpos proof systems

Introduce two versions of conjunction, disjunction, and their units.

ti? t+7 f77 f'+7\/77v+7/\77/\+

The inference rules for negative connectives are invertible.
These polarized connectives also exist in linear logic.

Introduce the two kinds of sequent, namely,
= © 1 I': for invertible (negative) rules (I a list of formulas)
- © |} B: for non-invertible (positive) rules (B a formula)

LKF : a focused proof systems for classical logic

Feqr,B Fo{r,B FOANT Fe(r,B,B

FoqNr,t FONIr,BA B Feqr,f~ FreqNr,Bv B
FOlB Fe | B Fol B
FO |t FOl BAt B FOUB VB
Init Store Release Decide

Fe,CAT FOANN FPOLP
F-AOJA FoOqr,c FOJlN TFPOTf:

P is a positive formula; N is a negative formula;
A is an atom; C positive formula or negative literal

Results about LKF

Let B be a propositional logic formula and let B result from B by
placing + or — on t, f, A, and V (there are exponentially many
such placements).

Theorem. [Liang & M, TCS 2009]
o If B is a tautology then every B has an LKF proof.
o If some B has an LKF proof, then B is a tautology.

The different polarizations do not change provability but can
radically change the proofs.

Also:

e Negative (non-atomic) formulas are treated linearly (never
weakened nor contracted).

e Only positive formulas are contracted (in the Decide rule).

Example: deciding on a simple clause

Assume that © contains the formula a AT b AT —¢ and that we
have a derivation that Decides on this formula.

FO,—c{-

]) FOq{-c

I—@l}a Init F@Ub Init m Rflease
FO L ant bAam —c A

FO-

Store

Decide

This derivation is possible iff © is of the form —a, =b,©’. Thus,
the “macro-rule” is
F —a,=b,—c,© 1 -
F —a,—b, 0 1 -

Example: Resolution as a proof certificate

o A clause: Vxq...¥xp[L1 V -+ V Lp]

e (3 is a resolution of C; and G, if we chose the mgu of two
complementary literals, one from each of C; and (, etc.

e If 3 is a resolvent of C; and & then - —~Cy,— G y G3 has a
short proof (decide depth 2 or less).

Translate a refutation of Cy, ..., C, into a (focused) sequent proof
with small holes:

= F-G,...,7Ch,—Chpa It
F-CG, G Chga F-CG,..o, G = Chtt
F-C,.o o, G-

Store
Cut

Here, = can be replaced with a “hole” bounded by depth 2.

Reference proof checking in AProlog

DALE MILLER
GOFALAN MNADATHUR

: Logic programming can check proofs in
Proegramming with | sequent calculus.
Higher-Order Logic

Proof reconstruction requires unification and
(bounded) proof search.

The AProlog programming language [M &
Nadathur, 1986, 2012] also include types,
abstract datatypes, and higher-order
programming.

From inference rules to AProlog clauses

We first “instrument” the inference rules with terms denoting proof
certificates and add premises that invoke ‘“clerks” and “experts”.
S FOTA =FO{(I,B Nclerk(Zo, =1, =2)
SOOI, AN B

=10 | B; Vexpert(=o, =1, 1)
=oFO B VB

Turning inference rules sideways yields logic programs.
The resulting logic program is the kernel of the checker.

Soundness of the kernel is reduced to soundness of the logic
programming implementation.

An FPC: Checking by conjunctive normal form

type 1lit index.

type cnf cert.

andNeg_kc cnf cnf cnf.
orNeg_kc cnf cnf.
false_kc cnf cnf.
release_ke cnf cnf.
initial_ke cnf lit.
decide_ke cnf cnf 1lit.
store_kc cnf cnf lit.

The token cnf is just passed around during the checking. The only
items that are stored are literals and they are all indexed the same.

An FPC: Checking binary resolution

type idx int -> index.
type lit index.
kind resol type.
type resol int -> int -> int -> resol.
type dl list int -> cert.
type ddone cert.
type rdone cert.
type rlist list resol -> cert.

type rlisti int -> 1list resol -> cert.

orNeg_kc (dl L) _ (d1L).

false_kc (@1 L) (a1 L).

store_kc (d1 L) ¢ 1lit (d1 L).
decide_ke (dl [I]) (idx I) (d1 [1).
decide_ke (dl [I,J]) (idx I) (d1 [J]).
decide_ke (dl [J,I]1) (didx I) (d1 [JD

all_kc (dl L) (x\ d1L).
true_ke (d1 L).
some_ke (dl L) _ (dl L).

andPos_ke (d1 L) _ (dl L) (d1 L).
release_ke (dl L) (dl L).
initial_ke (d1 L) _.

decide_ke (dl L) _ ddone.
initial_ke ddone _

false_kc (rlist R) (rlist R).

store_kc (rlisti K R) _ (idx K) (rlist R).

true_ke rdone.

decide_ke (rlist []) (idx I) rdone.

cut_ke (rlist [(resol I J K) |R]) CutForm (dl [I,J]) (rlisti K R).

Grammars, Parsers, and Logic Programming

Grammars are declarative.

LP can turn context free grammars into parsers.
e Definite clause grammars

e Issues of search are central: avoid left-recursion, use tabled
deduction or Earley deduction, etc.

If you restrict to subclasses (e.g., LALR(1)) then specialize tools
(e.g., YACC) can replace LP, gaining efficiency and acceptance.

Why trust YACC to generate a correct parser?

FPC, Checkers, and Logic Programming

LP can turn an FPC into a checker by adding it to the kernel that
implements the focused sequent calculus.

More logic than first order Horn clause logic is needed.

e Support for binders to capture quantification in formulas and
eigenvariables in proofs.

e Unification must be sound (turn on occur-check)

e Handling induction/co-induction requires generalized forms of
negation-as-failure.

Processing FPCs will require the possibility of performing arbitrary
deterministic and non-deterministic computations.

Program analysis and transformation will likely be key to improving
the performance of checkers.

The ProofCert project: recent results and next steps

Formal definition of the FPC framework for first-order logic.
Many example proof certificate formats are defined:
e Classical: resolution, expansion trees, matings, CNF, etc.
e Intuitionistic: natural deduction, various typed A-calculus.
o Also: Frege systems, equality reasoning, etc.
Implemented a reference kernel (using AProlog / Teyjus)

The intuitionistic checker can “host” the classical kernel, so only
one kernel is needed.

Next: designing certificates for
e model checking and inductive/co-inductive reasoning and

e modal logic proofs.

Thank you

